Sample records for cochlear supporting cells

  1. [Water regulation in the cochlea : Do molecular water channels facilitate potassium-dependent sound transduction?].

    PubMed

    Eckhard, A; Löwenheim, H

    2014-06-01

    Sound transduction in the cochlea critically depends on the circulation of potassium ions (K(+)) along so-called "K(+) recycling routes" between the endolymph and perilymph. These K(+) currents generate high ionic and osmotic gradients, which potentially impair the excitability of sensory hair cells and threaten cell survival in the entire cochlear duct. Molecular water channels-aquaporins (AQP)-are expressed in all cochlear supporting cells along the K(+) recycling routes; however, their significance for osmotic equilibration in cochlear duct cells is unknown. The diffusive and osmotic water permeabilies of Reissner's membrane, the organ of Corti and the entire cochlear duct epithelium were determined. Expression of the potassium channel Kir4.1 and the water channel AQP4 in the cochlear duct was investigated by immunohistochemistry. The calculated water permeability values indicate the extent of AQP-facilitated water flux across the cochlear duct epithelium. Immunohistochemically, Kir4.1 and AQP4 were found to colocalize in distinct membrane domains of supporting cells along the K(+)-recycling routes. These observations suggest the presence of a rapid AQP-mediated water exchange between the endolymph, the cells of the cochlear duct and the perilymph. The subcellular colocalization of Kir4.1 and AQP4 in epithelial supporting cells indicates functional coupling of potassium and water flow in the cochlea. Finally, this offers an explanation for the hearing impairment observed in individuals with mutations in the AQP4 gene.

  2. Intrinsic regenerative potential of murine cochlear supporting cells.

    PubMed

    Sinkkonen, Saku T; Chai, Renjie; Jan, Taha A; Hartman, Byron H; Laske, Roman D; Gahlen, Felix; Sinkkonen, Wera; Cheng, Alan G; Oshima, Kazuo; Heller, Stefan

    2011-01-01

    The lack of cochlear regenerative potential is the main cause for the permanence of hearing loss. Albeit quiescent in vivo, dissociated non-sensory cells from the neonatal cochlea proliferate and show ability to generate hair cell-like cells in vitro. Only a few non-sensory cell-derived colonies, however, give rise to hair cell-like cells, suggesting that sensory progenitor cells are a subpopulation of proliferating non-sensory cells. Here we purify from the neonatal mouse cochlea four different non-sensory cell populations by fluorescence-activated cell sorting (FACS). All four populations displayed proliferative potential, but only lesser epithelial ridge and supporting cells robustly gave rise to hair cell marker-positive cells. These results suggest that cochlear supporting cells and cells of the lesser epithelial ridge show robust potential to de-differentiate into prosensory cells that proliferate and undergo differentiation in similar fashion to native prosensory cells of the developing inner ear.

  3. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells.

    PubMed

    McLean, Will J; Yin, Xiaolei; Lu, Lin; Lenz, Danielle R; McLean, Dalton; Langer, Robert; Karp, Jeffrey M; Edge, Albert S B

    2017-02-21

    Death of cochlear hair cells, which do not regenerate, is a cause of hearing loss in a high percentage of the population. Currently, no approach exists to obtain large numbers of cochlear hair cells. Here, using a small-molecule approach, we show significant expansion (>2,000-fold) of cochlear supporting cells expressing and maintaining Lgr5, an epithelial stem cell marker, in response to stimulation of Wnt signaling by a GSK3β inhibitor and transcriptional activation by a histone deacetylase inhibitor. The Lgr5-expressing cells differentiate into hair cells in high yield. From a single mouse cochlea, we obtained over 11,500 hair cells, compared to less than 200 in the absence of induction. The newly generated hair cells have bundles and molecular machinery for transduction, synapse formation, and specialized hair cell activity. Targeting supporting cells capable of proliferation and cochlear hair cell replacement could lead to the discovery of hearing loss treatments. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors

    PubMed Central

    Shi, Fuxin; Hu, Lingxiang; Edge, Albert S. B.

    2013-01-01

    Mammalian hair cells do not regenerate, and their loss is a major cause of deafness. We recently identified leucine-rich repeat containing, G-protein-coupled receptor 5 (Lgr5)-expressing cochlear supporting cells with the capacity for self-renewal and hair cell differentiation in vitro. We found that these cells, a subset of cochlear supporting cells, were responsive to Wnt signaling. Here we asked whether these Lgr5-positive cells, despite their lack of contribution to hair cell replacement after degenerative loss, could be driven by forced expression of β-catenin to act as hair cell progenitors in vivo. We showed that forced stabilization of β-catenin in supporting cells in neonatal animals resulted in proliferation of supporting cells and generation of hair cells. Although β-catenin expression was increased by genetic means in all supporting cells, entry to the cell cycle and differentiation to hair cells of the normally postmitotic cells was restricted to the Lgr5-positive population. Our finding suggests that Wnt/β-catenin can drive Lgr5-positive cells to act as hair cell progenitors, even after their exit from the cell cycle and apparent establishment of cell fate. PMID:23918377

  5. Sonic Hedgehog Initiates Cochlear Hair Cell Regeneration through Downregulation of Retinoblastoma Protein

    PubMed Central

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596

  6. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    PubMed

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Modulation of Mcl-1 expression reduces age-related cochlear degeneration

    PubMed Central

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-01-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration. PMID:23790646

  8. Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium.

    PubMed

    Chen, Yan; Li, Wenyan; Li, Wen; Chai, Renjie; Li, Huawei

    2016-09-01

    The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine Nmethyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.

  9. Minocycline attenuates streptomycin-induced cochlear hair cell death by inhibiting protein nitration and poly (ADP-ribose) polymerase activation.

    PubMed

    Wang, Ping; Li, Haonan; Yu, Shuyuan; Jin, Peng; Hassan, Abdurahman; Du, Bo

    2017-08-24

    This study aimed to elucidate the protective effect of minocycline against streptomycin-induced damage of cochlear hair cells and its mechanism. Cochlear membranes were isolated from newborn Wistar rats and randomly divided into control, 500μmol/L streptomycin, 100μmol/L minocycline, and streptomycin and minocycline treatment groups. Hair cell survival was analyzed by detecting the expression of 3-nitrotyrosine (3-NT) in cochlear hair cells by immunofluorescence and an enzyme-linked immunosorbent assay. Expression of 3-NT and inducible nitric oxide synthase (iNOS), and poly (ADP-Ribose) polymerase (PARP) and caspase-3 activation were evaluated by western blotting. The results demonstrated hair cell loss at 24h after streptomycin treatment. No change was found in supporting cells of the cochleae. Minocycline pretreatment improved hair cell survival and significantly reduced the expression of iNOS and 3-NT in cochlear tissues compared with the streptomycin treatment group. PARP and caspase-3 activation was increased in the streptomycin treatment group compared with the control group, and pretreatment with minocycline decreased cleaved PARP and activated caspase-3 expression. Minocycline protected cochlear hair cells from injury caused by streptomycin in vitro. The mechanism underlying the protective effect may be associated with the inhibition of excessive formation of nitric oxide, reduction of the nitration stress reaction, and inhibition of PARP and caspase-3 activation in cochlear hair cells. Combined minocycline therapy can be applied to patients requiring streptomycin treatment. Copyright © 2017. Published by Elsevier B.V.

  10. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Na; Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; Chen, Yan

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We showmore » that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.« less

  11. Differential Effects of AAV.BDNF and AAV.Ntf3 in the Deafened Adult Guinea Pig Ear

    PubMed Central

    Budenz, Cameron L.; Wong, Hiu Tung; Swiderski, Donald L.; Shibata, Seiji B.; Pfingst, Bryan E.; Raphael, Yehoash

    2015-01-01

    Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term. PMID:25726967

  12. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    PubMed

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  13. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells

    PubMed Central

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E.

    2015-01-01

    Summary Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl− efflux and osmotic cell shrinkage by opening TMEM16A Ca2+-activated Cl− channels. Release of Cl− from ISCs also forces K+ efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea, and prevents ATP-dependent shrinkage of supporting cells. These results indicate that support cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  14. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Ho; Pradhan, Jonu; Maskey, Dhiraj

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltagemore » clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.« less

  15. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death.

    PubMed

    Zhang, Jianhui; Sun, Hong; Salvi, Richard; Ding, Dalian

    2018-07-01

    Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cochlear dysfunction in hyperuricemia: otoacoustic emission analysis.

    PubMed

    Hamed, Sherifa A; El-Attar, Amal M

    2010-01-01

    The objective of this study is to provide evidence that primary hyperuricemia is associated with cochlear dysfunction as other metabolic diseases that interfere with cell metabolism. Cochlear function was evaluated in 25 subjects with asymptomatic hyperuricemia using routine diagnostic audiometry along with transient evoked and distortion product otoacoustic emissions (TEOAE and DPOAE, respectively). To support the notion that vascular compromise was a significant underlying factor for such cochlear dysfunction, we assessed vascular anatomical and functional states through measuring the common carotid artery intima-media thickness and flow velocity of the basal intracranial vessels. Compared with control subjects, reduced response levels of TEOAEs (P < .01) and amplitudes of DPOAEs (P < .001) were detected at higher frequencies. The reduced DPOAE levels at 5 kHz and TEOAEs at 4 kHz correlated significantly with uric acid (P < .05; P < .01), patients' age (P < .06; P < .05), duration since diagnosis of hyperuricemia (P < .05; P < .001), common carotid artery intima-media thickness (P < .05), mean flow velocities of middle cerebral arteries (P < .05), and vertebral arteries (P < .01). Multivariate analysis showed that the abnormalities at higher frequencies were significantly correlated with the duration and degree of hyperuricemia. These data suggest that subclinical changes in cochlear function are associated with hyperuricemia. They support the usefulness of otoacoustic emissions in early detection of cochlear dysfunction. It is possible that hyperuricemia could be accompanied by increased stiffness and/or compromise of blood supply of the outer hair cells, which will impair their electromotile response. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.

    PubMed

    Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan

    2009-06-01

    Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.

  18. A nonlinear cochlear model with the outer hair cell piezoelectric activity

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoai; Grosh, Karl

    2003-10-01

    In this paper we present a simple cochlear model which captures the most important aspect of nonlinearity in the cochlea-the nonlinearity caused by the piezoelectric-like activity of outer hair cells and the variable conductance of the outer hair cell stereocilia. A one-dimensional long-wave model is built to simulate the dynamic response of the fluid-loaded basilar membrane. The basilar membrane is simulated as isolated linear oscillators along the cochlear length, and its motion is coupled with the fluid pressure and the nonlinear force produced by the outer hair cells. As the basilar membrane moves, the fluid shears stereocilia, and the resulting ion flow changes the transmembrane potential of the outer hair cells and subsequently their length, leading to further movement of the basilar membrane. The piezoelectric-like activity of the outer hair cell is simulated by a current source, and stereocilia motion is modeled as a varying conductance that changes as the basilar membrane moves. A solution in the time domain will be presented. [Work supported by NIH.

  19. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.

    PubMed

    Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo

    2017-07-22

    Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Gain and frequency tuning within the mouse cochlear apex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided bymore » basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.« less

  1. Noise-induced cochlear synaptopathy: Past findings and future studies.

    PubMed

    Kobel, Megan; Le Prell, Colleen G; Liu, Jennifer; Hawks, John W; Bao, Jianxin

    2017-06-01

    For decades, we have presumed the death of hair cells and spiral ganglion neurons are the main cause of hearing loss and difficulties understanding speech in noise, but new findings suggest synapse loss may be the key contributor. Specifically, recent preclinical studies suggest that the synapses between inner hair cells and spiral ganglion neurons with low spontaneous rates and high thresholds are the most vulnerable subcellular structures, with respect to insults during aging and noise exposure. This cochlear synaptopathy can be "hidden" because this synaptic loss can occur without permanent hearing threshold shifts. This new discovery of synaptic loss opens doors to new research directions. Here, we review a number of recent studies and make suggestions in two critical future research directions. First, based on solid evidence of cochlear synaptopathy in animal models, it is time to apply molecular approaches to identify the underlying molecular mechanisms; improved understanding is necessary for developing rational, effective therapies against this cochlear synaptopathy. Second, in human studies, the data supporting cochlear synaptopathy are indirect although rapid progress has been made. To fully identify changes in function that are directly related this hidden synaptic damage, we argue that a battery of tests including both electrophysiological and behavior tests should be combined for diagnosis of "hidden hearing loss" in clinical studies. This new approach may provide a direct link between cochlear synaptopathy and perceptual difficulties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Vibration of the organ of Corti within the cochlear apex in mice

    PubMed Central

    Gao, Simon S.; Wang, Rosalie; Raphael, Patrick D.; Moayedi, Yalda; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2014-01-01

    The tonotopic map of the mammalian cochlea is commonly thought to be determined by the passive mechanical properties of the basilar membrane. The other tissues and cells that make up the organ of Corti also have passive mechanical properties; however, their roles are less well understood. In addition, active forces produced by outer hair cells (OHCs) enhance the vibration of the basilar membrane, termed cochlear amplification. Here, we studied how these biomechanical components interact using optical coherence tomography, which permits vibratory measurements within tissue. We measured not only classical basilar membrane tuning curves, but also vibratory responses from the rest of the organ of Corti within the mouse cochlear apex in vivo. As expected, basilar membrane tuning was sharp in live mice and broad in dead mice. Interestingly, the vibratory response of the region lateral to the OHCs, the “lateral compartment,” demonstrated frequency-dependent phase differences relative to the basilar membrane. This was sharply tuned in both live and dead mice. We then measured basilar membrane and lateral compartment vibration in transgenic mice with targeted alterations in cochlear mechanics. Prestin499/499, Prestin−/−, and TectaC1509G/C1509G mice demonstrated no cochlear amplification but maintained the lateral compartment phase difference. In contrast, SfswapTg/Tg mice maintained cochlear amplification but did not demonstrate the lateral compartment phase difference. These data indicate that the organ of Corti has complex micromechanical vibratory characteristics, with passive, yet sharply tuned, vibratory characteristics associated with the supporting cells. These characteristics may tune OHC force generation to produce the sharp frequency selectivity of mammalian hearing. PMID:24920025

  3. Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.

    PubMed

    Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi

    2018-09-15

    Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    PubMed Central

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  5. Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma

    PubMed Central

    Mizutari, Kunio; Fujioka, Masato; Hosoya, Makoto; Bramhall, Naomi; Okano, Hirotaka James; Okano, Hideyuki; Edge, Albert S.B.

    2013-01-01

    SUMMARY Hearing loss due to damage to auditory hair cells is normally irreversible because mammalian hair cells do not regenerate. Here, we show that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells in vitro. Hair cell generation resulted from an increase in the level of bHLH transcription factor, Atoh1, in response to inhibition of Notch signaling. In vivo prospective labeling of Sox2-expressing cells with a Cre/lox system unambiguously demonstrated that hair cell generation resulted from transdifferentiation of supporting cells. Manipulating cell fate of cochlear sensory cells in vivo by pharmacological inhibition of Notch signaling is thus a potential therapeutic approach to the treatment of deafness. PMID:23312516

  6. Biohybrid cochlear implants in human neurosensory restoration.

    PubMed

    Roemer, Ariane; Köhl, Ulrike; Majdani, Omid; Klöß, Stephan; Falk, Christine; Haumann, Sabine; Lenarz, Thomas; Kral, Andrej; Warnecke, Athanasia

    2016-10-07

    The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration. This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.

  7. Cytomegalovirus induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice

    PubMed Central

    Schachtele, Scott J.; Mutnal, Manohar B.; Schleiss, Mark R.; Lokensgard, James R.

    2011-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL. PMID:21416394

  8. Cytomegalovirus-induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice.

    PubMed

    Schachtele, Scott J; Mutnal, Manohar B; Schleiss, Mark R; Lokensgard, James R

    2011-06-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL.

  9. Developmentally regulated expression of ectonucleotidases NTPDase5 and NTPDase6 and UDP-responsive P2Y receptors in the rat cochlea.

    PubMed

    O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M

    2010-04-01

    Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate complex extracellular P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from this family (NTPDase1-8) are expressed in the adult rat cochlea. This study reports the changes in expression of NTPDase5 and NTPDase6 in the developing rat cochlea. These two intracellular members of the E-NTPDase family can be released in a soluble form and show preference for nucleoside 5'-diphosphates, such as UDP and GDP. Here, we demonstrate differential spatial and temporal patterns for NTPDase5 and NTPDase6 expression during cochlear development, which are indicative of both cytosolic and extracellular action via pyrimidines. NTPDase5 is noted during the early postnatal period in developing sensory hair cells and supporting Deiters' cells of the organ of Corti, and primary auditory neurons located in the spiral ganglion. In contrast, NTPDase6 is confined to the embryonic and early postnatal hair cell bundles. NTPDase6 immunolocalisation in the developing cochlea underpins its putative role in hair cell bundle development, probably via cytosolic action, whilst NTPDase5 may have a broader extracellular role in the development of sensory and neural tissues in the rat cochlea. Both NTPDase5 and NTPDase6 colocalize with UDP-preferring P2Y(4), P2Y(6) and P2Y(14) receptors during cochlear development, but this strong association was lost in the adult cochlea. Spatiotemporal topographic expression of NTPDase5 and NTPDase6 and P2Y receptors in adult and developing cochlear tissues provide strong support for the role of pyrimidinergic signalling in cochlear development.

  10. Ion flow in cochlear hair cells and the regulation of hearing sensitivity.

    PubMed

    Patuzzi, Robert

    2011-10-01

    This paper discusses how ion transport proteins in the hair cells of the mammalian cochlea work to produce a sensitive but stable hearing organ. The transport proteins in the inner and outer hair cells are summarized (including their current voltage characteristics), and the roles of these proteins in determining intracellular Ca(2+), membrane potential, and ultimately cochlear sensitivity are discussed. The paper also discusses the role of the Ca(2+) sequestration sacs in outer hair cells in the autoregulation of hair cell membrane potential and cochlear gain, and how the underdamped control of Ca(2+) within these sacs may produce the observed slow oscillations in cochlear sensitivity and otoacoustic emissions after cochlear perturbations, including perilymphatic perfusions and prolonged low-frequency tones. The relative insensitivity of cochlear gain to short-term changes in the endocochlear potential is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Serotonin projection patterns to the cochlear nucleus.

    PubMed

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the dorsal cochlear nucleus, we concluded that the serotoninergic projection pattern to the cochlear nucleus is divergent and non-specific. Double-labeled fiber segments were also present, but sparse, in the superior olive, localized mainly in periolivary regions; this indicated that the divergence of dorsal and median raphe neurons that extends throughout regions of the cochlear nucleus also extended well beyond the cochlear nucleus to include at least the superior olivary complex as well.

  12. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    PubMed Central

    Chen, Yan; Lu, Xiaoling; Guo, Luo; Ni, Wenli; Zhang, Yanping; Zhao, Liping; Wu, Lingjie; Sun, Shan; Zhang, Shasha; Tang, Mingliang; Li, Wenyan; Chai, Renjie; Li, Huawei

    2017-01-01

    Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway. PMID:29311816

  13. Three-Dimensional Imaging of the Mouse Organ of Corti Cytoarchitecture for Mechanical Modeling

    NASA Astrophysics Data System (ADS)

    Puria, Sunil; Hartman, Byron; Kim, Jichul; Oghalai, John S.; Ricci, Anthony J.; Liberman, M. Charles

    2011-11-01

    Cochlear models typically use continuous anatomical descriptions and homogenized parameters based on two-dimensional images for describing the organ of Corti. To produce refined models based more closely on the actual cochlear cytoarchitecture, three-dimensional morphometric parameters of key mechanical structures are required. Towards this goal, we developed and compared three different imaging methods: (1) A fixed cochlear whole-mount preparation using the fluorescent dye Cellmask®, which is a molecule taken up by cell membranes and clearly delineates Deiters' cells, outer hair cells, and the phalangeal process, imaged using confocal microscopy; (2) An in situ fixed preparation with hair cells labeled using anti-prestin and supporting structures labeled using phalloidin, imaged using two-photon microscopy; and (3) A membrane-tomato (mT) mouse with fluorescent proteins expressed in all cell membranes, which enables two-photon imaging of an in situ live preparation with excellent visualization of the organ of Corti. Morphometric parameters including lengths, diameters, and angles, were extracted from 3D cellular surface reconstructions of the resulting images. Preliminary results indicate that the length of the phalangeal processes decreases from the first (inner most) to third (outer most) row of outer hair cells, and that their length also likely varies from base to apex and across species.

  14. Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound.

    PubMed

    Mistrík, Pavel; Mullaley, Chris; Mammano, Fabio; Ashmore, Jonathan

    2009-03-06

    The mammalian inner ear uses its sensory hair cells to detect and amplify incoming sound. It is unclear whether cochlear amplification arises uniquely from a voltage-dependent mechanism (electromotility) associated with outer hair cells (OHCs) or whether other mechanisms are necessary, for the voltage response of OHCs is apparently attenuated excessively by the membrane electrical filter. The cochlea contains many thousands of hair cells organized in extensive arrays, embedded in an electrically coupled system of supporting cells. We have therefore constructed a multi-element, large-scale computational model of cochlear sound transduction to study the underlying potassium (K+) recirculation. We have included experimentally determined parameters of cochlear macromechanics, which govern sound transduction, and data on hair cells' electrical parameters including tonotopical variation in the membrane conductance of OHCs. In agreement with the experiment, the model predicts an exponential decay of extracellular longitudinal K+ current spread. In contrast to the predictions from isolated cells, it also predicts low attenuation of the OHC transmembrane receptor potential (-5 dB per decade) in the 0.2-30 kHz range. This suggests that OHC electromotility could be driven by the transmembrane potential. Furthermore, the OHC electromotility could serve as a single amplification mechanism over the entire hearing range.

  15. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure.

    PubMed

    Suzuki, Jun; Corfas, Gabriel; Liberman, M Charles

    2016-04-25

    In acquired sensorineural hearing loss, such as that produced by noise or aging, there can be massive loss of the synaptic connections between cochlear sensory cells and primary sensory neurons, without loss of the sensory cells themselves. Because the cell bodies and central projections of these cochlear neurons survive for months to years, there is a long therapeutic window in which to re-establish functional connections and improve hearing ability. Here we show in noise-exposed mice that local delivery of neurotrophin-3 (NT-3) to the round window niche, 24 hours after an exposure that causes an immediate loss of up to 50% loss of synapses in the cochlear basal region, can regenerate pre- and post-synaptic elements at the hair cell / cochlear nerve interface. This synaptic regeneration, as documented by confocal microscopy of immunostained cochlear sensory epithelia, was coupled with a corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response Wave 1. Cochlear delivery of neurotrophins in humans is likely achievable as an office procedure via transtympanic injection, making our results highly significant in a translational context.

  16. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    PubMed

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells.

    PubMed

    Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A

    2018-01-01

    Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions : We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.

  18. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window

    PubMed Central

    Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.; Thomas, Megan L. A.; Kamerer, Aryn M.; Peppi, Marcello

    2014-01-01

    The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels. PMID:25190395

  19. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter.

    PubMed

    Wu, T; Dai, M; Shi, X R; Jiang, Z G; Nuttall, A L

    2011-07-01

    The cochlear lateral wall generates the endocochlear potential (EP), which creates a driving force for the hair cell transduction current and is essential for normal hearing. Blood flow at the cochlear lateral wall is critically important for maintaining the EP. The vulnerability of the EP to hypoxia suggests that the blood flow in the cochlear lateral wall is dynamically and precisely regulated to meet the changing metabolic needs of the cochlear lateral wall. It has been reported that ATP, an important extracellular signaling molecule, plays an essential role in regulating cochlear blood flow. However, the cellular mechanism underlying ATP-induced regional blood flow changes has not been investigated. In the current study, we demonstrate that 1) the P2X4 receptor is expressed in endothelial cells (ECs) of spiral ligament (SL) capillaries. 2) ATP elicits a characteristic current through P2X4 on ECs in a dose-dependent manner (EC(50) = 0.16 mM). The ATP current has a reversal potential at ∼0 mV; is inhibited by 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD), LaCl(3), pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (PPADS), and extracellular acidosis; and is less sensitive to α,β-methyleneadenosine 5'-triphosphate (α,β-MeATP) and 2'- and 3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate (BzATP). 3) ATP elicits a transient increase of intracellular Ca(2+) in ECs. 4) In accordance with the above in vitro findings, perilymphatic ATP (1 mM) caused dilation in SL capillaries in vivo by 11.5%. N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nonselective inhibitor of nitric oxide synthase, or 5-BDBD, the specific P2X4 inhibitor, significantly blocked the dilation. These findings support our hypothesis that extracellular ATP regulates cochlear lateral blood flow through P2X4 activation in ECs.

  20. Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea.

    PubMed

    Vlajkovic, Srdjan M; Thorne, Peter R; Sévigny, Jean; Robson, Simon C; Housley, Gary D

    2002-08-01

    Extracellular ATP and other extracellular nucleotides acting via P2 receptors in the inner ear initiate a wide variety of signalling pathways important for regulation of hearing and balance. Ectonucleotidases are extracellular nucleotide-metabolising enzymes that modulate purinergic signalling in most tissues. Major ectonucleotidases in the cochlea are likely members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family. In this study, we provide a detailed description of NTPDase1 and NTPDase2 distribution in cochlear tissues using immunocytochemistry. E-NTPDase immunoreactivity was not equally distributed in the tissues bordering scala media. It was observed in the organ of Corti, including sensory and supporting cells, but was notably absent from Reissner's membrane and most of the marginal cells of the stria vascularis. NTPDase1 expression was most prominent in the cochlear vasculature and cell bodies of the spiral ganglion neurones, whereas considerable NTPDase2 immunoreactivity was detected in the stria vascularis. Both E-NTPDases were expressed in the cuticular plates of the sensory hair cells and nerve fibres projecting from the synaptic area underneath the inner and outer hair cells. E-NTPDase localisation corresponds to the reported distribution of some P2X receptor subunits (P2X(2) in particular) in sensory, supporting and neural cells and also P2Y receptor distribution in the vasculature and secretory tissues of the lateral wall. The role for E-NTPDases in purinergic signalling is most likely to regulate extracellular nucleoside triphosphate and diphosphate levels and thus provide termination for extracellular ATP signalling that has been linked to control of cochlear blood flow, electrochemical regulation of sound transduction and to neurotransmission in the cochlea.

  1. Investigation of Notch Signaling during Spontaneous Regeneration of Cochlear Hair Cells

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0475 TITLE: Investigation of Notch Signaling during Spontaneous Regeneration of Cochlear Hair Cells PRINCIPAL...Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigation of Notch Signaling during Spontaneous Regeneration of Cochlear Hair Cells 5b...inherent to military settings. These noise exposures damage and kill sensory hair cells (HCs) found in the cochlea of the inner ear, resulting in permanent

  2. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    PubMed

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system. Copyright © 2015 the authors 0270-6474/15/3515050-12$15.00/0.

  3. Contractility in type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling.

    PubMed

    Kelly, John J; Forge, Andrew; Jagger, Daniel J

    2012-08-01

    The cochlear spiral ligament is a connective tissue that plays diverse roles in normal hearing. Spiral ligament fibrocytes are classified into functional sub-types that are proposed to carry out specialized roles in fluid homeostasis, the mediation of inflammatory responses to trauma, and the fine tuning of cochlear mechanics. We derived a secondary sub-culture from guinea pig spiral ligament, in which the cells expressed protein markers of type III or "tension" fibrocytes, including non-muscle myosin II (nmII), α-smooth muscle actin (αsma), vimentin, connexin43 (cx43), and aquaporin-1. The cells formed extensive stress fibers containing αsma, which were also associated intimately with nmII expression, and the cells displayed the mechanically contractile phenotype predicted by earlier modeling studies. cx43 immunofluorescence was evident within intercellular plaques, and the cells were coupled via dye-permeable gap junctions. Coupling was blocked by meclofenamic acid (MFA), an inhibitor of cx43-containing channels. The contraction of collagen lattice gels mediated by the cells could be prevented reversibly by blebbistatin, an inhibitor of nmII function. MFA also reduced the gel contraction, suggesting that intercellular coupling modulates contractility. The results demonstrate that these cells can impart nmII-dependent contractile force on a collagenous substrate, and support the hypothesis that type III fibrocytes regulate tension in the spiral ligament-basilar membrane complex, thereby determining auditory sensitivity.

  4. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss.

    PubMed

    Xiong, Hao; Pang, Jiaqi; Yang, Haidi; Dai, Min; Liu, Yimin; Ou, Yongkang; Huang, Qiuhong; Chen, Suijun; Zhang, Zhigang; Xu, Yaodong; Lai, Lan; Zheng, Yiqing

    2015-04-01

    The molecular mechanisms underlying age-related hearing loss are not fully understood, and currently, there is no treatment for this disorder. MicroRNAs have recently been reported to be increasingly associated with age-related diseases and are emerging as promising therapeutic targets. In this study, miR-34a/Sirtuin 1 (SIRT1)/p53 signaling was examined in cochlear hair cells during aging. MiR-34a, p53 acetylation, and apoptosis increased in the cochlea of C57BL/6 mice with aging, whereas an age-related decrease in SIRT1 was observed. In the inner ear HEI-OC1 cell line, miR-34a overexpression inhibited SIRT1, leading to an increase in p53 acetylation and apoptosis. Moreover, miR-34a knockdown increased SIRT1 expression and diminished p53 acetylation, and apoptosis. Additionally, resveratrol, an activator of SIRT1, significantly rescued miR-34a overexpression-induced HEI-OC1 cell death and significantly reduced hearing threshold shifts and hair cell loss in C57BL/6 mice after a 2-month administration. Our results support a link between age-related cochlear hair cell apoptosis and miR-34a/SIRT1/p53 signaling, which may serve as a potential target for age-related hearing loss treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Hearing and hearing loss: Causes, effects, and treatments

    NASA Astrophysics Data System (ADS)

    Schmiedt, Richard A.

    2003-04-01

    Hearing loss can have multiple causes. The outer and middle ears are conductive pathways for acoustic energy to the inner ear (cochlea) and help shape our spectral sensitivity. Conductive hearing loss is mechanical in nature such that the energy transfer to the cochlea is impeded, often from eardrum perforations or middle ear fluid buildup. Beyond the middle ear, the cochlea comprises three interdependent systems necessary for normal hearing. The first is that of basilar-membrane micromechanics including the outer hair cells. This system forms the basis of the cochlear amplifier and is the most vulnerable to noise and drug exposure. The second system comprises the ion pumps in the lateral wall tissues of the cochlea. These highly metabolic cells provide energy to the cochlear amplifier in the form of electrochemical potentials. This second system is particularly vulnerable to the effects of aging. The third system comprises the inner hair cells and their associated sensory nerve fibers. This system is the transduction stage, changing mechanical vibrations to nerve impulses. New treatments for hearing loss are on the horizon; however, at present the best strategy is avoidance of cochlear trauma and the proper use of hearing aids. [Work supported by NIA and MUSC.

  6. The Coxsackievirus and Adenovirus Receptor: a new adhesion protein in cochlear development.

    PubMed

    Excoffon, Katherine J D A; Avenarius, Matthew R; Hansen, Marlan R; Kimberling, William J; Najmabadi, Hossein; Smith, Richard J H; Zabner, Joseph

    2006-05-01

    The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness.

  7. Cochlear Damages Caused by Vibration Exposure

    PubMed Central

    Moussavi Najarkola, Seyyed Ali; Khavanin, Ali; Mirzaei, Ramazan; Salehnia, Mojdeh; Muhammadnejad, Ahad

    2013-01-01

    Background Many industrial devices have an excessive vibration which can affect human body systems. The effect of vibration on cochlear histology has been as a debatable problem in occupational health and medicine. Objectives Due to limitation present in human studies, the research was conducted to survey the influence of vibration on cochlear histology in an animal model. Materials and Methods Twelve albino rabbits were experimented as: Vibration group (n = 6; exposed to 1.0 m.s-2 r.m.s vertical whole-body vibration at 4 - 8 Hz for 8 hours per day during 5 consecutive days) versus Control group (n = 6; the same rabbits without vibration exposure). After finishing the exposure scenario, all rabbits were killed by CO2 inhalation; their cochleae were extracted and fixed in 10% formaldehyde for 48 hours, decalcified by 10% nitric acid for 24 hours. Specimens were dehydrated, embedded, sectioned 5 µm thick and stained with Hematoxylin and Eosin for light microscopy observations. Results Severely hydropic degenerated and vacuolated inner hair cells (IHCs) were observed in vibration group compared to the control group. Inter and intracellular edema was appeared in supporting cells (SC). Nuclei of outer hair cells (OHCs) seemed to be pyknotic. Slightly thickened basilar membrane (BM) was probably implied to inter cellular edematous. Tectorial Membrane (TM) was not affected pathologically. Conclusions Whole-body vibration could cause cochlear damages in male rabbits, though vibration-induced auditory functional effects might be resulted as subsequent outcome of prolonged high level vibration exposures. PMID:24616783

  8. Distribution of NTPDase5 and NTPDase6 and the regulation of P2Y receptor signalling in the rat cochlea

    PubMed Central

    O’Keeffe, Mary G.; Thorne, Peter R.; Housley, Gary D.; Robson, Simon C.

    2010-01-01

    Membrane-bound ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) in the inner ear regulate complex extracellular purinergic type-2 (P2) receptor signalling pathways through hydrolysis of extracellular nucleoside 5′-triphosphates and diphosphates. This study investigated the distribution of NTPDase5 and NTPDase6, two intracellular members of the E-NTPDase family, and linked this to regulation of P2 receptor signalling in the adult rat cochlea. These extracellular ectonucleotidases preferentially hydrolyse nucleoside 5′-diphosphates such as UDP and GDP. Expression of both enzymes at mRNA and protein level was detected in cochlear tissues and there was in vivo release of soluble NTPDase5 and 6 into cochlear fluids. Strong NTPDase5 immunostaining was found in the spiral ganglion neurones and supporting Deiters’ cells of the organ of Corti, while NTPDase6 was confined to the inner hair cells. Upregulation of NTPDase5 after exposure to loud sound indicates a dynamic role for NTPDase5 in cochlear response to stress, whereas NTPDase6 may have more limited extracellular roles. Noise-induced upregulation of co-localised UDP-preferring P2Y6 receptors in the spiral ganglion neurons further supports the involvement of NTPDase5 in regulation of P2Y receptor signalling. Noise stress also induced P2Y14 (UDP- and UDP-glucose preferring) receptor expression in the root processes of the outer sulcus cells, but this was not associated with localization of the E-NTPDases. PMID:20806016

  9. Progress in Cochlear Physiology after Békésy

    PubMed Central

    Guinan, John J.; Salt, Alec; Cheatham, Mary Ann

    2012-01-01

    In the fifty years since Békésy was awarded the Nobel Prize, cochlear physiology has blossomed. Many topics that are now current are things Békésy could not have imagined. In this review we start by describing progress in understanding the origin of cochlear gross potentials, particularly the cochlear microphonic, an area in which Békésy had extensive experience. We then review progress in areas of cochlear physiology that were mostly unknown to Békésy, including: (1) stereocilia mechano-electrical transduction, force production, and response amplification, (2) outer hair cell (OHC) somatic motility and its molecular basis in prestin, (3) cochlear amplification and related micromechanics, including the evidence that prestin is the main motor for cochlear amplification, (4) the influence of the tectorial membrane, (5) cochlear micromechanics and the mechanical drives to inner hair cell stereocilia, (6) otoacoustic emissions, and (7) olivocochlear efferents and their influence on cochlear physiology. We then return to a subject that Békésy knew well: cochlear fluids and standing currents, as well as our present understanding of energy dependence on the lateral wall of the cochlea. Finally, we touch on cochlear pathologies including noise damage and aging, with an emphasis on where the field might go in the future. PMID:22633944

  10. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy.

    PubMed

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-07-15

    The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types. © 2015. Published by The Company of Biologists Ltd.

  11. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells.

    PubMed

    Richardson, G P; Forge, A; Kros, C J; Marcotti, W; Becker, D; Williams, D S; Thorpe, J; Fleming, J; Brown, S D; Steel, K P

    1999-11-28

    Myosin VIIA is expressed by sensory hair cells in the inner ear and proximal tubule cells in the kidney, the two primary targets of aminoglycoside antibiotics. Using cochlear cultures prepared from early postnatal Myo7a6J mice with a missense mutation in the head region of the myosin VIIA molecule we show that this myosin is required for aminoglycoside accumulation in cochlear hair cells. Hair cells in homozygous mutant Myo7a6J cochlear cultures have disorganized hair bundles, but are otherwise morphologically normal and transduce. However, and in contrast to hair cells from heterozygous Myo7a6J cultures, the homozygous Myo7a6J hair cells do not accumulate [3H]gentamicin and do not exhibit an ototoxic response on exposure to aminoglycoside. Possible roles for myosin VIIA in the process of aminoglycoside accumulation are discussed.

  12. Alternating Current Delivered into the Scala Media Alters Sound Pressure at the Eardrum

    NASA Astrophysics Data System (ADS)

    Hubbard, Allyn E.; Mountain, David C.

    1983-11-01

    Alternating current delivered into the scala media of the gerbil cochlea modulates the amplitude of a test tone measured near the eardrum. Variations in the electromechanical effect with acoustic stimulus parameters and observed physiological vulnerability suggest that cochlear hair cells are the biophysical origin of the process. Cochlear hair cells have traditionally been thought of as passive receptor cells, but they may play an active role in cochlear micromechanics.

  13. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the cochlear microphonic tuning curves.

  14. Cell migration, intercalation and growth regulate mammalian cochlear extension.

    PubMed

    Driver, Elizabeth Carroll; Northrop, Amy; Kelley, Matthew W

    2017-10-15

    Developmental remodeling of the sensory epithelium of the cochlea is required for the formation of an elongated, tonotopically organized auditory organ, but the cellular processes that mediate these events are largely unknown. We used both morphological assessments of cellular rearrangements and time-lapse imaging to visualize cochlear remodeling in mouse. Analysis of cell redistribution showed that the cochlea extends through a combination of radial intercalation and cell growth. Live imaging demonstrated that concomitant cellular intercalation results in a brief period of epithelial convergence, although subsequent changes in cell size lead to medial-lateral spreading. Supporting cells, which retain contact with the basement membrane, exhibit biased protrusive activity and directed movement along the axis of extension. By contrast, hair cells lose contact with the basement membrane, but contribute to continued outgrowth through increased cell size. Regulation of cellular protrusions, movement and intercalation within the cochlea all require myosin II. These results establish, for the first time, many of the cellular processes that drive the distribution of sensory cells along the tonotopic axis of the cochlea. © 2017. Published by The Company of Biologists Ltd.

  15. The cochlear CRF signaling systems and their mechanisms of action in modulating cochlear sensitivity and protection against trauma

    PubMed Central

    Graham, Christine E.; Basappa, Johnvesly; Turcan, Sevin; Vetter, Douglas E.

    2011-01-01

    A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic-pituitary-adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body. PMID:21909974

  16. The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene.

    PubMed

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H-C; Tian, Guilian; Furness, David N; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey R; Imanishi, Yoshikazu; Alagramam, Kumar N

    2012-07-11

    Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.

  17. Consequences of Location-Dependent Organ of Corti Micro-Mechanics

    PubMed Central

    Liu, Yanju; Gracewski, Sheryl M.; Nam, Jong-Hoon

    2015-01-01

    The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location. PMID:26317521

  18. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation.

    PubMed

    Franco, Bénédicte; Malgrange, Brigitte

    2017-03-01

    It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556. © 2017 AlphaMed Press.

  19. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line.

    PubMed

    Low, Wong-Kein; Sun, Li; Tan, Michelle G K; Chua, Alvin W C; Wang, De-Yun

    2008-04-01

    L-N-Acetylcysteine (L-NAC) significantly reduced reactive oxygen species (ROS) generation and cochlear cell apoptosis after irradiation. The safe and effective use of L-NAC in reducing radiation-induced sensorineural hearing loss (SNHL) should be verified by further in vivo studies. Radiation-induced SNHL is a common complication after radiotherapy of head and neck tumours. There is growing evidence to suggest that ROS play an important role in apoptotic cochlear cell death from ototoxicity, resulting in SNHL. The aim of this study was to evaluate the effectiveness of L-NAC, an antioxidant, on radiation-induced apoptosis in cochlear cells. The OC-k3 cochlear cell line was studied after 0 and 20 Gy of gamma-irradiation. Cell viability assay was performed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Flow cytometry and TUNEL assay were done with and without the addition of 10 mmol/L of L-NAC. Intracellular generation of ROS was detected by 2',7'-dichlorofluorescein diacetate, with comparisons made using fluorescence intensity. L-NAC increased the viability of cells after irradiation. Generation of ROS was demonstrated at 1 h post-irradiation and was significantly reduced by L-NAC (p<0.0001). Flow cytometry and TUNEL assay showed cell apoptosis at 72 h post-irradiation, which was diminished by the addition of L-NAC.

  20. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.

    PubMed

    White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil

    2006-06-22

    Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.

  1. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures

    PubMed Central

    Qi, Weidong; Ding, Dalian; Salvi*, Richard J.

    2008-01-01

    The amphipathic molecule dimethyl sulphoxide (DMSO) is a solvent often used to dissolve compounds applied to the inner ear; however, little is known about its potential cytotoxic side effects. To address this question, we applied 0.1 to 6% DMSO for 24 h to cochlear organotypic cultures from postnatal day 3 rats and examined its cytotoxic effects. DMSO concentrations of 0.1% and 0.25% caused little or no damage. However, concentrations between 0.5 and 6% resulted in stereocilia damage, hair cell swelling and a dose-dependent loss of hair cells. Hair cell damage began in the basal turn of the cochlea and spread towards the apex with increasing concentration. Surprisingly, DMSO-induced damage was greater for inner hair cells than outer hair cell whereas nearby supporting cells were largely unaffected. Most hair cell death was associated with nuclear shrinkage and fragmentation, morphological features consistent with apoptosis. DMSO treatment induced TUNEL positive staining in many hair cells and activated both initiator caspase-9 and caspase-8 and executioner caspase-3; this suggests that apoptosis is initiated by both intrinsic mitochondrial and extrinsic membrane cell death signaling pathways. PMID:18207679

  2. Music Perception of Cochlear Implant Recipients with Implications for Music Instruction: A Review of Literature

    PubMed Central

    Hsiao, Feilin; Gfeller, Kate

    2013-01-01

    This review of literature presents a systematic analysis of the capabilities and limitations of cochlear implant recipients regarding music perception. Specifically, it a) analyzes individual components of music (e.g., rhythm, timbre, and pitch) as they interface with the technical characteristics of cochlear implants and the perceptual abilities of cochlear implant recipients; and b) describes accommodations for music instruction that support successful participation of children with cochlear implants. This article consolidates research studies from various disciplines (audiology, hearing science, speech-language pathology, cochlear implants, and music therapy) to provide practical recommendations for educators in fostering the musical growth of children with cochlear implants. PMID:23469365

  3. Evaluation of Jet Fuel and Noise-Induced Hearing Loss in Rats (Rattus norvegicus)

    DTIC Science & Technology

    2014-05-13

    product otoacoustic emissions (DPOAE) and compound action potential (CAP) testing of the cochlear nerve. Inner ear hair cell loss was also not affected...conclusion by revealing that exposure to JP-8 combined with noise may result in the loss of pre-neural cochlear sensitivity as shown by suppression of...distortion product otoacoustic emissions (DPOAE) and depletion of cochlear sensory cells as evidenced by cytocochleograms that plot the percentage of

  4. The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene

    PubMed Central

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H.-C.; Tian, Guilian; Furness, David; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey; Imanishi, Yoshikazu; Alagramam, Kumar N.

    2012-01-01

    Mutation in the clarin-1 gene results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 (Clrn1−/−) gene show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca2+ currents and membrane capacitance from IHCs that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 loading and transduction currents pointed to diminished cochlear hair bundle function in Clrn1−/− mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip-links and staircase arrangement of stereocilia were not primarily affected by Clrn1−/− mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant, p.N48K, failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p. N48K in clarin-1 (Clrn1N48K) supports our in vitro and Clrn1−/− mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Further, the ear phenotype in the Clrn1N48K mouse suggests that it is a valuable model for ear disease in CLRN1N48K, the most prevalent Usher III mutation in North America. PMID:22787034

  5. Engraftment and Differentiation of Embryonic Stem Cell–Derived Neural Progenitor Cells in the Cochlear Nerve Trunk: Growth of Processes into the Organ of Corti

    PubMed Central

    Corrales, C. Eduardo; Pan, Luying; Li, Huawei; Liberman, M. Charles; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal’s canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. PMID:17013931

  6. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  7. Survival, migration, and differentiation of Sox1-GFP embryonic stem cells in coculture with an auditory brainstem slice preparation.

    PubMed

    Glavaski-Joksimovic, Aleksandra; Thonabulsombat, Charoensri; Wendt, Malin; Eriksson, Mikael; Palmgren, Björn; Jonsson, Anna; Olivius, Petri

    2008-03-01

    The poor regeneration capability of the mammalian hearing organ has initiated different approaches to enhance its functionality after injury. To evaluate a potential neuronal repair paradigm in the inner ear and cochlear nerve we have previously used embryonic neuronal tissue and stem cells for implantation in vivo and in vitro. At present, we have used in vitro techniques to study the survival and differentiation of Sox1-green fluorescent protein (GFP) mouse embryonic stem (ES) cells as a monoculture or as a coculture with rat auditory brainstem slices. For the coculture, 300 microm-thick brainstem slices encompassing the cochlear nucleus and cochlear nerve were prepared from postnatal SD rats. The slices were propagated using the membrane interface method and the cochlear nuclei were prelabeled with DiI. After some days in culture a suspension of Sox1 cells was deposited next to the brainstem slice. Following deposition Sox1 cells migrated toward the brainstem and onto the cochlear nucleus. GFP was not detectable in undifferentiated ES cells but became evident during neural differentiation. Up to 2 weeks after transplantation the cocultures were fixed. The undifferentiated cells were evaluated with antibodies against progenitor cells whereas the differentiated cells were determined with neuronal and glial markers. The morphological and immunohistochemical data indicated that Sox1 cells in monoculture differentiated into a higher percentage of glial cells than neurons. However, when a coculture was used a significantly lower percentage of Sox1 cells differentiated into glial cells. The results demonstrate that a coculture of Sox1 cells and auditory brainstem present a useful model to study stem cell differentiation.

  8. Continued Expression of GATA3 Is Necessary for Cochlear Neurosensory Development

    PubMed Central

    Duncan, Jeremy S.; Fritzsch, Bernd

    2013-01-01

    Hair cells of the developing mammalian inner ear are progressively defined through cell fate restriction. This process culminates in the expression of the bHLH transcription factor Atoh1, which is necessary for differentiation of hair cells, but not for their specification. Loss of several genes will disrupt ear morphogenesis or arrest of neurosensory epithelia development. We previously showed in null mutants that the loss of the transcription factor, Gata3, results specifically in the loss of all cochlear neurosensory development. Temporal expression of Gata3 is broad from the otic placode stage through the postnatal ear. It therefore remains unclear at which stage in development Gata3 exerts its effect. To better understand the stage specific effects of Gata3, we investigated the role of Gata3 in cochlear neurosensory specification and differentiation utilizing a LoxP targeted Gata3 line and two Cre lines. Foxg1Cre∶Gata3f/f mice show recombination of Gata3 around E8.5 but continue to develop a cochlear duct without differentiated hair cells and spiral ganglion neurons. qRT-PCR data show that Atoh1 was down-regulated but not absent in the duct whereas other hair cell specific genes such as Pou4f3 were completely absent. In addition, while Sox2 levels were lower in the Foxg1Cre:Gata3f/f cochlea, Eya1 levels remained normal. We conclude that Eya1 is unable to fully upregulate Atoh1 or Pou4f3, and drive differentiation of hair cells without Gata3. Pax2-Cre∶Gata3f/f mice show a delayed recombination of Gata3 in the ear relative to Foxg1Cre:Gata3f/f. These mice exhibited a cochlear duct containing patches of partially differentiated hair cells and developed only few and incorrectly projecting spiral ganglion neurons. Our conditional deletion studies reveal a major role of Gata3 in the signaling of prosensory genes and in the differentiation of cochlear neurosenory cells. We suggest that Gata3 may act in combination with Eya1, Six1, and Sox2 in cochlear prosensory gene signaling. PMID:23614009

  9. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.

    PubMed

    Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D

    2014-04-23

    The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.

  10. Prevention of Noise Damage to Cochlear Synapses

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0494 TITLE: Prevention of Noise Damage to Cochlear Synapses PRINCIPAL INVESTIGATOR: Steven Green CONTRACTING...to Cochlear Synapses 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0494 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven Green 5d. PROJECT...ABSTRACT Noise-induced synaptopathy is the result of excitotoxic trauma to cochlear synapses due to glutamate released from the hair cells. Excitotoxic

  11. Auditory Mechanics of the Tectorial Membrane and the Cochlear Spiral

    PubMed Central

    Gavara, Núria; Manoussaki, Daphne; Chadwick, Richard S.

    2012-01-01

    Purpose of review This review is timely and relevant since new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by mechanical properties of the tectorial membrane and the spiral shape. Recent findings Main tectorial membrane themes covered are i) composition and morphology, ii) nanoscale mechanical interactions with the outer hair cell bundle, iii) macroscale longitudinal coupling, iv) fluid interaction with inner hair cell bundles, v) macroscale dynamics and waves. Main cochlear spiral themes are macroscale low-frequency energy focusing and microscale organ of Corti shear gain. Implications Findings from new experimental and theoretical models reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low frequency hearing. Suggestions are made for future research directions. PMID:21785353

  12. Lgr5-Positive Supporting Cells Generate New Hair Cells in the Postnatal Cochlea

    PubMed Central

    Bramhall, Naomi F.; Shi, Fuxin; Arnold, Katrin; Hochedlinger, Konrad; Edge, Albert S.B.

    2014-01-01

    Summary The prevalence of hearing loss after damage to the mammalian cochlea has been thought to be due to a lack of spontaneous regeneration of hair cells, the primary receptor cells for sound. Here, we show that supporting cells, which surround hair cells in the normal cochlear epithelium, differentiate into new hair cells in the neonatal mouse following ototoxic damage. Using lineage tracing, we show that new hair cells, predominantly outer hair cells, arise from Lgr5-expressing inner pillar and third Deiters cells and that new hair cell generation is increased by pharmacological inhibition of Notch. These data suggest that the neonatal mammalian cochlea has some capacity for hair cell regeneration following damage alone and that Lgr5-positive cells act as hair cell progenitors in the cochlea. PMID:24672754

  13. Noise alters hair-bundle mechanics at the cochlear apex

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2015-12-01

    Exposure to loud sounds can lead to both permanent and short term changes in auditory sensitivity. Permanent hearing loss is often associated with gross changes in cochlear morphology including the loss of hair cells and auditory nerve fibers while the mechanisms of short term threshold shifts are much less well understood and may vary at different locations across the cochlea. Previous reports suggest that exposure to loud sounds leads to a decrease in the cochlear microphonic potential and in the stiffness of the organ of Corti. Because the cochlear microphonic reflects changes in the membrane potential of the hair cells, this suggests that hair-bundle motion should be reversibly altered following exposure to loud sounds. Using an in vitro preparation of the guinea pig temporal bone we investigate changes in the micro-mechanical response near the cochlear apex following a brief (up to 10 - 20 minutes) exposure to loud (˜ 120 dB) tones near the best frequency at this location. We use time-resolved confocal imaging to record the motion of outer hair cell bundles before and after acoustic overstimulation. We have also recorded larger-scale structural views of the organ of Corti before and after exposure to the loud sound. Conventional electrophysiological techniques are used measure the cochlear microphonic potential. As has been previously reported, following acoustic overexposure the cochlear microphonic declines in value and typically recovers on the order of 30 - 60 minutes. Hair-bundle trajectories are affected following the loud sound and typically recover on a somewhat faster time scale than the microphonic potential, although the results vary considerably across preparations. Preliminary results also suggest reversible changes in the hair cell's resting potential following the loud sound.

  14. [Simultaneous staining with fluorescein diacetate-propidium iodide to determine isolated cochlear outer hair cell viability of guinea pig].

    PubMed

    Yu, Q; Shi, H; Wang, J

    1995-01-01

    A simultaneous double-staining procedure using fluorescein diacetate (FDA) and propidium iodide (PI) is discribed for use in the determination of isolated cochlear outer hair cell viability. With exciter light, viable cells fluoresce bright green, while nonviable cells are bright red. In cell culture and cytotoxicity studies, double-staining with FDA-PI is a accurate method to discriminate between live and nonviable cells.

  15. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.

    PubMed

    Monfared, Ashkan; Blevins, Nikolas H; Cheung, Eunice L M; Jung, Juergen C; Popelka, Gerald; Schnitzer, Mark J

    2006-02-01

    We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 microm/s. Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.

  16. Children with Cochlear Implants in Australia: Educational Settings, Supports, and Outcomes

    ERIC Educational Resources Information Center

    Punch, Renee; Hyde, Merv

    2010-01-01

    This Australian study examined the communication, academic, and social outcomes of pediatric cochlear implantation from the perspectives of teachers working with children with cochlear implants. The children were aged from 1 to 18 years and attended a range of educational settings in early intervention, primary, and secondary schooling. One…

  17. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    PubMed

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Magnetic stem cell targeting to the inner ear

    NASA Astrophysics Data System (ADS)

    Le, T. N.; Straatman, L.; Yanai, A.; Rahmanian, R.; Garnis, C.; Häfeli, U. O.; Poblete, T.; Westerberg, B. D.; Gregory-Evans, K.

    2017-12-01

    Severe sensorineural deafness is often accompanied by a loss of auditory neurons in addition to injury of the cochlear epithelium and hair cell loss. Cochlear implant function however depends on a healthy complement of neurons and their preservation is vital in achieving optimal results. We have developed a technique to target mesenchymal stem cells (MSCs) to a deafened rat cochlea. We then assessed the neuroprotective effect of systematically delivered MSCs on the survival and function of spiral ganglion neurons (SGNs). MSCs were labeled with superparamagnetic nanoparticles, injected via the systemic circulation, and targeted using a magnetized cochlea implant and external magnet. Neurotrophic factor concentrations, survival of SGNs, and auditory function were assessed at 1 week and 4 weeks after treatments and compared against multiple control groups. Significant numbers of magnetically targeted MSCs (>30 MSCs/section) were present in the cochlea with accompanied elevation of brain-derived neurotrophic factor and glial cell-derived neurotrophic factor levels (p < 0.001). In addition we saw improved survival of SGNs (approximately 80% survival at 4 weeks). Hearing threshold levels in magnetically targeted rats were found to be significantly better than those of control rats (p < 0.05). These results indicate that magnetic targeting of MSCs to the cochlea can be accomplished with a magnetized cochlear permalloy implant and an external magnet. The targeted stem cells release neurotrophic factors which results in improved SGN survival and hearing recovery. Combining magnetic cell-based therapy and cochlear implantation may improve cochlear implant function in treating deafness.

  19. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.

    PubMed

    Sharlin, David S; Visser, Theo J; Forrest, Douglas

    2011-12-01

    Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.

  20. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    DTIC Science & Technology

    2016-11-29

    nonlinear oscillations of outer hair cells. We obtained analytical forms for auditory tuning curves of both unidirectionally and bidirectionally coupled...oscillations of outer hair cells in the cochlea, mode-locking of chopper cells to sound in the cochlear nucleus, and entrainment of cortical...oscillations of outer hair cells (e.g., Fredrickson-Hemsing, Ji, Bruinsma, & Bozovic, 2012), mode-locking of choppers in the cochlear nucleus (e.g., Laudanski

  1. Peroxynitrite induces apoptosis of mouse cochlear hair cells via a Caspase-independent pathway in vitro.

    PubMed

    Cao, Zhixin; Yang, Qianqian; Yin, Haiyan; Qi, Qi; Li, Hongrui; Sun, Gaoying; Wang, Hongliang; Liu, Wenwen; Li, Jianfeng

    2017-11-01

    Peroxynitrite (ONOO - ) is a potent and versatile oxidant implicated in a number of pathophysiological processes. The present study was designed to investigate the effect of ONOO - on the cultured cochlear hair cells (HCs) of C57BL/6 mice in vitro as well as the possible mechanism underlying the action of such an oxidative stress. The in vitro primary cultured cochlear HCs were subjected to different concentrations of ONOO - , then, the cell survival and morphological changes were examined by immunofluorescence and transmission electron microscopy (TEM), the apoptosis was determined by Terminal deoxynucleotidyl transferase dUNT nick end labeling (TUNEL) assay, the mRNA expressions of Caspase-3, Caspase-8, Caspase-9, Apaf1, Bcl-2, and Bax were analyzed by RT-PCR, and the protein expressions of Caspase-3 and AIF were assessed by immunofluorescence. This work demonstrated that direct exposure of primary cultured cochlear HCs to ONOO - could result in a base-to-apex gradient injury of HCs in a concentration-dependent manner. Furthermore, ONOO - led to much more losses of outer hair cells than inner hair cells mainly through the induction of apoptosis of HCs as evidenced by TEM and TUNEL assays. The mRNA expressions of Caspase-8, Caspase-9, Apaf1, and Bax were increased and, meanwhile, the mRNA expression of Bcl-2 was decreased in response to ONOO - treatment. Of interesting, the expression of Caspase-3 had no significant change, whereas, the expression alteration of AIF was observed. These results suggested that ONOO - can effectively damage the survival of cochlear HCs via triggering the apoptotic pathway. The findings from this work suggest that ONOO - -induced apoptosis is mediated, at least in part, via a Caspase-independent pathway in cochlear HCs.

  2. How do the medial olivocochlear efferents influence the biomechanics of the outer hair cells and thereby the cochlear amplifier? Simulation results

    NASA Astrophysics Data System (ADS)

    Saremi, Amin; Stenfelt, Stefan; Verhulst, Sarah

    2015-12-01

    The bottom-up signal pathway, which starts from the outer ear and leads to the brain cortices, gives the classic image of the human sound perception. However, there have been growing evidences in the last six decades for existence of a functional descending network whereby the central auditory system can modulate the early auditory processing, in a top-down manner. The medial olivocochlear efferent fibers project from the superior olivary complex at the brainstem into the inner ear. They are linked to the basal poles of the hair cells by forming synaptic cisterns. This descending network can activate nicotinic cholinergic receptors (nAChR) that increase the membrane conductance of the outer hair cells and thereby modify the magnitude of the active force generated inside the cochlea. The aim of the presented work is to quantitatively investigate how the changes in the biomechanics of the outer hair cells, caused by the efferent activation, manipulate the cochlear responses. This is done by means of a frequency-domain biophysical model of the cochlea [12] where the parameters of the model convey physiological interpretations of the human cochlear structures. The simulations manifest that a doubling of the outer hair cell conductance, due to efferent activation, leads to a frequency-dependent gain reduction along the cochlear duct with its highest effect at frequencies between 1 kHz and 3.5 kHz and a maximum of approximately 10 dB gain reduction at 2 kHz. This amount of the gain inhibition and its frequency dependence reasonably agrees with the experimental data recorded from guinea pig, cat and human cochleae where the medial olivococlear efferents had been elicited by broad-band stimuli. The simulations also indicate that the efferent-induced increase of the outer hair cell conductance increases the best frequency of the cochlear responses, in the basal region. The presented simulations quantitatively confirm that activation of the medial olivocochlear efferents can biomechanically manipulate the cochlear responses, in a top-down manner, by inhibiting the gain of the cochlear amplifier as well as altering the frequency-position map (tuning pattern) of the cochlea.

  3. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  4. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels☆

    PubMed Central

    Xie, Joanna; Pak, Kwang; Evans, Amaretta; Kamgar-Parsi, Andy; Fausti, Stephen; Mullen, Lina; Ryan, Allen Frederic

    2013-01-01

    The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant. PMID:24459465

  5. Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ

    PubMed Central

    Chikar, Jennifer A.; Batts, Shelley A.; Pfingst, Bryan E.; Raphael, Yehoash

    2009-01-01

    Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament – labeled nerve processes within the scala tympani, and the spatial relationship between them. PMID:19428528

  6. Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ.

    PubMed

    Chikar, Jennifer A; Batts, Shelley A; Pfingst, Bryan E; Raphael, Yehoash

    2009-05-15

    Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament-labeled nerve processes within the scala tympani, and the spatial relationship between them.

  7. Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier

    PubMed Central

    Gao, Jiangang; Wang, Xiang; Wu, Xudong; Aguinaga, Sal; Huynh, Kristin; Jia, Shuping; Matsuda, Keiji; Patel, Manish; Zheng, Jing; Cheatham, MaryAnn; He, David Z.; Dallos, Peter; Zuo, Jian

    2007-01-01

    The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification. PMID:17640919

  8. Cochlear hair cell regeneration after noise-induced hearing loss: does regeneration follow development?

    PubMed Central

    Zheng, Fei; Zuo, Jian

    2017-01-01

    Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss. PMID:28034617

  9. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.

    PubMed

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin

    2016-12-01

    To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P<0.026) and in the mean percentage of inner hair cells in the basal (P=0.001), middle (P=0.004), and apical (P=0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Stria Vascularis and Cochlear Hair Cell Changes in Syphilis: A Human Temporal Bone Study

    PubMed Central

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Objective To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis Materials and Methods We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the 2 groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). Results In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis area did not significantly differ, in any turn of the cochlea, between the 2 groups (P > 0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P < 0.026) and in the mean percentage of inner hair cells in the basal (P = 0.001), middle (P = 0.004), and apical (P = 0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. Conclusion In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. PMID:26860231

  11. Therapeutic value of nerve growth factor in promoting neural stem cell survival and differentiation and protecting against neuronal hearing loss.

    PubMed

    Han, Zhao; Wang, Cong-Pin; Cong, Ning; Gu, Yu-Yan; Ma, Rui; Chi, Fang-Lu

    2017-04-01

    Nerve growth factor (NGF) is a neurotrophic factor that modulates survival and differentiation of neural stem cells (NSCs). We investigated the function of NGF in promoting growth and neuronal differentiation of NSCs isolated from mouse cochlear tissue, as well as its protective properties against gentamicin (GMC) ototoxicity. NSCs were isolated from the cochlea of mice and cultured in vitro. Effect of NGF on survival, neurosphere formation, and differentiation of the NSCs, as well as neurite outgrowth and neural excitability in the subsequent in vitro neuronal network, was examined. Mechanotransduction capacity of intact cochlea and auditory brainstem response (ABR) threshold in mice were also measured following GMC treatment to evaluate protection using NGF against GMC-induced neuronal hearing loss. NGF improved survival, neurosphere formation, and neuronal differentiation of mouse cochlear NSCs in vitro, as well as promoted neurite outgrowth and neural excitability in the NSC-differentiated neuronal culture. In addition, NGF protected mechanotransduction capacity and restored ABR threshold in gentamicin ototoxicity mouse model. Our study supports a potential therapeutic value of NGF in promoting proliferation and differentiation of NSCs into functional neurons in vitro, supporting its protective role in the treatment of neuronal hearing loss.

  12. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm.

    PubMed

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L

    2015-07-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.

  13. Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling.

    PubMed

    Eshraghi, Adrien A; Gupta, Chhavi; Van De Water, Thomas R; Bohorquez, Jorge E; Garnham, Carolyn; Bas, Esperanza; Talamo, Victoria Maria

    2013-03-01

    To investigate the molecular mechanisms involved in electrode insertion trauma (EIT) and to test the otoprotective effect of locally delivered AM-111. An animal model of cochlear implantation. Guinea pigs' hearing thresholds were measured by auditory brainstem response (ABR) before and after cochlear implantation in four groups: EIT; pretreated with hyaluronate gel 30 minutes before EIT (EIT+Gel); pretreated with hyaluronate gel/AM-111 30 minutes before EIT (EIT+AM-111); and unoperated contralateral ears as controls. Neurofilament, synapsin, and fluorescein isothiocyanate (FITC)-phalloidin staining for hair cell counts were performed at 90 days post-EIT. Immunostaining for 4-hydroxy-2-nonenal (HNE), activated caspase-3, CellROX, and phospho-c-Jun were performed at 24 hours post-EIT. ABR thresholds increased post-EIT in the cochleae of EIT only and EIT+Gel treated animals. There was no significant increase in hearing thresholds in cochleae from either EIT+AM-111 treated or unoperated control ears. AM-111 protection of organ of Corti sensory elements (i.e., hair cells [HCs], supporting cells [SCs], nerve fibers, and synapses) was documented at 3 months post-EIT. Immunostaining of 24-hour post-EIT specimens demonstrated increased levels of HNE in HCs and SCs; increased levels of CellROX and activation of caspase-3 was observed only in SCs, and phosphorylation of c-Jun occurred only in HCs of the EIT-only and EIT+Gel specimens. There was no immunostaining for either HNE, CellROX, caspase-3, or phospho-c-Jun in the organ of Corti specimens from AM-111 treated cochleae. Molecular mechanisms involved in programmed cell death of HCs are different than the ones involved in programmed cell death of SCs. Local delivery of AM-111 provided a significant level of protection against EIT-induced hearing losses, HC losses, and damage to neural elements. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Tissue resistivities determine the current flow in the cochlea.

    PubMed

    Micco, Alan Gerard; Richter, Claus-Peter

    2006-10-01

    In individuals with severe to profound hearing loss, cochlear implants bypass normal inner ear function by applying electrical current directly into the cochlea, thereby stimulating cochlear nerve fibers. Stimulating discrete populations of spiral ganglion cells in cochlear implant users' ears is similar to the encoding of small acoustic frequency bands in a normal-hearing person's ear. Thus, spiral ganglion cells stimulated by an electrode convey the information contained by a small acoustic frequency band. Problems that refer to the current spread and subsequent nonselective stimulation of spiral ganglion cells in the cochlea are reviewed. Cochlear anatomy and tissue properties determine the current path in the cochlea. Current spreads largely via scala tympani and across turns. While most of the current leaves the cochlea via the modiolus, the facial canal and the round window constitute additional natural escape paths for the current from the cochlea. Moreover, degenerative processes change tissue resistivities and thus may affect current spread in the cochlea. Electrode design and coding strategies may result in more spatial stimulation of spiral ganglion cells, resulting in a better performance of the electrode-tissue interface.

  15. Fibro-vascular coupling in the control of cochlear blood flow.

    PubMed

    Dai, Min; Shi, Xiaorui

    2011-01-01

    Transduction of sound in the cochlea is metabolically demanding. The lateral wall and hair cells are critically vulnerable to hypoxia, especially at high sound levels, and tight control over cochlear blood flow (CBF) is a physiological necessity. Yet despite the importance of CBF for hearing, consensus on what mechanisms are involved has not been obtained. We report on a local control mechanism for regulating inner ear blood flow involving fibrocyte signaling. Fibrocytes in the super-strial region are spatially distributed near pre-capillaries of the spiral ligament of the albino guinea pig cochlear lateral wall, as demonstrably shown in transmission electron microscope and confocal images. Immunohistochemical techniques reveal the inter-connected fibrocytes to be positive for Na+/K+ ATPase β1 and S100. The connected fibrocytes display more Ca(2+) signaling than other cells in the cochlear lateral wall as indicated by fluorescence of a Ca(2+) sensor, fluo-4. Elevation of Ca(2+) in fibrocytes, induced by photolytic uncaging of the divalent ion chelator o-nitrophenyl EGTA, results in propagation of a Ca(2+) signal to neighboring vascular cells and vasodilation in capillaries. Of more physiological significance, fibrocyte to vascular cell coupled signaling was found to mediate the sound stimulated increase in cochlear blood flow (CBF). Cyclooxygenase-1 (COX-1) was required for capillary dilation. The findings provide the first evidence that signaling between fibrocytes and vascular cells modulates CBF and is a key mechanism for meeting the cellular metabolic demand of increased sound activity.

  16. Cochlear potential difference between endolymph fluid and the hair cell's interior: a retold interpretation based on the Goldman equation.

    PubMed

    Kurbel, Sven; Borzan, Vladimir; Golem, Hilda; Dinjar, Kristijan

    2017-02-01

    Reported cochlear potential values of near 150 mV are often attributed to endolymph itself, although membrane potentials result from ion fluxes across the adjacent semipermeable membranes due to concentration gradients. Since any two fluids separated by a semipermeable membrane develop potential due to differences in solute concentrations, a proposed interpretation here is that positive potential emanates from the Reissner membrane due to small influx of sodium from perilymph to endolymph. Basolateral hair cell membranes leak potassium into the interstitial fluid and this negative potential inside hair cells further augments the electric gradient of cochlear potential. Taken together as a sum, these two potentials are near the reported values of cochlear potential. This is based on reported data for cochlear fluids used for the calculation of Nernst and Goldman potentials. The reported positive potential of Reissner membrane can be explained almost entirely by the traffic of Na+ that enters endolymph through this membrane. At the apical membrane of hair cells, acoustic stimulation modulates stereocillia permeability to potassium. Potassium concentration gradients on the apical membrane are low (the calculated Nernst value is <+3 mV), suggesting that the potassium current is not caused by the local potassium concentration gradient, but an electric field between the positive sodium generated potential on the Reissner membrane and negative inside hair cells. Potassium is forced by this overall electric field to enter hair cells when stereocilia are permeable due to mechanical bending. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  17. Developmental and Cell-Specific Expression of Thyroid Hormone Transporters in the Mouse Cochlea

    PubMed Central

    Sharlin, David S.; Visser, Theo J.

    2011-01-01

    Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr−/− mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development. PMID:21878515

  18. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss.

    PubMed

    Teitz, Tal; Fang, Jie; Goktug, Asli N; Bonga, Justine D; Diao, Shiyong; Hazlitt, Robert A; Iconaru, Luigi; Morfouace, Marie; Currier, Duane; Zhou, Yinmei; Umans, Robyn A; Taylor, Michael R; Cheng, Cheng; Min, Jaeki; Freeman, Burgess; Peng, Junmin; Roussel, Martine F; Kriwacki, Richard; Guy, R Kiplin; Chen, Taosheng; Zuo, Jian

    2018-04-02

    Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss. © 2018 Teitz et al.

  19. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss

    PubMed Central

    Teitz, Tal; Fang, Jie; Goktug, Asli N.; Bonga, Justine D.; Diao, Shiyong; Iconaru, Luigi; Morfouace, Marie; Currier, Duane; Zhou, Yinmei; Umans, Robyn A.; Taylor, Michael R.; Cheng, Cheng; Peng, Junmin; Roussel, Martine F.; Kriwacki, Richard; Guy, R. Kiplin; Chen, Taosheng

    2018-01-01

    Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration–approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss. PMID:29514916

  20. Wnt Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea

    PubMed Central

    Shi, Fuxin; Kempfle, Judith; Edge, Albert S. B.

    2012-01-01

    Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single cell suspension, as compared to unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cell in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea. PMID:22787049

  1. Selective damage to cochlear efferents by the choline neurotoxin ethylcholine mustard aziridinium ion (AF64A) in the chinchilla.

    PubMed

    Smith, D W; Mount, R J; Callahan, J W

    1989-10-01

    The cholinotoxin ethylcholine mustard aziridinium ion (AF64A) was diluted in artificial perilymph to concentrations ranging from 10-100 microM, injected unilaterally into the bulla of chinchillas, and allowed to passively diffuse across the round window membrane. Following 21-day survival, the animals were sacrificed and ears removed and embedded in epoxy for histological evaluation under both light and transmission electron microscopy. At 10 microM concentration, selective degeneration of efferent fibers was observed in the efferent terminals on outer hair cells (OHC), tunnel radial fibers, tunnel spiral bundle, and the inner spiral bundle. Serial sections of the middle turn of an animal at 10 microM concentrations showed normal efferent terminals on approximately 50% of OHCs. At the higher concentrations non-specific damage was seen in OHCs, afferents, and some supporting cells. These data suggest that low doses AF64A produces selective damage to cochlear efferent terminals and fibers in the chinchilla.

  2. Motion of organ of Corti structures in the gerbil cochlear apex, measured with a commercial optical coherence tomography (OCT) system

    NASA Astrophysics Data System (ADS)

    Ravicz, Michael E.; Cho, Nam-Hyun; Maftoon, Nima; Puria, Sunil

    2018-05-01

    Recent developments in Optical Coherence Tomography (OCT) allow measurements of cochlear motions through the bony cochlear wall without holes at spatial resolutions approaching about 10 µm. Measurements to date have been made with custom OCT systems with long development times. We present measurements made with a commercial OCT system driven by custom software (VibOCT) that facilitates near real-time frequency response measurements. The 905-nm wavelength laser and high-speed (100 kHz) camera provide higher axial resolution (3 µm in air) and temporal resolution than previous studies and a sub-nanometer noise floor in air. We gathered anatomical images of the gerbil cochlear apex in vivo at higher resolution than available previously, sufficient to resolve individual outer hair cells, pillar cells, tunnel of Corti and inner sulcus regions. Images from the 3rd apical turn show a bulging of Reissners membrane in vivo that flattened post-mortem with a concomitant reduction in the distance between the Henson cell border and the stria vascularis wall. Vibrometry of the organ of Corti shows a low-pass characteristic in-vivo and post-mortem with a traveling wave-like phase delay similar to a recent study rather than the sharp tuning seen more basally. This system can provide valuable information on cochlear function, which is also useful for the development of detailed cochlear models of the passive and active gerbil apex.

  3. Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti.

    PubMed

    Eybalin, M; Pujol, R

    1987-01-01

    Using anatomical criteria, the olivo-cochlear fibers ending in the organ of Corti (efferent fibers) have recently been separated into two systems: a lateral system innervating principally the inner hair cell (IHC) area and a medial system innervating mainly the outer hair cells (OHCs). Electrophysiological and biochemical experiments suggest that acetylcholine may be a neurotransmitter of these efferent fibers. However, efferent synapses that use acetylcholine as neurotransmitter have not yet been identified at the electron microscopic level. Using a pre-embedding immunoelectron microscopic technique with a monoclonal antibody against choline acetyltransferase (ChAT), we localized ChAT-immunostained fibers below both the IHCs and OHCs. In the inner spiral bundle, one type of ChAT-immunostained fibers was vesiculated and formed axo-dendritic synapses with the afferent auditory dendrites contacting the inner hair cells. A second type of ChAT-immunostained fibers seen in the inner spiral bundle was unvesiculated. Unstained vesiculated varicosities synapsing with the auditory dendrites were also seen in the inner spiral bundle. At the OHC level, ChAT immunostaining was found in nearly all the terminals synapsing with the OHCs. The finding of two types of ChAT-immunostained efferent synapses in the organ of Corti, i.e. axo-dendritic synapses in the inner spiral bundle and axo-somatic synapses with the OHCs, supports the hypothesis that both the lateral and the medial olivo-cochlear systems use acetylcholine as a neurotransmitter. The finding of numerous unstained synapses in the inner spiral bundle, and some below OHCs, together with previous data about putative cochlear neurotransmitters, suggests the possibility of additional non-cholinergic olivo-cochlear systems. It might soon appear useful to reclassify efferents according to the nature of the different neurotransmitters/co-transmitters found in the various efferent synapses of the organ of Corti.

  4. Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig.

    PubMed

    Jin, Zhe; Mannström, Paula; Järlebark, Leif; Ulfendahl, Mats

    2007-05-01

    Auditory function and cochlear morphology have previously been described in the postnatal German waltzing guinea pig, a strain with recessive deafness. In the present study, cochlear histopathology was further investigated in the inner ear of the developing German waltzing guinea pig (gw/gw). The lumen of the cochlear duct diminished progressively from embryonic day (E) 35 to E45 and was absent at E50 because of the complete collapse of Reissner's membrane onto the hearing organ. The embryonic stria vascularis, consisting of a simple epithelium, failed to transform into the complex trilaminar tissue seen in normal animals and displayed signs of degeneration. Subsequent degeneration of the sensory epithelium was observed from E50 and onwards. Defective and insufficient numbers of melanocytes were observed in the developing gw/gw stria vascularis. A gene involved in cochlear melanocyte development, Pax3, was markedly reduced in lateral wall tissue of the cochlea of both E40 and adult gw/gw individuals, whereas its expression was normal in the skin and diaphragm muscle of adult gw/gw animals. The Pax3 gene may thus be involved in the pathological process but is unlikely to be the primary mutated gene in the German waltzing guinea pig. TUNEL assay showed no signs of apoptotic cell death in the developing stria vascularis of this type of guinea pig. Thus, malformation of the stria vascularis appears to be the primary defect in the inner ear of the German waltzing guinea pig. Defective and insufficient numbers of melanocytes might migrate to the developing stria vascularis but fail to provide the proper support for the subsequent development of marginal and basal cells, thereby leading to stria vascularis malformation and dysfunction in the inner ear of the German waltzing guinea pig.

  5. Micro-optical coherence tomography of the mammalian cochlea

    PubMed Central

    Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610

  6. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea

    PubMed Central

    Luo, Xiong-jian; Deng, Min; Xie, Xiaoling; Huang, Liang; Wang, Hui; Jiang, Lichun; Liang, Guoqing; Hu, Fang; Tieu, Roger; Chen, Rui; Gan, Lin

    2013-01-01

    HDR syndrome (also known as Barakat syndrome) is a developmental disorder characterized by hypoparathyroidism, sensorineural deafness and renal disease. Although genetic mapping and subsequent functional studies indicate that GATA3 haplo-insufficiency causes human HDR syndrome, the role of Gata3 in sensorineural deafness and auditory system development is largely unknown. In this study, we show that Gata3 is continuously expressed in the developing mouse inner ear. Conditional knockout of Gata3 in the developing inner ear disrupts the morphogenesis of mouse inner ear, resulting in a disorganized and shortened cochlear duct with significant fewer hair cells and supporting cells. Loss of Gata3 function leads to the failure in the specification of prosensory domain and subsequently, to increased cell death in the cochlear duct. Moreover, though the initial generation of cochleovestibular ganglion (CVG) cells is not affected in Gata3-null mice, spiral ganglion neurons (SGNs) are nearly depleted due to apoptosis. Our results demonstrate the essential role of Gata3 in specifying the prosensory domain in the cochlea and in regulating the survival of SGNs, thus identifying a molecular mechanism underlying human HDR syndrome. PMID:23666531

  7. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy.

    PubMed

    Groth, Jane Bjerg; Kao, Shyan-Yuan; Briët, Martijn C; Stankovic, Konstantina M

    2016-12-01

    Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016. © 2016 Wiley Periodicals, Inc.

  8. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament.

    PubMed

    Dai, Min; Nuttall, Alfred; Yang, Yue; Shi, Xiaorui

    2009-08-01

    Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. In order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow.

  9. Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs, and quinine.

    PubMed

    Jung, T T; Rhee, C K; Lee, C S; Park, Y S; Choi, D C

    1993-10-01

    Salicylates and most NSAIDS in high doses cause mild to moderate temporary hearing loss, either flat or greater in the high frequencies. Hearing loss is accompanied by tinnitus and suprathreshold changes. Salicylates may or may not exacerbate hearing loss and cochlear damage induced by noise. The mechanism of salicylate ototoxicity seems to be multifactorial. Morphologic studies suggest that no permanent cochlear damage occurs with salicylate ototoxicity. Electrophysiologic, morphologic, and in vitro data conclusively demonstrate that salicylate affects outer hair cells. In addition, salicylates appear to decrease cochlear blood flow. Salicylates and NSAIDs inhibit PG-forming cyclooxygenase, and recent studies suggest that abnormal levels of arachidonic acid metabolites consisting of decreased PGs and increased LTs may mediate salicylate ototoxicity. As with salicylate, quinine ototoxicity appears to be multifactorial in origin. The mechanism includes vasoconstriction and decreases in cochlear blood flow, as measured by laser Doppler flowmetry, motion photographic studies, and histologic studies. Reversible alterations of outer hair cells also appear to play an important role, as demonstrated by histology, electron microscopy, isolated hair cell studies, and cochlear potential evaluations. Unlike with salicylate, however, the role of prostaglandins in quinine ototoxicity has not been clearly demonstrated. Also, one of quinine's principal actions, antagonism of calcium-dependent potassium channels, has yet to be investigated for its potential role in ototoxicity.

  10. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    PubMed

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  11. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).

    PubMed

    Valero, M D; Burton, J A; Hauser, S N; Hackett, T A; Ramachandran, R; Liberman, M C

    2017-09-01

    Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Protocol for Decellularizing Mouse Cochleae for Inner Ear Tissue Engineering.

    PubMed

    Neal, Christopher A; Nelson-Brantley, Jennifer G; Detamore, Michael S; Staecker, Hinrich; Mellott, Adam J

    2018-01-01

    In mammals, mechanosensory hair cells that facilitate hearing lack the ability to regenerate, which has limited treatments for hearing loss. Current regenerative medicine strategies have focused on transplanting stem cells or genetic manipulation of surrounding support cells in the inner ear to encourage replacement of damaged stem cells to correct hearing loss. Yet, the extracellular matrix (ECM) may play a vital role in inducing and maintaining function of hair cells, and has not been well investigated. Using the cochlear ECM as a scaffold to grow adult stem cells may provide unique insights into how the composition and architecture of the extracellular environment aids cells in sustaining hearing function. Here we present a method for isolating and decellularizing cochleae from mice to use as scaffolds accepting perfused adult stem cells. In the current protocol, cochleae are isolated from euthanized mice, decellularized, and decalcified. Afterward, human Wharton's jelly cells (hWJCs) that were isolated from the umbilical cord were carefully perfused into each cochlea. The cochleae were used as bioreactors, and cells were cultured for 30 days before undergoing processing for analysis. Decellularized cochleae retained identifiable extracellular structures, but did not reveal the presence of cells or noticeable fragments of DNA. Cells perfused into the cochlea invaded most of the interior and exterior of the cochlea and grew without incident over a duration of 30 days. Thus, the current method can be used to study how cochlear ECM affects cell development and behavior.

  13. Regeneration and replacement in the vertebrate inner ear.

    PubMed

    Matsui, Jonathan I; Parker, Mark A; Ryals, Brenda M; Cotanche, Douglas A

    2005-10-01

    Deafness affects more than 40 million people in the UK and the USA, and many more world-wide. The primary cause of hearing loss is damage to or death of the sensory receptor cells in the inner ear, the hair cells. Birds can readily regenerate their cochlear hair cells but the mammalian cochlea has shown no ability to regenerate after damage. Current research efforts are focusing on gene manipulation, gene therapy and stem cell transplantation for repairing or replacing damaged mammalian cochlear hair cells, which could lead to therapies for treating deafness in humans.

  14. Generation of induced neurons by direct reprogramming in the mammalian cochlea.

    PubMed

    Nishimura, K; Weichert, R M; Liu, W; Davis, R L; Dabdoub, A

    2014-09-05

    Primary auditory neurons (ANs) in the mammalian cochlea play a critical role in hearing as they transmit auditory information in the form of electrical signals from mechanosensory cochlear hair cells in the inner ear to the brainstem. Their progressive degeneration is associated with disease conditions, excessive noise exposure and aging. Replacement of ANs, which lack the ability to regenerate spontaneously, would have a significant impact on research and advancement in cochlear implants in addition to the amelioration of hearing impairment. The aim of this study was to induce a neuronal phenotype in endogenous non-neural cells in the cochlea, which is the essential organ of hearing. Overexpression of a neurogenic basic helix-loop-helix transcription factor, Ascl1, in the cochlear non-sensory epithelial cells induced neurons at high efficiency at embryonic, postnatal and juvenile stages. Moreover, induced neurons showed typical properties of neuron morphology, gene expression and electrophysiology. Our data indicate that Ascl1 alone or Ascl1 and NeuroD1 is sufficient to reprogram cochlear non-sensory epithelial cells into functional neurons. Generation of neurons from non-neural cells in the cochlea is an important step for the regeneration of ANs in the mature mammalian cochlea. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Ouabain-Induced Apoptosis in Cochlear Hair Cells and Spiral Ganglion Neurons In Vitro

    PubMed Central

    Fu, Yong; Ding, Dalian; Jiang, Haiyan; Salvi, Richard

    2013-01-01

    Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways. PMID:24228256

  16. Hyaluronic acid enhances gene delivery into the cochlea.

    PubMed

    Shibata, Seiji B; Cortez, Sarah R; Wiler, James A; Swiderski, Donald L; Raphael, Yehoash

    2012-03-01

    Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application.

  17. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    DTIC Science & Technology

    2015-06-01

    K.C. and Hu, B.H. 2006. The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1): 1-19. Hillerdal, M. 1987. Cochlear blood flow ...Larsen, H.C., Angelborg, C. and Slepecky, N. 1984. Determination of the regional cochlear blood flow in the rat cochlea using non-radioactive...24-Hour JP-8 Exposure using a Cochlear Cell Model and Cellular Pathway Modulation

  18. Stanford Center for Military Photomedicine

    DTIC Science & Technology

    2014-09-08

    cochlear implants after blast injury. A.2. WOUND HEALING. We have used several in vivo and in vitro models of wound healing to study the basic cell and...clinical information we will obtain has the potential to fundamentally alter the diagnosis and treatment of human cochlear pathology. Our microscope...of live guinea pigs, and have shown that FME can resolve cochlear structures in live subjects in a manner far superior to that of any other existing

  19. Sound-direction identification with bilateral cochlear implants.

    PubMed

    Neuman, Arlene C; Haravon, Anita; Sislian, Nicole; Waltzman, Susan B

    2007-02-01

    The purpose of this study was to compare the accuracy of sound-direction identification in the horizontal plane by bilateral cochlear implant users when localization was measured with pink noise and with speech stimuli. Eight adults who were bilateral users of Nucleus 24 Contour devices participated in the study. All had received implants in both ears in a single surgery. Sound-direction identification was measured in a large classroom by using a nine-loudspeaker array. Localization was tested in three listening conditions (bilateral cochlear implants, left cochlear implant, and right cochlear implant), using two different stimuli (a speech stimulus and pink noise bursts) in a repeated-measures design. Sound-direction identification accuracy was significantly better when using two implants than when using a single implant. The mean root-mean-square error was 29 degrees for the bilateral condition, 54 degrees for the left cochlear implant, and 46.5 degrees for the right cochlear implant condition. Unilateral accuracy was similar for right cochlear implant and left cochlear implant performance. Sound-direction identification performance was similar for speech and pink noise stimuli. The data obtained in this study add to the growing body of evidence that sound-direction identification with bilateral cochlear implants is better than with a single implant. The similarity in localization performance obtained with the speech and pink noise supports the use of either stimulus for measuring sound-direction identification.

  20. Arctigenin protects against neuronal hearing loss by promoting neural stem cell survival and differentiation.

    PubMed

    Huang, Xinghua; Chen, Mo; Ding, Yan; Wang, Qin

    2017-03-01

    Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC-induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC-differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo. © 2017 Wiley Periodicals, Inc.

  1. Altered vesicular glutamate transporter distributions in the mouse cochlear nucleus following cochlear insult

    PubMed Central

    Heeringa, Amarins N.; Stefanescu, Roxana A.; Raphael, Yehoash; Shore, Susan E.

    2015-01-01

    Vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) have distinct distributions in the cochlear nucleus that correspond to the sources of the labeled terminals. VGLUT1 is mainly associated with terminals of auditory nerve fibers, whereas VGLUT2 is mainly associated with glutamatergic terminals deriving from other sources that project to the cochlear nucleus (CN), including somatosensory and vestibular terminals. Previous studies in guinea pig have shown that cochlear damage results in a decrease of VGLUT1-labeled puncta and an increase in VGLUT2-labeled puncta. This indicates cross-modal compensation that is of potential importance in somatic tinnitus. To examine whether this effect is consistent across species and to provide a background for future studies, using transgenesis, the current study examines VGLUT expression profiles upon cochlear insult by intracochlear kanamycin injections in the mouse. Intracochlear kanamycin injections abolished ipsilateral ABR responses in all animals and reduced ipsilateral spiral ganglion neuron densities in animals that were sacrificed after four weeks, but not in animals that were sacrificed after three weeks. In all unilaterally deafened animals, VGLUT1 density was decreased in CN regions that receive auditory nerve fiber terminals, i.e. in the deep layer of the dorsal cochlear nucleus (DCN), in the interstitial region where the auditory nerve enters the CN, and in the magnocellular region of the antero- and posteroventral CN. In contrast, density of VGLUT2 expression was upregulated in the fusiform cell layer of the DCN and in the granule cell lamina, which are known to receive somatosensory and vestibular terminals. These results show that a cochlear insult induces cross-modal compensation in the cochlear nucleus of the mouse, confirming previous findings in guinea pig, and that these changes are not dependent on the occurrence of spiral ganglion neuron degeneration. PMID:26705736

  2. Altered vesicular glutamate transporter distributions in the mouse cochlear nucleus following cochlear insult.

    PubMed

    Heeringa, A N; Stefanescu, R A; Raphael, Y; Shore, S E

    2016-02-19

    Vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) have distinct distributions in the cochlear nucleus that correspond to sources of the labeled terminals. VGLUT1 is mainly associated with terminals of auditory nerve fibers, whereas VGLUT2 is mainly associated with glutamatergic terminals deriving from other sources that project to the cochlear nucleus (CN), including somatosensory and vestibular terminals. Previous studies in guinea pig have shown that cochlear damage results in a decrease of VGLUT1-labeled puncta and an increase in VGLUT2-labeled puncta. This indicates cross-modal compensation that is of potential importance in somatic tinnitus. To examine whether this effect is consistent across species and to provide a background for future studies, using transgenesis, the current study examines VGLUT expression profiles upon cochlear insult by intracochlear kanamycin injections in the mouse. Intracochlear kanamycin injections abolished ipsilateral ABR responses in all animals and reduced ipsilateral spiral ganglion neuron densities in animals that were sacrificed after four weeks, but not in animals that were sacrificed after three weeks. In all unilaterally deafened animals, VGLUT1 density was decreased in CN regions that receive auditory nerve fiber terminals, i.e., in the deep layer of the dorsal cochlear nucleus (DCN), in the interstitial region where the auditory nerve enters the CN, and in the magnocellular region of the antero- and posteroventral CN. In contrast, density of VGLUT2 expression was upregulated in the fusiform cell layer of the DCN and in the granule cell lamina, which are known to receive somatosensory and vestibular terminals. These results show that a cochlear insult induces cross-modal compensation in the cochlear nucleus of the mouse, confirming previous findings in guinea pig, and that these changes are not dependent on the occurrence of spiral ganglion neuron degeneration. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Binaural Processing of Multiple Sound Sources

    DTIC Science & Technology

    2016-08-18

    Sound Source Localization Identification, and Sound Source Localization When Listeners Move. The CI research was also supported by an NIH grant...8217Cochlear Implant Performance in Realistic Listening Environments,’ Dr. Michael Dorman, Principal Investigator, Dr. William Yost unpaid advisor. The other... Listeners Move. The CI research was also supported by an NIH grant (“Cochlear Implant Performance in Realistic Listening Environments,” Dr. Michael Dorman

  4. The second filter’s second coming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramamoorthy, Sripriya; Jacques, Steven L.; Choudhoury, Niloy

    We measured sound-evoked vibrations at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate a gradient in frequency tuning among different cell types, going from a high best frequency at the inner hair cells to a lower one at the Hensen cells. This causes the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea as compared to the outer hair cells. These observations show that additional processing and filtering of acoustic signals occurs within themore » organ of Corti prior to inner hair cell excitation, thus reinstating a transformed second filter as a mechanism contributing to cochlear frequency tuning.« less

  5. The second filter's second coming

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Chen, Fangyi; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang; Choudhoury, Niloy; Nuttall, Alfred L.; Fridberger, Anders

    2015-12-01

    We measured sound-evoked vibrations at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate a gradient in frequency tuning among different cell types, going from a high best frequency at the inner hair cells to a lower one at the Hensen cells. This causes the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea as compared to the outer hair cells. These observations show that additional processing and filtering of acoustic signals occurs within the organ of Corti prior to inner hair cell excitation, thus reinstating a transformed second filter as a mechanism contributing to cochlear frequency tuning.

  6. Cochlear implant – state of the art

    PubMed Central

    Lenarz, Thomas

    2018-01-01

    Cochlear implants are the treatment of choice for auditory rehabilitation of patients with sensory deafness. They restore the missing function of inner hair cells by transforming the acoustic signal into electrical stimuli for activation of auditory nerve fibers. Due to the very fast technology development, cochlear implants provide open-set speech understanding in the majority of patients including the use of the telephone. Children can achieve a near to normal speech and language development provided their deafness is detected early after onset and implantation is performed quickly thereafter. The diagnostic procedure as well as the surgical technique have been standardized and can be adapted to the individual anatomical and physiological needs both in children and adults. Special cases such as cochlear obliteration might require special measures and re-implantation, which can be done in most cases in a straight forward way. Technology upgrades count for better performance. Future developments will focus on better electrode-nerve interfaces by improving electrode technology. An increased number of electrical contacts as well as the biological treatment with regeneration of the dendrites growing onto the electrode will increase the number of electrical channels. This will give room for improved speech coding strategies in order to create the bionic ear, i.e. to restore the process of natural hearing by means of technology. The robot-assisted surgery will allow for high precision surgery and reliable hearing preservation. Biological therapies will support the bionic ear. Methods are bio-hybrid electrodes, which are coded by stem cells transplanted into the inner ear to enhance auto-production of neurotrophins. Local drug delivery will focus on suppression of trauma reaction and local regeneration. Gene therapy by nanoparticles will hopefully lead to the preservation of residual hearing in patients being affected by genetic hearing loss. Overall the cochlear implant is a very powerful tool to rehabilitate patients with sensory deafness. More than 1 million of candidates in Germany today could benefit from this high technology auditory implant. Only 50,000 are implanted so far. In the future, the procedure can be done under local anesthesia, will be minimally invasive and straight forward. Hearing preservation will be routine. PMID:29503669

  7. Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea.

    PubMed

    Hossain, Waheeda A; Antic, Srdjan D; Yang, Yang; Rasband, Matthew N; Morest, D Kent

    2005-07-20

    The origin of the action potential in the cochlea has been a long-standing puzzle. Because voltage-dependent Na+ (Nav) channels are essential for action potential generation, we investigated the detailed distribution of Nav1.6 and Nav1.2 in the cochlear ganglion, cochlear nerve, and organ of Corti, including the type I and type II ganglion cells. In most type I ganglion cells, Nav1.6 was present at the first nodes flanking the myelinated bipolar cell body and at subsequent nodes of Ranvier. In the other ganglion cells, including type II, Nav1.6 clustered in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. In the organ of Corti, Nav1.6 was localized in the short segments of the afferent axons and their sensory endings beneath each inner hair cell. Surprisingly, the outer spiral fibers and their sensory endings were well labeled beneath the outer hair cells over their entire trajectory. In contrast, Nav1.2 in the organ of Corti was localized to the unmyelinated efferent axons and their endings on the inner and outer hair cells. We present a computational model illustrating the potential role of the Nav channel distribution described here. In the deaf mutant quivering mouse, the localization of Nav1.6 was disrupted in the sensory epithelium and ganglion. Together, these results suggest that distinct Nav channels generate and regenerate action potentials at multiple sites along the cochlear ganglion cells and nerve fibers, including the afferent endings, ganglionic initial segments, and nodes of Ranvier.

  8. Response of the flat cochlear epithelium to forced expression of Atoh1.

    PubMed

    Izumikawa, Masahiko; Batts, Shelley A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2008-06-01

    Following hair cell elimination in severely traumatized cochleae, differentiated supporting cells are often replaced by a simple epithelium with cuboidal or flat appearance. Atoh1 (previously Math1) is a basic helix-loop-helix transcription factor critical to hair cell differentiation during mammalian embryogenesis. Forced expression of Atoh1 in the differentiated supporting cell population can induce transdifferentiation leading to hair cell regeneration. Here, we examined the outcome of adenovirus mediated over-expression of Atoh1 in the non-sensory cells of the flat epithelium. We determined that seven days after unilateral elimination of hair cells with neomycin, differentiated supporting cells are absent, replaced by a flat epithelium. Nerve processes were also missing from the auditory epithelium, with the exception of infrequent looping nerve processes above the habenula perforata. We then inoculated an adenovirus vector with Atoh1 insert into the scala media of the deafened cochlea. The inoculation resulted in upregulation of Atoh1 in the flat epithelium. However, two months after the inoculation, Atoh1-treated ears did not exhibit clear signs of hair cell regeneration. Combined with previous data on induction of supporting cell to hair cell transdifferentiation by forced expression of Atoh1, these results suggest that the presence of differentiated supporting cells in the organ of Corti is necessary for transdifferentiation to occur.

  9. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison.

    PubMed

    Yoon, Yong-Jin; Steele, Charles R; Puria, Sunil

    2011-01-05

    The high sensitivity and wide bandwidth of mammalian hearing are thought to derive from an active process involving the somatic and hair-bundle motility of the thousands of outer hair cells uniquely found in mammalian cochleae. To better understand this, a biophysical three-dimensional cochlear fluid model was developed for gerbil, chinchilla, cat, and human, featuring an active "push-pull" cochlear amplifier mechanism based on the cytoarchitecture of the organ of Corti and using the time-averaged Lagrangian method. Cochlear responses are simulated and compared with in vivo physiological measurements for the basilar membrane (BM) velocity, V(BM), frequency tuning of the BM vibration, and Q₁₀ values representing the sharpness of the cochlear tuning curves. The V(BM) simulation results for gerbil and chinchilla are consistent with in vivo cochlea measurements. Simulated mechanical tuning curves based on maintaining a constant V(BM) value agree with neural-tuning threshold measurements better than those based on a constant displacement value, which implies that the inner hair cells are more sensitive to V(BM) than to BM displacement. The Q₁₀ values of the V(BM) tuning curve agree well with those of cochlear neurons across species, and appear to be related in part to the width of the basilar membrane. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Persistence, Distribution, and Impact of Distinctly Segmented Microparticles on Cochlear Health following In Vivo Infusion3*

    PubMed Central

    Ross, Astin M.; Rahmani, Sahar; Prieskorn, Diane M.; Dishman, Acacia F; Miller, Josef M.; Lahann, Joerg; Altschuler, Richard A.

    2016-01-01

    Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. PMID:26841263

  11. Cued Speech for Enhancing Speech Perception and First Language Development of Children With Cochlear Implants

    PubMed Central

    Leybaert, Jacqueline; LaSasso, Carol J.

    2010-01-01

    Nearly 300 million people worldwide have moderate to profound hearing loss. Hearing impairment, if not adequately managed, has strong socioeconomic and affective impact on individuals. Cochlear implants have become the most effective vehicle for helping profoundly deaf children and adults to understand spoken language, to be sensitive to environmental sounds, and, to some extent, to listen to music. The auditory information delivered by the cochlear implant remains non-optimal for speech perception because it delivers a spectrally degraded signal and lacks some of the fine temporal acoustic structure. In this article, we discuss research revealing the multimodal nature of speech perception in normally-hearing individuals, with important inter-subject variability in the weighting of auditory or visual information. We also discuss how audio-visual training, via Cued Speech, can improve speech perception in cochlear implantees, particularly in noisy contexts. Cued Speech is a system that makes use of visual information from speechreading combined with hand shapes positioned in different places around the face in order to deliver completely unambiguous information about the syllables and the phonemes of spoken language. We support our view that exposure to Cued Speech before or after the implantation could be important in the aural rehabilitation process of cochlear implantees. We describe five lines of research that are converging to support the view that Cued Speech can enhance speech perception in individuals with cochlear implants. PMID:20724357

  12. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses.

    PubMed

    Ruel, Jérôme; Chabbert, Christian; Nouvian, Régis; Bendris, Rim; Eybalin, Michel; Leger, Claude Louis; Bourien, Jérôme; Mersel, Marcel; Puel, Jean-Luc

    2008-07-16

    Currently, many millions of people treated for various ailments receive high doses of salicylate. Consequently, understanding the mechanisms by which salicylate induces tinnitus is an important issue for the research community. Behavioral testing in rats have shown that tinnitus induced by salicylate or mefenamate (both cyclooxygenase blockers) are mediated by cochlear NMDA receptors. Here we report that the synapses between the sensory inner hair cells and the dendrites of the cochlear spiral ganglion neurons express NMDA receptors. Patch-clamp recordings and two-photon calcium imaging demonstrated that salicylate and arachidonate (a substrate of cyclooxygenase) enabled the calcium flux and the neural excitatory effects of NMDA on cochlear spiral ganglion neurons. Salicylate also increased the arachidonate content of the whole cochlea in vivo. Single-unit recordings of auditory nerve fibers in adult guinea pig confirmed the neural excitatory effect of salicylate and the blockade of this effect by NMDA antagonist. These results suggest that salicylate inhibits cochlear cyclooxygenase, which increased levels of arachidonate. The increased levels of arachidonate then act on NMDA receptors to enable NMDA responses to glutamate that inner hair cells spontaneously release. This new pharmacological profile of salicylate provides a molecular mechanism for the generation of tinnitus at the periphery of the auditory system.

  13. Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm

    PubMed Central

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L.

    2014-01-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. In addition, the mammalian ear develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Developing the OC out of a uniform sheet of ectoderm requires an unparalleled precision in topological developmental engineering of four different general cell types, sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. In addition, the OC receives a unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents, and requires neural crest-derived Schwann cells to form myelin and neural crest-derived cells to induce the stria vascularis. To achieve this transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGN) while simultaneously transforming the flat epithelium into a tube, the cochlear duct housing the OC. In addition to the cellular and conformational changes to make the cochlear duct with the OC, additional changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. This article reviews molecular developmental data generated predominantly in mice. The available data are ordered into a plausible scenario that integrates the well described expression changes of transcription factors and their actions revealed in mouse mutants for formation of SGNs and OC in the right position and orientation with the right kind of innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge may guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body to reconstitute hearing in a rapidly growing population of aging people suffering from hearing loss. PMID:25381571

  14. Relationship between auditory thresholds, central spontaneous activity and hair cell loss after acoustic trauma

    PubMed Central

    Mulders, W.H.A.M.; Ding, D.; Salvi, R.; Robertson, D.

    2011-01-01

    Acoustic trauma caused by exposure to a very loud sound increases spontaneous activity in central auditory structures such as the inferior colliculus. This hyperactivity has been suggested as a neural substrate for tinnitus, a phantom hearing sensation. In previous studies we have described a tentative link between the frequency region of hearing impairment and the corresponding tonotopic regions in the inferior colliculus showing hyperactivity. In this study we further investigated the relationship between cochlear compound action potential threshold loss, cochlear outer and inner hair cell loss and central hyperactivity in inferior colliculus of guinea pigs. Two weeks after a 10 kHz pure tone acoustic trauma, a tight relationship was demonstrated between the frequency region of compound action potential threshold loss and frequency regions in the inferior colliculus showing hyperactivity. Extending the duration of the acoustic trauma from 1 to 2 h did not result in significant increases in final cochlear threshold loss, but did result in a further increase of spontaneous firing rates in the inferior colliculus. Interestingly, hair cell loss was not present in the frequency regions where elevated cochlear thresholds and central hyperactivity were measured, suggesting that subtle changes in hair cell or primary afferent neural function are sufficient for central hyperactivity to be triggered and maintained. PMID:21491427

  15. Hydrogel limits stem cell dispersal in the deaf cochlea: implications for cochlear implants

    NASA Astrophysics Data System (ADS)

    Nayagam, Bryony A.; Backhouse, Steven S.; Cimenkaya, Cengiz; Shepherd, Robert K.

    2012-12-01

    Auditory neurons provide the critical link between a cochlear implant and the brain in deaf individuals, therefore their preservation and/or regeneration is important for optimal performance of this neural prosthesis. In cases where auditory neurons are significantly depleted, stem cells (SCs) may be used to replace the lost population of neurons, thereby re-establishing the critical link between the periphery (implant) and the brain. For such a therapy to be therapeutically viable, SCs must be differentiated into neurons, retained at their delivery site and damage caused to the residual auditory neurons minimized. Here we describe the transplantation of SC-derived neurons into the deaf cochlea, using a peptide hydrogel to limit their dispersal. The described approach illustrates that SCs can be delivered to and are retained within the basal turn of the cochlea, without a significant loss of endogenous auditory neurons. In addition, the tissue response elicited from this surgical approach was restricted to the surgical site and did not extend beyond the cochlear basal turn. Overall, this approach illustrates the feasibility of targeted cell delivery into the mammalian cochlea using hydrogel, which may be useful for future cell-based transplantation strategies, for combined treatment with a cochlear implant to restore function.

  16. Hyaluronic Acid Enhances Gene Delivery into the Cochlea

    PubMed Central

    Shibata, Seiji B.; Cortez, Sarah R.; Wiler, James A.; Swiderski, Donald L.

    2012-01-01

    Abstract Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application. PMID:22074321

  17. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    PubMed

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.

  18. Targeted Mutation of the Gene for Cellular Glutathione Peroxidase (Gpx1) Increases Noise-Induced Hearing Loss in Mice

    PubMed Central

    McFadden, Sandra L.; Ding, Da-Lian; Lear, Patricia M.; Ho, Ye-Shih

    2000-01-01

    Reactive oxygen species (ROS) and oxidative stress have been implicated in cochlear injury following loud noise and ototoxins. Genetic mutations that impair antioxidant defenses would be expected to increase cochlear injury following acute insults and to contribute to cumulative injury that presents as age-related hearing loss. We examined whether genetically based deficiency of cellular glutathione peroxidase, a major antioxidant enzyme, increases noise-induced hearing loss in mice. Two-month-old "knockout" mice with a targeted inactivating mutation of the gene coding for glutathione peroxidase (Gpx1) and wild type controls were exposed to broadband noise for one hour at 110 dB SPL. Auditory brainstem response (ABR) thresholds at test frequencies ranging from 5 to 40 kHz were obtained two and four weeks after exposure to determine the stable permanent component of the hearing loss. Depending on test frequency, Gpx1 knockout mice showed up to 16 dB higher ABR thresholds prior to noise exposure, and up to 15 dB greater noise-induced hearing loss, compared with controls. Within the cochlear base, there was also a significant contribution of the knockout to inner and outer hair cell loss, as well as nerve fiber loss. Our results support a link between genetic impairment of antioxidant defenses, vulnerability of the cochlea injury, and cochlear degeneration. Such impairment produces characteristics expected of some mutations associated with age-related hearing loss and offers one possible mechanism for their action. PMID:11545230

  19. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners.

    PubMed

    Won, Jong Ho; Jones, Gary L; Drennan, Ward R; Jameyson, Elyse M; Rubinstein, Jay T

    2011-10-01

    Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an "ideal observer," showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. © 2011 Acoustical Society of America

  20. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners a

    PubMed Central

    Ho Won, Jong; Jones, Gary L.; Drennan, Ward R.; Jameyson, Elyse M.; Rubinstein, Jay T.

    2011-01-01

    Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an “ideal observer,” showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. PMID:21973363

  1. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    PubMed

    Li, Xu; Mao, Xiao-Bo; Hei, Ren-Yi; Zhang, Zhi-Bin; Wen, Li-Ting; Zhang, Peng-Zhi; Qiu, Jian-Hua; Qiao, Li

    2011-01-01

    A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2)S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2)S in cochlear blood flow regulation and noise protection. The gene and protein expression of the H(2)S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Our results suggest that H(2)S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  2. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons?

    PubMed Central

    Coco, Anne; Epp, Stephanie B.; Fallon, James B.; Xu, Jin; Millard, Rodney E.; Shepherd, Robert K.

    2007-01-01

    Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n=4) or severe (n=4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically-evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (p<0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. PMID:17258411

  3. Protecting Mammalian Hair Cells from Aminoglycoside-Toxicity: Assessing Phenoxybenzamine's Potential.

    PubMed

    Majumder, Paromita; Moore, Paulette A; Richardson, Guy P; Gale, Jonathan E

    2017-01-01

    Aminoglycosides (AGs) are widely used antibiotics because of their low cost and high efficacy against gram-negative bacterial infection. However, AGs are ototoxic, causing the death of sensory hair cells in the inner ear. Strategies aimed at developing or discovering agents that protect against aminoglycoside ototoxicity have focused on inhibiting apoptosis or more recently, on preventing antibiotic uptake by the hair cells. Recent screens for ototoprotective compounds using the larval zebrafish lateral line identified phenoxybenzamine as a potential protectant for aminoglycoside-induced hair cell death. Here we used live imaging of FM1-43 uptake as a proxy for aminoglycoside entry, combined with hair-cell death assays to evaluate whether phenoxybenzamine can protect mammalian cochlear hair cells from the deleterious effects of the aminoglycoside antibiotic neomycin. We show that phenoxybenzamine can block FM1-43 entry into mammalian hair cells in a reversible and dose-dependent manner, but pre-incubation is required for maximal inhibition of entry. We observed differential effects of phenoxybenzamine on FM1-43 uptake in the two different types of cochlear hair cell in mammals, the outer hair cells (OHCs) and inner hair cells (IHCs). The requirement for pre-incubation and reversibility suggests an intracellular rather than an extracellular site of action for phenoxybenzamine. We also tested the efficacy of phenoxybenzamine as an otoprotective agent. In mouse cochlear explants the hair cell death resulting from 24 h exposure to neomycin was steeply dose-dependent, with 50% cell death occurring at ~230 μM for both IHC and OHC. We used 250 μM neomycin in subsequent hair-cell death assays. At 100 μM with 1 h pre-incubation, phenoxybenzamine conferred significant protection to both IHCs and OHCs, however at higher concentrations phenoxybenzamine itself showed clear signs of ototoxicity and an additive toxic effect when combined with neomycin. These data do not support the use of phenoxybenzamine as a therapeutic agent in mammalian inner ear. Our findings do share parallels with the observations from the zebrafish lateral line model but they also highlight the necessity for validation in the mammalian system and the potential for differential effects on sensory hair cells from different species, in different systems and even between cells in the same organ.

  4. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  5. An Electromechanical Model for the Cochlear Microphonic

    NASA Astrophysics Data System (ADS)

    Teal, Paul D.; Lineton, Ben; Elliott, Stephen J.

    2011-11-01

    The first of the many electrical signals generated in the ear, nerves and brain as a response to a sound incident on the ear is the cochlear microphonic (CM). The CM is generated by the hair cells of the cochlea, primarily the outer hairs cells. The potentials of this signal are a nonlinear filtered version of the acoustic pressure at the tympanic membrane. The CM signal has been used very little in recent years for clinical audiology and audiological research. This is because of uncertainty in interpreting the CM signal as a diagnostic measure, and also because of the difficulty of obtaining the signal, which has usually required the use of a transtympanic electrode. There are however, several potential clinical and research applications for acquisition of the CM. To promote understanding of the CM, and potential clinical application, a model is presented which can account for the generation of the cochlear microphonic signal. The model incorporates micro-mechanical and macro-mechanical aspects of previously published models of the basilar membrane and reticular lamina, as well as cochlear fluid mechanics, piezoelectric activity and capacitance of the outer hair cells. It also models the electrical coupling of signals along the scalae.

  6. Is the Cochlear Amplifier a Fluid Pump?

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. D.; Mountain, D. C.

    2003-02-01

    We have visualized and quantified the effects of electrically evoked motility of outer hair cells (OHCs) within the organ of Corti using an excised cochlear preparation. We found that OHC motility induces oscillatory fluid flow in the tunnel of Corti (TC) and this flow is present at physiologically relevant frequencies. We also show, using a simple one-dimensional hydromechanical model of the TC, that a fluid wave within the tunnel can travel without significant attenuation for distances larger than the wavelength of the cochlear traveling wave. These results in combination with a recent hypothesis that fluid flow within the tunnel is necessary for cochlear amplification suggest that the function of the OHCs is to act as a fluid pump.

  7. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds.

    PubMed

    Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi

    2013-01-01

    Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Analysis of the cochlear amplifier fluid pump hypothesis.

    PubMed

    Zagadou, Brissi Franck; Mountain, David C

    2012-04-01

    We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier.

  9. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse.

  10. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and antibodies to CaBP4 label hair cells, but not supporting cells, equivalent to the pattern seen in mammalian cochlea. Thus, molecular mechanisms that underlie CDI appeared to be conserved across vertebrate species, may provide a means to adjust calcium channel open probability, and could serve to maintain the set-point for spontaneous release from the ribbon synapse. PMID:17656437

  11. Noise-Induced Hearing Loss (NIHL).

    ERIC Educational Resources Information Center

    Seidman, Michael D.

    1999-01-01

    This article provides an overview of noise-induced hearing loss (NIHL), the leading cause of occupationally induced hearing loss in industrialized countries. It discusses causes of NIHL and compelling evidence that reactive oxygen metabolites and cochlear hypoprefusion are responsible for the destruction of cochlear hair cells. Prevention is also…

  12. TRPC1 is required for survival and proliferation of cochlear spiral ganglion stem/progenitor cells.

    PubMed

    Chen, Hsin-Chien; Wang, Chih-Hung; Shih, Cheng-Ping; Chueh, Sheau-Huei; Liu, Shu-Fan; Chen, Hang-Kang; Lin, Yi-Chun

    2015-12-01

    The present studies were designed to test the hypothesis that canonical transient receptor potential channel 1 (TRPC1) is required for the proliferation of cochlear spiral ganglion stem/progenitor cells (SPCs). TRPC1 were detected and evaluated in postnatal day 1 CBA/CaJ mice pups derived-cochlear spiral ganglion SPCs by reverse transcription-polymerase chain reaction, Western blot, immunocytochemistry, and calcium imaging. The cell viability and proliferation of the spiral ganglion SPCs following si-RNA mediated knockdown of TRPC1 or addition of TRPC channel blocker SKF9635 were compared to controls. In spiral ganglion SPCs, TRPC1 was found to be the most abundantly expressed TRPC subunit and shown to contribute to store-operated calcium entry. Silencing of TRPC1 or addition of TRPC channel blockers significantly decreased the rate of cell proliferation. The results suggest that TRPC1 might serve as an essential molecule in regulating the proliferation of spiral ganglion SPCs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea. PMID:22558383

  14. Cochlear implants in children implanted in Jordan: A parental overview.

    PubMed

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (p<0.05). Despite the general satisfaction from the information quantity and quality prior to cochlear implant, parents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  15. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    PubMed

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  16. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear

    PubMed Central

    Kilpatrick, Lauren A.; Li, Qian; Yang, John; Goddard, John C; Fekete, Donna M.; Lang, Hainan

    2010-01-01

    Murine models are ideal for studying cochlear gene transfer as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, due to its small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAV) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear and allows for near-complete preservation of low and middle frequency hearing. In the present study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6, and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus (CMV) promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells (IHCs) were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness. PMID:21209625

  17. The Role of the World Health Organization's International Classification of Functioning, Health and Disability in Models of Infant Cochlear Implant Management

    PubMed Central

    Psarros, Colleen; Love, Sarah

    2016-01-01

    Newborn hearing screening has led to the early diagnosis of hearing loss in neonates and early device fitting is common, based primarily on electrophysiologic and radiologic information, with some supplementary behavioral measures. Such early fitting of hearing devices, in particular cochlear implants (CIs), has been beneficial to the majority of children implanted under the age of 12 months who meet the cochlear implant candidacy criteria. Comorbidities are common in children with hearing loss, although they may not be evident in neonates and may not emerge until later in infants. Evidence suggests that the child's outcomes are strongly influenced by a range of environmental factors including emotional and social support from the immediate and extended family. Consequently, such factors are important in service planning and service delivery for babies and children receiving CIs. The World Health Organization's International Classification of Functioning, Health and Disability (ICF) can provide a framework to facilitate the holistic management of pediatric cochlear implant recipients. The ICF also can be used to map the progress of recipients over time to highlight emerging issues that require intervention. This article will discuss our preliminary use of the ICF to establish clinical practice; develop advocacy skills among clients and their families; identify eligibility for services such as support in educational settings; enable access to modes of service delivery such as telepractice; provide a conceptual framework for policy and program development for pediatric cochlear implant recipients (i.e., in both disability and health services); and, most importantly, establish a clear pathway for the longitudinal management of the cochlear implant in a child's future. It is anticipated that this model will be applied to other populations receiving cochlear implants through our program. PMID:27489404

  18. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall.

    PubMed

    Mei, Ling; Chen, Jin; Zong, Liang; Zhu, Yan; Liang, Chun; Jones, Raleigh O; Zhao, Hong-Bo

    2017-12-01

    Digenic Connexin26 (Cx26, GJB2) and Cx30 (GJB6) heterozygous mutations are the second most frequent cause of recessive deafness in humans. However, the underlying deafness mechanism remains unclear. In this study, we created different double Cx26 and Cx30 heterozygous (Cx26 +/- /Cx30 +/- ) mouse models to investigate the underlying pathological changes and deafness mechanism. We found that double Cx26 +/- /Cx30 +/- heterozygous mice had hearing loss. Endocochlear potential (EP), which is a driving force for hair cells producing auditory receptor current, was reduced. However, unlike Cx26 homozygous knockout (Cx26 -/- ) mice, the cochlea in Cx26 +/- /Cx30 +/- mice displayed normal development and had no apparent hair cell degeneration. Gap junctions (GJs) in the cochlea form two independent networks: the epithelial cell GJ network in the organ of Corti and the connective tissue GJ network in the cochlear lateral wall. We further found that double heterozygous deletion of Cx26 and Cx30 in the epithelial cells did not reduce EP and had normal hearing, suggesting that Cx26 +/- /Cx30 +/- may mainly impair gap junctional functions in the cochlear lateral wall and lead to EP reduction and hearing loss. Most of Cx26 and Cx30 in the cochlear lateral wall co-expressed in the same gap junctional plaques. Moreover, sole Cx26 +/- or Cx30 +/- heterozygous mice had no hearing loss. These data further suggest that digenic Cx26 and Cx30 mutations may impair heterozygous coupling of Cx26 and Cx30 in the cochlear lateral wall to reduce EP, thereby leading to hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss

    PubMed Central

    Johannesen, Peter T.; Pérez-González, Patricia; Lopez-Poveda, Enrique A.

    2014-01-01

    Identifying the multiple contributors to the audiometric loss of a hearing impaired (HI) listener at a particular frequency is becoming gradually more useful as new treatments are developed. Here, we infer the contribution of inner (IHC) and outer hair cell (OHC) dysfunction to the total audiometric loss in a sample of 68 hearing aid candidates with mild-to-severe sensorineural hearing loss, and for test frequencies of 0.5, 1, 2, 4, and 6 kHz. It was assumed that the audiometric loss (HLTOTAL) at each test frequency was due to a combination of cochlear gain loss, or OHC dysfunction (HLOHC), and inefficient IHC processes (HLIHC), all of them in decibels. HLOHC and HLIHC were estimated from cochlear I/O curves inferred psychoacoustically using the temporal masking curve (TMC) method. 325 I/O curves were measured and 59% of them showed a compression threshold (CT). The analysis of these I/O curves suggests that (1) HLOHC and HLIHC account on average for 60–70 and 30–40% of HLTOTAL, respectively; (2) these percentages are roughly constant across frequencies; (3) across-listener variability is large; (4) residual cochlear gain is negatively correlated with hearing loss while residual compression is not correlated with hearing loss. Altogether, the present results support the conclusions from earlier studies and extend them to a wider range of test frequencies and hearing-loss ranges. Twenty-four percent of I/O curves were linear and suggested total cochlear gain loss. The number of linear I/O curves increased gradually with increasing frequency. The remaining 17% I/O curves suggested audiometric losses due mostly to IHC dysfunction and were more frequent at low (≤1 kHz) than at high frequencies. It is argued that in a majority of listeners, hearing loss is due to a common mechanism that concomitantly alters IHC and OHC function and that IHC processes may be more labile in the apex than in the base. PMID:25100940

  20. Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea

    PubMed Central

    Kaiser, Christina L.; Chapman, Brittany J.; Guidi, Jessica L.; Terry, Caitlin E.; Mangiardi, Dominic A.; Cotanche, Douglas A.

    2008-01-01

    Aminoglycoside antibiotics induce caspase-dependent apoptotic death in cochlear hair cells. Apoptosis, a regulated form of cell death, can be induced by many stressors, which activate signaling pathways that result in the controlled dismantling of the affected cell. The caspase family of proteases is activated in the apoptotic signaling pathway and is responsible for cellular destruction. The initiator caspase-9 and the effector caspase-3 are both activated in chick cochlear hair cells following aminoglycoside exposure. We have analyzed caspase activation in the avian cochlea during gentamicin-induced hair cell death to compare two different methods of caspase detection: caspase antibodies and CaspaTag kits. Caspase antibodies bind to the cleaved activated form of caspase-9 or caspase-3 in specific locations in fixed tissue. CaspaTag is a fluorescent inhibitor that binds to a reactive cysteine residue on the large subunit of the caspase heterodimer in unfixed tissue. To induce cochlear hair cell loss, 1-2 week-old chickens received a single injection of gentamicin (300 mg/kg). Chicks were sacrificed 24, 30, 42, 48, 72, or 96 h after injection. Cochleae were dissected and labeled for activated caspase-9 or caspase-3 using either caspase-directed antibodies or CaspaTag kits. Ears were co-labeled with either phalloidin or myosin VI to visualize hair cells and to determine the progression of cochlear damage. The timing of caspase activation was similar for both assays; however, caspase-9 and caspase-3 antibodies labeled only those cells currently undergoing apoptotic cell death. Conversely, CaspaTag-labeled all the cells that have undergone apoptotic cell death and ejection from the sensory epithelium, in addition to those that are currently in the cell death process. This makes CaspaTag ideal for showing an overall pattern or level of cell death over a period of time, while caspase antibodies provide a snapshot of cell death at a specific time point. PMID:18487027

  1. Cochlear partition tuning within the 2nd apical turn of the intact gerbil cochlea

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Xia, Anping; Puria, Sunil; Applegate, Brian E.; Oghalai, John S.

    2018-05-01

    Our understanding of cochlear amplification has been mainly informed by observations of the high-frequency basal region. Results from the few existing in vivo studies from the low-frequency apical region have suggested that cochlear amplification may be more broadly tuned and not as nonlinear as in the base. The current study explored micromechanics via sound evoked vibrations of the cochlear partition, including the organ of Corti (OoC), the basilar membrane (BM) and the tectorial membrane (TM), within the 2nd apical turn, corresponding to the 2.5 kHz best frequency region, of the gerbil cochlea using volumetric optical coherence tomography vibrometry (VOCTV), imaged non-invasively through the otic capsule bone in vivo. Sound induced radial displacements below 4 kHz showed similarities and differences to the well-established BM transverse responses at high-frequency basal region. Responses showed broader tuning, but similar gains at the best frequency and similar phase accumulation. The distinct difference found was the presence of compressive nonlinear growth with SPL below the best frequency down to 0.1 kHz observed at the outer hair cell (OHC) and reticular laminar (RL) locations but not in the BM or inner hair cell regions. These relative motions provide further insight on how OHC somatic forces are distributed within the cochlear partition.

  2. Effects of carbogen on cochlear blood flow and hearing function following acute acoustic trauma in guinea pigs.

    PubMed

    Zhao, Jing; Sun, Jianjun; Liu, Yang

    2012-10-01

    Disturbances of microcirculation and hemorheological changes in the inner ear are the results of noise-induced hearing loss (NIHL). Both the disturbances of microcirculation and hemorheological changes are the etiologies of NIHL development, but they are also the results. Although previous reports that inhalation of high concentration of CO(2) may increase cochlear blood flow (CoBF), the effects of carbogen on the cochlear microcirculation and NIHL remain unclear. Changes induced by noise, carbogen and pure oxygen within the cochlear lateral wall microvasculature and in hearing thresholds were observed in guinea pigs using intravital microscopy and the auditory brainstem response. At the same time, arterial oxygen saturation and morphologic changes of cochlear hair cells were observed. Carbogen inhalation increased vessel diameters and blood flow velocities. Hearing thresholds elevation in the carbogen group was smaller than those in the control and oxygen group (p <0.05). Carbogen inhalation produced a trend toward less threshold shift after noise exposure, which reached statistical significance after day 3 (p <0.01). Respiratory acidosis was not found in our study. The segmented basal membranes of Corti in three groups indicated that no losses or discorders of hair cells were found. Carbogen inhalation can preserve hearing in animal models after acute acoustic trauma. Copyright © 2012 IMSS. All rights reserved.

  3. Simultaneous Communication and Cochlear Implants in the Classroom?

    ERIC Educational Resources Information Center

    Blom, Helen C.; Marschark, Marc

    2015-01-01

    This study was designed to evaluate the potential of simultaneous communication (sign and speech together) to support classroom learning by college students who use cochlear implants (CIs). Metacognitive awareness of learning also was evaluated. A within-subjects design involving 40 implant users indicated that the student participants learned…

  4. Spontaneous Discharge Patterns in Cochlear Spiral Ganglion Cells Prior to the Onset of Hearing in Cats

    PubMed Central

    Jones, Timothy A.; Leake, Patricia A.; Snyder, Russell L.; Stakhovskaya, Olga; Bonham, Ben

    2008-01-01

    Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2 ), yet individual auditory neurons do not respond to ambient sound levels below 90–100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3 to P9. The spiral ganglion was accessed via the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in 9 animals. Spike rates in neonates were very low, ranging from 0.06 to 56 sp/s with a mean of 3.09 +/− 8.24 sp/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval coefficient of variation (CVi = 2.9 +/−1.6) and burst index of 5.2 +/− 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision (Shatz, 1996, Proc Natl Acad Sci 93). Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during pre-hearing periods. PMID:17686914

  5. Basilar membrane vibration after targeted removal of the third row of OHCs and Deiters cells

    NASA Astrophysics Data System (ADS)

    Xia, Anping; Udagawa, Tomokatsu; Raphael, Patrick D.; Cheng, Alan G.; Steele, Charles R.; Applegate, Brian E.; Oghalai, John S.

    2018-05-01

    The mammalian cochlea has three rows of outer hair cells (OHCs) that amplify the basilar membrane (BM) traveling wave with high gain and exquisite sharpness. However, it is unclear why three rows of OHCs are needed to achieve this. We used a novel transgenic mouse with the diphtheria toxin receptor in Lgr5-positive cells (Lgr5DTR-EGFP/+ mouse) that allowed us to ablate the third row of OHCs and Deiters cells (D) in adulthood via DT injection, after normal cochlear function had developed. We then used volumetric optical coherence tomography (VOCTV) to investigate the impacts of this manipulation of cochlear amplification in the apical turn. As expected, Lgr5DTR-EGFP/+ control mice had sharply-tuned vibratory responses. However, Lgr5DTR-EGFP/+ mice had broad tuning with a 20 dB increase in vibratory thresholds. The Q10dB was ˜1 in Lgr5DTR-EGFP/+ mice, whereas it was ˜3 in control mice. The characteristic frequency was lower in Lgr5DTR-EGFP/+ mice compared to controls (7.5 vs. 9.0 kHz). The gain of cochlear amplification was substantially lower in Lgr5DTR-EGFP/+ mice compared to controls (22 vs. 50). In the post-mortem period, the vibratory responses in Lgr5DTR-EGFP/+ mice were identical to controls. Together, these results demonstrate the substantial importance of the third row of OHCs and Deiters cells to normal cochlear amplification.

  6. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons After Experimental Lesion

    PubMed Central

    Bas, Esperanza; Van De Water, Thomas R.; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M.

    2014-01-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  7. Cochlear Implants and Psychiatric Assessments: a Norrie Disease Case Report.

    PubMed

    Jacques, Denis; Dubois, Thomas; Zdanowicz, Nicolas; Gilain, Chantal; Garin, Pierre

    2017-09-01

    It is important to perform psychiatric assessments of adult patients who are candidates for cochlear implants both to screen them for psychiatric disorders and to assess their understanding and compliance with the procedure. Deafness is a factor of difficulty for conducting in-depth psychiatric interviews, but concomitant blindness may make it impossible. After a description of Norrie disease, a rare disease in which blindness and deafness may occur together, we propose a case report of a patient suffering from the disease and who consulted in view of a cochlear implant. Early information on cochlear implants appears to be necessary before total deafness occurs in patients suffering from Norrie disease. An inventory of digital communication tools that can be used by the patient is also highly valuable. Research should be supported for a more systematic use of psychiatric assessments prior to cochlear implants. In the special case of Norrie disease, we recommend early screening for mental retardation and related psychotic disorders and, depending on the patient's level of understanding, preventive information on the benefits and limits of cochlear implants before total deafness occurs.

  8. Bilateral and unilateral cochlear implant users compared on speech perception in noise.

    PubMed

    Dunn, Camille C; Noble, William; Tyler, Richard S; Kordus, Monika; Gantz, Bruce J; Ji, Haihong

    2010-04-01

    Compare speech performance in noise with matched bilateral cochlear implant (CICI) and unilateral cochlear implant (CI only) users. Thirty CICI and 30 CI-only subjects were tested on a battery of speech perception tests in noise that use an eight-loudspeaker array. On average, CICI subject's performance with speech in noise was significantly better than the CI-only subjects. The CICI group showed significantly better performance on speech perception in noise compared with the CI-only subjects, supporting the hypothesis that CICI is more beneficial than CI only.

  9. [Cochlear implant in children: rational, indications and cost/efficacy].

    PubMed

    Martini, A; Bovo, R; Trevisi, P; Forli, F; Berrettini, S

    2013-06-01

    A cochlear implant (CI) is a partially implanted electronic device that can help to provide a sense of sound and support speech to severely to profoundly hearing impaired patients. It is constituted by an external portion, that usually sits behind the ear and an internal portion surgically placed under the skin. The external components include a microphone connected to a speech processor that selects and arranges sounds pucked up by the microphone. This is connected to a transmitter coil, worn on the side of the head, which transmits data to an internal receiver coil placed under the skin. The received data are delivered to an array of electrodes that are surgically implanted within the cochlea. The primary neural targets of the electrodes are the spiral ganglion cells which innervate fibers of the auditory nerve. When the electrodes are activated by the signal, they send a current along the auditory nerve and auditory pathways to the auditory cortex. Children and adults who are profoundly or severely hearing impaired can be fitted with cochlear implants. According to the Food and Drug Administration, approximately 188,000 people worldwide have received implants. In Italy it is extimated that there are about 6-7000 implanted patients, with an average of 700 CI surgeries per year. Cochlear implantation, followed by intensive postimplantation speech therapy, can help young children to acquire speech, language, and social skills. Early implantation provides exposure to sounds that can be helpful during the critical period when children learn speech and language skills. In 2000, the Food and Drug Administration lowered the age of eligibility to 12 months for one type of CI. With regard to the results after cochlear implantation in relation to early implantation, better linguistic results are reported in children implanted before 12 months of life, even if no sufficient data exist regarding the relation between this advantage and the duration of implant use and how long this advantage persists in the subsequent years. With regard to cochlear implantation in children older than 12 months the studies show better hearing and linguistic results in children implanted at earlier ages. A sensitive period under 24-36 months has been identified over which cochlear implantation is reported to be less effective in terms of improvement in speech and hearing results. With regard to clinical effectiveness of bilateral cochlear implantation, greater benefits from bilateral implants compared to monolateral ones when assessing hearing in quiet and in noise and in sound localization abilities are reported to be present in both case of simultaneous or sequential bilateral implantation. However, with regard to the delay between the surgeries in sequential bilateral implantation, although benefit is reported to be present even after very long delays, on average long delays between surgeries seems to negatively affect the outcome with the second implant. With regard to benefits after cochlear implantation in children with multiple disabilities, benefits in terms of speech perception and communication as well as in quality of the daily life are reported even if benefits are slower and lower in comparison to those generally attained by implanted children without additional disabilities. Regarding the costs/efficacy ratio, the CI is expensive, in particular because of the cost of the high technological device, long life support, but even if healthcare costs are high, the savings in terms of indirect costs and quality of life are important. The CI, in fact, has a positive impact in terms of quality of life.

  10. Otoancorin Knockout Mice Reveal Inertia is the Force for Hearing

    NASA Astrophysics Data System (ADS)

    Weddell, Thomas; Legan, P. Kevin; Lukashkina, Victoria A.; Goodyear, Richard J.; Welstead, Lindsy; Petit, Chistine; Russell, Ian J.; Lukashkin, Andrei N.; Richardson, Guy P.

    2011-11-01

    We demonstrate that in Otoa-/- mice, in which the inner-ear-specific protein otoancorin is absent, excitation of the outer hair cells and cochlear amplification is normal. This finding is remarkable because the tectorial membrane (TM), although remaining functionally attached to the outer hair cell bundles, is completely detached from the spiral limbus. Therefore, as in ancestral vertebrate auditory organs, where inertia provides the excitatory force to the hair cells, it is the inertia of the TM that must be important for exciting the outer hair cells, setting the sensitivity of their transducer conductance, and determining the precise timing of cochlear amplification.

  11. Perceptual consequences of normal and abnormal peripheral compression: Potential links between psychoacoustics and speech perception

    NASA Astrophysics Data System (ADS)

    Oxenham, Andrew J.; Rosengard, Peninah S.; Braida, Louis D.

    2004-05-01

    Cochlear damage can lead to a reduction in the overall amount of peripheral auditory compression, presumably due to outer hair cell (OHC) loss or dysfunction. The perceptual consequences of functional OHC loss include loudness recruitment and reduced dynamic range, poorer frequency selectivity, and poorer effective temporal resolution. These in turn may lead to a reduced ability to make use of spectral and temporal fluctuations in background noise when listening to a target sound, such as speech. We tested the effect of OHC function on speech reception in hearing-impaired listeners by comparing psychoacoustic measures of cochlear compression and sentence recognition in a variety of noise backgrounds. In line with earlier studies, we found weak (nonsignificant) correlations between the psychoacoustic tasks and speech reception thresholds in quiet or in steady-state noise. However, when spectral and temporal fluctuations were introduced in the masker, speech reception improved to an extent that was well predicted by the psychoacoustic measures. Thus, our initial results suggest a strong relationship between measures of cochlear compression and the ability of listeners to take advantage of spectral and temporal masker fluctuations in recognizing speech. [Work supported by NIH Grants Nos. R01DC03909, T32DC00038, and R01DC00117.

  12. High-Level Psychophysical Tuning Curves: Forward Masking in Normal-Hearing and Hearing-Impaired Listeners.

    ERIC Educational Resources Information Center

    Nelson, David A.

    1991-01-01

    Forward-masked psychophysical tuning curves were obtained at multiple probe levels from 26 normal-hearing listeners and 24 ears of 21 hearing-impaired listeners with cochlear hearing loss. Results indicated that some cochlear hearing losses influence the sharp tuning capabilities usually associated with outer hair cell function. (Author/JDD)

  13. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  14. Parent Perceptions of Audiology and Speech-Language Services and Support for Young Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Kelly, Patrick Michael

    2013-01-01

    Parents of children diagnosed with severe-profound sensorineural hearing loss are selecting cochlear implants at an increasing rate and when their children are very young. Audiologists and speech-language pathologists are typically involved in habilitation activities following implantation in an effort to increase children's access to listening…

  15. Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus

    NASA Astrophysics Data System (ADS)

    Fujino, Kiyohiro; Oertel, Donata

    2003-01-01

    The dorsal cochlear nucleus integrates acoustic with multimodal sensory inputs from widespread areas of the brain. Multimodal inputs are brought to spiny dendrites of fusiform and cartwheel cells in the molecular layer by parallel fibers through synapses that are subject to long-term potentiation and long-term depression. Acoustic cues are brought to smooth dendrites of fusiform cells in the deep layer by auditory nerve fibers through synapses that do not show plasticity. Plasticity requires Ca2+-induced Ca2+ release; its sensitivity to antagonists of N-methyl-D-aspartate and metabotropic glutamate receptors differs in fusiform and cartwheel cells.

  16. Predictors of round window accessibility for adult cochlear implantation based on pre-operative CT scan: a prospective observational study.

    PubMed

    Park, Edward; Amoodi, Hosam; Kuthubutheen, Jafri; Chen, Joseph M; Nedzelski, Julian M; Lin, Vincent Y W

    2015-05-28

    Cochlear implantation has become a mainstream treatment option for patients with severe to profound sensorineural hearing loss. During cochlear implant, there are key surgical steps which are influenced by anatomical variations between each patient. The aim of this study is to determine if there are potential predictors of difficulties that may be encountered during the cortical mastoidectomy, facial recess approach and round window access in cochlear implant surgery based upon pre-operative temporal bone CT scan. Fifty seven patients undergoing unilateral cochlear implantation were analyzed. Difficulty with 1) cortical mastoidectomy, 2) facial recess approach, and 3) round window access were scored intra-operatively by the surgeon in a blinded fashion (1 = "easy", 2 = "moderate", 3 = "difficult"). Pre-operative temporal bone CT scans were analyzed for 1) degree of mastoid aeration; 2) location of the sigmoid sinus; 3) height of the tegmen; 4) the presence of air cells in the facial recess, and 5) degree of round window bony overhang. Poor mastoid aeration and lower tegmen position, but not the location of sigmoid sinus, are associated with greater difficulty with the cortical mastoidectomy. Presence of an air cell around the facial nerve was predictive of easier facial recess access. However, the degree of round window bony overhang was not predictive of difficulty associated with round window access. Certain parameters on the pre-operative temporal bone CT scan may be useful in predicting potential difficulties encountered during the key steps involved in cochlear implant surgery.

  17. Selective degeneration of a putative cholinergic pathway in the chinchilla cochlea following infusion with ethylcholine aziridinium ion.

    PubMed

    Morley, B J; Spangler, K M; Schneider, B L; Javel, E

    1991-03-22

    Ethylcholine aziridinium ion (AF64A) diluted in artificial perilymph, or artificial perilymph alone was infused into the cochlea of chinchillas. After a survival time of 7 days, the cochleas were fixed with aldehydes, post-fixed in osmium and embedded in epoxy resin for light and electron microscopy. The ultrastructure of the cochleas infused with artificial perilymph was normal. Infusion of 1 microM AF64A resulted in massive degeneration of the axons of the lateral efferent system, a putative cholinergic pathway that originates in the brainstem and terminates on dendrites of the spiral ganglion innervating cochlear inner hair cells. The axons and terminals of a second putative cholinergic pathway, the medial efferent system which terminates on the outer hair cells, were normal. Infusion of AF64A in a concentration of 10 microM resulted in significant pathology of cochlear and supporting cells as well as the loss of efferent terminals at both inner and outer hair cell regions. The results suggest that AF64A is a selective neurotoxin when used under low-dosage conditions, and that certain pathways may be more susceptible to the effects of AF64A than others. One interpretation of these findings is that lateral efferent axons may have a higher rate of high-affinity choline uptake than terminals of the medial efferent axons.

  18. APEX 3: a multi-purpose test platform for auditory psychophysical experiments.

    PubMed

    Francart, Tom; van Wieringen, Astrid; Wouters, Jan

    2008-07-30

    APEX 3 is a software test platform for auditory behavioral experiments. It provides a generic means of setting up experiments without any programming. The supported output devices include sound cards and cochlear implants from Cochlear Corporation and Advanced Bionics Corporation. Many psychophysical procedures are provided and there is an interface to add custom procedures. Plug-in interfaces are provided for data filters and external controllers. APEX 3 is supported under Linux and Windows and is available free of charge.

  19. Effects of piracetam supplementation on cochlear damage occurring in guinea pigs exposed to irradiation.

    PubMed

    Altas, Enver; Ertekin, Mustafa Vecdi; Kuduban, Ozan; Gundogdu, Cemal; Demirci, Elif; Sutbeyaz, Yavuz

    2006-07-01

    In this study we aimed to determine the role of piracetam (PIR) in preventing radiation induced cochlear damage after total-cranium irradiation (radiotherapy; RT). Male albino guinea pigs used in the study were randomly divided into three groups. Group 1 (Control group) (n=11) received neither PIR nor irradiation, but received saline solution intraperitoneally (i.p.) and received sham irradiation. Group 2 (RT group) (n=32) was exposed to total cranium irradiation of 33 Gy in 5 fractions of 6.6 Gy/d for five successive days, with a calculated (alpha/beta=3.5) biological effective dose of fractionated irradiation equal to 60 Gy conventional fractionation, then received saline solution for five successive days i.p. Group 3 (PIR+RT group) (n=33) received total cranium irradiation, plus 350 mg/kg per day PIR for five successive days i.p. After the last dose of RT, the guinea pigs were all sacrificed at the 4th, 24th and 96th hours, respectively. Their cochleas were enucleated for histopathologic examination. It was observed that total cranium irradiation (RT group) promoted degeneration in stria vascularis (SV), spiral ganglion cells (SG), outer hair cells (OHC) and inner hair cell (IHC) of cochleas at these times (p<0.05). While in the PIR+RT group, there was no statistically significant difference on radiation-induced cochlear degeneration in SV and OHC at 4th (p>0.05) and IHC at 4th, 24th hours (p>0.05), there was a significant difference on radiation-induced cochlear degeneration in SV and OHC at 24th and 96th hours (p<0.05), IHC at 96th hour (p<0.05) and SG at 4th, 24th and 96th hours (p<0.05). There was no any cochlear degeneration in the control group. Piracetam might reduce radiation-induced cochlear damage in the guinea pig. These results are pioneer to studies that will be performed with PIR for radiation toxicity protection.

  20. Characterization of slow-cycling cells in the mouse cochlear lateral wall

    PubMed Central

    Ogawa, Kaoru

    2017-01-01

    Cochlear spiral ligament fibrocytes (SLFs) play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs’ self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL). Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2′-deoxyuridine (BrdU) for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker) negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies. PMID:28632772

  1. Trafficking of Aminoglycosides Into Endolymph in Vivo

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Steyger, Peter S.

    2009-02-01

    In vitro, aminoglycosides increase the stiffness of cochlear hair cell stereocilia, altering bundle motion and transduction kinetics. Aminoglycosides also permeate the mechanosensitive transduction channel and rapidly initiate cytotoxicity in hair cells. If these effects occur in vivo, aminoglycosides would need to enter endolymph. The most direct route for systemically-administered aminoglycosides to enter endolymph is by trafficking from strial capillaries across the stria vascularis. An as-yet-unidentified active transporter is required to translocate aminoglycosides from the intra-strial space into the cytoplasm of marginal cells. Once in marginal cells, aminoglycosides would passively flow down the electrochemical gradient into endolymph. We present data that support a trans-strial trafficking route of aminoglycosides into endolymph, where they can then interfere with the mechanosensitive hair bundles.

  2. LOSS OF SESTRIN 2 POTENTIATES THE EARLY ONSET OF AGE-RELATED SENSORY CELL DEGENERATION IN THE COCHLEA

    PubMed Central

    ZHANG, CELIA; SUN, WEI; LI, JI; XIONG, BINBIN; FRYE, MITCHELL D.; DING, DALIAN; SALVI, RICHARD; KIM, MI-JUNG; SOMEYA, SHINICHI; HU, BO HUA

    2017-01-01

    Sestrin 2 (SESN2) is a stress-inducible protein that protects tissues from oxidative stress and delays the aging process. However, its role in maintaining the functional and structural integrity of the cochlea is largely unknown. Here, we report the expression of SESN2 protein in the sensory epithelium, particularly in hair cells. Using C57BL/6J mice, a mouse model of age-related cochlear degeneration, we observed a significant age-related reduction in SESN2 expression in cochlear tissues that was associated with early onset hearing loss and accelerated age-related sensory cell degeneration that progressed from the base toward the apex of the cochlea. Hair cell death occurred by caspase-8 mediated apoptosis. Compared to C57BL/6J control mice, Sesn2 KO mice displayed enhanced expression of proinflammatory genes and activation of basilar membrane macrophages, suggesting that loss of SESN2 function provokes the immune response. Together, these results suggest that Sesn2 plays an important role in cochlear homeostasis and immune responses to stress. PMID:28818524

  3. Inhibition of caspases alleviates gentamicin-induced cochlear damage in guinea pigs.

    PubMed

    Okuda, Takeshi; Sugahara, Kazuma; Takemoto, Tsuyoshi; Shimogori, Hiroaki; Yamashita, Hiroshi

    2005-03-01

    The efficacy of caspase inhibitors for protecting the cochlea was evaluated in an in vivo study using guinea pigs, as the animal model system. Gentamicin (12 mg/ml) was delivered via an osmotic pump into the cochlear perilymphatic space of guinea pigs at 0.5 microl/h for 14 days. Additional animals were given either z-Val-Ala-Asp (Ome)-fluoromethyl ketone (z-VAD-FMK) or z-Leu-Glu-His-Asp-FMK (z-LEHD-FMK), a general caspase inhibitor and a caspase 9 inhibitor, respectively, in addition to gentamicin. The elevation in auditory brain stem response thresholds, at 4, 7, and 14 days following gentamicin administration, were decreased in animals that received both z-VAD-FMK and z-LEHD-FMK. Cochlear sensory hair cells survived in greater numbers in animals that received caspase inhibitors in addition to gentamicin, whereas sensory hair cells in animals that received gentamicin only were severely damaged. These results suggest that auditory cell death induced by gentamicin is closely related to the activation of caspases in vivo.

  4. Current understanding of auditory neuropathy.

    PubMed

    Boo, Nem-Yun

    2008-12-01

    Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention.

  5. Simultaneous bilateral cochlear implantation in a five-month-old child with Usher syndrome.

    PubMed

    Alsanosi, A A

    2015-09-01

    To report a rare case of simultaneous bilateral cochlear implantation in a five-month-old child with Usher syndrome. Case report. A five-month-old boy with Usher syndrome and congenital profound bilateral deafness underwent simultaneous bilateral cochlear implantation. The decision to perform implantation in such a young child was based on his having a supportive family and the desire to foster his audiological development before his vision deteriorated. The subject experienced easily resolvable intra- and post-operative adverse events, and was first fitted with an externally worn audio processor four weeks after implantation. At 14 months of age, his audiological development was age-appropriate. Simultaneous bilateral cochlear implantation is possible, and even advisable, in children as young as five months old when performed by an experienced implantation team.

  6. Inner ear changes in mucopolysaccharidosis type I/Hurler syndrome.

    PubMed

    Kariya, Shin; Schachern, Patricia A; Nishizaki, Kazunori; Paparella, Michael M; Cureoglu, Sebahattin

    2012-10-01

    Mucopolysaccharidosis type I/Hurler syndrome is an autosomal recessive disease caused by a deficiency of α-L-iduronidase activity. Recurrent middle ear infections and hearing loss are common complications in Hurler syndrome. Although sensorineural and conductive components occur, the mechanism of sensorineural hearing loss has not been determined. The purpose of this study is to evaluate the quantitative inner ear histopathology of the temporal bones of patients with Hurler syndrome. Eleven temporal bones from 6 patients with Hurler syndrome were examined. Age-matched healthy control samples consisted of 14 temporal bones from 7 cases. Temporal bones were serially sectioned in the horizontal plane and stained with hematoxylin and eosin. The number of spiral ganglion cells, loss of cochlear hair cells, area of stria vascularis, and cell density of spiral ligament were evaluated using light microscopy. There was no significant difference between Hurler syndrome and healthy controls in the number of spiral ganglion cells, area of stria vascularis, or cell density of spiral ligament. The number of cochlear hair cells in Hurler syndrome was significantly decreased compared with healthy controls. Auditory pathophysiology in the central nerve system in Hurler syndrome remains unknown; however, decreased cochlear hair cells may be one of the important factors for the sensorineural component of hearing loss.

  7. Ototoxicity of paclitaxel in rat cochlear organotypic cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yang; Center for Hearing and Deafness, University at Buffalo, NY 14214; Ding, Dalian

    Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1more » to 30 μM. No obvious histopathologies were observed after 24 h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 μM paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 μM paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. - Highlights: • Paclitaxel was toxic to cochlear hair cells and spiral ganglion neurons. • Paclitaxel-induced spiral ganglion degeneration was apoptotic. • Paclitaxel activated caspase-6, -8 and -8 in spiral ganglion neurons.« less

  8. Two passive mechanical conditions modulate power generation by the outer hair cells

    PubMed Central

    Gracewski, Sheryl M.

    2017-01-01

    In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884

  9. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  10. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus

    PubMed Central

    Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N.; Beyer, Lisa A.; Swiderski, Donald L.; Kanicki, Ariane C.; Kabara, Lisa L.; Dolan, David F.; Shore, Susan E.; Raphael, Yehoash

    2016-01-01

    In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus. However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and cochlear nucleus neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination. PMID:27403879

  11. Micromechanics in the Gerbil Hemicochlea

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Dallos, P.

    2003-02-01

    Micromechanical events in the cochlea represent the combined motions of all elements that convey vibrations from the basilar membrane (BM) to the stereocilia bundles of the inner hair cells, the sensory receptors of the mammalian cochlea. Because of the difficulty of visualizing the organ of Corti (OC), experimental data on micromechanics are extremely limited. Available results represent motions viewed either from one focal plane or from the surface of a cochlear preparation. The present experiments examine cochlear micromechanics at audio frequencies by using the hemicochlea that permits the viewing of all structures in a cochlear cross-section. Stroboscopic illumination and video-flow techniques have been used to quantify the motion of selected elements. The movements at different locations revealed a tuned response across frequencies with the best frequency increasing from more basal to more apical locations. Furthermore, the vibrations showed rotational components, such as rotations around a pivot point: the inner pillar foot. Inner and outer pillar cells, inner and outer hair cells, Deiters' cells and parts of the BM move together and form a so-called "rotating wedge". The movements of Hensen's cells represent a mode of vibration different from that of the rest of the OC.

  12. The basilar membrane acts as a passive support structure at the cochlear apex

    NASA Astrophysics Data System (ADS)

    Warren, Rebecca L.; Fridberger, Anders

    2015-12-01

    The precise mechanical behavior of the basilar membrane (BM) at low frequencies is still unknown. To address this issue we use an in vitro preparation of the guinea pig temporal bone to investigate the mechanical behaviour of the organ of Corti at the apex of the cochlea. Confocal laser interferometry is used to record the nanometre displacements of both Hensen's cells (HeC) and the BM in response to sound and electrical stimulation. We show that at low frequencies, the BM exhibits greatly reduced sound-evoked movement (˜35dB less) and no current-evoked movement, when compared to the HeC at the same position along the spiral. The BM best frequency is found to be an average of 52Hz (0.35 octave) higher than the HeC best frequency. In addition, we demonstrate that BM motion is not affected by inhibition of somatic electromotility or by blocking the mechanoelectrical transduction channels.We therefore propose that the BM primarily acts as a passive support structure at the cochlear apex. We suggest that the micromechanics of the cochlea that are vital to low-frequency amplification and frequency selectivity take place predominantly at the surface of the organ of Corti.

  13. Bilateral and Unilateral Cochlear Implant Users Compared on Speech Perception in Noise

    PubMed Central

    Dunn, Camille C.; Noble, William; Tyler, Richard S.; Kordus, Monika; Gantz, Bruce J.; Ji, Haihong

    2009-01-01

    Objective Compare speech performance in noise with matched bilateral (CICI) and unilateral (CI-Only) cochlear implant users. Design Thirty CICI and 30 CI-Only subjects were tested on a battery of speech perception tests in noise that utilize an 8-loudspeaker array. Results On average, CICI subject's performance with speech in noise was significantly better than the CI-Only subjects. Conclusion The CICI group showed significantly better performance on speech perception in noise compared to the CI-Only subjects, supporting the hypothesis that bilateral cochlear implantation is more beneficial than unilateral implantation. PMID:19858720

  14. I Have a Child with a Cochlear Implant in My Preschool Classroom. Now What?

    ERIC Educational Resources Information Center

    Davenport, Carrie A.; Alber-Morgan, Sheila R.

    2016-01-01

    It is imperative that teachers have the knowledge and resources to support children who are deaf and use a cochlear implant in general education classrooms. The recommendations presented in this article provide teachers with the information necessary to promote a child's academic progress, communication needs, and social development. In order to…

  15. The importance of electrically evoked stapedial reflex in cochlear implant.

    PubMed

    Andrade, Kelly Cristina Lira de; Leal, Mariana de Carvalho; Muniz, Lilian Ferreira; Menezes, Pedro de Lemos; Albuquerque, Katia Maria Gomes de; Carnaúba, Aline Tenório Lins

    2014-01-01

    The most important stage in fitting a cochlear implant is the identification of its dynamic range. The use of objective measures, in particular the electrically elicited stapedius reflex, may provide suitable assistence for initial fitting of cochlear implant, especially in children or adult with multiple disorders, because they provide specific values that serve as the basis of early cochlear implant programming. Verify through a review the use of the electrically elicited stapedius reflex threshold during the activation and mapping process of cochlear implant. Bibliographical search on the Pubmed and Bireme plataforms, and also on Medline, LILACS and SciELO databases, with standard searches until September 2012, using specific keywords. For the selection and evaluation of scientific studies found in the search, criterias have been established, considering the following aspects: author, year/location, grade of recommendation/level of evidence, purpose, sample, age, mean age in years, evaluative testing, results and conclusion. Among 7,304 articles found, 7,080 were excluded from the title, 152 from the abstract, 17 from the article reading, 43 were repeated and 12 were selected for the study. The electrically elicited stapedius reflex may support when programming the cochlear implant, especially in patients with inconsistent responses.

  16. Effects of sustained release dexamethasone hydrogels in hearing preservation cochlear implantation.

    PubMed

    Honeder, Clemens; Zhu, Chengjing; Schöpper, Hanna; Gausterer, Julia Clara; Walter, Manuel; Landegger, Lukas David; Saidov, Nodir; Riss, Dominik; Plasenzotti, Roberto; Gabor, Franz; Arnoldner, Christoph

    2016-11-01

    It has been shown that glucocorticoids reduce the hearing threshold shifts associated with cochlear implantation. Previous studies evaluated the administration of glucocorticoids immediately before surgery or the repeated pre- or perioperative systemic application of glucocorticoids. The aim of this study was to evaluate the effects of a sustained release dexamethasone hydrogel in hearing preservation cochlear implantation. To address this issue, a guinea pig model of cochlear implantation was used. 30 normal hearing pigmented guinea pigs were randomized into a group receiving a single dose of a dexamethasone/poloxamer407 hydrogel one day prior to surgery, a second group receiving the hydrogel seven days prior to surgery and a control group. A silicone cochlear implant electrode designed for the use in guinea pigs was inserted to a depth of 5 mm through a cochleostomy. Compound action potentials of the auditory nerve (frequency range 0.5-32 kHz) were measured preoperatively, directly postoperatively and on postoperative days 3, 7, 14, 21 and 28. Following the last audiometry, temporal bones were harvested and histologically evaluated. Dexamethasone hydrogel application one day prior to surgery resulted in significantly reduced hearing threshold shifts at low, middle and high frequencies measured at postoperative day 28 (p < 0.05). Application of the hydrogel seven days prior to surgery did not show such an effect. Dexamethasone application one day prior to surgery resulted in increased outer hair cell counts in the cochlear apex and in reduced spiral ganglion cell counts in the basal and middle turn of the cochlea, a finding that was associated with a higher rate of electrode translocation in this group. In this study, we were able to demonstrate functional benefits of a single preoperative intratympanic application of a sustained release dexamethasone hydrogel in a guinea pig model of cochlear implantation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis

    PubMed Central

    Shea-Brown, Eric; Rubinstein, Jay T.

    2010-01-01

    Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761

  18. The effect of topically administered latanoprost on the cochlear blood flow and hearing.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Choi, Cheol Hee; Um, Jae-Young; Wang, Pa-Chun; Pak, Sok Cheon

    2013-06-01

    The application of intratympanic latanoprost (PGF2α analog) has been recently used to alleviate vertigo, disequilibrium and to improve hearing in Meniere's disease patients. However, there is no known report on the effect of topically applied latanoprost on hearing and cochlear hemodynamic parameters including cochlear blood flow (CBF) and vascular conductance. Our goal was to assess the influence of topically applied latanoprost on cochlear blood flow (CBF) and hearing. Twenty male Sprague-Dawley rats were randomly divided into the group A, 50 μl of latanoprost (1 ml containing 50 μg, n=10) and group B, 100 μl (1 ml containing 50 μg, n=10). Topical application of latanoprost was performed at the right side, and the left side was applied with phosphate buffered saline (PBS) as a negative control. Five rats at each group were used to measure cochlear blood flow (CBF). And the others at each group were used for hearing test by auditory brainstem response (ABR). After physiological examination, bullas were extracted. The changes of cochlear hair cells were observed by performing the field emission-scanning electron microscopy (FE-SEM). The CBF of both groups was found to be decreased compared to the PBS applied left side. Significant decrement of CBF was observed in group B compared to the group A. Significant elevation of hearing threshold at high frequencies was observed in both groups compared to the PBS applied group. However, inner and outer hair cells were intact. Topically administered latanoprost decreased the CBF and impaired hearing. Based on our findings, additional studies are required to evaluate the side effects of intratympanic latanoprost before its use in clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.

    PubMed

    He, David Z Z; Jia, Shuping; Dallos, Peter

    2004-06-17

    Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.

  20. Progression of changes in the sensorial elements of the cochlear and peripheral vestibular systems: The otitis media continuum.

    PubMed

    Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira

    2017-08-01

    Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation

    PubMed Central

    Elliott, Karen L.; Kersigo, Jennifer; Pan, Ning; Jahan, Israt; Fritzsch, Bernd

    2017-01-01

    We investigate the importance of the degree of peripheral or central target differentiation for mouse auditory afferent navigation to the organ of Corti and auditory nuclei in three different mouse models: first, a mouse in which the differentiation of hair cells, but not central auditory nuclei neurons is compromised (Atoh1-cre; Atoh1f/f); second, a mouse in which hair cell defects are combined with a delayed defect in central auditory nuclei neurons (Pax2-cre; Atoh1f/f), and third, a mouse in which both hair cells and central auditory nuclei are absent (Atoh1−/−). Our results show that neither differentiated peripheral nor the central target cells of inner ear afferents are needed (hair cells, cochlear nucleus neurons) for segregation of vestibular and cochlear afferents within the hindbrain and some degree of base to apex segregation of cochlear afferents. These data suggest that inner ear spiral ganglion neuron processes may predominantly rely on temporally and spatially distinct molecular cues in the region of the targets rather than interaction with differentiated target cells for a crude topological organization. These developmental data imply that auditory neuron navigation properties may have evolved before auditory nuclei. PMID:28450830

  2. A cool approach to reducing electrode-induced trauma: Localized therapeutic hypothermia conserves residual hearing in cochlear implantation.

    PubMed

    Tamames, Ilmar; King, Curtis; Bas, Esperanza; Dietrich, W Dalton; Telischi, Fred; Rajguru, Suhrud M

    2016-09-01

    The trauma caused during cochlear implant insertion can lead to cell death and a loss of residual hair cells in the cochlea. Various therapeutic approaches have been studied to prevent cochlear implant-induced residual hearing loss with limited success. In the present study, we show the efficacy of mild to moderate therapeutic hypothermia of 4 to 6 °C applied to the cochlea in reducing residual hearing loss associated with the electrode insertion trauma. Rats were randomly distributed in three groups: control contralateral cochleae, normothermic implanted cochleae and hypothermic implanted cochleae. Localized hypothermia was delivered to the middle turn of the cochlea for 20 min before and after implantation using a custom-designed probe perfused with cooled fluorocarbon. Auditory brainstem responses (ABRs) were recorded to assess the hearing function prior to and post-cochlear implantation at various time points up to 30 days. At the conclusion of the trials, inner ears were harvested for histology and cell count. The approach was extended to cadaver temporal bones to study the potential surgical approach and efficacy of our device. In this case, the hypothermia probe was placed next to the round window niche via the facial recess or a myringotomy. A significant loss of residual hearing was observed in the normothermic implant group. Comparatively, the residual hearing in the cochleae receiving therapeutic hypothermia was significantly conserved. Histology confirmed a significant loss of outer hair cells in normothermic cochleae receiving the surgical trauma when compared to the hypothermia treated group. In human temporal bones, a controlled and effective cooling of the cochlea was achieved using our approach. Collectively, these results suggest that therapeutic hypothermia during cochlear implantation may reduce traumatic effects of electrode insertion and improve conservation of residual hearing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Simultaneous Communication Supports Learning in Noise by Cochlear Implant Users

    PubMed Central

    Blom, Helen C.; Marschark, Marc; Machmer, Elizabeth

    2017-01-01

    Objectives This study sought to evaluate the potential of using spoken language and signing together (simultaneous communication, SimCom, sign-supported speech) as a means of improving speech recognition, comprehension, and learning by cochlear implant users in noisy contexts. Methods Forty eight college students who were active cochlear implant users, watched videos of three short presentations, the text versions of which were standardized at the 8th grade reading level. One passage was presented in spoken language only, one was presented in spoken language with multi-talker babble background noise, and one was presented via simultaneous communication with the same background noise. Following each passage, participants responded to 10 (standardized) open-ended questions designed to assess comprehension. Indicators of participants’ spoken language and sign language skills were obtained via self-reports and objective assessments. Results When spoken materials were accompanied by signs, scores were significantly higher than when materials were spoken in noise without signs. Participants’ receptive spoken language skills significantly predicted scores in all three conditions; neither their receptive sign skills nor age of implantation predicted performance. Discussion Students who are cochlear implant users typically rely solely on spoken language in the classroom. The present results, however, suggest that there are potential benefits of simultaneous communication for such learners in noisy settings. For those cochlear implant users who know sign language, the redundancy of speech and signs potentially can offset the reduced fidelity of spoken language in noise. Conclusion Accompanying spoken language with signs can benefit learners who are cochlear implant users in noisy situations such as classroom settings. Factors associated with such benefits, such as receptive skills in signed and spoken modalities, classroom acoustics, and material difficulty need to be empirically examined. PMID:28010675

  4. In vitro long-term development of cultured inner ear stem cells of newborn rat.

    PubMed

    Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo

    2010-10-01

    The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.

  5. Pyridostigmine-Induced Neurodegeneration: Role of Neuronal Apoptosis.

    DTIC Science & Technology

    1999-10-01

    carbachol releases glutamate and glycine from dorsal cochlear nucleus brain slices (Chen et al, 1999). No other amino acids were released from brain...Sivasamy (1997) reported that the anticholinesterase, phosphamidon, caused apoptosis in spermatogenic line cells. Also, muscarinic agonists, carbachol and...1999) Glutamergic transmission of neuronal responses to carbachol in rat cochlear nucleus slices. Neurosci. 90: 2043-2049. Crews, F.T., Steck, J.C

  6. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms.

    PubMed

    Liberman, M Charles; Kujawa, Sharon G

    2017-06-01

    Common causes of hearing loss in humans - exposure to loud noise or ototoxic drugs and aging - often damage sensory hair cells, reflected as elevated thresholds on the clinical audiogram. Recent studies in animal models suggest, however, that well before this overt hearing loss can be seen, a more insidious, but likely more common, process is taking place that permanently interrupts synaptic communication between sensory inner hair cells and subsets of cochlear nerve fibers. The silencing of affected neurons alters auditory information processing, whether accompanied by threshold elevations or not, and is a likely contributor to a variety of perceptual abnormalities, including speech-in-noise difficulties, tinnitus and hyperacusis. Work described here will review structural and functional manifestations of this cochlear synaptopathy and will consider possible mechanisms underlying its appearance and progression in ears with and without traditional 'hearing loss' arising from several common causes in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Physiological Signal Transmission Model to be Used for Specific Diagnosis of Cochlear Impairments

    NASA Astrophysics Data System (ADS)

    Saremi, Amin; Stenfelt, Stefan

    2011-11-01

    Many of the sophisticated characteristics of human auditory system are attributed to cochlea. Also, most of patients with a hearing loss suffer from impairments that originate from cochlea (sensorineural). Despite this, today's clinical diagnosis methods do not probe the specific origins of such cochlear lesions. The aim of this research is to introduce a physiological signal transmission model to be clinically used as a tool for diagnosis of cochlear losses. This model enables simulation of different bio-mechano-electrical processes which occur in the auditory organ of Corti inside the cochlea. What makes this model different from many available computational models is its loyalty to physiology since the ultimate goal is to model each single physiological phenomenon. This includes passive BM vibration, outer hair cells' performances such as nonlinear mechanoelectrical transduction (MET), active amplifications by somatic motor, as well as vibration to neural conversion at the inner hair cells.

  8. Some Ethical Dimensions of Cochlear Implantation for Deaf Children and Their Families

    ERIC Educational Resources Information Center

    Hyde, Merv; Power, Des

    2006-01-01

    A major source of controversy between Deaf people and those who support a "social/cultural" view of Deafness as "a life to be lived" and those who see deafness within a "medical model" as a "condition to be cured" has been over the cochlear implantation of young deaf children. Recent research has shown that there are noticeable inequities in…

  9. Maternal Involvement in the Home Literacy Environment: Supporting Literacy Skills in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    DesJardin, Jean L.; Ambrose, Sophie E.; Eisenberg, Laurie S.

    2011-01-01

    This study examines the home literacy environment in a group of mothers and their early-school-age children with cochlear implants (N = 16). The goals of this investigation are to (a) describe the characteristics of the home literacy environment and (b) study the relationships between home literacy factors and children's reading skills. Mothers…

  10. EEG frontal asymmetry related to pleasantness of music perception in healthy children and cochlear implanted users.

    PubMed

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Di Francesco, G; Vitiello, S; Colosimo, A; Babiloni, Fabio

    2012-01-01

    Interestingly, the international debate about the quality of music fruition for cochlear implanted users does not take into account the hypothesis that bilateral users could perceive music in a more pleasant way with respect to monolateral users. In this scenario, the aim of the present study was to investigate if cerebral signs of pleasantness during music perception in healthy child are similar to those observed in monolateral and in bilateral cochlear implanted users. In fact, previous observations in literature on healthy subjects have indicated that variations of the frontal EEG alpha activity are correlated with the perceived pleasantness of the sensory stimulation received (approach-withdrawal theory). In particular, here we described differences between cortical activities estimated in the alpha frequency band for a healthy child and in patients having a monolateral or a bilateral cochlear implant during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns observed in a healthy child and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal theory. Conversely, the scalp topographic distribution of EEG power spectra in the alpha band resulting from the monolateral cochlear user presents a different EEG pattern from the normal and bilateral implanted patients. Such differences could be explained at the light of the approach-withdrawal theory. In fact, the present findings support the hypothesis that a monolateral cochlear implanted user could perceive the music in a less pleasant way when compared to a healthy subject or to a bilateral cochlear user.

  11. Therapeutic effect of adeno-associated virus (AAV)-mediated ADNF-9 expression on cochlea of kanamycin-deafened guinea pigs.

    PubMed

    Zheng, Guoxi; Zhu, Zhu; Zhu, Kang; Wei, Junrong; Jing, Yang; Duan, Maoli

    2013-10-01

    rAAV-NT4-ADNF-9 could ameliorate the damage to auditory function and repair previous impairment of cochlear hair cell loss induced by kanamycin. To investigate the therapeutic effect of ADNF-9 on cochlear hair cells using the recombinant adeno-associated virus (AAV) carrying fusion gene NT4-ADNF-9 and the kanamycin-deafened guinea pig model. Forty white guinea pigs with normal auricle reflex and normal auditory brainstem responses (ABRs) were randomly divided into four groups. Kanamycin was administered to the animals in groups A, B, and C to establish the deafened guinea pig model. rAAV-NT4-ADNF-9, vector only, and artificial perilymph were then delivered to the cochlear tissue of animals in groups A, B, and C, respectively, through the round window membrane. Animals in group D did not receive any treatment and acted as normal controls. The hearing thresholds on the surgery side were recorded before and after the transfection treatment. Fourteen days after treatment, cochleae were removed for paraffin slide preparation and cochlear surface preparation. A phase contrast microscope was used to observe the protective effect of ADNF-9 on hair cells. Significant reduction of the ABR threshold was observed after rAAV-NT4-ADNF-9 treatment (p < 0.05). After 14 days of treatment, the ABR threshold was also significantly different between the rAAV-NT4-ADNF-9-infected group and the non-infected group. Moreover, phase contrast microscopy showed significantly less hair cell damage or hair cell loss in the group treated with rAAV-NT4-ADNF-9 than in the groups treated with vector only or artificial perilymph (p < 0.05).

  12. Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development*

    PubMed Central

    Cheng, Yen-Fu; Tong, Mingjie; Edge, Albert S. B.

    2016-01-01

    Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival. PMID:27542412

  13. Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea

    PubMed Central

    Salehi, Pezhman; Gundimeda, Usha; Lael Cantu, Homero; Lavinsky, Joel; Myint, Anthony; Wang, Juemei; Abdala, Carolina; Ohyama, Takahiro; Coate, Thomas Matthew

    2017-01-01

    Neuropilin-1 (Nrp1) encodes the transmembrane cellular receptor neuropilin-1, which is associated with cardiovascular and neuronal development and was within the peak SNP interval on chromosome 8 in our prior GWAS study on age-related hearing loss (ARHL) in mice. In this study, we generated and characterized an inner ear-specific Nrp1 conditional knockout (CKO) mouse line because Nrp1 constitutive knockouts are embryonic lethal. In situ hybridization demonstrated weak Nrp1 mRNA expression late in embryonic cochlear development, but increased expression in early postnatal stages when cochlear hair cell innervation patterns have been shown to mature. At postnatal day 5, Nrp1 CKO mice showed disorganized outer spiral bundles and enlarged microvessels of the stria vascularis (SV) but normal spiral ganglion cell (SGN) density and presynaptic ribbon body counts; however, we observed enlarged SV microvessels, reduced SGN density, and a reduction of presynaptic ribbons in the outer hair cell region of 4-month-old Nrp1 CKO mice. In addition, we demonstrated elevated hearing thresholds of the 2-month-old and 4-month-old Nrp1 CKO mice at frequencies ranging from 4 to 32kHz when compared to 2-month-old mice. These data suggest that conditional loss of Nrp1 in the inner ear leads to progressive hearing loss in mice. We also demonstrated that mice with a truncated variant of Nrp1 show cochlear axon guidance defects and that exogenous semaphorin-3A, a known neuropilin-1 receptor agonist, repels SGN axons in vitro. These data suggest that Neuropilin-1/Semaphorin-3A signaling may also serve a role in neuronal pathfinding in the developing cochlea. In summary, our results here support a model whereby Neuropilin-1/Semaphorin-3A signaling is critical for the functional and morphological integrity of the cochlea and that Nrp1 may play a role in ARHL. PMID:29059194

  14. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia).

    PubMed

    Karim, M R; Atoji, Y

    2016-02-01

    Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds. © 2015 Blackwell Verlag GmbH.

  15. Cochlear pathology in chronic suppurative otitis media.

    PubMed

    Walby, A P; Barrera, A; Schuknecht, H F

    1983-01-01

    Chronic suppurative otitis media (COM) is reported to cause elevation of bone-conduction thresholds either by damage to cochlear sensorineural structures or by alteration in the mechanics of sound transmission in the ear. A retrospective study was made of the medical records of 87 patients with unilateral uncomplicated COM to document that abnormality in bone conduction does exist. In a separate study the cochlear pathology in 12 pairs of temporal bones with unilateral COM was studied by light microscopy. Infected ears showed higher than normal mean bone-conduction thresholds by amounts ranging from 1 dB at 500 Hz to 9.5 dB at 4,000 Hz. The temporal bones showed no greater loss of specialized sensorineural structures in infected ears than in normal control ears. Because there is no evidence that COM caused destruction of hair cells or cochlear neurons, alteration in the mechanics of sound transmission becomes a more plausible explanation for the hearing losses.

  16. Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates.

    PubMed

    Kandathil, Cherian K; Stakhovskaya, Olga; Leake, Patricia A

    2016-12-01

    Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 μg/ml; 0.25 μl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dual Language versus English-Only Support for Bilingual Children with Hearing Loss Who Use Cochlear Implants and Hearing Aids

    ERIC Educational Resources Information Center

    Bunta, Ferenc; Douglas, Michael; Dickson, Hanna; Cantu, Amy; Wickesberg, Jennifer; Gifford, René H.

    2016-01-01

    Background: There is a critical need to understand better speech and language development in bilingual children learning two spoken languages who use cochlear implants (CIs) and hearing aids (HAs). The paucity of knowledge in this area poses a significant barrier to providing maximal communicative outcomes to a growing number of children who have…

  18. Electrical resistivity measurements in the mammalian cochlea after neural degeneration.

    PubMed

    Micco, Alan G; Richter, Claus-Peter

    2006-08-01

    In the present series of experiments, the effect of neural degeneration on the cochlear structure electrical resistivities was evaluated to test if it alters the current flow in the cochlea and if increased current levels are needed to stimulate the impaired cochlea. In cochlear implants, frequency information is encoded in part by stimulating discrete populations of spiral ganglion cells along the cochlea. However, electrical properties of the cochlear structures result in shunting of the current away from the auditory neurons. This consumes energy, makes cochlear implants less efficient, and drastically reduces battery life. Models of the electrically stimulated cochlea serve to make predictions on current paths using modified and improved cochlear implant electrodes. However, one of the model's shortcomings is that most of the values for tissue impedances are not direct measurements. They are derived from bulk impedance measurements, which are fitted to lumped-element models. The four-electrode reflection-coefficient technique was used to measure resistivities in the gerbil cochlea. In vivo and in vitro (the hemicochlea) models were used. Measurements were made in normal and in deafened animals. Cochlear damage was induced by neomycin injection into the animals' middle ears. Neural degeneration was allowed to occur over 2 months before performing the measurements in the deafened animals. The resistivity values in deafened animals were smaller than in the normal-hearing animals, thus altering the current flow within the cochlea. Resistivity changes and subsequent changes in current path should be considered in future designs of cochlear implants.

  19. Morphological Correlates of Hearing Loss after Cochlear Implantation and Electro-Acoustic Stimulation in a Hearing-Impaired Guinea Pig Model

    PubMed Central

    Reiss, Lina A.J.; Stark, Gemaine; Nguyen-Huynh, Anh T.; Spear, Kayce A.; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe

    2016-01-01

    Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 hours of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not correlated with threshold shifts at any frequency. As in the previous study in a normal-hearing model, stria vascularis capillary changes were associated with immediate hearing loss after implantation, while little to no hair cell loss was observed even in cochlear regions with threshold shifts as large as 40-50 dB. These findings again support a role of lateral wall blood flow changes, rather than hair cell loss, in hearing loss after surgical trauma, and implicate the endocochlear potential as a factor in implantation-induced hearing loss. Further, the analysis of the hair cell ribbons and post-synaptic receptors suggest that delayed hearing loss may be linked to synapse or peripheral nerve loss due to stimulation excitotoxicity or inflammation. Further research is needed to separate these potential mechanisms of delayed hearing loss. PMID:26087114

  20. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    PubMed Central

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae and provides the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a mini-osmotic pump. In BDNF-treated cochleae SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement in electrically-evoked auditory brainstem response thresholds. Although BDNF may have potential therapeutic value in the developing auditory system, many serious obstacles currently preclude clinical application. PMID:21452221

  1. Curcumin protects against acoustic trauma in the rat cochlea.

    PubMed

    Soyalıç, Harun; Gevrek, Fikret; Karaman, Serhat

    2017-08-01

    In this study we evaluated the therapeutic utility of curcumin in a rodent model of acoustic trauma using histopathology, immunohistochemical, and distortion product otoacoustic emission (DPOAEs) measurements. 28 Wistar albino rats were included in the study and randomly assigned to 4 treatment groups. The first group (group 1) served as the control and was exposed to acoustic trauma alone. Group 2 was the curcumin group. Group 3 was the curcumin plus acoustic trauma group. Group 4 was the saline plus acoustic trauma group. Otoacoustic emission measurements were collected at the end of the experiment and all animals were sacrificed. Cochlea were collected and prepared for TUNEL (TdT-mediated deoxyuridinetriphosphate nick end-labelling) staining assay. Group 3 maintained baseline DPOAEs values at 3000 Hz, 4000 Hz and 8000 Hz on the 3rd and 5th day of the experiment. DPOAEs results were correlated with the immunohistochemical and histopathological findings in all groups. In comparison to the histopathologic control group, Group 1 exhibited a statistically significant increase in apoptotic indices in the organ of Corti, inner hair cell, and outer hair cell areas (p < 0.05). Relative to the control group, rats in Group 3 showed little increase in inner hair cell and outer hair cell apoptotic indices. Our results support the conclusion that curcumin may protect the cochlear tissues from acoustic trauma in rats. Curcumin injection prior to or after an acoustic trauma reduces cochlear hair cell damage and may protect against hearing loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Mixed Mode Cochlear Amplifier Including Neural Feedback

    NASA Astrophysics Data System (ADS)

    Flax, Matthew R.; Holmes, W. Harvey

    2011-11-01

    The mixed mode cochlear amplifier (MMCA) model is derived from the physiology of the cochlea. It is comprised of three main elements of the peripheral hearing system: the cochlear mechanics, hair cell motility, and neurophysiology. This model expresses both active compression wave and active traveling wave modes of operation. The inclusion of a neural loop with a time delay, and a new paradigm for the mechanical response of the outer hair cells, are believed to be unique features of the MMCA. These elements combine to form an active feedback loop to constitute the cochlear amplifier, whose input is a passive traveling wave vibration. The result is a cycle-by-cycle amplifier with nonlinear response. This system can assume an infinite number of different operating states. The stable state and the first few amplitude-limited unstable (Hopf-bifurcated) states are significant in describing the operation of the peripheral hearing system. A hierarchy of models can be constructed from this concept, depending on the amount of detail included. The simplest model of the MMCA is a nonlinear delay line resonator. It was found that even this simple MMCA version can explain a large number of hearing phenomena, at least qualitatively. This paper concentrates on explaining the fractional octave shift from the living to postmortem response in terms of the new model. Other mechanical, hair cell and neurological phenomena can also be accounted for by the MMCA, including two-tone suppression behavior, distortion product responses, otoacoustic emissions and neural spontaneous rates.

  3. Evidence for vestibular regulation of autonomic functions in a mouse genetic model

    NASA Technical Reports Server (NTRS)

    Murakami, Dean M.; Erkman, Linda; Hermanson, Ola; Rosenfeld, Michael G.; Fuller, Charles A.

    2002-01-01

    Physiological responses to changes in the gravitational field and body position, as well as symptoms of patients with anxiety-related disorders, have indicated an interrelationship between vestibular function and stress responses. However, the relative significance of cochlear and vestibular information in autonomic regulation remains unresolved because of the difficulties in distinguishing the relative contributions of other proprioceptive and interoceptive inputs, including vagal and somatic information. To investigate the role of cochlear and vestibular function in central and physiological responses, we have examined the effects of increased gravity in wild-type mice and mice lacking the POU homeodomain transcription factor Brn-3.1 (Brn-3bPou4f3). The only known phenotype of the Brn-3.1(-/-) mouse is related to hearing and balance functions, owing to the failure of cochlear and vestibular hair cells to differentiate properly. Here, we show that normal physiological responses to increased gravity (2G exposure), such as a dramatic drop in body temperature and concomitant circadian adjustment, were completely absent in Brn-3.1(-/-) mice. In line with the lack of autonomic responses, the massive increase in neuronal activity after 2G exposure normally detected in wild-type mice was virtually abolished in Brn-3.1(-/-) mice. Our results suggest that cochlear and vestibular hair cells are the primary regulators of autonomic responses to altered gravity and provide genetic evidence that these cells are sufficient to alter neural activity in regions involved in autonomic and neuroendocrine control.

  4. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  5. Hear ye? Hear ye! Successful auditory aging.

    PubMed Central

    Gates, G A; Rees, T S

    1997-01-01

    Age-related hearing loss (presbycusis) is a multifactorial process that affects nearly all people in their senior years. Most cases are due to a loss of cochlear hair cell function and are well mediated by communication courtesy and modern amplification technology. Severe hearing loss is generally due to cochlear problems or age-related diseases and may require speech reading, assistive listening devices, and cochlear implants, depending on the degree of loss. Presbycusis may seriously impair communication and contribute to isolation, depression, and possibly dementia. Accurate diagnosis and prompt remediation are widely available but are frequently underused. Geriatric health care and well-being is enhanced by the detection and remediation of communication disorders. PMID:9348755

  6. Effects of Hearing Preservation on Psychophysical Responses to Cochlear Implant Stimulation

    PubMed Central

    Kang, Stephen Y.; Colesa, Deborah J.; Swiderski, Donald L.; Su, Gina L.; Raphael, Yehoash

    2009-01-01

    Previous studies have shown that residual acoustic hearing supplements cochlear implant function to improve speech recognition in noise as well as perception of music. The current study had two primary objectives. First, we sought to determine how cochlear implantation and electrical stimulation over a time period of 14 to 21 months influence cochlear structures such as hair cells and spiral ganglion neurons. Second, we sought to investigate whether the structures that provide acoustic hearing also affect the perception of electrical stimulation. We compared psychophysical responses to cochlear implant stimulation in two groups of adult guinea pigs. Group I (11 animals) received a cochlear implant in a previously untreated ear, while group II (ten animals) received a cochlear implant in an ear that had been previously infused with neomycin to destroy hearing. Psychophysical thresholds were measured in response to pulse-train and sinusoidal stimuli. Histological analysis of all group I animals and a subset of group II animals was performed. Nine of the 11 group I animals showed survival of the organ of Corti and spiral ganglion neurons adjacent to the electrode array. All group I animals showed survival of these elements in regions apical to the electrode array. Group II animals that were examined histologically showed complete loss of the organ of Corti in regions adjacent and apical to the electrode array and severe spiral ganglion neuron loss, consistent with previous reports for neomycin-treated ears. Behaviorally, group II animals had significantly lower thresholds than group I animals in response to 100 Hz sinusoidal stimuli. However, group I animals had significantly lower thresholds than group II animals in response to pulse-train stimuli (0.02 ms/phase; 156 to 5,000 pps). Additionally, the two groups showed distinct threshold versus pulse rate functions. We hypothesize that the differences in detection thresholds between groups are caused by the electrical activation of the hair cells in group I animals and/or differences between groups in the condition of the spiral ganglion neurons. PMID:19902297

  7. Prestin modulates mechanics and electromechanical force of the plasma membrane.

    PubMed

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A; Brownell, William E; Anvari, Bahman

    2007-07-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane.

  8. Prestin Modulates Mechanics and Electromechanical Force of the Plasma Membrane

    PubMed Central

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A.; Brownell, William E.; Anvari, Bahman

    2007-01-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane. PMID:17468166

  9. SMAD4 Defect Causes Auditory Neuropathy Via Specialized Disruption of Cochlear Ribbon Synapses in Mice.

    PubMed

    Liu, Ke; Ji, Fei; Yang, Guan; Hou, Zhaohui; Sun, Jianhe; Wang, Xiaoyu; Guo, Weiwei; Sun, Wei; Yang, Weiyan; Yang, Xiao; Yang, Shiming

    2016-10-01

    More than 100 genes have been associated with deafness. However, SMAD4 is rarely considered a contributor to deafness in humans, except for its well-defined role in cell differentiation and regeneration. Here, we report that a SMAD4 defect in mice can cause auditory neuropathy, which was defined as a mysterious hearing and speech perception disorder in human for which the genetic background remains unclear. Our study showed that a SMAD4 defect induces failed formation of cochlear ribbon synapse during the earlier stage of auditory development in mice. Further investigation found that there are nearly normal morphology of outer hair cells (OHCs) and post-synapse spiral ganglion nerves (SGNs) in SMAD4 conditional knockout mice (cKO); however, a preserved distortion product of otoacoustic emission (DPOAE) and cochlear microphonic (CM) still can be evoked in cKO mice. Moreover, a partial restoration of hearing detected by electric auditory brainstem response (eABR) has been obtained in the cKO mice using electrode stimuli toward auditory nerves. Additionally, the ribbon synapses in retina are not affected by this SMAD4 defect. Thus, our findings suggest that this SMAD4 defect causes auditory neuropathy via specialized disruption of cochlear ribbon synapses.

  10. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  11. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    PubMed Central

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-01-01

    Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541

  12. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity

    PubMed Central

    Kirkwood, Nerissa K.; O'Reilly, Molly; Derudas, Marco; Kenyon, Emma J.; Huckvale, Rosemary; van Netten, Sietse M.; Ward, Simon E.; Richardson, Guy P.; Kros, Corné J.

    2017-01-01

    Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical transducer (MET) channels located at the tips of the hair cell's stereocilia. d-Tubocurarine (dTC) is a MET channel blocker that reduces the loading of gentamicin-Texas Red (GTTR) into rat cochlear hair cells and protects them from gentamicin treatment. Berbamine is a structurally related alkaloid that reduces GTTR labeling of zebrafish lateral-line hair cells and protects them from aminoglycoside-induced cell death. Both compounds are thought to reduce aminoglycoside entry into hair cells through the MET channels. Here we show that dTC (≥6.25 μM) or berbamine (≥1.55 μM) protect zebrafish hair cells in vivo from neomycin (6.25 μM, 1 h). Protection of zebrafish hair cells against gentamicin (10 μM, 6 h) was provided by ≥25 μM dTC or ≥12.5 μM berbamine. Hair cells in mouse cochlear cultures are protected from longer-term exposure to gentamicin (5 μM, 48 h) by 20 μM berbamine or 25 μM dTC. Berbamine is, however, highly toxic to mouse cochlear hair cells at higher concentrations (≥30 μM) whilst dTC is not. The absence of toxicity in the zebrafish assays prompts caution in extrapolating results from zebrafish neuromasts to mammalian cochlear hair cells. MET current recordings from mouse outer hair cells (OHCs) show that both compounds are permeant open-channel blockers, rapidly and reversibly blocking the MET channel with half-blocking concentrations of 2.2 μM (dTC) and 2.8 μM (berbamine) in the presence of 1.3 mM Ca2+ at −104 mV. Berbamine, but not dTC, also blocks the hair cell's basolateral K+ current, IK,neo, and modeling studies indicate that berbamine permeates the MET channel more readily than dTC. These studies reveal key properties of MET-channel blockers required for the future design of successful otoprotectants. PMID:28928635

  13. Faster than the Speed of Hearing: Nanomechanical Force Probes Enable the Electromechanical Observation of Cochlear Hair Cells

    PubMed Central

    Doll, Joseph C.; Peng, Anthony W.; Ricci, Anthony J.; Pruitt, Beth L.

    2012-01-01

    Understanding the mechanisms responsible for our sense of hearing requires new tools for unprecedented stimulation and monitoring of sensory cell mechanotransduction at frequencies yet to be explored. We describe nanomechanical force probes designed to evoke mechanotransduction currents at up to 100kHz in living cells. High-speed force and displacement metrology is enabled by integrating piezoresistive sensors and piezoelectric actuators onto nanoscale cantilevers. The design, fabrication process, actuator performance and actuator-sensor crosstalk compensation results are presented. We demonstrate the measurement of mammalian cochlear hair cell mechanotransduction with simultaneous patch clamp recordings at unprecedented speeds. The probes can deliver mechanical stimuli with sub-10 μs rise times in water and are compatible with standard upright and inverted microscopes. PMID:23181721

  14. Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice

    PubMed Central

    Rainey, Robert N.; Ng, Sum-yan; Llamas, Juan; van der Horst, Gijsbertus T. J.

    2016-01-01

    Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa−/−) and group B (Csb−/−) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc−/− mice, both in vitro and in vivo. We show that sensory hair cells in Csa−/− and Csb−/− mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc−/− mice, Csa−/− and Csb−/− mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity. SIGNIFICANCE STATEMENT The utility of cisplatin in chemotherapy remains limited due to serious side effects, including sensorineural hearing loss. We show that mouse models of Cockayne syndrome, a progeroid disorder resulting from a defect in the transcription-coupled DNA repair (TCR) branch of nucleotide excision repair, are hypersensitive to cisplatin-induced hearing loss and sensory hair cell death in the organ of Corti, the mammalian auditory sensory epithelium. Our work indicates that Csa and Csb, two genes involved in TCR, are preferentially required to protect against cisplatin ototoxicity, relative to global genome repair-specific elements of nucleotide excision repair, and suggests that TCR is a major force maintaining DNA integrity in the cochlea. The Cockayne syndrome mice thus represent a model for testing the contribution of DNA repair mechanisms to cisplatin ototoxicity. PMID:27122034

  15. The protective effect of intratympanic dexamethasone on streptomycin ototoxicity in rats.

    PubMed

    Gül, Aylin; Şengül, Engin; Yılmaz, Beyhan; Özkurt, Fazıl Emre; Akdağ, Mehmet; Keleş, Ayşenur; Topçu, İsmail

    2017-06-01

    The purpose of this experimental study was to investigate the protective role of intratympanically administered dexamethasone on the inner ears of rats that were exposed to streptomycin ototoxicity. Twenty-four adult Wistar albino rats were separated into 4 groups: Group 1 (only streptomycin), Group 2 (only intratympanic dexamethasone), Group 3 (streptomycin and intratympanic dexamethasone), and Group 4 (streptomycin and intratympanic saline). All rats were evaluated with distortion product otoacoustic emissions (DPOAE) tests before the start of treatment and on the day it ended. On the 45th day, after the final DPOAE tests, animals of all groups were sacrificed under general anesthesia. The differences between the amplitudes of DPOAE results were determined, and hearing results were statistically analyzed. Also, the cochleas of each rat were histopathologically evaluated under a light microscope with hematoxylin and eosin staining. In the intratympanic dexamethasone group it was observed that cochlear hair cells were mostly protected. No significant difference was seen between the DPOAE results before and after treatment (p >0.05). On the other hand, loss was observed in the hearing functions and hair cells of the rats that received streptomycin and streptomycin plus intratympanic saline (p <0.05). In the streptomycin plus intratympanic dexamethasone group, the cochlear hair cells were partially protected. A significant difference was observed when the DPOAE results (DP-grams) of the streptomycin plus intratypmanic dexamethasone group were compared to those of the streptomycin plus intratympanic saline group (p <0.05). After the experimental study, ototoxic effects of the administration of streptomycin and intratympanic dexamethasone were observed on the rats' cochlear hair cells. We conclude that intratympanic dexamethasone has protective effects against this cochlear damage in rats.

  16. Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing.

    PubMed

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat; Ohyama, Takahiro

    2016-08-03

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. Copyright © 2016 the authors 0270-6474/16/368200-10$15.00/0.

  17. Hepatocyte Growth Factor–c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing

    PubMed Central

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. PMID:27488639

  18. Neurotoxicity of trimethyltin in rat cochlear organotypic cultures

    PubMed Central

    Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.

    2015-01-01

    Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118

  19. Mechanical Excitation of IHC Stereocilia: An Attempt to Fit Together Diverse Evidence

    NASA Astrophysics Data System (ADS)

    Guinan, John J.

    2011-11-01

    The output of the cochlea is controlled by the bending of inner-hair-cell (IHC) stereocilia, but the mechanisms that produce this bending are poorly understood. Relevant evidence comes from several sources: measurements of cochlear motion from in-vitro and live preparations, as well as inferences about cochlear motions from responses of auditory-nerve fibers. The common conception that IHC excitation is due to shearing between the reticular lamina (RL) and the tectorial membrane (TM) does not explain the data. A hypothesis is presented that fits many of the observations into a coherent picture of how IHCs are excited. The key new concept is that stretching of outer-hair-cell (OHC) stereocilia (defined broadly) changes the RL-TM gap and produces fluid flow within the gap that bends the IHC stereocilia. Changes in the RL-TM gap and the resulting bending of IHC stereocilia provide a mechanism by which OHC active processes can enhance cochlear output without a corresponding enhancement of basilar-membrane motion.

  20. Cytoskeletal Stability in the Auditory Organ In Vivo: RhoA Is Dispensable for Wound Healing but Essential for Hair Cell Development.

    PubMed

    Anttonen, Tommi; Belevich, Ilya; Laos, Maarja; Herranen, Anni; Jokitalo, Eija; Brakebusch, Cord; Pirvola, Ulla

    2017-01-01

    Wound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood. We have studied the role of F-actin belts during wound healing in the developing and adult cochlea of mice in vivo . We show that the thick belts serve as intracellular scaffolds that preserve the positions of surviving cells in the cochlear sensory epithelium. Junctions associated with the thick F-actin belts did not readily disassemble during wound healing. To compensate for this, basolateral membranes of SCs participated in the closure of surface breach. Because not only neighboring but also distant SCs contributed to wound healing by basolateral protrusions, this event appears to be triggered by contact-independent diffusible signals. In the search for regulators of wound healing, we inactivated RhoA in SCs, which, however, did not limit wound healing. RhoA inactivation in developing outer hair cells (OHCs) caused myosin II delocalization from the perijunctional domain and apical cell-surface enlargement. These abnormalities led to the extrusion of OHCs from the epithelium. These results demonstrate the importance of stability of the apical domain, both in wound repair by SCs and in development of OHCs, and that only this latter function is regulated by RhoA . Because the correct cytoarchitecture of the cochlear sensory epithelium is required for normal hearing, the stability of cell apices should be maintained in regenerative and protective interventions.

  1. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  2. Variation analysis of transcriptome changes reveals cochlear genes and their associated functions in cochlear susceptibility to acoustic overstimulation.

    PubMed

    Yang, Shuzhi; Cai, Qunfeng; Bard, Jonathan; Jamison, Jennifer; Wang, Jianmin; Yang, Weiping; Hu, Bo Hua

    2015-12-01

    Individual variation in the susceptibility of the auditory system to acoustic overstimulation has been well-documented at both the functional and structural levels. However, the molecular mechanism responsible for this variation is unclear. The current investigation was designed to examine the variation patterns of cochlear gene expression using RNA-seq data and to identify the genes with expression variation that increased following acoustic trauma. This study revealed that the constitutive expressions of cochlear genes displayed diverse levels of gene-specific variation. These variation patterns were altered by acoustic trauma; approximately one-third of the examined genes displayed marked increases in their expression variation. Bioinformatics analyses revealed that the genes that exhibited increased variation were functionally related to cell death, biomolecule metabolism, and membrane function. In contrast, the stable genes were primarily related to basic cellular processes, including protein and macromolecular syntheses and transport. There was no functional overlap between the stable and variable genes. Importantly, we demonstrated that glutamate metabolism is related to the variation in the functional response of the cochlea to acoustic overstimulation. Taken together, the results indicate that our analyses of the individual variations in transcriptome changes of cochlear genes provide important information for the identification of genes that potentially contribute to the generation of individual variation in cochlear responses to acoustic overstimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier.

    PubMed

    Hirt, B; Penkova, Z H; Eckhard, A; Liu, W; Rask-Andersen, H; Müller, M; Löwenheim, H

    2010-07-28

    Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Intracochlear administration of steroids with a catheter during human cochlear implantation: a safety and feasibility study.

    PubMed

    Prenzler, Nils K; Salcher, Rolf; Timm, Max; Gaertner, Lutz; Lenarz, Thomas; Warnecke, Athanasia

    2018-05-14

    Suppression of foreign body reaction, improvement of electrode-nerve interaction, and preservation of residual hearing are essential research topics in cochlear implantation. Intracochlear pharmaco- or cell-based therapies can open new horizons in this field. Local drug delivery strategies are desirable as higher local concentrations of agents can be realized and side effects can be minimized compared to systemic administrations. When administered locally at accessible, basal parts of the cochlea, drugs reach apical regions later and in much lower concentrations due to poor diffusion patterns in cochlear fluids. Therefore, new devices are needed to warrant rapid distribution of agents into all parts of the cochlea. Five patients received a deep intracochlear injection of triamcinolone with a specifically designed cochlear catheter during cochlear implantation right before inserting a cochlear implant electrode. As a measure for formation of fibrous tissue around the electrode, electrical impedances were measured in the operation room and over 4 months thereafter. No adverse events were observed peri- and postoperatively. The handling of the device was easy. Severe damage to the microstructure of the cochlea was excluded as far as possible by cone beam computed tomography and vestibular testing. A delayed rise of the impedances was seen in the catheter group compared to controls over all regions of the cochlea. A statistical significance, however, was only obtained at the midregion of the cochlea. Consequently, the cochlear catheter is a safe and feasible device for local drug delivery of pharmaceutical agents into deeper regions of the cochlea.

  5. Suppression tuning of distortion-product otoacoustic emissions: Results from cochlear mechanics simulation

    PubMed Central

    Liu, Yi-Wen; Neely, Stephen T.

    2013-01-01

    This paper presents the results of simulating the acoustic suppression of distortion-product otoacoustic emissions (DPOAEs) from a computer model of cochlear mechanics. A tone suppressor was introduced, causing the DPOAE level to decrease, and the decrement was plotted against an increasing suppressor level. Suppression threshold was estimated from the resulting suppression growth functions (SGFs), and suppression tuning curves (STCs) were obtained by plotting the suppression threshold as a function of suppressor frequency. Results show that the slope of SGFs is generally higher for low-frequency suppressors than high-frequency suppressors, resembling those obtained from normal hearing human ears. By comparing responses of normal (100%) vs reduced (50%) outer-hair-cell sensitivities, the model predicts that the tip-to-tail difference of the STCs correlates well with that of intra-cochlear iso-displacement tuning curves. The correlation is poorer, however, between the sharpness of the STCs and that of the intra-cochlear tuning curves. These results agree qualitatively with what was recently reported from normal-hearing and hearing-impaired human subjects, and examination of intra-cochlear model responses can provide the needed insight regarding the interpretation of DPOAE STCs obtained in individual ears. PMID:23363112

  6. Slit/Robo Signaling Mediates Spatial Positioning of Spiral Ganglion Neurons during Development of Cochlear Innervation

    PubMed Central

    Wang, Sheng-zhi; Ibrahim, Leena A.; Kim, Young J.; Gibson, Daniel A.; Leung, Haiwen C.; Yuan, Wei; Zhang, Ke K.; Tao, Huizhong W.

    2013-01-01

    During the development of periphery auditory circuits, spiral ganglion neurons (SGNs) extend their neurites to innervate cochlear hair cells (HCs) with their soma aggregated into a cluster spatially segregated from the cochlear sensory epithelium. The molecular mechanisms underlying this spatial patterning remain unclear. In this study, in situ hybridization in the mouse cochlea suggests that Slit2 and its receptor, Robo1/2, exhibit apparently complementary expression patterns in the spiral ganglion and its nearby region, the spiral limbus. In Slit2 and Robo1/2 mutants, the spatial restriction of SGNs was disrupted. Mispositioned SGNs were found to scatter in the space between the cochlear epithelium and the main body of spiral ganglion, and the neurites of mispositioned SGNs were misrouted and failed to innervate HCs. Furthermore, in Robo1/2 mutants, SGNs were displaced toward the cochlear epithelium as an entirety. Examination of different embryonic stages in the mutants revealed that the mispositioning of SGNs was due to a progressive displacement to ectopic locations after their initial normal settlement at an earlier stage. Our results suggest that Slit/Robo signaling imposes a restriction force on SGNs to ensure their precise positioning for correct SGN-HC innervations. PMID:23884932

  7. Speaker recognition with temporal cues in acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  8. Using Flanagan's phase vocoder to improve cochlear implant performance

    NASA Astrophysics Data System (ADS)

    Zeng, Fan-Gang

    2004-10-01

    The cochlear implant has restored partial hearing to more than 100000 deaf people worldwide, allowing the average user to talk on the telephone in quiet environment. However, significant difficulty still remains for speech recognition in noise, music perception, and tonal language understanding. This difficulty may be related to speech processing strategies in current cochlear implants that emphasized the extraction and encoding of the temporal envelope while ignoring the temporal fine structure in speech sounds. A novel strategy was developed based on Flanagan's phase vocoder [Flanagan and Golden, Bell Syst. Tech. 45, 1493-1509 (1966)], in which frequency modulation was extracted from the temporal fine structure and then added to amplitude modulation in the current cochlear implants. Acoustic simulation results showed that amplitude and frequency modulation contributed complementarily to speech perception with amplitude modulation contributing mainly to intelligibility whereas frequency modulation contributed to speaker identification and auditory grouping. The results also showed that the novel strategy significantly improved cochlear implant performance under realistic listening situations. Overall, the present result demonstrated that Flanagan's classic work on phase vocoder still shed insight on current problems of both theoretical and practical importance. [Work supported by NIH.

  9. Supporting skill acquisition in cochlear implant surgery through virtual reality simulation.

    PubMed

    Copson, Bridget; Wijewickrema, Sudanthi; Zhou, Yun; Piromchai, Patorn; Briggs, Robert; Bailey, James; Kennedy, Gregor; O'Leary, Stephen

    2017-03-01

    To evaluate the effectiveness of a virtual reality (VR) temporal bone simulator in training cochlear implant surgery. We compared the performance of 12 otolaryngology registrars conducting simulated cochlear implant surgery before (pre-test) and after (post-tests) receiving training on a VR temporal bone surgery simulator with automated performance feedback. The post-test tasks were two temporal bones, one that was a mirror image of the temporal bone used as a pre-test and the other, a novel temporal bone. Participant performances were assessed by an otologist with a validated cochlear implant competency assessment tool. Structural damage was derived from an automatically generated simulator metric and compared between time points. Wilcoxon signed-rank test showed that there was a significant improvement with a large effect size in the total performance scores between the pre-test (PT) and both the first and second post-tests (PT1, PT2) (PT-PT1: P = 0.007, r = 0.78, PT-PT2: P = 0.005, r = 0.82). The results of the study indicate that VR simulation with automated guidance can effectively be used to train surgeons in training complex temporal bone surgeries such as cochlear implantation.

  10. Evidence-based guidelines for recommending cochlear implantation for postlingually deafened adults.

    PubMed

    Leigh, Jaime R; Moran, Michelle; Hollow, Rodney; Dowell, Richard C

    2016-01-01

    Adult selection criteria for cochlear implantation have been developed based on analysis of the post-operative performance of a large group of postlingually deafened adults. Original criteria published in 2004 were reviewed and amended to reflect outcomes currently being achieved by implant recipients. Retrospective review of 12-month post-operative speech perception performance of adults implanted at the Eye and Ear Hospital, Melbourne, Australia. A total of 382 postlingually deafened adults, using a Freedom, Nucleus 5, or CI422 Slim Straight cochlear implant were used to create a comparative set of data. Revised guidelines suggest that adults with postlingual hearing loss can now be considered cochlear implant candidates if they obtain scores of up to 55% for open-set phonemes in quiet in the ear to be implanted. Functional benefit may vary depending on the recipients' contralateral hearing. This study supports the provision of cochlear implants to candidates with significant residual hearing when at least one ear meets the criterion outlined above. Patient-specific counseling is required to ensure the potential to benefit predicted by the current model is acceptable to the individual patient and their family. Counseling regarding functional benefit must take into consideration hearing in the contralateral ear.

  11. Photochemically induced focal cochlear lesions in the guinea pig: II. A transmission electron microscope study.

    PubMed

    Miyashita, H; Iwasaki, S; Hoshino, T

    1998-05-15

    Photochemically induced focal lesions in guinea pig cochleas were studied by light microscopy and transmission electron microscopy. The lesions were induced in the second cochlear turns of 35 adult guinea pigs by illumination for 10 minutes with a focused green light immediately after a rose bengal solution was injected into the jugular vein. The cochlear lateral wall and organ of Corti were examined 5, 10, 20, 30, and 90 minutes, 12 and 24 hours, and 3, 7, and 30 days after the procedure. Aggregations of platelets and red blood cells were found in strial capillaries at 5 minutes after illumination. After 30 minutes, marginal cell surfaces protruded into the endolymphatic space; surface membranes were ruptured and the cytoplasm was expelled into the space. In outer hair cells, disruption of the cellular membrane was found near the cuticular plate 12 hours after the procedure. All cellular elements of the lateral wall and organ of Corti were markedly degenerated in the 30-day specimens. Histological changes found in the stria vascularis were consistent with cell damage caused by active oxygen species. It is likely that the stria vascularis is more sensitive to the photochemical reaction than other parts of the cochlea. Cell damage in other parts of the cochlea seemed to have been caused by local microvascular ischemia in addition to the action of active oxygen species induced by the photochemical reaction.

  12. Early Diagnosis, Treatment, and Care of Cancer Patients

    DTIC Science & Technology

    2010-09-01

    14 and Day 56 time points. In these studies, we examined the distortion product otoacoustic emissions (DPOAE) as an indicator of cochlear function...5-FU did not cause any changes in cochlear function as indicated by DPOAE test results. Our studies on EPO-mediated protection demonstrated that...temperature in the dark for 15 mins. Cells were then diluted with 200 µL of Annexin binding buffer and analyzed immediately by flow cytometry

  13. A Micro-Ethnographic Study of the Communication/Language Development in a Japanese Child with Profound Hearing Loss before and after Cochlear Implantation

    ERIC Educational Resources Information Center

    Kretschmer, Richard R.; Kretschmer, Laura; Kuwahara, Katsura; Truax, Roberta

    2010-01-01

    This study described the communication and spoken language development of a Japanese girl with profound hearing loss who used a cochlear implant from 19 months of age. The girl, Akiko, was born in Belgium where her family was living at that time. After she was identified as deaf at birth, she and her parents were provided with support services.…

  14. Retrograde transport of (/sup 3/H)-D-aspartate label by cochlear and vestibular efferent neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, D.W.; Schwarz, I.E.

    1988-01-01

    (/sup 3/H)-D-aspartic acid was injected into the inner ear of rats. After a six hour survival time, labeled cells were found at all locations known to contain efferent cochlear or vestibular neurons. Most labeled neurons were found in the ipsilateral lateral superior olivary nucleus (LSO), although both ventral nuclei of the trapezoid body (VTB), group E, and the caudal pontine reticular nucleus (CPR) just adjacent to the ascending limb of the facial nerve also contained labeled cells. Because not all efferent neurons in the rat could be previously shown to be cholinergic, aspartate and glutamate are efferent transmitter candidates.

  15. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti

    PubMed Central

    Lee, Hee Yoon; Raphael, Patrick D.; Xia, Anping; Kim, Jinkyung; Grillet, Nicolas; Applegate, Brian E.; Ellerbee Bowden, Audrey K.

    2016-01-01

    The exquisite sensitivity and frequency discrimination of mammalian hearing underlie the ability to understand complex speech in noise. This requires force generation by cochlear outer hair cells (OHCs) to amplify the basilar membrane traveling wave; however, it is unclear how amplification is achieved with sharp frequency tuning. Here we investigated the origin of tuning by measuring sound-induced 2-D vibrations within the mouse organ of Corti in vivo. Our goal was to determine the transfer function relating the radial shear between the structures that deflect the OHC bundle, the tectorial membrane and reticular lamina, to the transverse motion of the basilar membrane. We found that, after normalizing their responses to the vibration of the basilar membrane, the radial vibrations of the tectorial membrane and reticular lamina were tuned. The radial tuning peaked at a higher frequency than transverse basilar membrane tuning in the passive, postmortem condition. The radial tuning was similar in dead mice, indicating that this reflected passive, not active, mechanics. These findings were exaggerated in TectaC1509G/C1509G mice, where the tectorial membrane is detached from OHC stereocilia, arguing that the tuning of radial vibrations within the hair cell epithelium is distinct from tectorial membrane tuning. Together, these results reveal a passive, frequency-dependent contribution to cochlear filtering that is independent of basilar membrane filtering. These data argue that passive mechanics within the organ of Corti sharpen frequency selectivity by defining which OHCs enhance the vibration of the basilar membrane, thereby tuning the gain of cochlear amplification. SIGNIFICANCE STATEMENT Outer hair cells amplify the traveling wave within the mammalian cochlea. The resultant gain and frequency sharpening are necessary for speech discrimination, particularly in the presence of background noise. Here we measured the 2-D motion of the organ of Corti in mice and found that the structures that stimulate the outer hair cell stereocilia, the tectorial membrane and reticular lamina, were sharply tuned in the radial direction. Radial tuning was similar in dead mice and in mice lacking a tectorial membrane. This suggests that radial tuning comes from passive mechanics within the hair cell epithelium, and that these mechanics, at least in part, may tune the gain of cochlear amplification. PMID:27488636

  16. Modeling the measurements of cochlear microcirculation and hearing function after loud noise.

    PubMed

    Arpornchayanon, Warangkana; Canis, Martin; Suckfuell, Markus; Ihler, Fritz; Olzowy, Bernhard; Strieth, Sebastian

    2011-09-01

    Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Randomized controlled trial. Setting. Animal study. Subjects and Methods. After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2 dB SPL (60 minutes) only in animals exposed to loud noise. With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo.

  17. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise

    PubMed Central

    Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.

    2012-01-01

    The cochlear microphonic was recorded in response to a 733 Hz tone embedded in noise that was high-pass filtered at 25 different frequencies. The amplitude of the cochlear microphonic increased as the high-pass cutoff frequency of the noise increased. The amplitude growth for a 60 dB SPL tone was steeper and saturated sooner than that of an 80 dB SPL tone. The growth for both signal levels, however, was not entirely cumulative with plateaus occurring at about 4 and 7 mm from the apex. A phenomenological model of the electrical potential in the cochlea that included a hair cell probability function and spiral geometry of the cochlea could account for both the slope of the growth functions and the plateau regions. This suggests that with high-pass-filtered noise, the cochlear microphonic recorded at the round window comes from the electric field generated at the source directed towards the electrode and not down the longitudinal axis of the cochlea. PMID:23145616

  18. Recent advances in the study of age-related hearing loss - A Mini-Review

    PubMed Central

    Kidd, Ambrose R; Bao, Jianxin

    2013-01-01

    Hearing loss is a common age-associated affliction that can result from the loss of hair cells and spiral ganglion neurons (SGNs) in the cochlea. Although hair cells and SGNs are typically lost in the same cochlea, recent analysis suggests that they can occur independently, via unique mechanisms. Research has identified both environmental and genetic factors that contribute to degeneration of cochlear cells. Additionally, molecular analysis has identified multiple cell signaling mechanisms that likely contribute to pathological changes that result in hearing deficiencies. These analyses should serve as useful primers for future work, including genomic and proteomic analysis, to elucidate the mechanisms driving cell loss in the aging cochlea. Significant progress in this field has occurred in the past decade. As our understanding of aging-induced cochlear changes continues to improve, our ability to offer medical intervention will surely benefit the growing elderly population. PMID:22710288

  19. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons.

    PubMed

    Brown, M Christian

    2014-06-01

    Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the "cochlear amplifier," which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a "patchy" pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound. Copyright © 2014 the American Physiological Society.

  20. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons

    PubMed Central

    2014-01-01

    Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the “cochlear amplifier,” which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a “patchy” pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound. PMID:24598524

  1. Postnatal development of microcyst in the anteroventral cochlear nucleus of the Mongolian gerbil: a light- and electron microscopic study.

    PubMed

    Yu, Shang-Ming; Ko, Tsui-Ling; Lin, Kwan-Hwa

    2011-09-01

    We investigated the postnatal formation and origin of the microcyst, which are not fully elucidated at present, in the cochlear nucleus of gerbils. Sixty-six Mongolian gerbils were investigated at the light microscope level, and 35 of them were observed at the electron microscopic level. Foamy structures were evidently found at 2 days of age and remained unchanged through 4-8 days. The first small vacuole, presumably the former microcyst, appeared at 8 days. Myelin sheath bundles first appeared at 13 days. Electron-dense bodies were frequently found in the junction of the superficial layer and the deep layer at 2 days. The medium-sized vacuole was found in close association with the spherical bushy cells in the anteroventral cochlear nucleus (AVCN) as early as 5 weeks. Various large and small vacuoles were presumably coalesced to form a large vacuole at 3 and 6 months. Membranous structures and red blood cells were in the budding-like vacuoles at 6 months. In addition to membranous structures, the microcyst contained distorted mitochondria and parts of myelin sheaths. The vacuole was interposed between spherical bushy cells at age of 10 months. Small vacuoles were mainly located in the flame-shaped neurons at 14 months. An internal detachment and an external protrusion of the myelin sheath into the adjacent microcyst were found. Thus, this study suggests the first appearance of microcysts at 8 days. Also, the microcyst and the blood vessel may exchange their contents through a leakage in the anteroventral cochlear nucleus.

  2. Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner

    PubMed Central

    Kazmierczak, Piotr; Harris, Suzan L.; Shah, Prahar; Puel, Jean-Luc; Lenoir, Marc

    2017-01-01

    Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function. SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants. PMID:28209736

  3. Characterization of a Unique Cell Population Marked by Transgene Expression in the Adult Cochlea of Nestin-CreERT2/tdTomato-Reporter Mice

    PubMed Central

    Chow, Cynthia L.; Guo, Weixiang; Trivedi, Parul; Zhao, Xinyu; Gubbels, Samuel P.

    2015-01-01

    Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreERT2/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multi-potent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies amongst these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells co-localized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not co-localize with the Schwann cell marker Krox20, spiral ganglion marker NF200, or GFAP-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreERT2/tdTomato mice remains unclear however these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer. PMID:25611038

  4. IGF-1 deficiency causes atrophic changes associated with upregulation of VGluT1 and downregulation of MEF2 transcription factors in the mouse cochlear nuclei.

    PubMed

    Fuentes-Santamaría, V; Alvarado, J C; Rodríguez-de la Rosa, L; Murillo-Cuesta, S; Contreras, J; Juiz, J M; Varela-Nieto, I

    2016-03-01

    Insulin-like growth factor 1 (IGF-1) is a neurotrophic protein that plays a crucial role in modulating neuronal function and synaptic plasticity in the adult brain. Mice lacking the Igf1 gene exhibit profound deafness and multiple anomalies in the inner ear and spiral ganglion. An issue that remains unknown is whether, in addition to these peripheral abnormalities, IGF-1 deficiency also results in structural changes along the central auditory pathway that may contribute to an imbalance between excitation and inhibition, which might be reflected in abnormal auditory brainstem responses (ABR). To assess such a possibility, we evaluated the morphological and physiological alterations in the cochlear nucleus complex of the adult mouse. The expression and distribution of the vesicular glutamate transporter 1 (VGluT1) and the vesicular inhibitory transporter (VGAT), which were used as specific markers for labeling excitatory and inhibitory terminals, and the involvement of the activity-dependent myocyte enhancer factor 2 (MEF2) transcription factors in regulating excitatory synapses were assessed in a 4-month-old mouse model of IGF-1 deficiency and neurosensorial deafness (Igf1 (-/-) homozygous null mice). The results demonstrate decreases in the cochlear nucleus area and cell size along with cell loss in the cochlear nuclei of the deficient mouse. Additionally, our results demonstrate that there is upregulation of VGluT1, but not VGAT, immunostaining and downregulation of MEF2 transcription factors together with increased wave II amplitude in the ABR recording. Our observations provide evidence of an abnormal neuronal cytoarchitecture in the cochlear nuclei of Igf1 (-/-) null mice and suggest that the increased efficacy of glutamatergic synapses might be mediated by MEF2 transcription factors.

  5. Structure and Function of the Hair Cell Ribbon Synapse

    PubMed Central

    Nouvian, R.; Beutner, D.; Parsons, T.D.

    2006-01-01

    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years. PMID:16773499

  6. Guinea pig adenovirus infection does not inhibit cochlear transfection with human adenoviral vectors in a model of hearing loss.

    PubMed

    Hankenson, F Claire; Wathen, Asheley B; Eaton, Kathryn A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2010-04-01

    Routine surveillance of guinea pigs maintained within a barrier facility detected guinea pig adenovirus (GPAdV) in sentinel animals. These guinea pigs served as models of induced hearing loss followed by regeneration of cochlear sensory (hair) cells through transdifferentiation of nonsensory cells by using human adenoviral (hAV) gene therapy. To determine whether natural GPAdV infection affected the ability of hAV vectors to transfect inner ear cells, adult male pigmented guinea pigs (n = 7) were enrolled in this study because of their prolonged exposure to GPAdV-seropositive conspecifics. Animals were deafened chemically (n = 2), received an hAV vector carrying the gene for green fluorescent protein (hAV-GFP) surgically without prior deafening (n = 2), or were deafened chemically with subsequent surgical inoculation of hAV-GFP (n = 3). Cochleae were evaluated by using fluorescence microscopy, and GFP expression in supporting cells indicated that the hAV-GFP vector was able to transfect inner ears in GPAdV-seropositive guinea pigs that had been chemically deafened. Animals had histologic evidence of interstitial pneumonia, attributable to prior infection with GPAdV. These findings confirmed that the described guinea pigs were less robust animal models with diminished utility for the overall studies. Serology tests confirmed that 5 of 7 animals (71%) were positive for antibodies against GPAdV at necropsy, approximately 7 mo after initial detection of sentinel infection. Control animals (n = 5) were confirmed to be seronegative for GPAdV with clinically normal pulmonary tissue. This study is the first to demonstrate that natural GPAdV infection does not negatively affect transfection with hAV vectors into guinea pig inner ear cells, despite the presence of other health complications attributed to the viral infection.

  7. Beyond Keyword Search: Discovering Relevant Scientific Literature

    DTIC Science & Technology

    2011-06-01

    Information genealogy: uncovering the flow of ideas in non-hyperlinked document databases. In KDD, 2007. 18 [44] Thomson Reuters Web of Knowledge. http...stimulation 2001 98 14386-14391 10123 In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards 2001 98 2826-2831 22 Table 1 (cont...2000 97 4856-4861 12134 Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signal- ing 2000 97 3747-3752 12176 Cochlear mechanisms from a

  8. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    PubMed

    Tateya, Tomoko; Imayoshi, Itaru; Tateya, Ichiro; Ito, Juichi; Kageyama, Ryoichiro

    2011-04-15

    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment and polarity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  10. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.

    PubMed

    Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter

    2004-07-01

    A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.

  11. Developmental Effects of Family Environment on Outcomes in Pediatric Cochlear Implant Recipients

    PubMed Central

    Holt, Rachael Frush; Beer, Jessica; Kronenberger, William G.; Pisoni, David B.

    2012-01-01

    Objective To examine and compare the family environment of preschool- and school-age children with cochlear implants and assess its influence on children’s executive function and spoken language skills. Study Design Retrospective between-subjects design. Setting Outpatient research laboratory. Patients Prelingually deaf children with cochlear implants and no additional disabilities, and their families. Intervention(s) Cochlear implantation and speech-language therapy. Main Outcome Measures Parents completed the Family Environment Scale and the Behavior Rating Inventory of Executive Function (or the preschool version). Children were tested using the Peabody Picture Vocabulary Test-4 and either the Preschool Language Scales-4 or the Clinical Evaluation of Language Fundamentals–4. Results The family environments of children with cochlear implants differed from normative data obtained from hearing children, but average scores were within one standard deviation of norms on all subscales. Families of school-age children reported higher levels of control than those of preschool-age children. Preschool-age children had fewer problems with emotional control when families reported higher levels of support and lower levels of conflict. School-age children had fewer problems with inhibition but more problems with shifting of attention when families reported lower levels of conflict. School-age children’s receptive vocabularies were enhanced by families with lower levels of control and higher levels of organization. Conclusions Family environment and its relation to language skills and executive function development differed across the age groups in this sample of children with cochlear implants. Because family dynamics is one developmental/environmental factor that can be altered with therapy and education, the present results have important clinical implications for family-based interventions for deaf children with cochlear implants. PMID:23151776

  12. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    PubMed

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.

    PubMed

    Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S

    2018-07-01

    Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.

    PubMed

    Reiss, Lina A J; Stark, Gemaine; Nguyen-Huynh, Anh T; Spear, Kayce A; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe

    2015-09-01

    Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 h of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not correlated with threshold shifts at any frequency. As in the previous study in a normal-hearing model, stria vascularis capillary changes were associated with immediate hearing loss after implantation, while little to no hair cell loss was observed even in cochlear regions with threshold shifts as large as 40-50 dB. These findings again support a role of lateral wall blood flow changes, rather than hair cell loss, in hearing loss after surgical trauma, and implicate the endocochlear potential as a factor in implantation-induced hearing loss. Further, the analysis of the hair cell ribbons and post-synaptic receptors suggest that delayed hearing loss may be linked to synapse or peripheral nerve loss due to stimulation excitotoxicity or inflammation. Further research is needed to separate these potential mechanisms of delayed hearing loss. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea.

    PubMed

    Chai, Renjie; Kuo, Bryan; Wang, Tian; Liaw, Eric J; Xia, Anping; Jan, Taha A; Liu, Zhiyong; Taketo, Makoto M; Oghalai, John S; Nusse, Roeland; Zuo, Jian; Cheng, Alan G

    2012-05-22

    Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5(+) cells were enriched precursors to myo7a(+) cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition, overexpression of β-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.

  16. The mechanical waveform of the basilar membrane. IV. Tone and noise stimuli

    NASA Astrophysics Data System (ADS)

    de Boer, Egbert; Nuttall, Alfred L.

    2002-02-01

    Analysis of mechanical cochlear responses to wide bands of random noise clarifies many effects of cochlear nonlinearity. The previous paper [de Boer and Nuttall, J. Acoust. Soc. Am. 107, 1497-1507 (2000)] illustrates how closely results of computations in a nonlinear cochlear model agree with responses from physiological experiments. In the present paper results for tone stimuli are reported. It was found that the measured frequency response for pure tones differs little from the frequency response associated with a noise signal. For strong stimuli, well into the nonlinear region, tones have to be presented at a specific level with respect to the noise for this to be true. In this report the nonlinear cochlear model originally developed for noise analysis was modified to accommodate pure tones. For this purpose the efficiency with which outer hair cells modify the basilar-membrane response was made into a function of cochlear location based on local excitation. For each experiment, the modified model is able to account for the experimental findings, within 1 or 2 dB. Therefore, the model explains why the type of filtering that tones undergo in the cochlea is essentially the same as that for noise signals (provided the tones are presented at the appropriate level).

  17. Blood flow-independent accumulation of cisplatin in the guinea pig cochlea.

    PubMed

    Miettinen, S; Laurell, G; Andersson, A; Johansson, R; Laurikainen, E

    1997-01-01

    Considerable interindividual variability in the ototoxic effect of cisplatin has become the unpredictable dose-limiting factor in its use as curative as well as palliative therapy. The drug accumulates in highly vascular areas in the cochlea, causing dose-related hair cell loss. The purpose of this study was to assess blood flow-dependent aspects of cisplatin absorption in the cochlea in order to better understand factors that may influence cisplatin-induced ototoxicity. The effect of reduced cochlear blood flow on the ototoxic action of cisplatin was studied in guinea pigs. Before cisplatin administration the cochlear vasculature in each animal was unilaterally pre-constricted, by the application of 2% epinephrine to the round window. A 20-30% reduction in cochlear blood flow, assessed by laser Doppler flowmetry, was maintained before and after intravenous infusion of 0.1% cisplatin. Cisplatin infusion affected cochlear blood flow but not vessel conductivity. The cochlear blood flow decrease, maintained by local epinephrine application to the round window during cisplatin infusion, did not alter the cisplatin-induced hearing loss. In addition, the concentration of free cisplatin in scala tympani perilymph did not differ between epinephrine-treated and non-treated ears. Our results indicate that cisplatin transport into the cochlea is not an energy-dependent process in the lateral wall vasculature.

  18. Sox10 Expressing Cells in the Lateral Wall of the Aged Mouse and Human Cochlea

    PubMed Central

    Hao, Xinping; Xing, Yazhi; Moore, Michael W.; Zhang, Jianning; Han, Demin; Schulte, Bradley A.; Dubno, Judy R.; Lang, Hainan

    2014-01-01

    Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear. PMID:24887110

  19. Examining the communication skills of a young cochlear implant pioneer.

    PubMed

    Connor, Carol McDonald

    2006-01-01

    The purpose of this longitudinal case study was to closely examine one deaf child's experience with a cochlear implant and his speech, language, and communication skills from kindergarten through middle and high school using both developmental and sociocultural frameworks. The target child was one of the first children to receive a cochlear implant in the United States in 1988, when he was 5 years of age. The developmental analysis revealed that prior to receiving a cochlear implant the child demonstrated profound delays in speech and language skill development. His speech and language skills grew slowly during the first 3-4 years following implantation, very rapidly from about 5 through 7 years postimplantation, then slowed to rates that were highly similar to same-age peers with normal hearing. The sociocultural analysis revealed that the child's communicative competence improved; that he used sign language but use of sign language decreased as his oral communication skills improved; that as his oral communication skills improved, the adults talked and directed the topic of conversation less frequently; and that topics became less concrete and more personal over time. The results of this study indicate that we may learn more about how to support children who use cochlear implants by examining what they are saying as well as how they are saying it.

  20. Pharmacokinetic Properties of Adenosine Amine Congener in Cochlear Perilymph after Systemic Administration.

    PubMed

    Chang, Hao; Telang, Ravindra S; Sreebhavan, Sreevalsan; Tingle, Malcolm; Thorne, Peter R; Vlajkovic, Srdjan M

    2017-01-01

    Noise-induced hearing loss (NIHL) is a global health problem affecting over 5% of the population worldwide. We have shown previously that acute noise-induced cochlear injury can be ameliorated by administration of drugs acting on adenosine receptors in the inner ear, and a selective A 1 adenosine receptor agonist adenosine amine congener (ADAC) has emerged as a potentially effective treatment for cochlear injury and resulting hearing loss. This study investigated pharmacokinetic properties of ADAC in rat perilymph after systemic (intravenous) administration using a newly developed liquid chromatography-tandem mass spectrometry detection method. The method was developed and validated in accordance with the USA FDA guidelines including accuracy, precision, specificity, and linearity. Perilymph was sampled from the apical turn of the cochlea to prevent contamination with the cerebrospinal fluid. ADAC was detected in cochlear perilymph within two minutes following intravenous administration and remained in perilymph above its minimal effective concentration for at least two hours. The pharmacokinetic pattern of ADAC was significantly altered by exposure to noise, suggesting transient changes in permeability of the blood-labyrinth barrier and/or cochlear blood flow. This study supports ADAC development as a potential clinical otological treatment for acute sensorineural hearing loss caused by exposure to traumatic noise.

  1. Pharmacokinetic Properties of Adenosine Amine Congener in Cochlear Perilymph after Systemic Administration

    PubMed Central

    Sreebhavan, Sreevalsan; Thorne, Peter R.

    2017-01-01

    Noise-induced hearing loss (NIHL) is a global health problem affecting over 5% of the population worldwide. We have shown previously that acute noise-induced cochlear injury can be ameliorated by administration of drugs acting on adenosine receptors in the inner ear, and a selective A1 adenosine receptor agonist adenosine amine congener (ADAC) has emerged as a potentially effective treatment for cochlear injury and resulting hearing loss. This study investigated pharmacokinetic properties of ADAC in rat perilymph after systemic (intravenous) administration using a newly developed liquid chromatography-tandem mass spectrometry detection method. The method was developed and validated in accordance with the USA FDA guidelines including accuracy, precision, specificity, and linearity. Perilymph was sampled from the apical turn of the cochlea to prevent contamination with the cerebrospinal fluid. ADAC was detected in cochlear perilymph within two minutes following intravenous administration and remained in perilymph above its minimal effective concentration for at least two hours. The pharmacokinetic pattern of ADAC was significantly altered by exposure to noise, suggesting transient changes in permeability of the blood-labyrinth barrier and/or cochlear blood flow. This study supports ADAC development as a potential clinical otological treatment for acute sensorineural hearing loss caused by exposure to traumatic noise. PMID:28194422

  2. Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants

    PubMed Central

    Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.

    2008-01-01

    In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839

  3. The Actions of Calcium on Hair Bundle Mechanics in Mammalian Cochlear Hair Cells

    PubMed Central

    Beurg, Maryline; Nam, Jong-Hoon; Crawford, Andrew; Fettiplace, Robert

    2008-01-01

    Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca2+, we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca2+ was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca2+ effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca2+ on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed. PMID:18178649

  4. Hypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells

    PubMed Central

    Chao, Ting-Ting; Sytwu, Huey-Kang; Li, Shiue-Li; Fang, Mei-Cho; Chen, Hang-Kang; Lin, Yi-Chun; Kuo, Chao-Yin

    2015-01-01

    Previously, we demonstrated that hypoxia (1% O2) enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs). In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups. The measurement of oxygen consumption rate, extracellular acidification rate (ECAR), and intracellular adenosine triphosphate levels corresponding to 20% and 5% oxygen concentrations was determined using a Seahorse XF extracellular flux analyzer. After low oxygen tension cultivation for 21 days, the mean size of the hypoxia-expanded neurospheres was significantly increased at 5% O2; this correlated with high-level expression of hypoxia-inducible factor-1 alpha (Hif-1α), proliferating cell nuclear antigen (PCNA), cyclin D1, Abcg2, nestin, and Nanog proteins but downregulated expression of p27 compared to that in a normoxic condition. Low oxygen tension cultivation tended to increase the side population fraction, with a significant difference found at 5% O2 compared to that at 20% O2. In addition, hypoxia induced a metabolic energy shift of SPCs toward higher basal ECARs and higher maximum mitochondrial respiratory capacity but lower proton leak than under normoxia, where the SPC metabolism was switched toward glycolysis in long-term hypoxic cultivation. PMID:26236724

  5. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs

    PubMed Central

    McLean, Will J.; McLean, Dalton T.; Eatock, Ruth Anne

    2016-01-01

    Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear – the vestibular and cochlear sensory epithelia and the spiral ganglion – by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin. PMID:27789624

  6. A Chimera Analysis of Prestin Knockout Mice

    PubMed Central

    Cheatham, Mary Ann; Low-Zeddies, Sharon; Naik, Khurram; Edge, Roxanne; Zheng, Jing; Anderson, Charles T.; Dallos, Peter

    2009-01-01

    A chimera is a genetic composite containing a unique mix of cells derived from more than one zygote. This mouse model allows one to learn how cells of contrasting genotype functionally interact in vivo. Here we investigate the effect that different proportions of prestin-containing outer hair cells (OHC) have on cochlear amplification. In order to address this issue, we developed a prestin chimeric mouse in which both ROSA26 wildtype (WT) and prestin knockout (KO) genotypes are present in a single cochlea. The WT ROSA26 mice express a cell marker, allowing one to identify cells originating from the WT genome. Examination of cochlear tissue indicated that prestin chimeric mice demonstrate a mosaic in which mutant and normal OHCs interleave along the cochlear partition, similar to all other chimeric mouse models. The anatomical distribution of prestin-containing OHCs was compared with physiological data including thresholds and tuning curves for the compound action potential (CAP) recorded in anesthetized mice. Analysis of these measures did not reveal mixed phenotypes in which the distribution of prestin-containing OHCs impacted sensitivity and frequency selectivity to different degrees. However, by reducing the number of prestin-containing OHCs, phenotypes intermediate between WT and KO response patterns were obtained. Accordingly, we demonstrate a proportional reduction in sensitivity and in the tip length of CAP tuning curves as the number of OHCs derived from the KO genome increases, i.e., genotype ratio and phenotype are closely related. PMID:19776286

  7. Identification of Pure-Tone Audiologic Thresholds for Pediatric Cochlear Implant Candidacy: A Systematic Review.

    PubMed

    de Kleijn, Jasper L; van Kalmthout, Ludwike W M; van der Vossen, Martijn J B; Vonck, Bernard M D; Topsakal, Vedat; Bruijnzeel, Hanneke

    2018-05-24

    Although current guidelines recommend cochlear implantation only for children with profound hearing impairment (HI) (>90 decibel [dB] hearing level [HL]), studies show that children with severe hearing impairment (>70-90 dB HL) could also benefit from cochlear implantation. To perform a systematic review to identify audiologic thresholds (in dB HL) that could serve as an audiologic candidacy criterion for pediatric cochlear implantation using 4 domains of speech and language development as independent outcome measures (speech production, speech perception, receptive language, and auditory performance). PubMed and Embase databases were searched up to June 28, 2017, to identify studies comparing speech and language development between children who were profoundly deaf using cochlear implants and children with severe hearing loss using hearing aids, because no studies are available directly comparing children with severe HI in both groups. If cochlear implant users with profound HI score better on speech and language tests than those with severe HI who use hearing aids, this outcome could support adjusting cochlear implantation candidacy criteria to lower audiologic thresholds. Literature search, screening, and article selection were performed using a predefined strategy. Article screening was executed independently by 4 authors in 2 pairs; consensus on article inclusion was reached by discussion between these 4 authors. This study is reported according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. Title and abstract screening of 2822 articles resulted in selection of 130 articles for full-text review. Twenty-one studies were selected for critical appraisal, resulting in selection of 10 articles for data extraction. Two studies formulated audiologic thresholds (in dB HLs) at which children could qualify for cochlear implantation: (1) at 4-frequency pure-tone average (PTA) thresholds of 80 dB HL or greater based on speech perception and auditory performance subtests and (2) at PTA thresholds of 88 and 96 dB HL based on a speech perception subtest. In 8 of the 18 outcome measures, children with profound HI using cochlear implants performed similarly to children with severe HI using hearing aids. Better performance of cochlear implant users was shown with a picture-naming test and a speech perception in noise test. Owing to large heterogeneity in study population and selected tests, it was not possible to conduct a meta-analysis. Studies indicate that lower audiologic thresholds (≥80 dB HL) than are advised in current national and manufacturer guidelines would be appropriate as audiologic candidacy criteria for pediatric cochlear implantation.

  8. Effects of surgical lesions on choline acetyltransferase activity in the cat cochlea.

    PubMed

    Frilling, Mark J; Wiet, Gregory J; Godfrey, Donald A; Parli, Judy A; Dunn, Jon D; Ross, C David

    2017-12-01

    Although it is well established that the choline acetyltransferase (ChAT, the enzyme for acetylcholine synthesis) in the mammalian cochlea is associated with its olivocochlear innervation, the distribution of this innervation in the cochlea varies somewhat among mammalian species. The quantitative distribution of ChAT activity in the cochlea has been reported for guinea pigs and rats. The present study reports the distribution of ChAT activity within the organ of Corti among the three turns of the cat cochlea and the effects of removing olivocochlear innervation either by a lateral cut aimed to totally transect the left olivocochlear bundle or a more medial cut additionally damaging the superior olivary complex on the same side. Similarly to results for guinea pig and rat, the distribution of ChAT activity in the cat outer hair cell region showed a decrease from base to apex, but, unlike in the guinea pig and rat, the cat inner hair cell region did not. As in the rat, little ChAT activity was measured in the outer supporting cell region. As previously reported for whole cat cochlea and for rat cochlear regions, transection of the olivocochlear bundle resulted in almost total loss of ChAT activity in the hair cell regions of the cat cochlea. Lesions of the superior olivary complex resulted in loss of ChAT activity in the inner hair cell region of all cochlear turns only on the lesion side but bilateral losses in the outer hair cell region of all turns. The results are consistent with previous evidence that virtually all cholinergic synapses in the mammalian cochlea are associated with its olivocochlear innervation, that the olivocochlear innervation to the inner hair cell region is predominantly ipsilateral, and that the olivocochlear innervation to the outer hair cells is bilateral. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. No effect of prolonged pulsed high frequency ultrasound imaging of the basilar membrane on cochlear function or hair cell survival found in an initial study.

    PubMed

    Landry, Thomas G; Bance, Manohar L; Adamson, Robert B; Brown, Jeremy A

    2018-06-01

    Miniature high frequency ultrasound devices show promise as tools for clinical middle ear and basal cochlea imaging and vibrometry. However, before clinical use it is important to verify that the ultrasound exposure does not damage the cochlea. In this initial study, electrophysiological responses of the cochlea were measured for a range of stimulus frequencies in both ears of anesthetized chinchillas, before and after exposing the organ of Corti region of one ear to pulsed focused ultrasound for 30 min. Measurements were again taken after an 11 day survival period. Cochlear tissue was examined with a confocal microscope for signs of damage to the cochlear hair cells. No significant change in response thresholds due to exposure was found, and no signs of ultrasound-induced tissue damage were observed, although one animal (out of ten) did have a region of extensive tissue damage in the exposed cochlea. However, after further analysis this was concluded to be not likely a result of the ultrasound exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea.

    PubMed

    Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S

    2018-06-05

    The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Comparison of Cochlear Cell Death Caused by Cisplatin, Alone and in Combination with Furosemide

    PubMed Central

    Xia, Li; Chen, Zhengnong; Su, Kaiming; Yin, Shankai; Wang, Jian

    2014-01-01

    Establishment of appropriate animal models is an important step in exploring the mechanisms of drug-induced ototoxicity. In the present study, using guinea pigs we compared cochlear lesions induced by cisplatin administered in two regimens: consecutive application alone and in combination with furosemide. The effects of furosemide alone were also evaluated; it was found to cause temporary hearing loss and reversible damage to the stria vascularis. Consecutive application of cisplatin alone appeared to be disadvantageous because it resulted in progressive body weight loss and higher mortality compared to the combined regimen, which used a smaller cisplatin dose. The combined regimen resulted in comparable hearing loss and hair cell loss but a markedly lower mortality. However, their coadministration failed to cause similar damage to spiral ganglion neurons (SGN), as seen in animals that received cisplatin alone. This difference suggests that the combined regimen did not mimic the damage to cochlear neuronal innervation caused by the clinical application of cisplatin. The difference also suggests that the SGN lesion is not caused by cisplatin entering the cochlea via the stria vascularis. PMID:23548607

  12. Isolation of sphere-forming stem cells from the mouse inner ear.

    PubMed

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  13. Intrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus

    PubMed Central

    Kuo, Sidney P.; Lu, Hsin-Wei

    2012-01-01

    Multiple classes of inhibitory interneurons shape the activity of principal neurons of the dorsal cochlear nucleus (DCN), a primary target of auditory nerve fibers in the mammalian brain stem. Feedforward inhibition mediated by glycinergic vertical cells (also termed tuberculoventral or corn cells) is thought to contribute importantly to the sound-evoked response properties of principal neurons, but the cellular and synaptic properties that determine how vertical cells function are unclear. We used transgenic mice in which glycinergic neurons express green fluorescent protein (GFP) to target vertical cells for whole cell patch-clamp recordings in acute slices of DCN. We found that vertical cells express diverse intrinsic spiking properties and could fire action potentials at high, sustained spiking rates. Using paired recordings, we directly examined synapses made by vertical cells onto fusiform cells, a primary DCN principal cell type. Vertical cell synapses produced unexpectedly small-amplitude unitary currents in fusiform cells, and additional experiments indicated that multiple vertical cells must be simultaneously active to inhibit fusiform cell spike output. Paired recordings also revealed that a major source of inhibition to vertical cells comes from other vertical cells. PMID:22572947

  14. High-Frequency Vibration of the Organ of Corti in Vitro

    NASA Astrophysics Data System (ADS)

    Scherer, M. P.; Nowotny, M.; Dalhoff, E.; Zenner, H.-P.; Gummer, A. W.

    2003-02-01

    The mechanism by which the electromechanical force generated by the outer hair cells (OHC) produces the exquisite sensitivity, frequency selectivity and dynamic range of the cochlea is unknown. To address this question, we measured the electrically induced radial vibration pattern at different levels within the organ of Corti of the guinea pig. Two in vitro preparations were used: 1) a half turn including modiolar bone and cochlear partition, without tectorial membrane (TM); the basilar membrane (BM) was supported from its tympanal side. 2) A temporal bone preparation, where the bony wall was removed above and below the measurement location to permit introduction of electrodes. In the latter case, the cochlear partition was in its normal mechanical environment, with free swinging BM and with TM. Velocity of BM, reticular lamina (RL), and upper and lower sides of the TM in response to broadband electrical stimulation of the OHCs was measured with a laser Doppler vibrometer. The interferometer was sensitive enough to permit measurement without reflective beads or the like. The frequency range of the stimulation was 480 Hz - 70 kHz. Displacement amplitudes were constant up to 10 kHz, after which they dropped with -14 to -17 dB/oct. Moving across the RL in the radial direction, phase reversals characteristic of pivoting points occurred above the pillar cells and the outer tunnel. No phase reversals were observed on the BM and TM.

  15. Changing Trends within the Population of Children Who Are Deaf or Hard of Hearing in Flanders (Belgium): Effects of 12 Years of Universal Newborn Hearing Screening, Early Intervention, and Early Cochlear Implantation

    ERIC Educational Resources Information Center

    De Raeve, Leo; Lichtert, Guido

    2012-01-01

    The purpose of this study is to show the changing trends within the population of children who are deaf and hard of hearing in Belgium over the last 12 years. The combination of Universal Newborn Hearing Screening programs, early intervention, and cochlear implants have tremendously influenced the education and support of children who are deaf or…

  16. Manufacturing Technology Support (MATES). Task Order 0021: Air Force Technology and Industrial Base Research and Analysis, Subtask Order 06: Direct Digital Manufacturing

    DTIC Science & Technology

    2011-08-01

    industries and key players providing equipment include Flow and OMAX. The decision tree for waterjet machining is shown in Figure 28. Figure 28...about the melt pool. Process parameters including powder flow , laser power, and scan speed are adjusted accordingly • Multiple materials o BD...project.eu.com/home/home_page_static.jsp o Working with multiple partners; one is Cochlear . Using LMD or SLM to fabricate cochlear implants with 10

  17. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.

    PubMed

    Youm, Ibrahima; Youan, Bi-Botti C

    2013-10-01

    This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.

    PubMed

    Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles

    2008-12-01

    Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.

  19. Post-treatment effects of local GDNF administration to the inner ears of deafened guinea pigs.

    PubMed

    Fransson, Anette; Maruyama, Jun; Miller, Josef M; Ulfendahl, Mats

    2010-09-01

    For patients with profound hearing loss, a cochlear implant is the only treatment available today. The function of a cochlear implant depends in part on the function and survival of spiral ganglion neurons. Following deafferentation, glial cell-derived neurotrophic factor (GDNF) is known to affect spiral ganglion neuron survival. The purpose of this study was to assess delayed GDNF treatment after deafening, the effects of cessation of GDNF treatment, and the effects of subsequent antioxidants on responsiveness and survival of the spiral ganglion neurons. Three-week deafened (by local neomycin administration) guinea pigs were implanted in the scala tympani with a combined cochlear implant electrode and cannula. GDNF (1 μg/mL) or artificial perilymph was then delivered for 4 weeks, following which the animals received systemic ascorbic acid  +  Trolox or saline for an additional 4 weeks. Thresholds for electrically-evoked auditory brain stem responses (eABRs) were significantly elevated at 3 weeks with deafness, stabilized with GDNF, and showed no change with GDNF cessation and treatment with antioxidants or saline. The populations of spiral ganglion neurons were reduced with deafness (by 40% at 3 weeks and 70% at 11 weeks), and rescued from cell death by GDNF with no further reduction at 8 weeks following 4 weeks of cessation of GDNF treatment equally in both the antioxidant- and saline-treated groups. Local growth factor treatment of the deaf ear may prevent deterioration in electrical responsiveness and rescue auditory nerve cells from death; these effects outlast the period of treatment, and may enhance the benefits of cochlear implant therapy for the deaf.

  20. The Potential Protective Effects of 2-aminoethyl Diphenylborinate against Inner Ear Acoustic Trauma: Experimental Study Using Transmission and Scanning Electron Microscopy.

    PubMed

    Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray

    2015-04-01

    In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.

  1. Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium

    PubMed Central

    Hu, Bo Hua; Cai, Qunfeng; Hu, Zihua; Patel, Minal; Bard, Jonathan; Jamison, Jennifer; Coling, Donald

    2012-01-01

    Matrix metalloproteinases (MMPs) and their related gene products regulate essential cellular functions. An imbalance in MMPs has been implicated in various neurological disorders, including traumatic injuries. Here, we report a role for MMPs and their related gene products in the modulation of cochlear responses to acoustic trauma in rats. The normal cochlea was shown to be enriched in MMP enzymatic activity, and this activity was reduced in a time-dependent fashion after traumatic noise injury. The analysis of gene expression by RNA-seq and qRT-PCR revealed the differential expression of MMPs and their related genes between functionally specialized regions of the sensory epithelium. The expression of these genes was dynamically regulated between the acute and chronic phases of noise-induced hearing loss. Moreover, noise-induced expression changes in two endogenous MMP inhibitors, Timp1 and Timp2, in sensory cells were dependent upon the stage of nuclear condensation, suggesting a specific role for MMP activity in sensory cell apoptosis. A short-term application of doxycycline, a broad-spectrum inhibitor of MMPs, prior to noise exposure reduced noise-induced hearing loss and sensory cell death. By contrast, a 7-day treatment compromised hearing sensitivity and potentiated noise-induced hearing loss. This detrimental effect of the long-term inhibition of MMPs on noise-induced hearing loss was further confirmed using targeted Mmp7 knockout mice. Together, these observations suggest that MMPs and their related genes participate in the regulation of cochlear responses to acoustic overstimulation and that the modulation of MMP activity can serve as a novel therapeutic target for the reduction of noise-induced cochlear damage. PMID:23100416

  2. Individual Differences in Auditory Brainstem Response Wave Characteristics

    PubMed Central

    Jagadeesh, Anoop; Mauermann, Manfred; Ernst, Frauke

    2016-01-01

    Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that high-frequency cochlear gain loss steepens the slope of the ABR Wave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI–W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies. PMID:27837052

  3. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  4. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  5. A tool for hearing aid and cochlear implant users to judge the usability of cellular telephones in field conditions

    NASA Astrophysics Data System (ADS)

    Deer, Maria Soledad

    The auditory experience of using a hearing aid or a cochlear implant simultaneously with a cell phone is driven by a number of factors. These factors are: radiofrequency and baseband interference, speech intelligibility, sound quality, handset design, volume control and signal strength. The purpose of this study was to develop a tool to be used by hearing aid and cochlear implant users in retail stores as they try cell phones before buying them. This tool is meant to be an efficient, practical and systematic consumer selection tool that will capture and document information on all the domains that play a role in the auditory experience of using a cell phone with a hearing aid or cochlear implant. The development of this consumer tool involved three steps as follows: preparation, verification and measurement of success according to a predefined criterion. First, the consumer tool, consisting of a comparison chart and speech material, was prepared. Second, the consumer tool was evaluated by groups of subjects in a two-step verification process. Phase I was conducted in a controlled setting and it was followed by Phase II which took place in real world (field) conditions. In order to perform a systematic evaluation of the consumer tool two questionnaires were developed: one questionnaire for each phase. Both questionnaires involved five quantitative variables scored with the use of ratings scales. These ratings were averaged yielding an Overall Consumer Performance Score. A qualitative performance category corresponding to the Mean Opinion Score (MOS) was allocated to each final score within a scale ranging from 1 to 5 (where 5 = excellent and 1 = bad). Finally, the consumer tool development was determined to be successful if at least 80% of the participants in verification Phase II rated the comparison chart as excellent or good according to the qualitative MOS score. The results for verification Phase II (field conditions) indicated that the Overall Consumer Performance score for 92% of the subjects (11/12) was 3.7 and above corresponding to Good and Excellent MOS qualitative categories. It was concluded that this is a practical and efficient tool for hearing aid/cochlear implant users as they approach a cell phone selection process.

  6. Migration of cochlear lateral wall cells.

    PubMed

    Dunaway, George; Mhaskar, Yashanad; Armour, Gary; Whitworth, Craig; Rybak, Leonard

    2003-03-01

    The role of apoptosis and proliferation in maintenance of cochlear lateral wall cells was examined. The methods employed for detection of apoptosis were the Hoechst fluorescence stain and TUNEL (TdT-mediated dUTP-biotin nick-end-labeling) assay, and proliferations were 5-bromo-2'-deoxyuridine (BrdU) incorporation and presence of the proliferating cell nuclear antigen. The incidence of apoptosis in the strial marginal cell was 50% greater (32.9+/-3.7%) than strial intermediate and basal cells but similar to spiral ligament cells. Although division of marginal strial cells was rarely detected, a significant number of proliferating cells in the remaining stria vascularis and spiral ligament were observed. These data implied that replacement of marginal cells arose elsewhere and could be followed by a BrdU-deoxythymidine pulse-chase study. At 2 h post injection, nuclear BrdU in marginal cells was not detected; however, by 24 h post injection, 20-25% of marginal cell nuclei were BrdU-positive. These observations are consistent with the hypothesis that marginal cells were replaced by underlying cells. Cell migration appears to be an important mechanism for preserving the function and structure of the stria vascularis.

  7. Ethical considerations in resource allocation in a cochlear implant program.

    PubMed

    Westerberg, Brian D; Pijl, Sipke; McDonald, Michael

    2008-04-01

    To review processes of resource allocation and the ethical considerations relevant to the fair allocation of a limited number of cochlear implants to increasing numbers of potential recipients. Review of relevant considerations. Tertiary referral hospital. Editorial discussion of the ethical issues of resource allocation. Heterogeneity of audiometric thresholds, self-reported disability of hearing loss, age of the potential cochlear implant recipient, cost-effectiveness, access to resources, compliance with follow-up, social support available to the recipient, social consequences of hearing impairment, and other recipient-related factors. In a publicly funded health care system, there will always be a need for decision-making processes for allocation of finite fiscal resources. All candidates for cochlear implantation deserve fair consideration. However, they are a heterogeneous group in terms of needs and expected outcomes consisting of traditional and marginal candidates, with a wide range of benefit from acoustic amplification. We argue that implant programs should thoughtfully prioritize treatment on the basis of need and potential benefit. We reject queuing on the basis of "first-come, first-served" or on the basis of perceived social worth.

  8. Candidate's thesis: Platelet-activating factor-induced hearing loss: mediated by nitric oxide?

    PubMed

    Rhee, Chung-Ku

    2003-12-01

    Platelet-activating factor (PAF)in middle ear effusion is thought to induce hearing loss. The purpose of this study is to investigate the role of nitric oxide (NO) in the mechanism of PAF-induced hearing loss by studying the effects of PAF application on the round window membrane (RWM) with and without PAF-antagonist NO-blocker. Longitudinal study on randomized guinea pigs using PAF to induce hearing loss. METHODS Guinea pigs were divided into four groups: PBS, PAF, PAF-antagonist, and L-NAME. The PBS group received phosphate buffered saline (PBS) and the PAF groups received 10, 20, and 40 microg of PAF soaked into gelfoam and placed on the RWM. PAF-antagonist (WEB 2170) and NOS inhibitor NG-nitro-l-arginine-methylester (L-NAME) were injected intraperitoneally prior to PAF 20 microg application on the RWM. The following three tests were performed on each animal group: Hearing was tested with an auditory brainstem response (ABR) test over 24 hours. At the end of 24 hours, cochlear hair cells were examined by scanning electron microscopy (SEM) and immunohistochemistry was carried out on the cochlea to test the expression of inducible nitric oxide synthase (iNOS). The PAF group developed significant elevation of ABR threshold and cochlear hair cell damage in the SEM group as compared with the PBS control group. The PAF-antagonist (WEB 2170) and the L-NAME groups did not show significant elevation of ABR threshold and cochlear hair cell damage compared with the group administered PAF 20 microg, but in the PAF-antagonist group, the elevation of ABR threshold was significant compared with that of the PBS control group, whereas it was not significant compared with the PBS group in the L-NAME group. Strong expression of iNOS on cochlea was observed in the PAF group and lighter expression was seen in PBS, WEB 2170, and L-NAME groups. This study demonstrated that PAF placed on the RWM induced hearing loss and cochlear hair cell damage. The PAF-antagonists and L-NAME prevented the PAF-induced hearing loss and inhibited iNOS expression in the cochlea. These findings suggest that the PAF-induced hearing loss caused by cochlear hair cell damage may have been mediated by NO. PAF-antagonists and L-NAME may have future therapeutic implications in preventing sensorineural hearing loss associated with chronic otitis media. The results of this study have significant potential clinical application.

  9. Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival.

    PubMed

    Zanin, M P; Hellström, M; Shepherd, R K; Harvey, A R; Gillespie, L N

    2014-09-26

    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study.

    PubMed

    Kobler, Jan-Philipp; Schoppe, Michael; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lüder A; Ortmaier, Tobias

    2014-11-01

    Minimally invasive cochlear implantation is a surgical technique which requires drilling a canal from the mastoid surface toward the basal turn of the cochlea. The choice of an appropriate drilling strategy is hypothesized to have significant influence on the achievable targeting accuracy. Therefore, a method is presented to analyze the contribution of the drilling process and drilling tool to the targeting error isolated from other error sources. The experimental setup to evaluate the borehole accuracy comprises a drill handpiece attached to a linear slide as well as a highly accurate coordinate measuring machine (CMM). Based on the specific requirements of the minimally invasive cochlear access, three drilling strategies, mainly characterized by different drill tools, are derived. The strategies are evaluated by drilling into synthetic temporal bone substitutes containing air-filled cavities to simulate mastoid cells. Deviations from the desired drill trajectories are determined based on measurements using the CMM. Using the experimental setup, a total of 144 holes were drilled for accuracy evaluation. Errors resulting from the drilling process depend on the specific geometry of the tool as well as the angle at which the drill contacts the bone surface. Furthermore, there is a risk of the drill bit deflecting due to synthetic mastoid cells. A single-flute gun drill combined with a pilot drill of the same diameter provided the best results for simulated minimally invasive cochlear implantation, based on an experimental method that may be used for testing further drilling process improvements.

  11. Matrix metalloproteinase inhibitor attenuates cochlear lateral wall damage induced by intratympanic instillation of endotoxin.

    PubMed

    Choi, Cheol Hee; Jang, Chul Ho; Cho, Yong Bum; Jo, Si Young; Kim, Min Young; Park, Byung Young

    2012-04-01

    Oxytetracycline and ilomastat are inhibitors of matrix metalloproteinases (MMPs). Their efficacy in protecting against cochlear damage induced by the intratympanic instillation of lipopolysaccharide (LPS), as a means of inducing labyrinthitis, was investigated. Experiments were performed in 21 young male guinea pigs. Intratympanic instillation of LPS was done in the control group (n=7). Intratympanic instillation of oxytetracycline or ilomastat was done after LPS instillation in the experimental group. Measurements of auditory brainstem response (ABR) and cochlear blood flow (CBF) were performed. The organ of Corti was evaluated by field emission scanning electron microscopy (FE-SEM). The blood-labyrinth barrier (BLB) integrity was evaluated with Evans blue uptake. Gelatin zymography was used to assess the expression of active MMP-2 and MMP-9. Ears treated with MMP inhibitors were significantly protected from hearing loss compared to the LPS group. In LPS group, there was a significant decrease of CBF. However, experimental group displayed a statistically significant recovery of CBF. FE-SEM revealed hair cell damage in the LPS-treated group, but hair cells presented a normal appearance in MMP inhibitors. The LPS group showed a marked increase of Evans blue extravasation in the cochlea. However, MMP inhibitors significantly reduced the BLB opening. Active MMP-9 was expressed in the LPS group. Treatment with MMP inhibitors attenuated active MMP-9 expression. The MMP inhibitors oxytetracycline and ilomastat protect from cochlear lateral wall damage caused by LPS-induced labyrinthitis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Differential distribution of adenosine receptors in rat cochlea.

    PubMed

    Vlajkovic, Srdjan M; Abi, Shukri; Wang, Carol J H; Housley, Gary D; Thorne, Peter R

    2007-06-01

    Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.

  13. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    PubMed Central

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  14. [Study on the factors impacting on early cochlear implantation between the eastern and western region of China].

    PubMed

    Xiao, Hanqiong; Li, Wei; Ma, Ruixia; Gong, Zhengpeng; Shi, Haibo; Li, Huawei; Chen, Bing; Jiang, Ye; Dai, Chunfu

    2015-06-01

    To describe tne regional different factors which impact on early cochlear implantation in prelingual deaf children between eastern and western regions of China. The charts of 113 children who received the cochlear implantation after 24 months old were reviewed and analyzed. Forty-five of them came from the eastern region (Jiangsu, Zhejiang or Shanghai) while 68 of them came from the western region (Ningxia or Guizhou). Parental interviews were conducted to collect information regarding the factors that impact on early cochlear implantation. Result:Based on the univariate logistic regression analysis, the odds ratio (OR) value of universal newborn hearing screening (UNHS) was 5. 481, which indicated the correlation of UNHS with early cochlear implantation is significant. There was statistical difference between the 2 groups (P<0. 01). For the financial burden, the OR value was 3. 521(strong correlation) and there was statistical difference between the 2 groups (P<0. 01). For the communication barriers and community location, the OR value was 0. 566 and 1. 128 respectively, and there was no statistical difference between the 2 groups (P>0. 05). The multivariate analysis indicated that the UNHS and financial burden are statistically different between the eastern and western regions (P=0. 00 and 0. 040 respectively). The UNHS and financial burden are statistically different between the eastern reinforced in the western region. In addition, the government and society should provide powerful policy and more financial support in the western region of China. The innovation of management system is also helpful to the early cochlear implantation.

  15. Exploring views on current and future cochlear implant service delivery: the perspectives of users, parents and professionals at cochlear implant centres and in the community.

    PubMed

    Athalye, Sheetal; Archbold, Sue; Mulla, Imran; Lutman, Mark; Nikolopoulous, Thomas

    2015-09-01

    The objective of this survey was to explore the perceptions of implant users/carers and professionals across the UK about current and future cochlear implant service delivery and the challenges. Data were collected via an online questionnaire consisting of totally 22 questions. The questionnaire contained both open- and close-ended questions. Totally, seven hundred and forty-eight responses were received. In spite of the wide range of respondents, there was a broad consensus of opinion across groups. The majority of participants were satisfied with the service they currently receive, but wanted some changes. They reported their current experience of implant services to be mainly driven by decisions made by the implant team. For the future, they preferred the service to be mainly driven by decisions made jointly by the team and the user and/or parent/carer. The majority of participants wanted the cochlear implant services to be integrated into local audiology and other services such as education. Restrictions on number of candidates funded and political decisions and issues were seen as major challenges. Qualitative analysis of the open-ended responses supported the questionnaire responses. This research highlighted the benefits and limitations of the current cochlear implant service delivery as well as the potential implications for the long term. While respondents were generally happy with the current cochlear implant service provision, they expressed some concerns about the long-term sustainability and management, wanting integration into the local services, and more involvement of parents and users in decisions.

  16. Modelling cochlear mechanics.

    PubMed

    Ni, Guangjian; Elliott, Stephen J; Ayat, Mohammad; Teal, Paul D

    2014-01-01

    The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.

  17. Modelling Cochlear Mechanics

    PubMed Central

    Elliott, Stephen J.; Teal, Paul D.

    2014-01-01

    The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling. PMID:25136555

  18. Cerebellar interaction with the acoustic reflex.

    PubMed

    Jastreboff, P J

    1981-01-01

    The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.

  19. Using Stimulus Frequency Emissions to Characterize Cochlear Function in Mice

    NASA Astrophysics Data System (ADS)

    Cheatham, M. A.; Katz, E. D.; Charaziak, K.; Dallos, P.; Siegel, J. H.

    2011-11-01

    Stimulus frequency otoacoustic emissions (SFOAE) were used to assay cochlear function in wildtype and prestin knockin (KI) mice. The latter contain a mutated form of the outer hair cell (OHC) motor protein (V499G/Y501H) with significantly reduced activity. Because several genetic mutations cause accelerated OHC death, it is beneficial to perform experiments in young mice without surgical intervention. Inasmuch as SFOAE thresholds are elevated by only 30 dB in KIs, it is possible to obtain SFOAE tuning functions in these animals. This approach allows sensitivity/frequency selectivity to be assayed within the basilar membane-OHC-tectorial membrane feedback loop, thereby providing information about signal processing prior to inner hair cell stimulation and auditory nerve activation.

  20. Target structures in the cochlea for infrared neural stimulation (INS)

    NASA Astrophysics Data System (ADS)

    Young, Hunter; Tan, Xiaodong; Richter, Claus-Peter

    2014-03-01

    Spatial selective infrared neural stimulation has potential to improve neural prostheses, including cochlear implants. The heating of a confined target volume depolarizes the cell membrane and results in an action potential. Tissue heating may also result in the generation of a stress relaxation wave causing mechanical stimulation of hair cells in the cochlea, creating an optoacoustic response. Data are presented that quantify the effect of an acoustical stimulus (noise masker) on the response obtained with INS in normal hearing, and chronic deaf animals. While in normal hearing animals an acoustic masker can reduce the response to INS, in chronic deaf animals this effect has not been detected. The responses to INS remain stable following the different degrees of cochlear damage.

  1. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK

    PubMed Central

    Hill, Kayla; Yuan, Hu; Wang, Xianren

    2016-01-01

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. PMID:27413159

  2. On the stability and compressive nonlinearity of a physiologically based model of the cochlea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nankali, Amir; Grosh, Karl; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan

    Hearing relies on a series of coupled electrical, acoustical (fluidic) and mechanical interactions inside the cochlea that enable sound processing. A positive feedback mechanism within the cochlea, called the cochlear amplifier, provides amplitude and frequency selectivity in the mammalian auditory system. The cochlear amplifier and stability are studied using a nonlinear, micromechanical model of the Organ of Corti (OoC) coupled to the electrical potentials in the cochlear ducts. It is observed that the mechano-electrical transduction (MET) sensitivity and somatic motility of the outer hair cell (OHC), control the cochlear stability. Increasing MET sensitivity beyond a critical value, while electromechanical couplingmore » coefficient is within a specific range, causes instability. We show that instability in this model is generated through a supercritical Hopf bifurcation. A reduced order model of the system is approximated and it is shown that the tectorial membrane (TM) transverse mode effect on the dynamics is significant while the radial mode can be simplified from the equations. The cochlear amplifier in this model exhibits good agreement with the experimental data. A comprehensive 3-dimensional model based on the cross sectional model is simulated and the results are compared. It is indicated that the global model qualitatively inherits some characteristics of the local model, but the longitudinal coupling along the cochlea shifts the stability boundary (i.e., Hopf bifurcation point) and enhances stability.« less

  3. Intraoperative Cochlear Implant Device Testing Utilizing an Automated Remote System: A Prospective Pilot Study.

    PubMed

    Lohmann, Amanda R; Carlson, Matthew L; Sladen, Douglas P

    2018-03-01

    Intraoperative cochlear implant device testing provides valuable information regarding device integrity, electrode position, and may assist with determining initial stimulation settings. Manual intraoperative device testing during cochlear implantation requires the time and expertise of a trained audiologist. The purpose of the current study is to investigate the feasibility of using automated remote intraoperative cochlear implant reverse telemetry testing as an alternative to standard testing. Prospective pilot study evaluating intraoperative remote automated impedance and Automatic Neural Response Telemetry (AutoNRT) testing in 34 consecutive cochlear implant surgeries using the Intraoperative Remote Assistant (Cochlear Nucleus CR120). In all cases, remote intraoperative device testing was performed by trained operating room staff. A comparison was made to the "gold standard" of manual testing by an experienced cochlear implant audiologist. Electrode position and absence of tip fold-over was confirmed using plain film x-ray. Automated remote reverse telemetry testing was successfully completed in all patients. Intraoperative x-ray demonstrated normal electrode position without tip fold-over. Average impedance values were significantly higher using standard testing versus CR120 remote testing (standard mean 10.7 kΩ, SD 1.2 vs. CR120 mean 7.5 kΩ, SD 0.7, p < 0.001). There was strong agreement between standard manual testing and remote automated testing with regard to the presence of open or short circuits along the array. There were, however, two cases in which standard testing identified an open circuit, when CR120 testing showed the circuit to be closed. Neural responses were successfully obtained in all patients using both systems. There was no difference in basal electrode responses (standard mean 195.0 μV, SD 14.10 vs. CR120 194.5 μV, SD 14.23; p = 0.7814); however, more favorable (lower μV amplitude) results were obtained with the remote automated system in the apical 10 electrodes (standard 185.4 μV, SD 11.69 vs. CR120 177.0 μV, SD 11.57; p value < 0.001). These preliminary data demonstrate that intraoperative cochlear implant device testing using a remote automated system is feasible. This system may be useful for cochlear implant programs with limited audiology support or for programs looking to streamline intraoperative device testing protocols. Future studies with larger patient enrollment are required to validate these promising, but preliminary, findings.

  4. Changes in the inner ear structures in cystic fibrosis patients.

    PubMed

    Pauna, Henrique F; Monsanto, Rafael C; Kurata, Natsuko; Paparella, Michael M; Cureoglu, Sebahattin

    2017-01-01

    Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal's canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Changes in the Inner Ear Structures in Cystic Fibrosis Patients

    PubMed Central

    Pauna, Henrique F.; Monsanto, Rafael C.; Kurata, Natsuko; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Objective Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. Methods We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. Results In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal’s canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Conclusions Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. PMID:28012509

  6. A global patient outcomes registry: Cochlear paediatric implanted recipient observational study (Cochlear(™) P-IROS).

    PubMed

    Sanderson, Georgina; Ariyaratne, Thathya V; Wyss, Josephine; Looi, Valerie

    2014-01-01

    Currently, there is a paucity of data concerning the long-term outcomes, educational placement and quality of life of children implanted with hearing devices from large and representative samples of the population. To address this concern, a large, prospective, multicentre, multinational patient-outcomes registry for paediatric recipients of implantable hearing devices was developed. The benefits of this registry, its approach and methodology are described. The Cochlear(™) Paediatric Implanted Recipient Observational Study (Cochlear P-IROS) is a prospective international patient-outcomes registry for children who are implanted in routine clinical practice with one or more hearing devices. The study aims to collect data on patient comorbidities, device use, auditory performance, quality of life and health-related utilities, across different types of implantable hearing devices from a range of manufacturers. Patients will be evaluated with a set of standardised and non-standardised questionnaires prior to initial device activation (baseline) and at six-monthly follow-up intervals up to 24 months and annually thereafter. The Cochlear P-IROS utilises a secure web interface to administer electronic case report forms to clinicians and families of implanted children. The web interface is currently available in five languages: English, Japanese, Korean, Mandarin and Russian. The interface also provides printable versions of the case report forms translated into 22 local languages for collection of data prior to entry online; additional languages may be added, as required. Participation in the Cochlear P-IROS registry is investigator-driven and voluntary. To date, the Cochlear P-IROS has recruited implant clinics across Australia, China, India, Indonesia, Turkey and Vietnam. The registry also aims to recruit multiple clinics in Cuba, Israel, Japan, Malaysia, Singapore, South Africa, South Korea and Russia. The use of a registry such as the Cochlear P-IROS will generate valuable data to support research interests of academics and clinicians around the globe. The data generated will be relevant for a wide range of stakeholders including regulators, payers, providers, policy makers, patients and their families, each with a different perspective for the acceptance and adoption of implantable hearing devices for the treatment of hearing loss.

  7. American parent perspectives on quality of life in pediatric cochlear implant recipients.

    PubMed

    Kumar, Roshini; Warner-Czyz, Andrea; Silver, Cheryl H; Loy, Betty; Tobey, Emily

    2015-01-01

    Cochlear implantation influences not only communication but also psychosocial outcomes in children with severe to profound hearing loss. Focusing on issues specific to cochlear implantation (e.g., self-reliance, social relations, education, effects of implantation, and supporting the child) may provide a more accurate and relative view of functional status of pediatric cochlear implant (CI) recipients. The present study analyzes parental perspectives of CI-specific health-related quality of life (HRQoL) in children with CIs to determine (a) if parents differentially rate their child's quality of life according to psychosocial domain (e.g., communication, self-reliance, education); (b) if associations exist between quality of life domains specific to cochlear implantation in pediatric implant recipients; and (c) if demographic variables (i.e., chronologic age, age at cochlear implantation, duration of device experience) mediate parent ratings of quality of life in pediatric CI recipients. Parents of 33 children with CIs (mean age, 9.85 years; mean age of CI activation, 2.47 years; mean device experience, 7.47 years) completed a validated condition-specific questionnaire, Children With Cochlear Implants: Parental Perspectives. Parents positively rated most HRQoL domains, although education and effects of implantation received significantly less positive ratings (p < 0.01). Three domains (communication, self-reliance, and well-being) significantly correlated with at least 5 other domains, suggesting that positivity in one domain co-occurs with positivity in other domains. Demographic variables (chronologic age, CI activation age, and duration of CI use) did not correlate significantly with psychosocial outcomes; rather, parents reported positive HRQoL and successful functional use of CI across demographic variables. Parents of children and adolescents with CIs rate overall HRQoL positively across psychosocial domains. Significantly less positive ratings of education and effects of implantation may result from limited access to CI-related accommodations and varying parent expectations, warranting further exploration to maximize psychosocial and performance outcomes in pediatric CI users.

  8. Swept-sine noise-induced damage as a hearing loss model for preclinical assays

    PubMed Central

    Sanz, Lorena; Murillo-Cuesta, Silvia; Cobo, Pedro; Cediel-Algovia, Rafael; Contreras, Julio; Rivera, Teresa; Varela-Nieto, Isabel; Avendaño, Carlos

    2015-01-01

    Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss (NIHL) and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (“violet” noises) to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 (TGF-β1) inhibitors P17 and P144 on NIHL. CBA mice were exposed to violet swept-sine noise (VS) with different frequency ranges (2–20 or 9–13 kHz) and levels (105 or 120 dB SPL) for 30 min. Mice were evaluated by auditory brainstem response (ABR) and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by VS depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9–13 kHz noise caused an auditory threshold shift (TS) in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of NIHL, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair. PMID:25762930

  9. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    PubMed

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  10. The rat cochlea in the absence of circulating adrenal hormones: an electrophysiological and morphological study.

    PubMed

    Lohuis, P J; Börjesson, P K; Klis, S F; Smoorenburg, G F

    2000-05-01

    Circulating adrenal hormones affect strial function. Removal of endogenous levels of adrenal steroids by bilateral adrenalectomy (ADX) in rats causes a decrease of Na(+)/K(+)-ATPase activity in the cochlear lateral wall [Rarey et al., 1989. Arch. Otolaryngol. Head Neck Surg. 115, 817-821] and a decrease of the volume of the marginal cells in the stria vascularis [Lohuis et al., 1990. Acta Otolaryngol. (Stockh.) 110, 348-356]. To study further the effect of absence of circulating adrenocorticosteroids on cochlear function, 18 male Long Evans rats underwent either an ADX or a SHAM operation. Electrocochleography was performed 1 week after surgery for tone bursts in a frequency range of 1-16 kHz. Thereafter, the cochleas were harvested and examined histologically. No significant changes in the amplitude growth curves of the summating potential (SP), the compound action potential (CAP) and the cochlear microphonics (CM) were detected after ADX. However, visually, there appeared to be a decrease of endolymphatic volume (tentatively called imdrops). Reissner's membrane (RM) extended less into scala vestibuli in ADX animals than in SHAM-operated animals. The ratio between the length of RM and the straight distance between the medial and lateral attachment points of RM were used as an objective measure to quantify this effect in each sub-apical half turn of the cochlea. The decrease in length of RM was statistically significant. Thus, circulating adrenal hormones appear to be necessary for normal cochlear fluid homeostasis. Absence of one or more of these hormones leads to shrinkage of the scala media (imdrops). However, the absence of adrenal hormones does not affect the gross cochlear potentials. Apparently, the cochlea is capable of compensating for the absence of circulating adrenal hormones to sustain the conditions necessary for proper cochlear transduction.

  11. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome

    PubMed Central

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-01-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. PMID:26084842

  12. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome.

    PubMed

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-08-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Implications of Minimizing Trauma During Conventional Cochlear Implantation

    PubMed Central

    Carlson, Matthew L.; Driscoll, Colin L. W.; Gifford, René H.; Service, Geoffrey J.; Tombers, Nicole M.; Hughes-Borst, Becky J.; Neff, Brian A.; Beatty, Charles W.

    2014-01-01

    Objective To describe the relationship between implantation-associated trauma and postoperative speech perception scores among adult and pediatric patients undergoing cochlear implantation using conventional length electrodes and minimally traumatic surgical techniques. Study Design Retrospective chart review (2002–2010). Setting Tertiary academic referral center. Patients All subjects with significant preoperative low-frequency hearing (≤70 dB HL at 250 Hz) who underwent cochlear implantation with a newer generation implant electrode (Nucleus Contour Advance, Advanced Bionics HR90K [1J and Helix], and Med El Sonata standard H array) were reviewed. Intervention(s) Preimplant and postimplant audiometric thresholds and speech recognition scores were recorded using the electronic medical record. Main Outcome Measure(s) Postimplantation pure tone threshold shifts were used as a surrogate measure for extent of intracochlear injury and correlated with postoperative speech perception scores. Results Between 2002 and 2010, 703 cochlear implant (CI) operations were performed. Data from 126 implants were included in the analysis. The mean preoperative low-frequency pure-tone average was 55.4 dB HL. Hearing preservation was observed in 55% of patients. Patients with hearing preservation were found to have significantly higher postoperative speech perception performance in the cochlear implantation-only condition than those who lost all residual hearing. Conclusion Conservation of acoustic hearing after conventional length cochlear implantation is unpredictable but remains a realistic goal. The combination of improved technology and refined surgical technique may allow for conservation of some residual hearing in more than 50% of patients. Germane to the conventional length CI recipient with substantial hearing loss, minimizing trauma allows for improved speech perception in the electric condition. These findings support the use of minimally traumatic techniques in all CI recipients, even those destined for electric-only stimulation. PMID:21659922

  14. Psychometric validity of the Cochlear Implant Function Index (CIFI): a quality of life assessment tool for adult cochlear implant users.

    PubMed

    Coelho, Daniel H; Hammerschlag, Paul E; Bat-Chava, Yael; Kohan, Darius

    2009-06-01

    The Cochlear Implant Function Index (CIFI) is created to assess adult cochlear implant (CI) auditory effectiveness in real world situations. Our objective is to evaluate the CIFI as a reliable psychometric tool to assess 1) reliance on visual assistance, 2) telephone use, 3) communication at work, 4) 'hearing' in noise, 5) in groups, and 6) in large room settings. Based upon Guttman scaling properties, the CIFI elicits implanted respondent's functional level with auditory independence from Level 1 (still requiring signing) to level 4 (without any help beyond CI). A blinded, retrospective questionnaire is anonymously answered by cochlear implant recipients. CI centers of tertiary care medical centers, CI support group, and an interactive web page of a hearing and speech center in a large metropolitan region. 245 respondents from a varied adult CI population implanted for one month to 19 years prior to answering the questionnaire. An assessment tool of CI function. A coefficient of reproducibility (CR) for the Guttman scale format equal or greater than 0.90, indicating good scalability. CR in the CIFI was above 0.90. Effective scalability and mean scores from 2.5 to 3.5 for the six areas examined (1.00-4.00) were achieved. The psychometric properties of this user friendly survey demonstrate consistently good scalability. Based on these findings, the CIFI provides a validated tool that can be used for systematic comparisons between groups of patients or for follow-up outcomes in patients who use cochlear implants. Further study is indicated to correlate CIFI scores with sound and speech perception scores. Copyright 2009 John Wiley & Sons, Ltd.

  15. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.

    PubMed

    Kale, Sushrut S; Olson, Elizabeth S

    2015-12-15

    Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics

    PubMed Central

    Kale, Sushrut S.; Olson, Elizabeth S.

    2015-01-01

    Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. PMID:26682824

  17. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    PubMed

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  18. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival

    NASA Technical Reports Server (NTRS)

    Wallis, Deeann; Hamblen, Melanie; Zhou, Yi; Venken, Koen J T.; Schumacher, Armin; Grimes, H. Leighton; Zoghbi, Huda Y.; Orkin, Stuart H.; Bellen, Hugo J.

    2003-01-01

    Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.

  19. Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem.

    PubMed

    Karmakar, Kajari; Narita, Yuichi; Fadok, Jonathan; Ducret, Sebastien; Loche, Alberto; Kitazawa, Taro; Genoud, Christel; Di Meglio, Thomas; Thierry, Raphael; Bacelo, Joao; Lüthi, Andreas; Rijli, Filippo M

    2017-01-03

    Tonotopy is a hallmark of auditory pathways and provides the basis for sound discrimination. Little is known about the involvement of transcription factors in brainstem cochlear neurons orchestrating the tonotopic precision of pre-synaptic input. We found that in the absence of Hoxa2 and Hoxb2 function in Atoh1-derived glutamatergic bushy cells of the anterior ventral cochlear nucleus, broad input topography and sound transmission were largely preserved. However, fine-scale synaptic refinement and sharpening of isofrequency bands of cochlear neuron activation upon pure tone stimulation were impaired in Hox2 mutants, resulting in defective sound-frequency discrimination in behavioral tests. These results establish a role for Hox factors in tonotopic refinement of connectivity and in ensuring the precision of sound transmission in the mammalian auditory circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion.

    PubMed

    Whitlon, Donna S

    2017-06-01

    In the United States there are, at present, no drugs that are specifically FDA approved to treat hearing loss. Although several clinical trials are ongoing, including one testing D-methionine that is supported by the US Army, none of these trials directly address the effect of noise exposure on cochlear spiral ganglion neurons. We recently published the first report of a systematic chemical compound screen using primary, mammalian spiral ganglion cultures in which we were able to detect a compound and others in its class that increased neurite elongation, a critical step in restoring cochlear synapses after noise induced hearing loss. Here we discuss the issues, both pro and con, that influenced the development of our approach. These considerations may be useful for future compound screens that target the same or other attributes of cochlear spiral ganglion neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Classification and Current Management of Inner Ear Malformations.

    PubMed

    Sennaroğlu, Levent; Bajin, Münir Demir

    2017-09-29

    Morphologically congenital sensorineural hearing loss can be investigated under two categories. The majority of congenital hearing loss causes (80%) are membranous malformations. Here, the pathology involves inner ear hair cells. There is no gross bony abnormality and, therefore, in these cases high-resolution computerized tomography and magnetic resonance imaging of the temporal bone reveal normal findings. The remaining 20% have various malformations involving the bony labyrinth and, therefore, can be radiologically demonstrated by computerized tomography and magnetic resonance imaging. The latter group involves surgical challenges as well as problems in decision-making. Some cases may be managed by a hearing aid, others need cochlear implantation, and some cases are candidates for an auditory brainstem implantation (ABI). During cochlear implantation, there may be facial nerve abnormalities, cerebrospinal fluid leakage, electrode misplacement or difficulty in finding the cochlea itself. During surgery for inner ear malformations, the surgeon must be ready to modify the surgical approach or choose special electrodes for surgery. In the present review article, inner ear malformations are classified according to the differences observed in the cochlea. Hearing and language outcomes after various implantation methods are closely related to the status of the cochlear nerve, and a practical classification of the cochlear nerve deficiency is also provided.

  2. Otoacoustic emission responses of the cochlea to acute and total ischemia.

    PubMed

    Yıldırım, Yavuz Selim; Aksoy, Fadlullah; Ozturan, Orhan; Veyseller, Bayram; Demirhan, Hasan

    2013-12-01

    In the present experimental study, we sought to monitor distortion product otoacoustic emissions (DPOAEs) as an indicator of cochlear function, after sudden, total, and irreversible interruption of cochlear blood flow, to provide information on the time course of cochlear response to ischemia. Twenty rats with normal hearing function were included. Complete and abrupt ischemia was provided by decapitation. DPOAEs at 3-8 kHz frequencies were recorded at baseline and exactly every consecutive minute after decapitation, until emissions in all frequencies disappeared completely. Mean DPOAE values decreased significantly and progressively after decapitation for all frequencies. The mean duration of emissions was 8.20 ± 1.96 min (minimum 3 min, maximum 11 min). The longest durations of DPOAEs were observed with 4 and 5 kHz frequencies, and 3 and 6 kHz had the shortest durations. The outer hair cells exposed to acute ischemia seem to exhibit a rapid functional loss; thus, cautious handling of the cochlear vasculature and surrounding structures is necessary in surgical interventions. Additionally, our results provide some idea of the normal tolerance range of the cochlea to ischemia, which could be useful for future studies.

  3. Optoacoustic effect is responsible for laser-induced cochlear responses

    NASA Astrophysics Data System (ADS)

    Kallweit, N.; Baumhoff, P.; Krueger, A.; Tinne, N.; Kral, A.; Ripken, T.; Maier, H.

    2016-06-01

    Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation.

  4. Differences between mechanical and neural tuning at the apex of the intact guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Recio-Spinoso, Alberto; Oghalai, John S.

    2018-05-01

    While most of human speech information is contained within frequencies < 3-4 kHz, only a few mechanical measurements have been made in cochlear regions responsive to such low frequencies. Furthermore, the data that do exist are difficult to interpret given the technical difficulties in performing the experiments and/or the artifacts that result from opening the otic capsule bone to visualize the organ of Corti. Here, we overcame historical technical limitations and non-invasively measured sound-induced vibrations within the apex of the guinea pig cochlea using volumetric optical coherence tomography vibrometry (VOCTV). We found that vibrations within apical cochlear regions, with neural tuning below 2 kHz, demonstrate low-pass filter characteristics. There was evidence of a low-level of broad-band cochlear amplification that did not sharpen frequency selectivity. We compared the vibratory responses we measured to previously-measured single-unit auditory nerve tuning curves in the same frequency range, and found that mechanical responses do not match neural responses. These data suggest that, for low frequency cochlear regions, inner hair cells not only transduce vibrations of the organ of Corti but also sharpen frequency tuning.

  5. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy.

    PubMed

    Guest, Hannah; Munro, Kevin J; Prendergast, Garreth; Howe, Simon; Plack, Christopher J

    2017-02-01

    In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Hearing preservation cochlear implantation in children: The HEARRING Group consensus and practice guide.

    PubMed

    Rajan, Gunesh; Tavora-Vieira, Dayse; Baumgartner, Wolf-Dieter; Godey, Benoit; Müller, Joachim; O'Driscoll, Martin; Skarzynski, Henryk; Skarzynski, Piotr; Usami, Shin-Ichi; Adunka, Oliver; Agrawal, Sumit; Bruce, Iain; De Bodt, Marc; Caversaccio, Marco; Pilsbury, Harold; Gavilán, Javier; Hagen, Rudolf; Hagr, Abdulrahman; Kameswaran, Mohan; Karltorp, Eva; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Yongxin, Li; Lorens, Artur; Manoj, Manikoth; Martin, Jane; Mertens, Griet; Mlynski, Robert; Parnes, Lorne; Pulibalathingal, Sasidharan; Radeloff, Andreas; Raine, Christopher H; Rajeswaran, Ranjith; Schmutzhard, Joachim; Sprinzl, Georg; Staecker, Hinrich; Stephan, Kurt; Sugarova, Serafima; Zernotti, Mario; Zorowka, Patrick; Van de Heyning, Paul

    2018-01-01

    To provide multidisciplinary cochlear implant teams with a current consensus statement to support hearing preservation cochlear implantation (HPCI) in children, including those children with symptomatic partial deafness (PD) where the intention is to use electric-acoustic stimulation (EAS). The main objectives are to provide guidelines on who is a candidate, how to assess these children and when to implant if Med-El Flex electrode arrays are chosen for implantation. The HEARRING group reviewed the current evidence and practice regarding the management of children to be considered for HPCI surgery emphasizing the assessment needed prior to implantation in order to demonstrate the benefits in these children over time. The consensus statement addresses following three key questions: (1) Should these children be treated? (2) How to identify these children? (3) How to manage these children? The HEARRING group concludes that irrespective of the degree of residual hearing present, the concepts of hearing and structure preservation should be applied in every child undergoing cochlear implantation and that HPCI is a safe and reliable treatment option. Early detection and multidisciplinary assessment are key to the identification of children with symptomatic PD, these children should undergo HPCI as early as possible.

  7. [Immunolocalization of choline acetyltransferase in 2 types of efferent synapses of the organ of Corti].

    PubMed

    Eybalin, M; Pujol, R

    1985-01-01

    The efferent (olivo-cochlear) innervation of the organ of Corti was studied using a monoclonal antibody against choline acetyltransferase (ChAT). In the inner spiral bundle (ISB), below the inner hair cells (IHCs), the anti-ChAT immunoreactivity was observed within unvesiculated fibers and vesiculated varicosities. Unreactive varicosities, at least as numerous as the immunoreactive ones, were also detected. Both types of vesiculated varicosities synapsed with the dendrites of the primary auditory neurons (afferent fibers) connected to the IHCs. At the outer hair cell (OHC) level, nearly all the vesiculated terminals making axo-somatic synapses with the OHCs were anti-ChAT immunoreactive. Only few terminals synapsing with the OHCs were unreactive. These findings allowed the differentiation of at least three types of efferent synapses in the organ of Corti. In the ISB, a first population of axo-dendritic synapses seems to be cholinergic whereas a second population might use another neurotransmitter. At the OHC level, our results support the hypothesis that acetylcholine is the neurotransmitter of nearly all the large axo-somatic synapses. The rare unreactive axo-somatic synapses could constitute a fourth and minor type of efferent synapse. Thus, it would be helpful to subclassify the efferent innervations of the organ of Corti according to their neurochemical nature. A re-evaluation of the whole body of available electrophysiological data would be also necessary, as until now, acetylcholine was considered as being the only efferent cochlear neurotransmitter.

  8. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells

    PubMed Central

    Laos, Maarja; Anttonen, Tommi; Kirjavainen, Anna; Hällström, Taija af; Laiho, Marikki; Pirvola, Ulla

    2014-01-01

    Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with the in vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs. PMID:25063730

  9. Local gene transfection in the cochlea (Review).

    PubMed

    Xia, Li; Yin, Shankai

    2013-07-01

    There is much interest in the potential application of vector-induced gene therapeutic approaches to several forms of hearing disorders due to the poor efficacy of existing treatments. The cochlea is an ideal site for local gene transfection due to its anatomical encapsulation and fluid flow within its ducts. However, this requires the development of novel technologies in materials science and microbial supply vectors for target gene delivery. This review focuses on the introduction of various viral and non-viral vectors as well as injection approaches to transfecting cochlear cells in vivo. Finally, the perspective of local gene therapy was discussed. Therapeutic approaches using local gene transfection may provide a means of cochlear cell and tissue protection and treatment in cases of exogenous hearing loss and endogenous disorders.

  10. Progressive Hearing Loss in Mice Carrying a Mutation in Usp53

    PubMed Central

    Kazmierczak, Marcin; Harris, Suzan L.; Kazmierczak, Piotr; Shah, Prahar; Starovoytov, Valentin; Ohlemiller, Kevin K.

    2015-01-01

    Disordered protein ubiquitination has been linked to neurodegenerative disease, yet its role in inner ear homeostasis and hearing loss is essentially unknown. Here we show that progressive hearing loss in the ethylnitrosourea-generated mambo mouse line is caused by a mutation in Usp53, a member of the deubiquitinating enzyme family. USP53 contains a catalytically inactive ubiquitin-specific protease domain and is expressed in cochlear hair cells and a subset of supporting cells. Although hair cell differentiation is unaffected in mambo mice, outer hair cells degenerate rapidly after the first postnatal week. USP53 colocalizes and interacts with the tight junction scaffolding proteins TJP1 and TJP2 in polarized epithelial cells, suggesting that USP53 is part of the tight junction complex. The barrier properties of tight junctions of the stria vascularis appeared intact in a biotin tracer assay, but the endocochlear potential is reduced in adult mambo mice. Hair cell degeneration in mambo mice precedes endocochlear potential decline and is rescued in cochlear organotypic cultures in low potassium milieu, indicating that hair cell loss is triggered by extracellular factors. Remarkably, heterozygous mambo mice show increased susceptibility to noise injury at high frequencies. We conclude that USP53 is a novel tight junction-associated protein that is essential for the survival of auditory hair cells and normal hearing in mice, possibly by modulating the barrier properties and mechanical stability of tight junctions. SIGNIFICANCE STATEMENT Hereditary hearing loss is extremely prevalent in the human population, but many genes linked to hearing loss remain to be discovered. Forward genetics screens in mice have facilitated the identification of genes involved in sensory perception and provided valuable animal models for hearing loss in humans. This involves introducing random mutations in mice, screening the mice for hearing defects, and mapping the causative mutation. Here, we have identified a mutation in the Usp53 gene that causes progressive hearing loss in the mambo mouse line. We demonstrate that USP53 is a catalytically inactive deubiquitinating enzyme and a novel component of tight junctions that is necessary for sensory hair cell survival and inner ear homeostasis. PMID:26609154

  11. Cochlear compression: perceptual measures and implications for normal and impaired hearing.

    PubMed

    Oxenham, Andrew J; Bacon, Sid P

    2003-10-01

    This article provides a review of recent developments in our understanding of how cochlear nonlinearity affects sound perception and how a loss of the nonlinearity associated with cochlear hearing impairment changes the way sounds are perceived. The response of the healthy mammalian basilar membrane (BM) to sound is sharply tuned, highly nonlinear, and compressive. Damage to the outer hair cells (OHCs) results in changes to all three attributes: in the case of total OHC loss, the response of the BM becomes broadly tuned and linear. Many of the differences in auditory perception and performance between normal-hearing and hearing-impaired listeners can be explained in terms of these changes in BM response. Effects that can be accounted for in this way include poorer audiometric thresholds, loudness recruitment, reduced frequency selectivity, and changes in apparent temporal processing. All these effects can influence the ability of hearing-impaired listeners to perceive speech, especially in complex acoustic backgrounds. A number of behavioral methods have been proposed to estimate cochlear nonlinearity in individual listeners. By separating the effects of cochlear nonlinearity from other aspects of hearing impairment, such methods may contribute towards identifying the different physiological mechanisms responsible for hearing loss in individual patients. This in turn may lead to more accurate diagnoses and more effective hearing-aid fitting for individual patients. A remaining challenge is to devise a behavioral measure that is sufficiently accurate and efficient to be used in a clinical setting.

  12. The cost and analysis of nonuse of cochlear implants.

    PubMed

    Raine, Christopher H; Summerfield, Quentin; Strachan, David R; Martin, Jane M; Totten, Catherine

    2008-02-01

    Analysis of the cost implications and reasons for nonuse of cochlear implants in an established cochlear implant unit. Clinical data were analyzed retrospectively to construct a table of cochlear implant use over time to identify nonuse and to suggest the reasons for this. Yorkshire Cochlear Implant Service is a tertiary referral center. Three hundred forty consecutively implanted patients from 1990 to 2005. Life table analysis showed that most children used their implant (p = 0.7 during 11 yr). However, 11 of 155 children and 2 of 185 adults became nonusers during the period of study. The 11 children stopped because of age at implant, educational placement, and family support. Two adults stopped because of psychological issues and inability to adapt to the signal. Surgical and implant costs have initial impact, with subsequent years' costs reflecting programming issues and maintenance. When considering nonuse, there are 2 effects: first, no more costs are incurred, and second, no more years of use are accumulated. Thus, nonuse reduces both costs and years. Costs of gaining a year of use as a function of time showed that there was little financial impact from the 11 children nonusers. As a ratio of "no nonuse" and observed "nonuse" in children, the ratio is 1.07 by 13 years of implantation (7%). The adult group was too few to analyze. The nonuse added 7% to the average cost. Retrospective audit identifies that patient selection by a multidisciplinary team is crucial to reducing nonuse.

  13. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    PubMed

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.

  14. Origins of Glutamatergic Terminals in the Inferior Colliculus Identified by Retrograde Transport and Expression of VGLUT1 and VGLUT2 Genes.

    PubMed

    Ito, Tetsufumi; Oliver, Douglas L

    2010-01-01

    Terminals containing vesicular glutamate transporter (VGLUT) 2 make dense axosomatic synapses on tectothalamic GABAergic neurons. These are one of the three types of glutamatergic synapses in the inferior colliculus (IC) identified by one of three combinations of transporter protein: VGLUT1 only, VGLUT2 only, or both VGLUT1 and 2. To identify the source(s) of these three classes of glutamatergic terminals, we employed the injection of Fluorogold (FG) into the IC and retrograde transport in combination with in situ hybridization for VGLUT1 and VGLUT2 mRNA. The distribution of FG-positive soma was consistent with previous reports. In the auditory cortex, all FG-positive cells expressed only VGLUT1. In the IC, the majority of FG-positive cells expressed only VGLUT2. In the intermediate nucleus of the lateral lemniscus, most FG-positive cells expressed VGLUT2, and a few FG-positive cells expressed both VGLUT1 and 2. In the superior olivary complex (SOC), the majority of FG-positive cells expressing VGLUT2 were in the lateral superior olive, medial superior olive, and some periolivary nuclei. Fewer FG-positive cells expressed VGLUT1&2. In the ventral cochlear nucleus, almost all FG-positive cells expressed VGLUT1&2. On the other hand in the dorsal cochlear nucleus, the vast majority of FG-positive cells expressed only VGLUT2. Our data suggest that (1) the most likely sources of VGLUT2 terminals in the IC are the intermediate nucleus of the lateral lemniscus, the dorsal cochlear nucleus, the medial and lateral superior olive, and the IC itself, (2) VGLUT1 terminals in the IC originate only in the ipsilateral auditory cortex, and (3) VGLUT1&2 terminals in IC originate mainly from the VCN with minor contributions from the SOC and the lateral lemniscal nuclei.

  15. Improving speech perception in noise for children with cochlear implants.

    PubMed

    Gifford, René H; Olund, Amy P; Dejong, Melissa

    2011-10-01

    Current cochlear implant recipients are achieving increasingly higher levels of speech recognition; however, the presence of background noise continues to significantly degrade speech understanding for even the best performers. Newer generation Nucleus cochlear implant sound processors can be programmed with SmartSound strategies that have been shown to improve speech understanding in noise for adult cochlear implant recipients. The applicability of these strategies for use in children, however, is not fully understood nor widely accepted. To assess speech perception for pediatric cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether Nucleus sound processor SmartSound strategies yield improved sentence recognition in noise for children who learn language through the implant. Single subject, repeated measures design. Twenty-two experimental subjects with cochlear implants (mean age 11.1 yr) and 25 control subjects with normal hearing (mean age 9.6 yr) participated in this prospective study. Speech reception thresholds (SRT) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the experimental subjects' everyday program incorporating Adaptive Dynamic Range Optimization (ADRO) as well as with the addition of Autosensitivity control (ASC). Adaptive SRTs with the Hearing In Noise Test (HINT) sentences were obtained for all 22 experimental subjects, and performance-in percent correct-was assessed in a fixed +6 dB SNR (signal-to-noise ratio) for a six-subject subset. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the SmartSound setting on the SRT in noise. The primary findings mirrored those reported previously with adult cochlear implant recipients in that the addition of ASC to ADRO significantly improved speech recognition in noise for pediatric cochlear implant recipients. The mean degree of improvement in the SRT with the addition of ASC to ADRO was 3.5 dB for a mean SRT of 10.9 dB SNR. Thus, despite the fact that these children have acquired auditory/oral speech and language through the use of their cochlear implant(s) equipped with ADRO, the addition of ASC significantly improved their ability to recognize speech in high levels of diffuse background noise. The mean SRT for the control subjects with normal hearing was 0.0 dB SNR. Given that the mean SRT for the experimental group was 10.9 dB SNR, despite the improvements in performance observed with the addition of ASC, cochlear implants still do not completely overcome the speech perception deficit encountered in noisy environments accompanying the diagnosis of severe-to-profound hearing loss. SmartSound strategies currently available in latest generation Nucleus cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise for pediatric cochlear implant recipients. Despite the reluctance of pediatric audiologists to utilize SmartSound settings for regular use, the results of the current study support the addition of ASC to ADRO for everyday listening environments to improve speech perception in a child's typical everyday program. American Academy of Audiology.

  16. Stronger efferent suppression of cochlear neural potentials by contralateral acoustic stimulation in awake than in anesthetized chinchilla.

    PubMed

    Aedo, Cristian; Tapia, Eduardo; Pavez, Elizabeth; Elgueda, Diego; Delano, Paul H; Robles, Luis

    2015-01-01

    There are two types of sensory cells in the mammalian cochlea, inner hair cells, which make synaptic contact with auditory-nerve afferent fibers, and outer hair cells that are innervated by crossed and uncrossed medial olivocochlear (MOC) efferent fibers. Contralateral acoustic stimulation activates the uncrossed efferent MOC fibers reducing cochlear neural responses, thus modifying the input to the central auditory system. The chinchilla, among all studied mammals, displays the lowest percentage of uncrossed MOC fibers raising questions about the strength and frequency distribution of the contralateral-sound effect in this species. On the other hand, MOC effects on cochlear sensitivity have been mainly studied in anesthetized animals and since the MOC-neuron activity depends on the level of anesthesia, it is important to assess the influence of anesthesia in the strength of efferent effects. Seven adult chinchillas (Chinchilla laniger) were chronically implanted with round-window electrodes in both cochleae. We compared the effect of contralateral sound in awake and anesthetized condition. Compound action potentials (CAP) and cochlear microphonics (CM) were measured in the ipsilateral cochlea in response to tones in absence and presence of contralateral sound. Control measurements performed after middle-ear muscles section in one animal discarded any possible middle-ear reflex activation. Contralateral sound produced CAP amplitude reductions in all chinchillas, with suppression effects greater by about 1-3 dB in awake than in anesthetized animals. In contrast, CM amplitude increases of up to 1.9 dB were found in only three awake chinchillas. In both conditions the strongest efferent effects were produced by contralateral tones at frequencies equal or close to those of ipsilateral tones. Contralateral CAP suppressions for 1-6 kHz ipsilateral tones corresponded to a span of uncrossed MOC fiber innervation reaching at least the central third of the chinchilla cochlea.

  17. Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.

    PubMed

    Jin, Zhe; Ulfendahl, Mats; Järlebark, Leif

    2008-01-01

    Genetic deafness is one of the most common human genetic birth defects. To understand the molecular mechanisms underlying human hereditary deafness, deaf animal strains have proved to be invaluable models. The German waltzing guinea pig is a new strain of animals with unidentified gene mutation(s), displaying recessively inherited cochleovestibular impairment. Histological investigations of the homozygous animals (gw/gw) revealed a collapse of the endolymphatic compartment and malformation of stria vascularis. RT-PCR showed a significant reduction in expression of the strial intermediate cell-specific gene Dct and the tight-junction gene Cldn11 in the embryonic day (E)40 and adult gw/gw cochlear lateral wall. Immunohistochemical analysis of the gw/gw cochlea showed loss of the tight junction protein CLDN11 in strial basal cells from E40, loss of the potassium channel subunit KCNJ10 in strial intermediate cells from E50, and loss of the Na-K-Cl cotransporter SLC12A2 in strial marginal cells from E50. In addition, a temporary loss of the gap junction protein GJB2 (connexin 26) between fibrocytes in the spiral ligament of the E50 gw/gw cochlea was observed. The barrier composed of tight junctions between strial basal cells was disrupted in the gw/gw cochlea as indicated by a biotin tracer permeability assay. In conclusion, spatiotemporal loss of K+ transport proteins in the cochlear lateral wall is caused by malformation of the stria vascularis in the developing German waltzing guinea pig inner ear. This new animal strain may serve as a good model for studying human genetic deafness due to disruption of inner ear ion homeostasis.

  18. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity.

    PubMed

    Jamesdaniel, Samson; Rathinam, Rajamani; Neumann, William L

    2016-12-01

    Cisplatin-induced ototoxicity remains a primary dose-limiting adverse effect of this highly effective anticancer drug. The clinical utility of cisplatin could be enhanced if the signaling pathways that regulate the toxic side-effects are delineated. In previous studies, we reported cisplatin-induced nitration of cochlear proteins and provided the first evidence for nitration and downregulation of cochlear LIM domain only 4 (LMO4) in cisplatin ototoxicity. Here, we extend these findings to define the critical role of nitrative stress in cisplatin-induced downregulation of LMO4 and its consequent ototoxic effects in UBOC1 cell cultures derived from sensory epithelial cells of the inner ear and in CBA/J mice. Cisplatin treatment increased the levels of nitrotyrosine and active caspase 3 in UBOC1 cells, which was detected by immunocytochemical and flow cytometry analysis, respectively. The cisplatin-induced nitrative stress and apoptosis were attenuated by co-treatment with SRI110, a peroxynitrite decomposition catalyst (PNDC), which also attenuated the cisplatin-induced downregulation of LMO4 in a dose-dependent manner. Furthermore, transient overexpression of LMO4 in UBOC1 cells prevented cisplatin-induced cytotoxicity while repression of LMO4 exacerbated cisplatin-induced cell death, indicating a direct link between LMO4 protein levels and cisplatin ototoxicity. Finally, auditory brainstem responses (ABR) recorded from CBA/J mice indicated that co-treatment with SRI110 mitigated cisplatin-induced hearing loss. Together, these results suggest that cisplatin-induced nitrative stress leads to a decrease in the levels of LMO4, downregulation of LMO4 is a critical determinant in cisplatin-induced ototoxicity, and targeting peroxynitrite could be a promising strategy for mitigating cisplatin-induced hearing loss. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. An Independent Construct for Conditional Expression of Atonal Homolog-1

    PubMed Central

    Cheng, Yen-fu; Kinouchi, Hikaru; Bieber, Rebecca; Edge, Albert S.B.

    2014-01-01

    Abstract The mammalian homolog of the basic helix-loop-helix transcription factor atonal-1 (Atoh1 or Math1) is required for development of cochlear hair cells that function as the mechanosensory cells required for audition. Forced expression of Atoh1 in cochlear-supporting cells may provide a way to regenerate hair cells and provide for a therapy for hearing loss. Additionally, Atoh1 is an inhibitor of proliferation and has further clinical applications in anticancer therapies. The goal of these experiments was to improve the method for Atoh1 expression by engineering a genetic construct that may be used in future translational applications. To address the poor control of Atoh1 expression in standard gene expression systems where Atoh1 is expressed constitutively at abnormally elevated levels, our aim was to engineer an inducible system whereby Atoh1 was upregulated by an inducer and downregulated once the inducer was removed. A further aim was to engineer a single genetic construct that allowed for conditional expression of Atoh1 independent of secondary regulatory elements. Here we describe a stand-alone genetic construct that utilizes the tamoxifen sensitivity of a mutated estrogen receptor (ER) ligand-binding domain for the conditional expression of Atoh1. The Atoh1-ER-DsRed construct is translated into an ATOH1-ER-DSRED fusion protein that remains sequestered in the cytoplasm and therefore rendered inactive because it cannot enter the nucleus to activate Atoh1 signaling pathways. However, application of 4-hydroxytamoxifen results in translocation of the fusion protein to the nucleus, where it binds to the Atoh1 enhancer, upregulates transcription and translation of endogenous ATOH1 and activates downstream Atoh1 signaling such as upregulation of the hair cell protein MYOSIN 7A. Removal of tamoxifen reverses the upregulation of endogenous Atoh1 signaling. This construct serves as an independent genetic construct that allows for the conditional upregulation and downregulation of Atoh1, and may prove useful for manipulating Atoh1 expression in vivo. PMID:24066662

  20. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

    PubMed Central

    Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.

    2017-01-01

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311

  1. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death.

    PubMed

    Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P

    2017-12-21

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.

  2. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance.

    PubMed

    Ciganović, Nikola; Wolde-Kidan, Amanuel; Reichenbach, Tobias

    2017-06-15

    The mammalian sense of hearing relies on two types of sensory cells: inner hair cells transmit the auditory stimulus to the brain, while outer hair cells mechanically modulate the stimulus through active feedback. Stimulation of a hair cell is mediated by displacements of its mechanosensitive hair bundle which protrudes from the apical surface of the cell into a narrow fluid-filled space between reticular lamina and tectorial membrane. While hair bundles of inner hair cells are of linear shape, those of outer hair cells exhibit a distinctive V-shape. The biophysical rationale behind this morphology, however, remains unknown. Here we use analytical and computational methods to study the fluid flow across rows of differently shaped hair bundles. We find that rows of V-shaped hair bundles have a considerably reduced resistance to crossflow, and that the biologically observed shapes of hair bundles of outer hair cells are near-optimal in this regard. This observation accords with the function of outer hair cells and lends support to the recent hypothesis that inner hair cells are stimulated by a net flow, in addition to the well-established shear flow that arises from shearing between the reticular lamina and the tectorial membrane.

  3. The role of viscous fluid flow in active cochlear partition vibration

    NASA Astrophysics Data System (ADS)

    Svobodny, Thomas

    2001-11-01

    Sound transduction occurs via the forcing of the basilar membrane by a traveling wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number (because of the tiny size). The actual transduction occurs through the mechanism of stereocilia of hair cells. Analysis and simulation of the interaction between the microhydrodynamical flow and the basilar membrane vibration will be presented in this talk. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection.

  4. Cochlearoids F-K: Phenolic meroterpenoids from the fungus Ganoderma cochlear and their renoprotective activity.

    PubMed

    Wang, Xin-Long; Zhou, Feng-Jiao; Dou, Man; Yan, Yong-Ming; Wang, Shu-Mei; Di, Lei; Cheng, Yong-Xian

    2016-11-15

    Ganoderma mushrooms are of great nutritious and medicinal values. This study was designed to characterize compounds from the fruiting bodies of Ganoderma cochlear and investigate their protective effects against kidney disorders. Six novel meroterpenoids cochlearoids F-K (1-6) were isolated by utilizing phytochemical approaches. Their structures were identified on the basis of extensive spectroscopic data and calculation methods. Biological evaluation shows that compounds 1-4 and 6 exhibit potent inhibitory activity on fibronectin overproduction in TGF-β1-induced HKC-8 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Racemic alkaloids from the fungus Ganoderma cochlear.

    PubMed

    Wang, Xin-Long; Dou, Man; Luo, Qi; Cheng, Li-Zhi; Yan, Yong-Ming; Li, Rong-Tao; Cheng, Yong-Xian

    2017-01-01

    Seven pairs of new alkaloid enantiomers, ganocochlearines C-I (1, 3-8), and three pairs of known alkaloids were isolated from the fruiting bodies of Ganoderma cochlear. The chemical structures of new compounds were elucidated on the basis of 1D and 2D NMR data. The absolute configurations of compounds 1, 3-10 were assigned by ECD calculations. Biological activities of these isolates against renal fibrosis were accessed in rat normal or diseased renal interstitial fibroblast cells. Importantly, the plausible biosynthetic pathway for this class of alkaloids was originally proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires CRFR1 to establish normal hair cell innervation and cochlear sensitivity

    PubMed Central

    Graham, Christine E.; Vetter, Douglas E.

    2011-01-01

    Cells of the inner ear face constant metabolic and structural stress. Exposure to intense sound or certain drugs destroys cochlea hair cells, which in mammals do not regenerate. Thus, an endogenous stress response system may exist within the cochlea to protect it from everyday stressors. We recently described the existence of Corticotropin-Releasing Factor (CRF) in the mouse cochlea. The CRFR1 receptor is considered the primary and canonical target of CRF signaling, and systemically it plays an essential role in coordinating the body-wide stress response via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Here we describe an essential role for CRFR1 in auditory system development and function, and offer the first description of a complete HPA equivalent signaling system resident within the cochlea. To reveal the role of CRFR1 activation in the cochlea, we have used mice carrying a null ablation of the CRFR1 gene. CRFR1−/− mice exhibited elevated auditory thresholds at all frequencies tested, indicating reduced sensitivity. Furthermore, our results suggest that CRFR1 has a developmental role affecting inner hair cell morphology and afferent and efferent synapse distribution. Given the role of HPA signaling in maintaining local homeostasis in other tissues, the presence of a cochlear HPA signaling system suggests important roles for CRFR1 activity in setting cochlear sensitivity, perhaps both neural and non-neural mechanisms. These data highlight the complex pleiotropic mechanisms modulated by CRFR1 signaling in the cochlea. PMID:21273411

  7. [DPOAE in tinnitus patients with cochlear hearing loss considering hyperacusis and misophonia].

    PubMed

    Sztuka, Aleksandra; Pośpiech, Lucyna; Gawron, Wojciech; Dudek, Krzysztof

    2006-01-01

    The most probable place generating tinnitus in auditory pathway are outer hair cells (OHC) inside cochlea. To asses their activity otoacoustic emission is used. The goal of the investigation was estimation the features of otoemission DPOAE in groups with tinnitus patients with cochlear hearing loss, estimation of diagnostic value of DPOAE parameters for analysis of function of the cochlea in investigated patients emphasizing DPOAE parameters most useful in localizing tinnitus generators and estimation of hypothetic influence of hyperacusis and misophony on parameters of DPOAE in tinnitus patients with cochlear hearing loss. The material of the study were 42 tinnitus patients with cochlear hearing loss. In the control group there were 21 patients without tinnitus with the same type of hearing loss. Then tinnitus patients were divided into three subgroups--with hyperacusis, misophony and without both of them, based on audiologic findings. after taking view on tinnitus and physical examination in all the patients pure tone and impedance audiometry, supratreshold tests, ABR and audiometric average and discomfort level were evaluated. Then otoemission DPOAE was measured in three procedures. First the amplitudes of two points per octave were assessed, in second--"fine structure" method-- 16-20 points per octave (f2/f1 = 1.2, L1 = L2 = 70 dB). Third procedure included recording of growth rate function in three series for input tones of value f2 = 2002, 4004, 6006 Hz (f2/f1= 1.22) and levels L1=L2, growing by degrees of 5dB in each series. DPOAE amplitudes in recording of 2 points per octave and fine structure method are very valuable parameters for estimation of cochlear function in tinnitus patients with cochlear hearing loss. Decreasing of DPOAE amplitudes in patients with cochlear hearing loss and tinnitus suggests significant role of OHC pathology, unbalanced by IHC injury in generation of tinnitus in patients with hearing loss of cochlear localization. DPOAE fine structure provides us the additional information about DPOAE amplitude recorded in two points per octave, spreading the amount of frequencies f2, where differences are noticed in comparison of two groups--tinnitus patients and control. Function growth rate cannot be the only parameter in estimation of DPOAE in tinnitus patients with cochlear hearing loss, also including subjects with hyperacusis and misophony. Hyperacusis has important influence on DPOAE amplitude, increases essentially amplitude of DPOAE in the examined group of tinnitus patients.

  8. Spectral-Temporal Modulated Ripple Discrimination by Children With Cochlear Implants.

    PubMed

    Landsberger, David M; Padilla, Monica; Martinez, Amy S; Eisenberg, Laurie S

    A postlingually implanted adult typically develops hearing with an intact auditory system, followed by periods of deafness (or near deafness) and adaptation to the implant. For an early implanted child whose brain is highly plastic, the auditory system matures with consistent input from a cochlear implant. It is likely that the auditory system of early implanted cochlear implant users is fundamentally different than postlingually implanted adults. The purpose of this study is to compare the basic psychophysical capabilities and limitations of these two populations on a spectral resolution task to determine potential effects of early deprivation and plasticity. Performance on a spectral resolution task (Spectral-temporally Modulated Ripple Test [SMRT]) was measured for 20 bilaterally implanted, prelingually deafened children (between 5 and 13 years of age) and 20 hearing children within the same age range. Additionally, 15 bilaterally implanted, postlingually deafened adults, and 10 hearing adults were tested on the same task. Cochlear implant users (adults and children) were tested bilaterally, and with each ear alone. Hearing listeners (adults and children) were tested with the unprocessed SMRT and with a vocoded version that simulates an 8-channel cochlear implant. For children with normal hearing, a positive correlation was found between age and SMRT score for both the unprocessed and vocoded versions. Older hearing children performed similarly to hearing adults in both the unprocessed and vocoded test conditions. However, for children with cochlear implants, no significant relationship was found between SMRT score and chronological age, age at implantation, or years of implant experience. Performance by children with cochlear implants was poorer than performance by cochlear implanted adults. It was also found that children implanted sequentially tended to have better scores with the first implant compared with the second implant. This difference was not observed for adults. An additional finding was that SMRT score was negatively correlated with age for adults with implants. Results from this study suggest that basic psychophysical capabilities of early implanted children and postlingually implanted adults differ when assessed in the sound field using their personal implant processors. Because spectral resolution does not improve with age for early implanted children, it seems likely that the sparse representation of the signal provided by a cochlear implant limits spectral resolution development. These results are supported by the finding that postlingually implanted adults, whose auditory systems matured before the onset of hearing loss, perform significantly better than early implanted children on the spectral resolution test.

  9. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.

    PubMed

    Spector, Alexander A

    2005-06-01

    Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.

  10. New Criteria of Indication and Selection of Patients to Cochlear Implant

    PubMed Central

    Sampaio, André L. L.; Araújo, Mercêdes F. S.; Oliveira, Carlos A. C. P.

    2011-01-01

    Numerous changes continue to occur in cochlear implant candidacy. In general, these have been accompanied by concomitant and satisfactory changes in surgical techniques. Together, this has advanced the utility and safety of cochlear implantation. Most devices are now approved for use in patients with severe to profound unilateral hearing loss rather then the prior requirement of a bilateral profound loss. Furthermore, studies have begun utilizing short electrode arrays for shallow insertion in patients with considerable low-frequency residual hearing. This technique will allow the recipient to continue to use acoustically amplified hearing for the low frequencies simultaneously with a cochlear implant for the high frequencies. The advances in design of, and indications for, cochlear implants have been matched by improvements in surgical techniques and decrease in complications. The resulting improvements in safety and efficacy have further encouraged the use of these devices. This paper will review the new concepts in the candidacy of cochlear implant. Medline data base was used to search articles dealing with the following topics: cochlear implant in younger children, cochlear implant and hearing preservation, cochlear implant for unilateral deafness and tinnitus, genetic hearing loss and cochlear implant, bilateral cochlear implant, neuropathy and cochlear implant and neural plasticity, and the selection of patients for cochlear implant. PMID:22013448

  11. The potential use of low-frequency tones to locate regions of outer hair cell loss.

    PubMed

    Kamerer, Aryn M; Diaz, Francisco J; Peppi, Marcello; Chertoff, Mark E

    2016-12-01

    Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies. Published by Elsevier B.V.

  12. Factors associated with Hearing Loss in a Normal-Hearing Guinea Pig Model of Hybrid Cochlear Implants

    PubMed Central

    Tanaka, Chiemi; Nguyen-Huynh, Anh; Loera, Katherine; Stark, Gemaine; Reiss, Lina

    2014-01-01

    The Hybrid cochlear implant (CI), also known as Electro- Acoustic Stimulation (EAS), is a new type of CI that preserves residual acoustic hearing and enables combined cochlear implant and hearing aid use in the same ear. However, 30-55% of patients experience acoustic hearing loss within days to months after activation, suggesting that both surgical trauma and electrical stimulation may cause hearing loss. The goals of this study were to: 1) determine the contributions of both implantation surgery and EAS to hearing loss in a normal-hearing guinea pig model; 2) determine which cochlear structural changes are associated with hearing loss after surgery and EAS. Two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no direct acoustic or electric stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem response thresholds were followed over time at 1, 2, 6, and 16 kHz. At the end of the study, the following cochlear measures were quantified: hair cells, spiral ganglion neuron density, fibrous tissue density, and stria vascularis blood vessel density; the presence or absence of ossification around the electrode entry was also noted. After surgery, implanted animals experienced a range of 0-55 dB of threshold shifts in the vicinity of the electrode at 6 and 16 kHz. The degree of hearing loss was significantly correlated with reduced stria vascularis vessel density and with the presence of ossification, but not with hair cell counts, spiral ganglion neuron density, or fibrosis area. After 10 weeks of stimulation, 67% of implanted, stimulated animals had more than 10 dB of additional threshold shift at 1 kHz, compared to 17% of implanted, non-stimulated animals and 0% of non-implanted animals. This 1-kHz hearing loss was not associated with changes in any of the cochlear measures quantified in this study. The variation in hearing loss after surgery and electrical stimulation in this animal model is consistent with the variation in human patients. Further, these findings illustrate an advantage of a normal-hearing animal model for quantification of hearing loss and damage to cochlear structures without the confounding effects of chemical- or noise-induced hearing loss. Finally, this study is the first to suggest a role of the stria vascularis and damage to the lateral wall in implantation-induced hearing loss. Further work is needed to determine the mechanisms of implantation- and electrical-stimulation-induced hearing loss. PMID:25128626

  13. Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment.

    PubMed

    Liao, Zhijie; Popel, Aleksander S; Brownell, William E; Spector, Alexander A

    2005-04-01

    Cochlear outer hair cells (OHC) are critically important for the amplification and sharp frequency selectivity of the mammalian ear. The microchamber experiment has been an effective tool to analyze the OHC high-frequency performance. In this study, the OHC electrical stimulation in the microchamber is simulated. The model takes into account the inertial and viscous properties of fluids inside and outside the cell as well as the viscoelastic and piezoelectric properties of the cell composite membrane (wall). The closed ends of the cylindrical cell were considered as oscillatory rigid plates. The final solution was obtained in terms of Fourier series, and it was checked against the available results of the microchamber experiment. The conditions of the interaction between the cell and pipette was analyzed, and it was found that the amount of slip along the contact surface has a significant effect on the cell electromotile response. The cell's length changes were computed as a function of frequency, and their dependence on the viscosities of both fluids and the cell wall was analyzed. The distribution of the viscous losses inside the fluids was also estimated. The proposed approach can help in a better understanding of the high-frequency OHC electromotility under experimental and physiological conditions.

  14. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    DTIC Science & Technology

    2013-10-01

    the brightest GFP+ cells by flow cytometry and compared these with GFP- cells (Figure 1A-C). The transfected cells showed robust GFP expression even...al., 2011), but no normative data were provided on SGN loss by cochlear turn and, in contrast to our results, those authors reported no impact on...A) Flow cytometry analysis to identify GFP+ and GFP- cells. The large cluster of cells on the left represent the GFP- cells and exhibited similar

  15. The Hyperactivity of Efferent Auditory System in Patients with Schizophrenia: A Transient Evoked Otoacoustic Emissions Study

    PubMed Central

    Wahab, Suzaily; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Zakaria, Mohd. Normani

    2016-01-01

    Objective Electrophysiological studies, which are mostly focused on afferent pathway, have proven that auditory processing deficits exist in patients with schizophrenia. Nevertheless, reports on the suppressive effect of efferent auditory pathway on cochlear outer hair cells among schizophrenia patients are limited. The present, case-control, study examined the contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in patients with schizophrenia. Methods Participants were twenty-three healthy controls and sixteen schizophrenia patients with normal hearing, middle ear and cochlear outer hair cells function. Absolute non-linear and linear TEOAEs were measured in both ears by delivering clicks stimuli at 80 dB SPL and 60 dB SPL respectively. Subsequently, contralateral suppression was determined by subtracting the absolute TEOAEs response obtained at 60 dBpe SPL during the absence and presence of contralateral white noise delivered at 65 dB HL. No attention tasks were conducted during measurements. Results We found no significant difference in absolute TEOAEs responses at 80 dB SPL, in either diagnosis or ear groups (p>0.05). However, the overall contralateral suppression was significantly larger in schizophrenia patients (p<0.05). Specifically, patients with schizophrenia demonstrated significantly increased right ear contralateral suppression compared to healthy control (p<0.05). Conclusion The present findings suggest increased inhibitory effect of efferent auditory pathway especially on the right cochlear outer hair cells. Further studies to investigate increased suppressive effects are crucial to expand the current understanding of auditory hallucination mechanisms in schizophrenia patients. PMID:26766950

  16. Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs.

    PubMed

    Zhou, Y; Zheng, H; Ruan, F; Chen, X; Zheng, G; Kang, M; Zhang, Q; Sun, X

    2012-05-03

    To examine the efficiency of hydrogen-rich saline in the treatment of intensive noise-induced cochlear injury. Forty guinea pigs were assigned to one of four groups: HS+NOISE (i.p. injection hydrogen-rich saline), NS+NOISE (i.p. injection normal saline), NOISE ALONE (noise control), and NO TREATMENT (normal control) groups. The HS+NOISE, NS+NOISE, and NOISE ALONE groups were exposed to intensive noise (4 h at 115 dB SPL noise of 4000±100 Hz). The auditory brainstem response (ABR) was used to examine the hearing threshold in each group. Distortion product otoacoustic emission (DPOAE) was used to examine outer hair cell function. We also examined cochlear morphology to evaluate inner and outer hair cell trauma induced by noise exposure. Hydrogen-rich saline was administered twice daily for 6 days (2.5 ml/kg, i.p.) 24 h after noise exposure. Baseline ABR thresholds and DPOAE values were normal in all groups at the measured frequencies (2, 4, 8, and 16 kHz) before noise exposure. The ABR threshold shift was 50-55 dB across the frequencies tested, and average DPOAE declined in the NOISE ALONE, NS+NOISE, and HS+NOISE groups 24 h after noise exposure. However, the changes in cochlear parameters were different between groups. The HS+NOISE group showed a significantly decreased ABR threshold value as compared with the NS+NOISE or NOISE ALONE group (P<0.01) on day 7. The mean DPOAE recovered to some extent in the three noise exposure groups, but at most frequencies the HS+NOISE group showed significantly increased DPOAE on day 7 as compared with the NS+NOISE group or NOISE ALONE group (P<0.01). Surface Corti organ preparations stained with succinate dehydrogenase (SDH) showed that most outer hair cells (OHCs) were still dropsical and a few were missing 7 days after noise exposure in the NS+NOISE group. Only a few OHCs were slightly dropsical in the HS+NOISE group. The numbers of missing hair cells 7 days after noise exposure were significantly greater in the NOISE ONLY and NS+NOISE groups than the HS+NOISE group (P<0.01). Hydrogen-rich saline can alleviate experimental noise-induced hearing loss in guinea pigs, partially by preventing the death of cochlear hair cells after intensive noise exposure. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates.

    PubMed

    Abdala, C

    2000-01-01

    Distortion product otoacoustic emissions (DPOAEs) are thought to be by-products of an active amplification process in the cochlea and thus serve as a metric for evaluating the integrity of this process. Because the cochlear amplifier functions in a level-dependent fashion, DPOAEs recorded as a function of stimulus level (i.e., a DPOAE growth function) may provide important information about the range and operational characteristics of the cochlear amplifier. The DPOAE growth functions recorded in human adults and neonates may provide information about the maturation of these active cochlear processes. Two experiments were conducted. Experiment I included normal-hearing adults and term-born neonates. The 2f1-f2 DPOAE growth functions were recorded for both age groups at three f2 frequencies. Experiment II was an extension of the first experiment but added a subject group of premature neonates. The results of these studies indicate that DPOAE growth functions most often show amplitude saturation and nonmonotonic growth for all age groups. However, premature neonates show monotonic growth and the absence of amplitude saturation more often than adults. Those premature neonates who do show saturation also show an elevated threshold for amplitude saturation relative to adults. In contrast, term neonates are adultlike for most measures except that they show a larger percentage of nonsaturating growth functions than adults. These results may indicate immaturity in cochlear amplifier function prior to term birth in humans. Outer hair cell function and/or efferent regulation of outer hair cell function are hypothesized sources of this immaturity, although some contribution from the immature middle ear cannot be ruled out.

  18. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy.

    PubMed

    Santarelli, Rosamaria; Starr, Arnold; Michalewski, Henry J; Arslan, Edoardo

    2008-05-01

    Transtympanic electrocochleography (ECochG) was recorded bilaterally in children and adults with auditory neuropathy (AN) to evaluate receptor and neural generators. Test stimuli were clicks from 60 to 120dB p.e. SPL. Measures obtained from eight AN subjects were compared to 16 normally hearing children. Receptor cochlear microphonics (CMs) in AN were of normal or enhanced amplitude. Neural compound action potentials (CAPs) and receptor summating potentials (SPs) were identified in five AN ears. ECochG potentials in those ears without CAPs were of negative polarity and of normal or prolonged duration. We used adaptation to rapid stimulus rates to distinguish whether the generators of the negative potentials were of neural or receptor origin. Adaptation in controls resulted in amplitude reduction of CAP twice that of SP without affecting the duration of ECochG potentials. In seven AN ears without CAP and with prolonged negative potential, adaptation was accompanied by reduction of both amplitude and duration of the negative potential to control values consistent with neural generation. In four ears without CAP and with normal duration potentials, adaptation was without effect consistent with receptor generation. In five AN ears with CAP, there was reduction in amplitude of CAP and SP as controls but with a significant decrease in response duration. Three patterns of cochlear potentials were identified in AN: (1) presence of receptor SP without CAP consistent with pre-synaptic disorder of inner hair cells; (2) presence of both SP and CAP consistent with post-synaptic disorder of proximal auditory nerve; (3) presence of prolonged neural potentials without a CAP consistent with post-synaptic disorder of nerve terminals. Cochlear potential measures may identify pre- and post-synaptic disorders of inner hair cells and auditory nerves in AN.

  19. Assessment of the influence of whole body vibration on Cochlear function

    PubMed Central

    2012-01-01

    Background Whole body vibration (WBV) is a potentially harmful consequence resulting from the dissipation of energy by industrial machineries. The result of WBV exposure on the auditory system remains unknown. The objective of the present research was to evaluate the influence of WBV on cochlear function, in particular outer hair cell function. It is hypothesized that WBV impairs cochlear function resulting in decreased Distortion Product Otoacoustic Emission (DPOAE) levels (Ldp) in rabbits subjected to WBV. Methods Twelve rabbits were equally divided into vibration and control groups. Animals in vibration group were exposed to 1.0 ms-2 r.m.s vertical WBV at 4–8 Hz for 8 h/day during 5 consecutive days. Outer hair cell function was assessed by comparing repeated-measurements of DPOAE levels (Ldp) across a range of f2 frequencies in rabbits both exposed and unexposed to WBV. DPOAE level shifts (LSdp) were compared across ears, frequencies, groups, and times. Results No differences were seen over time in DPOAE levels in the non-exposed rabbits (p = 0.082). Post-exposure Ldp in rabbits exposed to WBV were significantly increased at all test frequencies in both ears compared to baseline measures (p = 0.021). The greatest increase in Ldp following exposure was seen at 5888.5 Hz (mean shift = 13.25 dB). Post-exposure Ldp in rabbits exposed to WBV were not significantly different between the right and left ears (p = 0.083). Conclusion WBV impairs cochlear function resulting in increased DPOAE responses in rabbits exposed to WBV. DPOAE level shifts occurred over a wide range of frequencies following prolonged WBV in rabbits. PMID:22720724

  20. Self- and parental assessment of quality of life in child cochlear implant bearers.

    PubMed

    Razafimahefa-Raoelina, T; Farinetti, A; Nicollas, R; Triglia, J-M; Roman, S; Anderson, L

    2016-02-01

    The aim of this study was to assess quality of life in children fitted with cochlear implants, using combined self- and parental assessment. Thirty-two children, aged 6 to 17 years, with prelingual hearing loss and receiving cochlear implants at a mean age of 22 months, were included along with their families. The KIDSCREEN-27 questionnaire was implemented, in face-to-face interview, in its parents and children-adolescents versions, with 27 items covering physical well-being ("physical activities and health"), psychological well-being ("general mood and feelings about yourself"), autonomy & parents ("family and free time"), peers & social support ("friends") and school environment ("school and learning"). Parent and child responses were compared with a general population database, and pairwise. Global scores were compared against the general population on Cohen d effect-size. For child self-assessment, the results were: physical well-being, 72.81 (d=0); psychological well-being, 78.13 (d=-0.4); autonomy & parents, 63.84 (d=-0.2); peers & social support, 61.72 (d=-0.4); and school environment 73.83 (d=0). For parent assessment, the respective results were 62.66 (d=-0.8), 74.89 (d=-0.3), 57.37 (d=-1.2), 51.56 (d=-0.8), and 68.95 (d=-0.4). Half of the children could not answer the questionnaire, mainly due to associated disability. Schooling and language performance were poorer in non-respondent than respondent children. Quality of life was comparable between implanted and non-implanted children: Cohen d, 0 to 0.4. Early cochlear implantation in children with pre-lingual hearting loss provides quality of life comparable to that of the general population. Copyright © 2015. Published by Elsevier Masson SAS.

  1. The effect of BAPTA and 4AP in scala media on transduction and cochlear gain.

    PubMed

    Sellick, P M; Robertson, D; Patuzzi, R

    2006-01-01

    We have injected by iontophoresis 4-amino-pyridine, a K+ channel blocker and BAPTA, (a Ca++ chelator), into scala media of the first three turns of the guinea pig cochlea. We measured the reduction in outer hair cell (OHC) receptor current, as indicated by cochlear microphonic measured in scala media evoked by a 207 Hz tone, and compared this with the elevation of the cochlear action potential (CAP) threshold. We found that in the basal turn, for frequencies between 12 and 21 kHz, CAP threshold was elevated by about 30 dB, while in the second turn, at the 3 kHz place, the maximum elevation was 15 dB. In the third turn, iontophoresis of 4AP and BAPTA reduced CM by similar amounts to that in the basal and second turn, but caused negligible elevation of CAP threshold. We conclude that the gain of the cochlear amplifier is maximal for basal turn frequencies, is halved at 3 kHz, and is reduced to close to one for frequencies below 1 kHz (no active gain). The effect of 4AP and BAPTA on neural threshold and the receptor current represented by CM may be explained by their action on OHC transduction without the involvement of IHCs.

  2. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    PubMed

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  3. Effects of chronic exposure to electromagnetic waves on the auditory system.

    PubMed

    Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin

    2015-08-01

    The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).

  4. Strengths and difficulties in children with cochlear implants--comparing self-reports with reports from parents and teachers.

    PubMed

    Anmyr, Lena; Larsson, Kjerstin; Olsson, Mariann; Freijd, Anders

    2012-08-01

    The aim was to explore and compare how children with cochlear implants, their parents, and their teachers perceive the children's mental health in terms of emotional and behavioral strengths and difficulties. The self-report, parents', and teachers' versions of the Strengths and Difficulties Questionnaire (SDQ) were used to assess the mental health of 22 children with cochlear implants. The children's assessments were then compared to the parents' and 17 teachers' assessments. The data were analyzed using the SPSS software package. Total difficulties (p=.000), emotional symptoms (p=.000), and conduct problems (p=.007) were greater according to the children than according to parents and teachers. Younger children (9 years, n=12) reported more emotional symptoms than older children (12 and 15 years, n=10). Almost a quarter of the children rated themselves in a way indicating mental ill-health. Parents and teachers each indicated mental ill-health for one child. Children with cochlear implants express greater concerns about their mental health than their parents and teachers do. This is important knowledge for adults in families, schools, and health care in order to support these children and offer treatment when needed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.

    PubMed

    Rosowski, John J; Bowers, Peter; Nakajima, Hideko H

    2018-03-01

    While most models of cochlear function assume the presence of only two windows into the mammalian cochlea (the oval and round windows), a position that is generally supported by several lines of data, there is evidence for additional sound paths into and out of the inner ear in normal mammals. In this report we review the existing evidence for and against the 'two-window' hypothesis. We then determine how existing data and inner-ear anatomy restrict transmission of sound through these additional sound pathways in cat by utilizing a well-tested model of the cat inner ear, together with anatomical descriptions of the cat cochlear and vestibular aqueducts (potential additional windows to the cochlea). We conclude: (1) The existing data place limits on the size of the cochlear and vestibular aqueducts in cat and are consistent with small volume-velocities through these ducts during ossicular stimulation of the cochlea, (2) the predicted volume velocities produced by aqueducts with diameters half the size of the bony diameters match the functional data within ±10 dB, and (3) these additional volume velocity paths contribute to the inner ear's response to non-acoustic stimulation and conductive pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modeling Sound Processing in Cochlear Nuclei

    NASA Astrophysics Data System (ADS)

    Meddis, Ray

    2003-03-01

    The cochlear nucleus is an obligatory relay nucleus between the ear and the rest of the brain. It consists of many different types of neurons each responding differently to the same stimulus. Much is known about the wiring diagram of the system but it has so far proved difficult to characterise the signal processing that is going on or what purpose it serves. The solution to this problem is a pre-requisite of any attempt to produce a practical electronic simulation that exploits the brain's unique capacity to recognise the significance of acoustic events and generate appropriate responses. This talk will explain the different types of neural cell and specify hypotheses as to their various functions. Cell-types vary in terms of their size and shape as well as the number and type of minute electrical currents that flow across the cell membranes. Computer models will also be used to illustrate how the physical substrate (the wet-ware) is used to achieve its signal-processing goals.

  7. Ca2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse.

    PubMed

    Sebe, Joy Y; Cho, Soyoun; Sheets, Lavinia; Rutherford, Mark A; von Gersdorff, Henrique; Raible, David W

    2017-06-21

    We report functional and structural evidence for GluA2-lacking Ca 2+ -permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca 2+ imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca 2+ influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca 2+ entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca 2+ levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss. SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca 2+ imaging approaches in evolutionarily divergent species, we demonstrate that Ca 2+ -permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca 2+ accumulation and swelling that can be prevented by blocking CP-AMPARs. We demonstrate that CP-AMPARs mediate transmission at this first-order sensory synapse and that limiting Ca 2+ accumulation in the terminal may protect against hearing loss. Copyright © 2017 the authors 0270-6474/17/376162-14$15.00/0.

  8. Review of Cellular Changes in the Cochlea Due to Aminoglycoside Antibiotics

    ERIC Educational Resources Information Center

    Ding, Dalian; Salvi, Richard

    2005-01-01

    Over the past two decades, considerable progress has been made in understanding the mechanisms underlying aminoglycoside ototoxicity. Aminoglycoside damage progresses from cochlear base to apex and from outer to inner hair cells. Aminoglycoside antibiotics enter hair cells at the apical pole and are taken up into lysosomes and mitochondria.…

  9. Distinct localization of peripheral and central types of choline acetyltransferase in the rat cochlea.

    PubMed

    Kitanishi, Tsuyoshi; Aimi, Yoshinari; Kitano, Hiroya; Suzuki, Mikio; Kimura, Hiroshi; Saito, Atsushi; Shimizu, Takeshi; Tooyama, Ikuo

    2013-10-30

    We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures.

  10. Distinct Localization of Peripheral and Central Types of Choline Acetyltransferase in the Rat Cochlea

    PubMed Central

    Kitanishi, Tsuyoshi; Aimi, Yoshinari; Kitano, Hiroya; Suzuki, Mikio; Kimura, Hiroshi; Saito, Atsushi; Shimizu, Takeshi; Tooyama, Ikuo

    2013-01-01

    We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures. PMID:24194628

  11. The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3).

    PubMed

    Peeters, R P; Ng, L; Ma, M; Forrest, D

    2015-05-15

    Apoptosis underlies various forms of tissue remodeling during development. Prior to the onset of hearing, thyroid hormone (T3) promotes cochlear remodeling, which involves regression of the greater epithelial ridge (GER), a transient structure of columnar cells adjacent to the mechanosensory hair cells. We investigated the timecourse of apoptosis in the GER and the influence of ectopic T3 on apoptosis. In saline-treated mice, activated caspase 3-positive cells were detected in the GER between postnatal days 7 and 13 and appeared progressively along the cochlear duct from base to apex over developmental time. T3 given on P0 and P1 advanced the overall program of apoptosis and remodeling by ~4 days. Thyroid hormone receptor β was required for these actions, suggesting a receptor-mediated process of initiation of apoptosis. Finally, T3 given only at P0 or P1 resulted in deafness in adult mice, thus revealing a transient period of susceptibility to long-term damage in the neonatal auditory system. Published by Elsevier Ireland Ltd.

  12. Genetic and pharmacological intervention for treatment/prevention of hearing loss

    PubMed Central

    Cotanche, Douglas A.

    2008-01-01

    Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. Learning outcomes The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea. PMID:18455177

  13. Genetic and pharmacological intervention for treatment/prevention of hearing loss.

    PubMed

    Cotanche, Douglas A

    2008-01-01

    Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea.

  14. Cochlear implantation in chronic demyelinating inflammatory polyneuropathy.

    PubMed

    Mowry, Sarah E; King, Sarah

    2017-03-01

    To describe a case of chronic inflammatory demyelinating polyneuropathy (CDIP) with bilateral sudden sensorineural hearing loss who subsequently benefited from unilateral cochlear implantation. case history review and review of the literature for the terms CDIP, hearing loss, cochleovestibular dysfunction, and cochlear implantation. A 49-year-old woman presented with bilateral rapidly progressive sensorineural hearing loss (SNHL) 1 month after an upper respiratory tract infection. Hearing loss was not responsive to high-dose steroids and there were no other laboratory abnormalities or physical findings. Within 1 month, she developed ascending motor palsy, requiring long-term ventilator support. This neurologic condition was diagnosed as CDIP and she was successfully treated with plasmapheresis and intravenous immunoglobulin. Her hearing never recovered. At the time of cochlear implant, she had no response at the limits of the audiometer and obtained 0% on AzBio testing. No ABR could be recorded preoperatively. She underwent uneventful cochlear implantation with a perimodilar electrode. One year after activation, she had a PTA of 20 dB and 40% on AzBio sentence testing. Her eABR demonstrated a neuropathy pattern. Only two other cases of CDIP associated with dysfunction of the eighth nerve have been described, and neither had documented profound hearing loss. Severe SNHL associated with CDIP is rare. Although this patient has good access to sound, speech discrimination is poor at 1-year post implantation. This outcome may be due to incomplete recovery of myelination of the eighth nerve. Other possibilities include loss of peripheral nerve fibers due to the initial viral upper respiratory infection, which may lead to less neural substrate to stimulate.

  15. The challenges of starting a cochlear implant programme in a developing country.

    PubMed

    Krishnamoorthy, Kumaresh; Samy, Ravi N; Shoman, Nael

    2014-10-01

    Deafness is indeed a silent disability in many parts of the world, and the majority of people who have hearing impairment live in developing countries. With rising economy and developing nations becoming hub of industrialization, hearing loss may increase in these countries. In this review, the authors have elected to focus the discussion on India to frame the challenges of cochlear implants in a developing country. This article reviews the common causes of hearing loss, the challenges faced by those with hearing impairment and why the penetration of these devices is low and also reviews some reasons for the inability of the government to support the implant programme in India. Early identification of hearing is crucial towards ensuring appropriate hearing rehabilitation; it is, however, challenged by various factors, including public awareness, absence of a national new born screening programme, accessibility to diagnostic centres, availability of trained personnel and equipment and patient affordability. Cochlear implants are a proven auditory rehabilitative option for individuals with severe to profound sensorineural hearing loss, who otherwise do not benefiting from hearing aids. Nevertheless, only a small percentage of these individuals receive cochlear implants, and cost remains a leading prohibitive factor, particularly in developing countries. For example, in India, the personal average annual income is well below US $2000, whereas these devices cost between $12,000 and $25,000, exclusive of hospital and staff fees. Hence, the technology is virtually unavailable to the masses. To overcome the cost limitation of those who would benefit from cochlear implants countries such as India and China have started to develop their own indigenous implants.

  16. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells

    PubMed Central

    Bahloul, Amel; Simmler, Marie-Christine; Michel, Vincent; Leibovici, Michel; Perfettini, Isabelle; Roux, Isabelle; Weil, Dominique; Nouaille, Sylvie; Zuo, Jian; Zadro, Cristina; Licastro, Danilo; Gasparini, Paolo; Avan, Paul; Hardelin, Jean-Pierre; Petit, Christine

    2009-01-01

    Loud sound exposure is a significant cause of hearing loss worldwide. We asked whether a lack of vezatin, an ubiquitous adherens junction protein, could result in noise-induced hearing loss. Conditional mutant mice bearing non-functional vezatin alleles only in the sensory cells of the inner ear (hair cells) indeed exhibited irreversible hearing loss after only one minute exposure to a 105 dB broadband sound. In addition, mutant mice spontaneously underwent late onset progressive hearing loss and vestibular dysfunction related to substantial hair cell death. We establish that vezatin is an integral membrane protein with two adjacent transmembrane domains, and cytoplasmic N- and C-terminal regions. Late recruitment of vezatin at junctions between MDCKII cells indicates that the protein does not play a role in the formation of junctions, but rather participates in their stability. Moreover, we show that vezatin directly interacts with radixin in its actin-binding conformation. Accordingly, we provide evidence that vezatin associates with actin filaments at cell–cell junctions. Our results emphasize the overlooked role of the junctions between hair cells and their supporting cells in the auditory epithelium resilience to sound trauma. PMID:20049712

  17. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.

    PubMed

    Harding, Gary W; Bohne, Barbara A; Lee, Steve C; Salt, Alec N

    2007-03-01

    Infrasound (i.e., <20 Hz for humans; <100 Hz for chinchillas) is not audible, but exposure to high-levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100 dB SPL and a 4 kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24h. For each animal, the tympanic membrane (TM) in one ear was perforated ( approximately 1 mm(2)) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4 kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10-21 dB DPOAE LS from 0.6 to 2 kHz. The infrasound exposure alone resulted in a 10-20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4 kHz OBN alone at 108 dB produced a 10-50 dB ABR TS for 0.5-12 kHz, a 10-60 dB DPOAE LS for 0.6-16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4 kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4 kHz OBN alone. Exposure to only the 4 kHz OBN at 86 dB produces a 10-40 dB ABR TS for 3-12 kHz and 10-30 dB DPOAE LS for 3-8 kHz but little or no OHC loss in the middle of the first turn. No differences were found in the functional and hair-cell losses from exposure to the 4 kHz OBN at 86 dB in the presence or absence of infrasound. We hypothesize that exposure to infrasound and an intense 4 kHz OBN increases cochlear damage because the large fluid movements from infrasound cause more intermixing of cochlear fluids through the damaged reticular lamina. Simultaneous infrasound and a moderate 4 kHz OBN did not increase cochlear damage because the reticular lamina rarely breaks down during this moderate level exposure.

  18. Effect of infrasound on cochlear damage from exposure to a 4-kHz octave band of noise

    PubMed Central

    Harding, Gary W.; Bohne, Barbara A.; Lee, Steve C.; Salt, Alec N.

    2008-01-01

    Infrasound (i.e., < 20 Hz for humans; < 100 Hz for chinchillas) is not audible, but exposure to high levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100 dB SPL and a 4-kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24 h. For each animal, the tympanic membrane (TM) in one ear was perforated (~1 mm2) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4-kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10–21 dB DPOAE LS from 0.6–2 kHz. The infrasound exposure alone resulted in a 10–20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4-kHz OBN alone at 108 dB produced a 10–50 dB ABR TS for 0.5–12 kHz, a 10–60 dB DPOAE LS for 0.6–16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4-kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4-kHz OBN alone. Exposure to only the 4-kHz OBN at 86 dB produces a 10–40 dB ABR TS for 3–12 kHz and 10–30 dB DPOAE LS for 3–8 kHz but little or no OHC loss in the middle of the first turn. No differences were found in the functional and hair-cell losses from exposure to the 4-kHz OBN at 86 dB in the presence or absence of infrasound. We hypothesize that exposure to infrasound and an intense 4-kHz OBN increases cochlear damage because the large fluid movements from infrasound cause more intermixing of cochlear fluids through the damaged reticular lamina. Simultaneous infrasound and a moderate 4-kHz OBN did not increase cochlear damage because the reticular lamina rarely breaks down during this moderate level exposure. PMID:17300889

  19. Cochlear Implant Using Neural Prosthetics

    NASA Astrophysics Data System (ADS)

    Gupta, Shweta; Singh, Shashi kumar; Dubey, Pratik Kumar

    2012-10-01

    This research is based on neural prosthetic device. The oldest and most widely used of these electrical, and often computerized, devices is the cochlear implant, which has provided hearing to thousands of congenitally deaf people in this country. Recently, the use of the cochlear implant is expanding to the elderly, who frequently suffer major hearing loss. More cutting edge are artificial retinas, which are helping dozens of blind people see, and ìsmartî artificial arms and legs that amputees can maneuver by thoughts alone, and that feel more like real limbs.Research, which curiosity led to explore frog legs dancing during thunderstorms, a snail shapedorgan in the inner ear, and how various eye cells react to light, have fostered an understanding of how to ìtalkî to the nervous system. That understanding combined with the miniaturization of electronics and enhanced computer processing has enabled prosthetic devices that often can bridge the gap in nerve signaling that is caused by disease or injury.

  20. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  1. Labyrinthectomy with cochlear implantation.

    PubMed

    Zwolan, T A; Shepard, N T; Niparko, J K

    1993-05-01

    Numerous reports indicate that the cochlea remains responsive to electrical stimulation following labyrinthectomy. We report a case of a 47-year-old woman with a severe to profound sensorineural hearing loss from birth, who developed episodic vertigo with symptoms suggestive of delayed onset endolymphatic hydrops. Following 8 months of failed medical and vestibular rehabilitation management, a right-sided labyrinthectomy combined with cochlear implantation was performed without complication. Postoperatively the patient was free of vertigo. Attempts to activate the patient's device between 4 to 12 weeks after surgery were unsuccessful as stimulation of the electrodes resulted in discomfort. However, all 20 electrodes elicited comfortable hearing sensations 16 weeks postsurgery. One year after the successful activation, the patient demonstrated improved sound awareness and speech recognition with the implant when compared with preoperative performance with a hearing aid. This case study suggests that electrical detection thresholds with prosthetic stimulation may be unstable in the recently labyrinthectomized ear but supports and extends prior observations of preserved cochlear responsiveness after labyrinthectomy.

  2. Dichotic listening and otoacoustic emissions: shared variance between cochlear function and dichotic listening performance in adults with normal hearing.

    PubMed

    Markevych, Vladlena; Asbjørnsen, Arve E; Lind, Ola; Plante, Elena; Cone, Barbara

    2011-07-01

    The present study investigated a possible connection between speech processing and cochlear function. Twenty-two subjects with age range from 18 to 39, balanced for gender with normal hearing and without any known neurological condition, were tested with the dichotic listening (DL) test, in which listeners were asked to identify CV-syllables in a nonforced, and also attention-right, and attention-left condition. Transient evoked otoacoustic emissions (TEOAEs) were recorded for both ears, with and without the presentation of contralateral broadband noise. The main finding was a strong negative correlation between language laterality as measured with the dichotic listening task and of the TEOAE responses. The findings support a hypothesis of shared variance between central and peripheral auditory lateralities, and contribute to the attentional theory of auditory lateralization. The results have implications for the understanding of the cortico-fugal efferent control of cochlear activity. 2011 Elsevier Inc. All rights reserved.

  3. The quest for restoring hearing: Understanding ear development more completely.

    PubMed

    Jahan, Israt; Pan, Ning; Elliott, Karen L; Fritzsch, Bernd

    2015-09-01

    Neurosensory hearing loss is a growing problem of super-aged societies. Cochlear implants can restore some hearing, but rebuilding a lost hearing organ would be superior. Research has discovered many cellular and molecular steps to develop a hearing organ but translating those insights into hearing organ restoration remains unclear. For example, we cannot make various hair cell types and arrange them into their specific patterns surrounded by the right type of supporting cells in the right numbers. Our overview of the topologically highly organized and functionally diversified cellular mosaic of the mammalian hearing organ highlights what is known and unknown about its development. Following this analysis, we suggest critical steps to guide future attempts toward restoration of a functional organ of Corti. We argue that generating mutant mouse lines that mimic human pathology to fine-tune attempts toward long-term functional restoration are needed to go beyond the hope generated by restoring single hair cells in postnatal sensory epithelia. © 2015 WILEY Periodicals, Inc.

  4. ATP-containing vesicles in stria vascular marginal cell cytoplasms in neonatal rat cochlea are lysosomes.

    PubMed

    Liu, Jun; Liu, Wenjing; Yang, Jun

    2016-02-11

    We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1-3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca(2+)-dependent lysosomal exocytosis.

  5. ATP-containing vesicles in stria vascular marginal cell cytoplasms in neonatal rat cochlea are lysosomes

    PubMed Central

    Liu, Jun; Liu, Wenjing; Yang, Jun

    2016-01-01

    We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1–3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca2+-dependent lysosomal exocytosis. PMID:26864824

  6. The role of viscous fluid flow in cochlear partition transduction

    NASA Astrophysics Data System (ADS)

    Svobodny, Thomas

    2002-11-01

    Sound transduction occurs via the forcing of the basilar membrane by a wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number. The actual transduction occurs through the mechanism of stereocilia of hair cells. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection due to the influence of the dynamics of the endothelial fluid. This talk will emphasis the results of two-dimensional and three-dimensional simulations and will relate these to the analytical solutions previously reported.

  7. Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection

    PubMed Central

    Hoshino, Tomofumi; Tabuchi, Keiji; Hara, Akira

    2010-01-01

    Cyclooxygenase and lipoxygenase, two important enzymes involved in arachidonic acid metabolism, are major targets of non-steroidal anti-inflammatory drugs (NSAIDs). Recent investigations suggest that arachidonic cascades and their metabolites may be involved in maintaining inner ear functions. The excessive use of aspirin may cause tinnitus in humans and impairment of the outer hair cell functions in experimental animals. On the other hand, NSAIDs reportedly exhibit protective effects against various kinds of inner ear disorder. The present review summarizes the effects of NSAIDs on cochlear pathophysiology. NSAIDs are a useful ameliorative adjunct in the management of inner ear disorders. PMID:27713301

  8. Reduced electromotility of outer hair cells associated with connexin-related forms of deafness: an in silico study of a cochlear network mechanism.

    PubMed

    Mistrík, Pavel; Ashmore, Jonathan F

    2010-12-01

    Mutations in the GJB2 gene encoding for the connexin 26 (Cx26) protein are the most common source of nonsyndromic forms of deafness. Cx26 is a building block of gap junctions (GJs) which establish electrical connectivity in distinct cochlear compartments by allowing intercellular ionic (and metabolic) exchange. Animal models of the Cx26 deficiency in the organ of Corti seem to suggest that the hearing loss and the degeneration of outer hair cells (OHCs) and inner hair cells is due to failed K(+) and metabolite homeostasis. However, OHCs can develop normally in some mutants, suggesting that the hair cells death is not the universal mechanism. In search for alternatives, we have developed an in silico large scale three-dimensional model of electrical current flow in the cochlea in the small signal, linearised, regime. The effect of mutations was analysed by varying the magnitude of resistive components representing the GJ network in the organ of Corti. The simulations indeed show that reduced GJ conductivity increases the attenuation of the OHC transmembrane potential at frequencies above 5 kHz from 6.1 dB/decade in the wild-type to 14.2 dB/decade. As a consequence of increased GJ electrical filtering, the OHC transmembrane potential is reduced by up to 35 dB at frequencies >10 kHz. OHC electromotility, driven by this potential, is crucial for sound amplification, cochlear sensitivity and frequency selectivity. Therefore, we conclude that reduced OHC electromotility may represent an additional mechanism underlying deafness in the presence of Cx26 mutations and may explain lowered OHC functionality in particular reported Cx26 mutants.

  9. PubMed Central

    MUZZI, E.; MARCHI, R.; FALZONE, C.; BATTELINO, S.; CICIRIELLO, E.

    2016-01-01

    SUMMARY Cochlear implantation (CI) is a viable option for providing access to auditory stimulation in severe-to-profound hearing loss/impairment of cochlear origin. It has been demonstrated that CI is safe and effective for deaf children. Younger age at activation after CI is linked with better outcomes. It is important to study variables and issues that can interfere with an early fitting and access to sound after CI. They range from patient characteristics, family compliance and support, to technical, medical or organisational problems. A SWOT analysis and a subsequent TOWS matrix was conducted to discuss issues and propose recommendations to be considered when operating an early switch on of the CI. PMID:27054390

  10. Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.

    PubMed

    Seebacher, T; Beitz, E; Kumagami, H; Wild, K; Ruppersberg, J P; Schultz, J E

    1999-01-01

    Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha1, alpha2, beta1 and beta2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits alpha1 and beta1 were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the beta1 subunits was at least four-fold higher than of the alpha1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology.

  11. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    PubMed

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of Biologists Ltd.

  12. Imaging Electrically Evoked Micromechanical Motion within the Organ of Corti of the Excised Gerbil Cochlea

    PubMed Central

    Karavitaki, K. Domenica; Mountain, David C.

    2007-01-01

    The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at ∼2–6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL. PMID:17277194

  13. ACF7 is a hair-bundle antecedent, positioned to integrate cuticular plate actin and somatic tubulin.

    PubMed

    Antonellis, Patrick J; Pollock, Lana M; Chou, Shih-Wei; Hassan, Ahmed; Geng, Ruishuang; Chen, Xi; Fuchs, Elaine; Alagramam, Kumar N; Auer, Manfred; McDermott, Brian M

    2014-01-01

    The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a-Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus--an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis.

  14. ACF7 Is a Hair-Bundle Antecedent, Positioned to Integrate Cuticular Plate Actin and Somatic Tubulin

    PubMed Central

    Antonellis, Patrick J.; Pollock, Lana M.; Chou, Shih-Wei; Hassan, Ahmed; Geng, Ruishuang; Chen, Xi; Fuchs, Elaine; Alagramam, Kumar N.; Auer, Manfred

    2014-01-01

    The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a–Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus—an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis. PMID:24381291

  15. The expression of PTEN in the development of mouse cochlear lateral wall.

    PubMed

    Dong, Y; Sui, L; Yamaguchi, F; Kamitori, K; Hirata, Y; Hossain, A; Noguchi, C; Katagi, A; Nishio, M; Suzuki, A; Lou, X; Tokuda, M

    2014-01-31

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates various cell processes including proliferation, growth, synaptogenesis, neural and glioma stem/progenitor cell renewal. In addition, PTEN can regulate sensory cell proliferation and differentiation of hair bundles in the mammalian cochlea. In this study we use immunofluorescence, Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) to reveal the expression of PTEN in the developing cochlear lateral wall, which is crucial for regulating K(+) homeostasis. Relatively high levels of PTEN are initially expressed in the marginal cells (MCs) of the lateral wall at embryonic day (E) 17.5 when they start to differentiate. Similarly high levels are subsequently expressed in differentiating root cells (RCs) at postnatal day (P) 3 and then in spiral ligament fibrocytes (SLFs) at P 10. In the mature cochlea, PTEN expression is low or undetectable in MCs and SLFs but it remains high in RCs and their processes. The expression pattern for PTEN in the developing lateral wall suggests that it plays a critical role in the differentiation of the cellular pathways that regulate K(+) homeostasis in the cochlea. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Identification and characterization of mouse otic sensory lineage genes

    PubMed Central

    Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan

    2015-01-01

    Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475

  17. [Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].

    PubMed

    Zhang, Daoxcing; Zhang, Yankun

    2006-02-01

    Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.

  18. What Does Music Sound Like for a Cochlear Implant User?

    PubMed

    Jiam, Nicole T; Caldwell, Meredith T; Limb, Charles J

    2017-09-01

    Cochlear implant research and product development over the past 40 years have been heavily focused on speech comprehension with little emphasis on music listening and enjoyment. The relatively little understanding of how music sounds in a cochlear implant user stands in stark contrast to the overall degree of importance the public places on music and quality of life. The purpose of this article is to describe what music sounds like to cochlear implant users, using a combination of existing research studies and listener descriptions. We examined the published literature on music perception in cochlear implant users, particularly postlingual cochlear implant users, with an emphasis on the primary elements of music and recorded music. Additionally, we administered an informal survey to cochlear implant users to gather first-hand descriptions of music listening experience and satisfaction from the cochlear implant population. Limitations in cochlear implant technology lead to a music listening experience that is significantly distorted compared with that of normal hearing listeners. On the basis of many studies and sources, we describe how music is frequently perceived as out-of-tune, dissonant, indistinct, emotionless, and weak in bass frequencies, especially for postlingual cochlear implant users-which may in part explain why music enjoyment and participation levels are lower after implantation. Additionally, cochlear implant users report difficulty in specific musical contexts based on factors including but not limited to genre, presence of lyrics, timbres (woodwinds, brass, instrument families), and complexity of the perceived music. Future research and cochlear implant development should target these areas as parameters for improvement in cochlear implant-mediated music perception.

  19. Masking of infrared neural stimulation (INS) in hearing and deaf guinea pigs

    NASA Astrophysics Data System (ADS)

    Kadakia, Sama; Young, Hunter; Richter, Claus-Peter

    2013-03-01

    Spatial selective infrared neural stimulation has potential to improve neural prostheses, including cochlear implants. The heating of a confined target volume depolarizes the cell membrane and results in an action potential. Tissue heating may also results in thermal damage or the generation of a stress relaxation wave. Stress relaxation waves may result in a direct mechanical stimulation of remaining hair cells in the cochlea, so called optophony. Data are presented that quantify the effect of an acoustical stimulus (noise masker) on the response obtained with INS in normal hearing, acutely deafened, and chronic deaf animals. While in normal hearing animals an acoustic masker can reduce the response to INS, in acutely deafened animals the masking effect is reduced, and in chronic deaf animals this effect has not been detected. The responses to INS remain stable following the different degrees of cochlear damage.

  20. A FPGA Implementation of the CAR-FAC Cochlear Model.

    PubMed

    Xu, Ying; Thakur, Chetan S; Singh, Ram K; Hamilton, Tara Julia; Wang, Runchun M; van Schaik, André

    2018-01-01

    This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on.

  1. A FPGA Implementation of the CAR-FAC Cochlear Model

    PubMed Central

    Xu, Ying; Thakur, Chetan S.; Singh, Ram K.; Hamilton, Tara Julia; Wang, Runchun M.; van Schaik, André

    2018-01-01

    This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on. PMID:29692700

  2. Nanoscale live cell imaging using hopping probe ion conductance microscopy

    PubMed Central

    Novak, Pavel; Li, Chao; Shevchuk, Andrew I.; Stepanyan, Ruben; Caldwell, Matthew; Hughes, Simon; Smart, Trevor G.; Gorelik, Julia; Ostanin, Victor P.; Lab, Max J.; Moss, Guy W. J.; Frolenkov, Gregory I.; Klenerman, David; Korchev, Yuri E.

    2009-01-01

    We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions. PMID:19252505

  3. Immunohistochemical localization of OCT2 in the cochlea of various species

    PubMed Central

    Gahm, Caroline; Liu, Wei; Ehrsson, Hans; Rask‐Andersen, Helge; Laurell, Göran

    2015-01-01

    Objective To locate the organic cation transporter 2 (OCT2) in the cochlea of three different species and to modulate the ototoxicity of cisplatin in the guinea pig by pretreatment with phenformin, having a known affinity for OCT2. Study Design Immunohistochemical and in vivo study. Methods Sections from the auditory end organs were subjected to immunohistochemical staining in order to identify OCT2 in cochlea from untreated rats, guinea pigs, and a pig. In the in vivo study, guinea pigs were given phenformin intravenously 30 minutes before cisplatin administration. Electrophysiological hearing thresholds were determined, and hair cells loss was assessed 96 hours later. The total amount of platinum in cochlear tissue was determined using mass spectrometry. Results Organic cation transporter 2 was found in the supporting cells and in type I spiral ganglion cells in the cochlea of all species studied. Pretreatment with phenformin did not reduce the ototoxic side effect of cisplatin. Furthermore, the concentration of platinum in the cochlea was not affected by phenformin. Conclusions The localization of OCT2 in the supporting cells and type I spiral ganglion cells suggests that this transport protein is not primarily involved in cisplatin uptake from the systemic circulation. We hypothesize that OCT2 transport intensifies cisplatin ototoxicity via transport mechanisms in alternate compartments of the cochlea. Level of Evidence N/A. Laryngoscope, 125:E320–E325, 2015 PMID:25892279

  4. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea.

    PubMed

    Cheng, Cheng; Guo, Luo; Lu, Ling; Xu, Xiaochen; Zhang, ShaSha; Gao, Junyan; Waqas, Muhammad; Zhu, Chengwen; Chen, Yan; Zhang, Xiaoli; Xuan, Chuanying; Gao, Xia; Tang, Mingliang; Chen, Fangyi; Shi, Haibo; Li, Huawei; Chai, Renjie

    2017-01-01

    Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein-protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.

  5. Ozone Prevents Cochlear Damage From Ischemia-Reperfusion Injury in Guinea Pigs.

    PubMed

    Onal, Merih; Elsurer, Cagdas; Selimoglu, Nebil; Yilmaz, Mustafa; Erdogan, Ender; Bengi Celik, Jale; Kal, Oznur; Onal, Ozkan

    2017-08-01

    The cochlea is an end organ, which is metabolically dependent on a nutrient and oxygen supply to maintain its normal physiological function. Cochlear ischemia and reperfusion (IR) injury is considered one of the most important causes of human idiopathic sudden sensorineural hearing loss. The aim of the present study was to study the efficacy of ozone therapy against cochlear damage caused by IR injury and to investigate the potential clinical use of this treatment for sudden deafness. Twenty-eight guinea pigs were randomized into four groups. The sham group (S) (n = 7) was administered physiological saline intraperitoneally (i.p.) for 7 days. The ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 days. In the IR + O group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 days before IR injury. On the eighth day, the IR + O group was subjected to cochlear ischemia for 15 min by occluding the bilateral vertebral artery and vein with a nontraumatic clamp and then reperfusion for 2 h. The IR group was subjected to cochlear IR injury. After the IR procedure, the guinea pigs were sacrificed on the same day. In a general histological evaluation, cochlear and spiral ganglionic tissues were examined with a light microscope, and apoptotic cells were counted by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The apoptotic index (AI) was then calculated. Blood samples were sent for analyses of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase, malondialdehyde (MDA), the total oxidant score (TOS), and total antioxidant capacity (TAC). Data were evaluated statistically using the Kruskal-Wallis test. The AI was highest in the IR group. The AI of the IR + O group was lower than that of the IR group. The biochemical antioxidant parameters SOD and GSH-Px and the TAC values were highest in the O group and lowest in the IR group. The MDA level and TOS were highest in the IR group and lowest in the O group. Controlled ozone administration stimulated endogenous antioxidant defense systems, thereby helping the body to combat IR injury. Although this study revealed a statistically significant decrease in cochlear IR damage following ozone therapy, further studies will be necessary to explain the protective mechanisms of ozone therapy in cochlear IR injury. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Outcomes of cochlear implantation in deaf children of deaf parents: comparative study.

    PubMed

    Hassanzadeh, S

    2012-10-01

    This retrospective study compared the cochlear implantation outcomes of first- and second-generation deaf children. The study group consisted of seven deaf, cochlear-implanted children with deaf parents. An equal number of deaf children with normal-hearing parents were selected by matched sampling as a reference group. Participants were matched based on onset and severity of deafness, duration of deafness, age at cochlear implantation, duration of cochlear implantation, gender, and cochlear implant model. We used the Persian Auditory Perception Test for the Hearing Impaired, the Speech Intelligibility Rating scale, and the Sentence Imitation Test, in order to measure participants' speech perception, speech production and language development, respectively. Both groups of children showed auditory and speech development. However, the second-generation deaf children (i.e. deaf children of deaf parents) exceeded the cochlear implantation performance of the deaf children with hearing parents. This study confirms that second-generation deaf children exceed deaf children of hearing parents in terms of cochlear implantation performance. Encouraging deaf children to communicate in sign language from a very early age, before cochlear implantation, appears to improve their ability to learn spoken language after cochlear implantation.

  7. Telewarfare and Military Medicine: White Paper/State of the Art Report On AFMS Support to the Emerging Paradigm of Employed-in-Place Operations

    DTIC Science & Technology

    2011-09-30

    centers (e.g. cochlear implant – a first-generation technology). Given the rate of technological development, it seems possible, even likely, that...communities and utilization to support combat operations therein. Facilities Facility requirements will flow from the chosen course of action. Should

  8. Cochlear implant revision surgeries in children.

    PubMed

    Amaral, Maria Stella Arantes do; Reis, Ana Cláudia Mirândola B; Massuda, Eduardo T; Hyppolito, Miguel Angelo

    2018-02-16

    The surgery during which the cochlear implant internal device is implanted is not entirely free of risks and may produce problems that will require revision surgeries. To verify the indications for cochlear implantation revision surgery for the cochlear implant internal device, its effectiveness and its correlation with certain variables related to language and hearing. A retrospective study of patients under 18 years submitted to cochlear implant Surgery from 2004 to 2015 in a public hospital in Brazil. Data collected were: age at the time of implantation, gender, etiology of the hearing loss, audiological and oral language characteristics of each patient before and after Cochlear Implant surgery and any need for surgical revision and the reason for it. Two hundred and sixty-five surgeries were performed in 236 patients. Eight patients received a bilateral cochlear implant and 10 patients required revision surgery. Thirty-two surgeries were necessary for these 10 children (1 bilateral cochlear implant), of which 21 were revision surgeries. In 2 children, cochlear implant removal was necessary, without reimplantation, one with cochlear malformation due to incomplete partition type I and another due to trauma. With respect to the cause for revision surgery, of the 8 children who were successfully reimplanted, four had cochlear calcification following meningitis, one followed trauma, one exhibited a facial nerve malformation, one experienced a failure of the cochlear implant internal device and one revision surgery was necessary because the electrode was twisted. The incidence of the cochlear implant revision surgery was 4.23%. The period following the revision surgeries revealed an improvement in the subject's hearing and language performance, indicating that these surgeries are valid in most cases. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Parental expectations and outcomes of pediatric cochlear implantation.

    PubMed

    Piazza, Elizabeth; Kandathil, Cherian; Carron, Jeffrey D

    2009-10-01

    Cochlear implants have been used with increasing frequency over the past twenty years, including very young patients. To determine if parents are satisfied with their children's performance after cochlear implantation. Survey mailed to parents of children receiving cochlear implants. 31 questionnaires were returned out of 69 mailed (45 %). The vast majority of responding parents felt that their children benefited substantially from cochlear implant surgery. Cochlear implantation is effective in helping children develop auditory-oral communication skills. Access to auditory/oral communication programs in this state remains an obstacle in postoperative habilitation.

  10. The Use of Human Wharton's Jelly Cells for Cochlear Tissue Engineering.

    PubMed

    Mellott, Adam J; Detamore, Michael S; Staecker, Hinrich

    2016-01-01

    Tissue engineering focuses on three primary components: stem cells, biomaterials, and growth factors. Together, the combination of these components is used to regrow and repair damaged tissues that normally do not regenerate easily on their own. Much attention has been focused on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), due to their broad differentiation potential. However, ESCs and iPSCs require very detailed protocols to differentiate into target tissues, which are not always successful. Furthermore, procurement of ESCs is considered ethically controversial in some regions and procurement of iPSCs requires laborious transformation of adult tissues and characterization. However, mesenchymal stem cells are an adult stem cell population that are not ethically controversial and are readily available for procurement. Furthermore, mesenchymal stem cells exhibit the ability to differentiate into a variety of cell types arising from the mesoderm. In particular, human Wharton's jelly cells (hWJCs) are mesenchymal-type stem cells found in umbilical cords that possess remarkable differentiation potential. hWJCs are a highly desirable stem cell population due to their abundance in supply, high proliferation rates, and ability to differentiate into multiple cell types arising from all three germ layers. hWJCs are used to generate several neurological phenotypes arising from the ectoderm and are considered for engineering mechanosensory hair cells found in the auditory complex. Here, we report the methods for isolating hWJCs from human umbilical cords and non-virally transfected for use in cochlear tissue engineering studies.

  11. Fgf10 is required for specification of non-sensory regions of the cochlear epithelium

    PubMed Central

    Urness, Lisa D.; Wang, Xiaofen; Shibata, Shumei; Ohyama, Takahiro; Mansour, Suzanne L.

    2015-01-01

    The vertebrate inner ear is a morphologically complex sensory organ comprised of two compartments, the dorsal vestibular apparatus and the ventral cochlear duct, required for motion and sound detection, respectively. Fgf10, in addition to Fgf3, is necessary for the earliest stage of otic placode induction, but continued expression of Fgf10 in the developing otic epithelium, including the prosensory domain and later in Kolliker’s organ, suggests additional roles for this gene during morphogenesis of the labyrinth. While loss of Fgf10 was implicated previously in semicircular canal agenesis, we show that Fgf10−/+ embryos also exhibit a reduction or absence of the posterior semicircular canal, revealing a dosage-sensitive requirement for FGF10 in vestibular development. In addition, we show that Fgf10−/− embryos have previously unappreciated defects of cochlear morphogenesis, including a somewhat shortened duct, and, surprisingly, a substantially narrower duct. The mutant cochlear epithelium lacks Reissner’s membrane and a large portion of the outer sulcus--two non-contiguous, non-sensory domains. Marker gene analyses revealed effects on Reissner’s membrane as early as E12.5–E13.5 and on the outer sulcus by E15.5, stages when Fgf10 is expressed in close proximity to Fgfr2b, but these effects were not accompanied by changes in epithelial cell proliferation or death. These data indicate a dual role for Fgf10 in cochlear development: to regulate outgrowth of the duct and subsequently as a bidirectional signal that sequentially specifies Reissner’s membrane and outer sulcus non-sensory domains. These findings may help to explain the hearing loss sometimes observed in LADD syndrome subjects with FGF10 mutations. PMID:25624266

  12. Cochlear pathology following reimplantation of a multichannel scala tympani electrode array in the macaque.

    PubMed

    Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C

    1995-03-01

    The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.

  13. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea

    PubMed Central

    Chan, Dylan K.; Rouse, Stephanie L.

    2016-01-01

    Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss. PMID:27959894

  14. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution.

    PubMed

    Liu, Hongzhuo; Chen, Shichao; Zhou, Yanyan; Che, Xin; Bao, Zhihong; Li, Sanming; Xu, Jinghua

    2013-11-01

    The aim of this study is to elucidate the impact of surface charge of glycerol monooleate-based nanoparticles (NPs) on the cellular uptake and its distribution in the cochlea. These NPs are modified using varied concentration of anionic or cationic lipid. Upon dilution, these lipid mixtures self-assemble to form a series of cubic NPs with various surface charges, but with similar particle size. Positively charged NPs exhibited dose-dependent cytotoxicities against L929 cells proportional to the concentration of cationic lipid; whereas negatively charged NPs did not show obvious cytotoxic properties as compared to unmodified NPs. Meanwhile, confocal microscopy and flow cytometry results suggested that NPs with high positive surface charge were taken up more efficiently by L929 cells. The permeability of round window membrane (RWM) was high for highly positively charged NPs, which is likely due to their highly cellular uptake efficiency and consequently high concentration gradient between RWM and cochlear fluid. More importantly, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) modified NPs greatly facilitated broadly distribution in cochlea, favoring the treatment of hearing loss of low frequencies. Taken together, these findings about charge-dependent of NPs on RWM permeability and cochlear distribution could serve as guideline in the rational design of NP for drug and gene delivery to inner ear.

  15. Beyond generalized hair cells: Molecular cues for hair cell types

    PubMed Central

    Jahan, Israt; Pan, Ning; Kersigo, Jennifer; Fritzsch, Bernd

    2012-01-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti (OC) from scratch, including the two types of HCs, inner (IHC) and outer (OHC) hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral, LOC and medial, MOC olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the OC. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs. PMID:23201032

  16. Perspectives for the treatment of sensorineural hearing loss by cellular regeneration of the inner ear.

    PubMed

    Almeida-Branco, Mario S; Cabrera, Sonia; Lopez-Escamez, Jose A

    2015-01-01

    Sensorineural hearing loss is a caused by the loss of the cochlear hair cells with the consequent deafferentation of spiral ganglion neurons. Humans do not show endogenous cellular regeneration in the inner ear and there is no exogenous therapy that allows the replacement of the damaged hair cells. Currently, treatment is based on the use of hearing aids and cochlear implants that present different outcomes, some difficulties in auditory discrimination and a limited useful life. More advanced technology is hindered by the functional capacity of the remaining spiral ganglion neurons. The latest advances with stem cell therapy and cellular reprogramming have developed several possibilities to induce endogenous regeneration or stem cell transplantation to replace damaged inner ear hair cells and restore hearing function. With further knowledge of the cellular and molecular biology of the inner ear and its embryonic development, it will be possible to use induced stem cells as in vitro models of disease and as replacement cellular therapy. Investigation in this area is focused on generating cellular therapy with clinical use for the treatment of profound sensorineural hearing loss. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  17. Choline acetyltransferase, glutamate decarboxylase and tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig.

    PubMed

    Fex, J; Wenthold, R J

    1976-06-18

    Activities of choline acetyltransferase (ChAC), glutamate decarboxylase (GAD) and tyrosine hydroxylase (TH), enzymes catalyzing the synthesis of acetylcholine (ACh), gamma-aminobutyric acid (GABA) and catecholamines, respectively, were measured in the cochlea and cochlear nucleus of the guinea pig. ChAc activity in the organ of Corti, third turn, was 1270 pmole ACh formed/min/mg protein (ChAc, 1270) and was higher than in turn 4 (ChAc, 543). ChAc activity was higher when the preparation included the inner hair cell region than when not. GAD activity in samples of turn 3 and 4 combined was low, 0.17 nmole GABA formed/min/mg protein (GAD, 0.17). All 3 enzymes were low in auditory nerve: ChAc, 1.7, GAD, 0.10 and TH, 1.0 pmole DOPA formed/min/mg protein. In the cochlear nucleus, the values were: ChAc, 129, GAD, 1.70 and TH, 2.7. The findings on the distribution of ChAc activity in the organ of Corti fit the hypothesis that the olivocochlear nerve fibers are cholinergic. Because of low GAD in the cochlea, GABA is unlikely to be transmitter in the organ of Corti. Similarly, it is unlikely that ACh, GABA or a catecholamine is a transmitter between the auditory nerve and the cochlear nucleus.

  18. Functional modeling of the human auditory brainstem response to broadband stimulationa)

    PubMed Central

    Verhulst, Sarah; Bharadwaj, Hari M.; Mehraei, Golbarg; Shera, Christopher A.; Shinn-Cunningham, Barbara G.

    2015-01-01

    Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2–2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities. PMID:26428802

  19. Individual Differences Reveal Correlates of Hidden Hearing Deficits

    PubMed Central

    Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.

    2015-01-01

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371

  20. Middle-Ear Pressure Gain and Cochlear Partition Differential Pressure in Chinchilla

    PubMed Central

    Ravicz, Michael E.; Slama, Michaël C.C.; Rosowski, John J.

    2009-01-01

    An important step to describe the effects of inner-ear impedance and pathologies on middle- and inner-ear mechanics is to quantify middle- and inner-ear function in the normal ear. We present middle-ear pressure gain GMEP and trans-cochlear-partition differential sound pressure ΔPCP in chinchilla from 100 Hz to 30 kHz derived from measurements of intracochlear sound pressures in scala vestibuli PSV and scala tympani PST and ear-canal sound pressure near the tympanic membrane PTM. These measurements span the chinchilla's auditory range. GMEP had constant magnitude of about 20 dB between 300 Hz and 20 kHz and phase that implies a 40-μs delay, values with some similarities to previous measurements in chinchilla and other species. ΔPCP was similar to GMEP below about 10 kHz and lower in magnitude at higher frequencies, decreasing to 0 dB at 20 kHz. The high-frequency rolloff correlates with the audiogram and supports the idea that middle-ear transmission limits high-frequency hearing, providing a stronger link between inner-ear macromechanics and hearing. We estimate the cochlear partition impedance ZCP from these and previous data. The chinchilla may be a useful animal model for exploring the effects of nonacoustic inner-ear stimulation such as “bone conduction” on cochlear mechanics. PMID:19945521

  1. Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral.

    PubMed

    Lichtenhan, J T; Hartsock, J; Dornhoffer, J R; Donovan, K M; Salt, A N

    2016-11-01

    Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral

    PubMed Central

    Lichtenhan, JT; Hartsock, J; Dornhoffer, JR; Donovan, KM; Salt, AN

    2016-01-01

    Background Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. New method Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Results Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Conclusions Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. PMID:27506463

  3. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells.

    PubMed

    Zou, Junhuang; Chen, Qian; Almishaal, Ali; Mathur, Pranav Dinesh; Zheng, Tihua; Tian, Cong; Zheng, Qing Y; Yang, Jun

    2017-02-01

    Usher syndrome (USH) is the most common cause of inherited deaf-blindness, manifested as USH1, USH2 and USH3 clinical types. The protein products of USH2 causative and modifier genes, USH2A, ADGRV1, WHRN and PDZD7, interact to assemble a multiprotein complex at the ankle link region of the mechanosensitive stereociliary bundle in hair cells. Defects in this complex cause stereociliary bundle disorganization and hearing loss. The four USH2 proteins also interact in vitro with USH1 proteins including myosin VIIa, USH1G (SANS), CIB2 and harmonin. However, it is unclear whether the interactions between USH1 and USH2 proteins occur in vivo and whether USH1 proteins play a role in USH2 complex assembly in hair cells. In this study, we identified a novel interaction between myosin VIIa and PDZD7 by FLAG pull-down assay. We further investigated the role of the above-mentioned four USH1 proteins in the cochlear USH2 complex assembly using USH1 mutant mice. We showed that only myosin VIIa is indispensable for USH2 complex assembly at ankle links, indicating the potential transport and/or anchoring role of myosin VIIa for USH2 proteins in hair cells. However, myosin VIIa is not required for USH2 complex assembly in photoreceptors. We further showed that, while PDZ protein harmonin is not involved, its paralogous USH2 proteins, PDZD7 and whirlin, function synergistically in USH2 complex assembly in cochlear hair cells. In summary, our studies provide novel insight into the functional relationship between USH1 and USH2 proteins in the cochlea and the retina as well as the disease mechanisms underlying USH1 and USH2. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Tinnitus and Sleep Difficulties After Cochlear Implantation.

    PubMed

    Pierzycki, Robert H; Edmondson-Jones, Mark; Dawes, Piers; Munro, Kevin J; Moore, David R; Kitterick, Pádraig T

    To estimate and compare the prevalence of and associations between tinnitus and sleep difficulties in a sample of UK adult cochlear implant users and those identified as potential candidates for cochlear implantation. The study was conducted using the UK Biobank resource, a population-based cohort of 40- to 69-year olds. Self-report data on hearing, tinnitus, sleep difficulties, and demographic variables were collected from cochlear implant users (n = 194) and individuals identified as potential candidates for cochlear implantation (n = 211). These "candidates" were selected based on (i) impaired hearing sensitivity, inferred from self-reported hearing aid use and (ii) impaired hearing function, inferred from an inability to report words accurately at negative signal to noise ratios on an unaided closed-set test of speech perception. Data on tinnitus (presence, persistence, and related distress) and on sleep difficulties were analyzed using logistic regression models controlling for gender, age, deprivation, and neuroticism. The prevalence of tinnitus was similar among implant users (50%) and candidates (52%; p = 0.39). However, implant users were less likely to report that their tinnitus was distressing at its worst (41%) compared with candidates (63%; p = 0.02). The logistic regression model suggested that this difference between the two groups could be explained by the fact that tinnitus was less persistent in implant users (46%) compared with candidates (72%; p < 0.001). Self-reported difficulties with sleep were similar among implant users (75%) and candidates (82%; p = 0.28), but participants with tinnitus were more likely to report sleep difficulties than those without (p < 0.001). The prevalence of sleep difficulties was not related to tinnitus persistence (p = 0.28) or the extent to which tinnitus was distressing (p = 0.55). The lack of association between tinnitus persistence and sleep difficulties is compatible with the notion that tinnitus is suppressed in implant users primarily during active electrical stimulation and may return when the implant is switched off at night time. This explanation is supported by the similar prevalence of sleep problems among implant users and potential candidates for cochlear implantation, despite differences between the groups in tinnitus persistence and related emotional distress. Cochlear implantation may therefore not be an appropriate intervention where the primary aim is to alleviate sleep difficulties.

  5. Use of Electrically Evoked Compound Action Potentials for Cochlear Implant Fitting: A Systematic Review.

    PubMed

    de Vos, Johan J; Biesheuvel, Jan Dirk; Briaire, Jeroen J; Boot, Pieter S; van Gendt, Margriet J; Dekkers, Olaf M; Fiocco, Marta; Frijns, Johan H M

    The electrically evoked compound action potential (eCAP) is widely used in the clinic as an objective measure to assess cochlear implant functionality. During the past decade, there has been increasing interest in applying eCAPs for fitting of cochlear implants. Several studies have shown that eCAP-based fitting can potentially replace time-consuming behavioral fitting procedures, especially in young children. However, a closer look to all available literature revealed that there is no clear consensus on the validity of this fitting procedure. This study evaluated the validity of eCAP-based fitting of cochlear implant recipients based on a systematic review of the recent literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were used to search the PubMed, Web of Science, and Cochrane Library databases. The term "eCAP" was combined with "cochlear implants," "thresholds," and "levels," in addition to a range of related terms. Finally, 32 studies met the inclusion criteria. These studies were evaluated on the risk of bias and, when possible, compared by meta-analysis. Almost all assessed studies suffered from some form of risk of bias. Twenty-nine of the studies based their conclusion on a group correlation instead of individual subject correlations (analytical bias); 14 studies were unclear about randomization or blinding (outcome assessment bias); 9 studies provided no clear description of the populations used, for example, prelingually or postlingually implanted subjects (selection bias); and 4 studies had a high rate of loss (>10%) for patients or electrodes (attrition bias). Meta-analysis of these studies revealed a weak pooled correlation between eCAP thresholds and both behavioral T- and C-levels (r = 0.58 and r = 0.61, respectively). This review shows that the majority of the assessed studies suffered from substantial shortcomings in study design and statistical analysis. Meta-analysis showed that there is only weak evidence to support the use of eCAP data for cochlear implant fitting purposes; eCAP thresholds are an equally weak predictor for both T- and C-levels. Based on this review, it can be concluded that research on eCAP-based fitting needs a profound reflection on study design and analysis to draw well-grounded conclusions about the validity of eCAP-based fitting of cochlear implant recipients.

  6. Cochlear implantation in patients with bilateral cochlear trauma.

    PubMed

    Serin, Gediz Murat; Derinsu, Ufuk; Sari, Murat; Gergin, Ozgül; Ciprut, Ayça; Akdaş, Ferda; Batman, Cağlar

    2010-01-01

    Temporal bone fracture, which involves the otic capsule, can lead to complete loss of auditory and vestibular functions, whereas the patients without fractures may experience profound sensorineural hearing loss due to cochlear concussion. Cochlear implant is indicated in profound sensorineural hearing loss due to cochlear trauma but who still have an intact auditory nerve. This is a retrospective review study. We report 5 cases of postlingually deafened patients caused by cochlear trauma, who underwent cochlear implantation. Preoperative and postoperative hearing performance will be presented. These patients are cochlear implanted after the cochlear trauma in our department between 2001 and 2006. All patients performed very well with their implants, obtained open-set speech understanding. They all became good telephone users after implantation. Their performance in speech understanding was comparable to standard postlingual adult patients implanted. Cochlear implantation is an effective aural rehabilitation in profound sensorineural hearing loss caused by temporal bone trauma. Preoperative temporal bone computed tomography, magnetic resonance imaging, and promontorium stimulation testing are necessary to make decision for the surgery and to determine the side to be implanted. Surgery could be challenging and complicated because of anatomical irregularity. Moreover, fibrosis and partial or total ossification within the cochlea must be expected. Copyright 2010. Published by Elsevier Inc.

  7. Static length changes of cochlear outer hair cells can tune low-frequency hearing

    PubMed Central

    Ciganović, Nikola; Warren, Rebecca L.; Keçeli, Batu; Jacob, Stefan

    2018-01-01

    The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the stimulus to the inner hair cells remains unclear. Here, we combine theoretical modeling and experimental measurements near the cochlear apex to study the way in which length changes of the outer hair cells deform the organ of Corti. We develop a geometry-based kinematic model of the apical organ of Corti that reproduces salient, yet counter-intuitive features of the organ’s motion. Our analysis further uncovers a mechanism by which a static length change of the outer hair cells can sensitively tune the signal transmitted to the sensory inner hair cells. When the outer hair cells are in an elongated state, stimulation of inner hair cells is largely inhibited, whereas outer hair cell contraction leads to a substantial enhancement of sound-evoked motion near the hair bundles. This novel mechanism for regulating the sensitivity of the hearing organ applies to the low frequencies that are most important for the perception of speech and music. We suggest that the proposed mechanism might underlie frequency discrimination at low auditory frequencies, as well as our ability to selectively attend auditory signals in noisy surroundings. PMID:29351276

  8. Cochlear Hair Cell Electrochemistry: Mechanisms for Bidirectional Transduction.

    DTIC Science & Technology

    1988-06-30

    cytoplasm in the cell’s laminated cisternal system. More specifically, we postulate that intracochlear potential gradients associated with acoustic...transduction drive intracellular fluids through an electo-osmotic "pump" formed by the plasma membrane and the morphologically unique laminated cisternal ...laminated cisternal system in the hearing loss measured with brainstem evoked response. The highly polycationic nature of the polyamines suggest their

  9. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype.

    PubMed

    Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J

    2006-09-01

    Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.

  10. Function and expression pattern of nonsyndromic deafness genes

    PubMed Central

    Hilgert, Nele; Smith, Richard J.H.; Van Camp, Guy

    2010-01-01

    Hearing loss is the most common sensory disorder, present in 1 of every 500 newborns. To date, 46 genes have been identified that cause nonsyndromic hearing loss, making it an extremely heterogeneous trait. This review provides a comprehensive overview of the inner ear function and expression pattern of these genes. In general, they are involved in hair bundle morphogenesis, form constituents of the extracellular matrix, play a role in cochlear ion homeostasis or serve as transcription factors. During the past few years, our knowledge of genes involved in hair bundle morphogenesis has increased substantially. We give an up-to-date overview of both the nonsyndromic and Usher syndrome genes involved in this process, highlighting proteins that interact to form macromolecular complexes. For every gene, we also summarize its expression pattern and impact on hearing at the functional level. Gene-specific cochlear expression is summarized in a unique table by structure/cell type and is illustrated on a cochlear cross-section, which is available online via the Hereditary Hearing Loss Homepage. This review should provide auditory scientists the most relevant information for all identified nonsyndromic deafness genes. PMID:19601806

  11. Chronic excitotoxicity in the guinea pig cochlea induces temporary functional deficits without disrupting otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Le Prell, Colleen G.; Yagi, Masao; Kawamoto, Kohei; Beyer, Lisa A.; Atkin, Graham; Raphael, Yehoash; Dolan, David F.; Bledsoe, Sanford C.; Moody, David B.

    2004-08-01

    Brief cochlear excitotoxicity produces temporary neural swelling and transient deficits in auditory sensitivity; however, the consequences of long-lasting excitotoxic insult have not been tested. Chronic intra-cochlear infusion of the glutamate agonist AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) resulted in functional deficits in the sound-evoked auditory brainstem response, as well as in behavioral measures of hearing. The electrophysiological deficits were similar to those observed following acute infusion of AMPA into the cochlea; however, the concentration-response curve was significantly shifted as a consequence of the slower infusion rate used with chronic cochlear administration. As observed following acute excitotoxic insult, complete functional recovery was evident within 7 days of discontinuing the AMPA infusion. Distortion product otoacoustic emissions were not affected by chronic AMPA infusion, suggesting that trauma to outer hair cells did not contribute to AMPA-induced deficits in acoustic sensitivity. Results from the current experiment address the permanence of deficits induced by chronic (14 day) excitotoxic insult as well as deficits in psychophysical detection of longer duration acoustic signals.

  12. Advances in Cochlear Implant Telemetry: Evoked Neural Responses, Electrical Field Imaging, and Technical Integrity

    PubMed Central

    Mens, Lucas H. M.

    2007-01-01

    During the last decade, cochlear implantation has evolved into a well-established treatment of deafness, predominantly because of many improvements in speech processing and the controlled excitation of the auditory nerve. Cochlear implants now also feature telemetry, which is highly useful to monitor the proper functioning of the implanted electronics and electrode contacts. Telemetry can also support the clinical management in young children and difficult cases where neural unresponsiveness is suspected. This article will review recent advances in the telemetry of the electrically evoked compound action potential that have made these measurements simple and routine procedures in most cases. The distribution of the electrical stimulus itself sampled by “electrical field imaging” reveals general patterns of current flow in the normal cochlea and gross abnormalities in individual patients; models have been developed to derive more subtle insights from an individual electrical field imaging. Finally, some thoughts are given to the extended application of telemetry, for example, in monitoring the neural responses or in combination with other treatments of the deaf ear. PMID:17709572

  13. Current and Future Management of Bilateral Loss of Vestibular Sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan

    2012-01-01

    Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimization of stimulus protocols, and reduction of device size and power consumption. PMID:21756683

  14. Cochlear implant in Hong Kong Cantonese.

    PubMed

    Tang, S O; Luk, W S; Lau, C C; So, K W; Wong, C M; Yiu, M L; Kwok, C L

    1990-11-01

    Cochlear implant surgery was performed in four Cantonese-speaking postlingually deaf Chinese adults, using the House/3M single channel device. This article outlines the methodology, including preoperative assessment and postoperative rehabilitation; and explains the necessary modifications in speech and audiologic work-up in Cantonese-speaking patients. Salient features of Cantonese phonetics, especially its tonal characteristics, are described. The findings of the study are presented. The results of the cochlear implant would suggest a performance superior to that of the hearing aid. Furthermore, the cochlear implant is able to detect tonal cues. This quality of the cochlear implant may prove to be a valuable asset to a tonal language-speaking cochlear implantee.

  15. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    PubMed

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Cochlear implants: system design, integration, and evaluation.

    PubMed

    Zeng, Fan-Gang; Rebscher, Stephen; Harrison, William; Sun, Xiaoan; Feng, Haihong

    2008-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues in cochlear implant research and development. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants.

  17. Cochlear Implants Special Issue Article: Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users

    PubMed Central

    Luo, Xin; Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    The present study investigated the ability of normal-hearing listeners and cochlear implant users to recognize vocal emotions. Sentences were produced by 1 male and 1 female talker according to 5 target emotions: angry, anxious, happy, sad, and neutral. Overall amplitude differences between the stimuli were either preserved or normalized. In experiment 1, vocal emotion recognition was measured in normal-hearing and cochlear implant listeners; cochlear implant subjects were tested using their clinically assigned processors. When overall amplitude cues were preserved, normal-hearing listeners achieved near-perfect performance, whereas listeners with cochlear implant recognized less than half of the target emotions. Removing the overall amplitude cues significantly worsened mean normal-hearing and cochlear implant performance. In experiment 2, vocal emotion recognition was measured in listeners with cochlear implant as a function of the number of channels (from 1 to 8) and envelope filter cutoff frequency (50 vs 400 Hz) in experimental speech processors. In experiment 3, vocal emotion recognition was measured in normal-hearing listeners as a function of the number of channels (from 1 to 16) and envelope filter cutoff frequency (50 vs 500 Hz) in acoustic cochlear implant simulations. Results from experiments 2 and 3 showed that both cochlear implant and normal-hearing performance significantly improved as the number of channels or the envelope filter cutoff frequency was increased. The results suggest that spectral, temporal, and overall amplitude cues each contribute to vocal emotion recognition. The poorer cochlear implant performance is most likely attributable to the lack of salient pitch cues and the limited functional spectral resolution. PMID:18003871

  18. A global patient outcomes registry: Cochlear paediatric implanted recipient observational study (Cochlear™ P-IROS)

    PubMed Central

    2014-01-01

    Background Currently, there is a paucity of data concerning the long-term outcomes, educational placement and quality of life of children implanted with hearing devices from large and representative samples of the population. To address this concern, a large, prospective, multicentre, multinational patient-outcomes registry for paediatric recipients of implantable hearing devices was developed. The benefits of this registry, its approach and methodology are described. Methods/Design The Cochlear™ Paediatric Implanted Recipient Observational Study (Cochlear P-IROS) is a prospective international patient-outcomes registry for children who are implanted in routine clinical practice with one or more hearing devices. The study aims to collect data on patient comorbidities, device use, auditory performance, quality of life and health-related utilities, across different types of implantable hearing devices from a range of manufacturers. Patients will be evaluated with a set of standardised and non-standardised questionnaires prior to initial device activation (baseline) and at six-monthly follow-up intervals up to 24 months and annually thereafter. The Cochlear P-IROS utilises a secure web interface to administer electronic case report forms to clinicians and families of implanted children. The web interface is currently available in five languages: English, Japanese, Korean, Mandarin and Russian. The interface also provides printable versions of the case report forms translated into 22 local languages for collection of data prior to entry online; additional languages may be added, as required. Participation in the Cochlear P-IROS registry is investigator-driven and voluntary. To date, the Cochlear P-IROS has recruited implant clinics across Australia, China, India, Indonesia, Turkey and Vietnam. The registry also aims to recruit multiple clinics in Cuba, Israel, Japan, Malaysia, Singapore, South Africa, South Korea and Russia. Discussion The use of a registry such as the Cochlear P-IROS will generate valuable data to support research interests of academics and clinicians around the globe. The data generated will be relevant for a wide range of stakeholders including regulators, payers, providers, policy makers, patients and their families, each with a different perspective for the acceptance and adoption of implantable hearing devices for the treatment of hearing loss. PMID:25317075

  19. Lead exposure results in hearing loss and disruption of the cochlear blood-labyrinth barrier and the protective role of iron supplement.

    PubMed

    Liu, Xinqin; Zheng, Gang; Wu, Yongxiang; Shen, Xuefeng; Jing, Jinfei; Yu, Tao; Song, Han; Chen, Jingyuan; Luo, Wenjing

    2013-12-01

    This study was designed to investigate the impact of lead (Pb(2+)) on the auditory system and its molecular mechanisms. Pb(AC)2 was administrated to male SD rats aged 21-22 d for 8 weeks at a dose of 300ppm. Male guinea pigs were also administrated with 50mg/kg Pb(AC)2 two times a week for 8 weeks. The auditory nerve-brainstem evoked responses (ABR) was recorded and the morphological changes of the outer hair cells (OHCs) were observed with Phallodin-FITC staining. In addition, the integrity of the blood-labyrinth barrier was observed by TEM and the expression of tight junction proteins (TJPs) in the cochlear stria vascularis was determined by immunofluorescence. Our results showed that Pb(2+) exposure resulted in increased ABR threshold in both rats and guinea pigs. Abnormal shapes and loss of OHCs were found in the cochlear basilar membrane following the Pb(2+) exposure. TEM study showed that the tight junctions between the endothelial cells and the border cells were lost and disrupted. Down-regulation of the occludin, ZO-1 and claudin-5 in the stria vascularis suggested that the increased permeability of the blood-labyrinth barrier may attribute to the Pb(2+)-induced decrease of TJPs' expression. Additionally, Fe(2+) supplement partly reversed the Pb(2+)-induced hearing loss and down-regulation of TJPs. Taken together, these data indicate that the disruption of blood-labyrinth barrier by down-regulating the expression of TJPs plays a role in the Pb(2+)-induced hearing loss, and Fe(2+) supplement protects the auditory system against Pb(2+)-induced toxicity and may have significant clinical implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The development, distribution and density of the PMCA2 calcium pump in rat cochlear hair cells

    PubMed Central

    Chen, Qingguo; Mahendrasingam, Shanthini; Tickle, Jacqueline A.; Hackney, Carole M.; Furness, David N.; Fettiplace, Robert

    2012-01-01

    Calcium is tightly regulated in cochlear outer hair cells (OHCs). It enters mainly via mechanotransducer (MT) channels and is extruded by the PMCA2 isoform of the plasma membrane calcium ATPase, mutations in which cause hearing loss. To assess how pump expression matches the demands of Ca2+ homeostasis, the distribution of PMCA2 at different cochlear locations during development was quantified using immunofluorescence and post-embedding immunogold labeling. The PMCA2 isoform was confined to stereociliary bundles, first appearing at the base of the cochlea around post-natal day 0 (P0) followed by the middle and then the apex by P3, and was unchanged after P8. The developmental appearance matches maturation of the MT channels in rat OHCs. High-resolution immunogold labeling in adult rats showed PMCA2 was distributed along the membranes of all three rows of OHC stereocilia at similar densities and at about a quarter the density in IHC stereocilia. The difference between OHCs and inner hair cells (IHCs) is similar to the ratio of their MT channel resting open probabilities. Gold particle counts revealed no difference in PMCA2 density between low- and high-frequency OHC bundles despite larger MT currents in high-frequency OHCs. The PMCA2 density in OHC stereocilia was determined in low- and high-frequency regions from calibration of immunogold particle counts as 2200/μm2 from which an extrusion rate of ~200 ions·s−1 per pump was inferred. The limited ability of PMCA2 to extrude the Ca2+ load through MT channels may constitute a major cause of OHC vulnerability and high-frequency hearing loss. PMID:22672315

  1. The cochlea as a smart structure

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Shera, Christopher A.

    2012-06-01

    The cochlea is part of the inner ear and its mechanical response provides us with many aspects of our amazingly sensitive and selective hearing. The human cochlea is a coiled tube, with two main fluid chambers running along its length, separated by a 35 mm-long flexible partition that has its own internal dynamics. A dispersive wave can propagate along the cochlea due to the interaction between the inertia of the fluid and the dynamics of the partition. This partition includes about 12 000 outer hair cells, which have different structures, on a micrometre and a nanometre scale, and act both as motional sensors and as motional actuators. The local feedback action of all these cells amplifies the motion inside the inner ear by more than 40 dB at low sound pressure levels. The feedback loops become saturated at higher sound pressure levels, however, so that the feedback gain is reduced, leading to a compression of the dynamic range in the cochlear amplifier. This helps the sensory cells, with a dynamic range of only about 30 dB, to respond to sounds with a dynamic range of more than 120 dB. The active and nonlinear nature of the dynamics within the cochlea give rise to a number of other phenomena, such as otoacoustic emissions, which can be used as a diagnostic test for hearing problems in newborn children, for example. In this paper we view the mechanical action of the cochlea as a smart structure. In particular a simplified wave model of the cochlear dynamics is reviewed that represents its essential features. This can be used to predict the motion along the cochlea when the cochlea is passive, at high levels, and also the effect of the cochlear amplifier, at low levels.

  2. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss

    PubMed Central

    de Groot, John C.M.J.; van Iperen, Liesbeth; Huisman, Margriet A.; Frijns, Johan H.M.

    2015-01-01

    ABSTRACT Sensorineural hearing loss (SNHL) is one of the most common congenital disorders in humans, afflicting one in every thousand newborns. The majority is of heritable origin and can be divided in syndromic and nonsyndromic forms. Knowledge of the expression profile of affected genes in the human fetal cochlea is limited, and as many of the gene mutations causing SNHL likely affect the stria vascularis or cochlear potassium homeostasis (both essential to hearing), a better insight into the embryological development of this organ is needed to understand SNHL etiologies. We present an investigation on the development of the stria vascularis in the human fetal cochlea between 9 and 18 weeks of gestation (W9–W18) and show the cochlear expression dynamics of key potassium‐regulating proteins. At W12, MITF+/SOX10+/KIT+ neural‐crest‐derived melanocytes migrated into the cochlea and penetrated the basement membrane of the lateral wall epithelium, developing into the intermediate cells of the stria vascularis. These melanocytes tightly integrated with Na+/K+‐ATPase‐positive marginal cells, which started to express KCNQ1 in their apical membrane at W16. At W18, KCNJ10 and gap junction proteins GJB2/CX26 and GJB6/CX30 were expressed in the cells in the outer sulcus, but not in the spiral ligament. Finally, we investigated GJA1/CX43 and GJE1/CX23 expression, and suggest that GJE1 presents a potential new SNHL associated locus. Our study helps to better understand human cochlear development, provides more insight into multiple forms of hereditary SNHL, and suggests that human hearing does not commence before the third trimester of pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1219–1240, 2015 PMID:25663387

  3. Mechanics of the Mammalian Cochlea

    PubMed Central

    Robles, Luis; Ruggero, Mario A.

    2013-01-01

    In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers. PMID:11427697

  4. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons

    PubMed Central

    McGinley, Matthew J.; Liberman, M. Charles; Bal, Ramazan; Oertel, Donata

    2012-01-01

    Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across about one third of the tonotopic axis, a click evokes a soma directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic excitatory postsynaptic potentials (EPSPs). A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds. PMID:22764237

  5. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear.

    PubMed

    Thomas, Paul V; Cheng, Andrew L; Colby, Candice C; Liu, Liqian; Patel, Chintan K; Josephs, Lydia; Duncan, R Keith

    2014-05-30

    Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells. We sought to determine the prevalence, localization, and protein composition of cholesterol-rich lipid microdomains in the cochlea. Lipid raft components, including the scaffolding protein caveolin and the ganglioside GM1, were found in sensory, neural, and glial cells. Mass spectrometry of detergent-resistant membrane (DRM) fractions revealed over 600 putative raft proteins associated with subcellular localization, trafficking, and metabolism. Among the DRM constituents were several proteins involved in human forms of deafness including those involved in ion homeostasis, such as the potassium channel KCNQ1, the co-transporter SLC12A2, and gap junction proteins GJA1 and GJB6. The presence of caveolin in the cochlea and the abundance of proteins in cholesterol-rich DRM suggest that lipid microdomains play a significant role in cochlear physiology. Although mechanisms underlying cholesterol synthesis, homeostasis, and compartmentalization in the ear are poorly understood, there are several lines of evidence indicating that cholesterol is a key modulator of cochlear function. Depletion of cholesterol in mature sensory cells alters calcium signaling, changes excitability during development, and affects the biomechanical processes in outer hair cells that are responsible for hearing acuity. More recently, we have established that the cholesterol-modulator beta-cyclodextrin is capable of inducing significant and permanent hearing loss when delivered subcutaneously at high doses. We hypothesize that proteins involved in cochlear homeostasis and otopathology are partitioned into cholesterol-rich domains. The results of a large-scale proteomic analysis point to metabolic processes, scaffolding/trafficking, and ion homeostasis as particularly associated with cholesterol microdomains. These data offer insight into the proteins and protein families that may underlie cholesterol-mediated effects in sensory cell excitability and cyclodextrin ototoxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Emotional response to music by postlingually-deafened adult cochlear implant users].

    PubMed

    Wang, Shuo; Dong, Ruijuan; Zhou, Yun; Li, Jing; Qi, Beier; Liu, Bo

    2012-10-01

    To assess the emotional response to music by postlingually-deafened adult cochlear implant users. Munich music questionnaire (MUMU) was used to match the music experience and the motivation of use of music between 12 normal-hearing and 12 cochlear implant subjects. Emotion rating test in Musical Sounds in Cochlear Implants (MuSIC) test battery was used to assess the emotion perception ability for both normal-hearing and cochlear implant subjects. A total of 15 pieces of music phases were used. Responses were given by selecting the rating scales from 1 to 10. "1" represents "very sad" feeling, and "10" represents "very happy feeling. In comparison with normal-hearing subjects, 12 cochlear implant subjects made less active use of music for emotional purpose. The emotion ratings for cochlear implant subjects were similar to normal-hearing subjects, but with large variability. Post-lingually deafened cochlear implant subjects on average performed similarly in emotion rating tasks relative to normal-hearing subjects, but their active use of music for emotional purpose was obviously less than normal-hearing subjects.

  7. The cochlear size of bats and rodents derived from MRI images and histology.

    PubMed

    Hsiao, Chun Jen; Jen, Philip Hung-Sun; Wu, Chung Hsin

    2015-05-27

    From the evolutionary perspective, the ear of each animal species is built for effective processing of the biologically relevant signals used for communication and acoustically guided orientation. Because the sound pulses used by echolocating bats for orientation and rodents for communication are quite different, the basic design of the mammalian auditory system commonly shared by echolocating bats must be specialized in some manner to effectively process their species-specific sounds. The present study examines the difference in the cochlea of these animal species using MRI images and histological techniques. We report here that, although all these animal species share a similar cochlear structure, they vary in their cochlear size and turns. Bats using constant frequency-frequency-modulated pulses (CF-FM bats) and frequency-modulated pulses (FM bats) for echolocation have a larger cochlear size and more cochlear turns than rodents (mice and rats). However, CF-FM bats have the largest cochlear size and most cochlear turns. This difference in cochlear size and turns of these animal species is discussed in relation to their biologically relevant sounds and acoustic behavior.

  8. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and Schwann cell-like cells in a slow-flow microfluidic device

    PubMed Central

    Ramamurthy, Poornapriya; White, Joshua B.; Park, Joong Yull; Hume, Richard I.; Ebisu, Fumi; Mendez, Flor; Takayama, Shuichi; Barald, Kate F

    2016-01-01

    Background To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining Spiral Ganglion Neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived “neurons” could potentially substitute for lost or damaged SGN. mESC-derived “Schwann cells” produce MIF as do all Schwann cells (Huang et al., 2002; Roth et al., 2007, 2008) and could attract SGN to “ cell coated” implant. Results Neuron- and Schwann cell-like cells were produced from a common population of mESC in an ultra-slow flow microfluidic device. As the populations interacted; “neurons” grew over the “Schwann cell” lawn and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing “Schwann cells” were used to “coat” a CI: mouse SGN and MIF-induced “neurons” grew directionally to the CI and to a wild type but not MIF-knock out Organ of Corti explant. Conclusions Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. PMID:27761977

  9. Guideline on cochlear implants.

    PubMed

    Manrique, Manuel; Ramos, Ángel; de Paula Vernetta, Carlos; Gil-Carcedo, Elisa; Lassaleta, Luis; Sanchez-Cuadrado, Isabel; Espinosa, Juan Manuel; Batuecas, Ángel; Cenjor, Carlos; Lavilla, María José; Núñez, Faustino; Cavalle, Laura; Huarte, Alicia

    2018-03-26

    In the last decade numerous hospitals have started to work with patients who are candidates for a cochlear implant (CI) and there have been numerous and relevant advances in the treatment of sensorineural hearing loss that extended the indications for cochlear implants. To provide a guideline on cochlear implants to specialists in otorhinolaryngology, other medical specialities, health authorities and society in general. The Scientific Committees of Otology, Otoneurology and Audiology from the Spanish Society of Otolaryngology and Head and Neck Surgery (SEORL-CCC), in a coordinated and agreed way, performed a review of the current state of CI based on the existing regulations and in the scientific publications referenced in the bibliography of the document drafted. The clinical guideline on cochlear implants provides information on: a) Definition and description of Cochlear Implant; b) Indications for cochlear implants; c) Organizational requirements for a cochlear implant programme. A clinical guideline on cochlear implants has been developed by a Committee of Experts of the SEORL-CCC, to help and guide all the health professionals involved in this field of CI in decision-making to treathearing impairment. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Individual differences reveal correlates of hidden hearing deficits.

    PubMed

    Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G

    2015-02-04

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of "normal hearing." Copyright © 2015 the authors 0270-6474/15/352161-12$15.00/0.

  11. Recording and labeling at a site along the cochlea shows alignment of medial olivocochlear and auditory nerve tonotopic mappings

    PubMed Central

    2016-01-01

    Medial olivocochlear (MOC) neurons provide an efferent innervation to outer hair cells (OHCs) of the cochlea, but their tonotopic mapping is incompletely known. In the present study of anesthetized guinea pigs, the MOC mapping was investigated using in vivo, extracellular recording, and labeling at a site along the cochlear course of the axons. The MOC axons enter the cochlea at its base and spiral apically, successively turning out to innervate OHCs according to their characteristic frequencies (CFs). Recordings made at a site in the cochlear basal turn yielded a distribution of MOC CFs with an upper limit, or “edge,” due to usually absent higher-CF axons that presumably innervate more basal locations. The CFs at the edge, normalized across preparations, were equal to the CFs of the auditory nerve fibers (ANFs) at the recording sites (near 16 kHz). Corresponding anatomical data from extracellular injections showed spiraling MOC axons giving rise to an edge of labeling at the position of a narrow band of labeled ANFs. Overall, the edges of the MOC CFs and labeling, with their correspondences to ANFs, suggest similar tonotopic mappings of these efferent and afferent fibers, at least in the cochlear basal turn. They also suggest that MOC axons miss much of the position of the more basally located cochlear amplifier appropriate for their CF; instead, the MOC innervation may be optimized for protection from damage by acoustic overstimulation. PMID:26823515

  12. Recording and labeling at a site along the cochlea shows alignment of medial olivocochlear and auditory nerve tonotopic mappings.

    PubMed

    Brown, M Christian

    2016-03-01

    Medial olivocochlear (MOC) neurons provide an efferent innervation to outer hair cells (OHCs) of the cochlea, but their tonotopic mapping is incompletely known. In the present study of anesthetized guinea pigs, the MOC mapping was investigated using in vivo, extracellular recording, and labeling at a site along the cochlear course of the axons. The MOC axons enter the cochlea at its base and spiral apically, successively turning out to innervate OHCs according to their characteristic frequencies (CFs). Recordings made at a site in the cochlear basal turn yielded a distribution of MOC CFs with an upper limit, or "edge," due to usually absent higher-CF axons that presumably innervate more basal locations. The CFs at the edge, normalized across preparations, were equal to the CFs of the auditory nerve fibers (ANFs) at the recording sites (near 16 kHz). Corresponding anatomical data from extracellular injections showed spiraling MOC axons giving rise to an edge of labeling at the position of a narrow band of labeled ANFs. Overall, the edges of the MOC CFs and labeling, with their correspondences to ANFs, suggest similar tonotopic mappings of these efferent and afferent fibers, at least in the cochlear basal turn. They also suggest that MOC axons miss much of the position of the more basally located cochlear amplifier appropriate for their CF; instead, the MOC innervation may be optimized for protection from damage by acoustic overstimulation. Copyright © 2016 the American Physiological Society.

  13. Cochlear transducer operating point adaptation.

    PubMed

    Zou, Yuan; Zheng, Jiefu; Ren, Tianying; Nuttall, Alfred

    2006-04-01

    The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74 dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of -0.1 Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18 kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the scala vestibuli (SV) direction. During an application of the constant force, the second harmonic of the CM partially recovered toward the initial level, which could be described by two time constants. Removing the force induced recovery of the second harmonic to its normal level described by a single time constant. The force applied over the SV caused an opposite result. These data indicate an active mechanism for OHC transduction OP.

  14. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea

    PubMed Central

    Cheng, Cheng; Guo, Luo; Lu, Ling; Xu, Xiaochen; Zhang, ShaSha; Gao, Junyan; Waqas, Muhammad; Zhu, Chengwen; Chen, Yan; Zhang, Xiaoli; Xuan, Chuanying; Gao, Xia; Tang, Mingliang; Chen, Fangyi; Shi, Haibo; Li, Huawei; Chai, Renjie

    2017-01-01

    Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein–protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration. PMID:28491023

  15. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow

    PubMed Central

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2014-01-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131

  16. Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways

    PubMed Central

    Yamasoba, Tatsuya; Lin, Frank R.; Someya, Shinichi; Kashio, Akinori; Sakamoto, Takashi; Kondo, Kenji

    2013-01-01

    Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. PMID:23422312

  17. Systematic review: Radiological and histological evidence of cochlear implant insertion trauma in adult patients.

    PubMed

    Hoskison, Emma; Mitchell, Scott; Coulson, Chris

    2017-07-01

    Cochlear implantation (CI) has developed from its origins in the 1980s. Initially, CI was for profound bilateral hearing impairment. However, candidacy for CI have become more widespread in recent years with unilateral implantation and an emphasis on hearing preservation. Evidence supports full electrode insertion in an atraumatic fashion into the scala tympani (ST) provides optimal hearing outcomes. The main aim of this systematic review was to elucidate the degree of trauma associated with CI insertion. A systematic literature search was undertaken using PubMed Medline. A grading system described by Eshraghi was used to classify cochlear trauma. Both radiological and histological studies were included. Twenty one papers were identified which were relevant to our search. In total, 653 implants were inserted and 115 (17.6%) showed evidence of trauma. The cochleas with trauma had basilar membrane elevation in 5.2%, ruptured in 5.2%, the electrode passed from the ST to the SV in 84.4% and there was grade 4 trauma in 5.2%. The studies used a variety of histological and radiological methods to assess for evidence of trauma in both cadaveric temporal bones and live recipients. Minimizing cochlear trauma during implant insertion is important to preserve residual hearing and optimize audiological performance. An overall 17.6% trauma rate suggests that CI insertion could be improved with more accurate and consistent electrode insertion such as in the form of robotic guidance. The correlation of cochlea trauma with post-operative hearing has yet to be determined.

  18. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    PubMed

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  19. Epidermal wound repair is regulated by the planar cell polarity signaling pathway

    PubMed Central

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B.; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A.; Murdoch, Jennifer N.; Humbert, Patrick O.; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M.; Jane, Stephen M.

    2010-01-01

    SUMMARY The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3−/− mice, we identified RhoGEF19, a homologue of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerisation, cellular polarity and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling, and broadly implicate this pathway in epidermal repair. PMID:20643356

  20. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss.

    PubMed

    Brown, Kevin D; Maqsood, Sadia; Huang, Jing-Yi; Pan, Yong; Harkcom, William; Li, Wei; Sauve, Anthony; Verdin, Eric; Jaffrey, Samie R

    2014-12-02

    Intense noise exposure causes hearing loss by inducing degeneration of spiral ganglia neurites that innervate cochlear hair cells. Nicotinamide adenine dinucleotide (NAD(+)) exhibits axon-protective effects in cultured neurons; however, its ability to block degeneration in vivo has been difficult to establish due to its poor cell permeability and serum instability. Here, we describe a strategy to increase cochlear NAD(+) levels in mice by administering nicotinamide riboside (NR), a recently described NAD(+) precursor. We find that administration of NR, even after noise exposure, prevents noise-induced hearing loss (NIHL) and spiral ganglia neurite degeneration. These effects are mediated by the NAD(+)-dependent mitochondrial sirtuin, SIRT3, since SIRT3-overexpressing mice are resistant to NIHL and SIRT3 deletion abrogates the protective effects of NR and expression of NAD(+) biosynthetic enzymes. These findings reveal that administration of NR activates a NAD(+)-SIRT3 pathway that reduces neurite degeneration caused by noise exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The Location of the Cochlear Amplifier: Spatial Representation of a Single Tone on the Guinea Pig Basilar Membrane

    NASA Astrophysics Data System (ADS)

    Russell, I. J.; Nilsen, K. E.

    1997-03-01

    Acoustic stimulation vibrates the cochlear basilar membrane, initiating a wave of displacement that travels toward the apex and reaches a peak over a restricted region according to the stimulus frequency. In this characteristic frequency region, a tone at the characteristic frequency maximally excites the sensory hair cells of the organ of Corti, which transduce it into electrical signals to produce maximum activity in the auditory nerve. Saturating, nonlinear, feedback from the motile outer hair cells is thought to provide electromechanical amplification of the travelling wave. However, neither the location nor the extent of the source of amplification, in relation to the characteristic frequency, are known. We have used a laser--diode interferometer to measure in vivo the distribution along the basilar membrane of nonlinear, saturating vibrations to 15 kHz tones. We estimate that the site of amplification for the 15 kHz region is restricted to a 1.25 mm length of basilar membrane centered on the 15 kHz place.

  2. Phase contrast imaging of cochlear soft tissue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.; Hwang, M.; Rau, C.

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less

  3. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    PubMed

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-07-02

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Auditory Hair Cell Centrioles Undergo Confined Brownian Motion Throughout the Developmental Migration of the Kinocilium

    PubMed Central

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-01-01

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles’ confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. PMID:23823223

  5. Neurotrophin gene therapy for sustained neural preservation after deafness.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Hume, Clifford R; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2012-01-01

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.

  6. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  7. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  8. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  9. Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.

    PubMed

    Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan

    2011-01-01

    With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Effect of LLLT on the level of ATP and ROS from organ of corti cells

    NASA Astrophysics Data System (ADS)

    Rhee, ChungKu; Chang, So-Young; Ahn, Jin-Chul; Suh, Myung-Whan; Jung, Jae Yun

    2014-03-01

    It is well established that ototoxic antibiotics and acoustic trauma can damage cochlear hair cells and cause hearing loss. Previous studies using transcanal LLLT (Low level laser therapy) showed that LLLT can promote recovery of hearing thresholds and cochlear hair cells. However, its mechanism has not been studied. Aim: The aim of this study is to investigate the mechanism of hearing recovery from gentamicin induced ototoxic hearing loss by LLLT. Methods: HEI- OC1 (House ear institute organ of Corti) cells were cultured for 18 hours and ototoxicity was induced by gentamicin (GM) treatment to the cells. Cultured cells were divided into 6 groups, No treatment control, LLLT only, GM 6.6 mM and GM 13.1 mM, GM 6.6 mM+LLLT and GM 13.1 mM+LLLT cells. LD laser 808 nm, 15 mW, was irradiated to the cultured cells for 15 min, at 4 hours after GM treatment to the cells. ATP was assayed using the ATP assay Kit. ROS was measured using confocal microscope after application of H2DCFDA dye. Results: ATP was decreased in GM 13.1 mM cells and increased in LLLT only cells and GM 13.1 mM+LLLT cells compared to control and 13.1 mM cells. ROS was increased in GM 6.6 mM and GM 13.1 mM cells, and decreased in GM 6.6 mM+LLLT and GM 13.1 mM+LLLT cells compared to GM 6.6 and 13.1 mM cells immediately after laser irradiation. Conclusion: This study demonstrated that LLLT on GM treated HEI-OC1 cells increased ATP and decreased ROS that may contribute to the recovery of hearing.

  11. Predicting social functioning in children with a cochlear implant and in normal-hearing children: the role of emotion regulation.

    PubMed

    Wiefferink, Carin H; Rieffe, Carolien; Ketelaar, Lizet; Frijns, Johan H M

    2012-06-01

    The purpose of the present study was to compare children with a cochlear implant and normal hearing children on aspects of emotion regulation (emotion expression and coping strategies) and social functioning (social competence and externalizing behaviors) and the relation between emotion regulation and social functioning. Participants were 69 children with cochlear implants (CI children) and 67 normal hearing children (NH children) aged 1.5-5 years. Parents answered questionnaires about their children's language skills, social functioning, and emotion regulation. Children also completed simple tasks to measure their emotion regulation abilities. Cochlear implant children had fewer adequate emotion regulation strategies and were less socially competent than normal hearing children. The parents of cochlear implant children did not report fewer externalizing behaviors than those of normal hearing children. While social competence in normal hearing children was strongly related to emotion regulation, cochlear implant children regulated their emotions in ways that were unrelated with social competence. On the other hand, emotion regulation explained externalizing behaviors better in cochlear implant children than in normal hearing children. While better language skills were related to higher social competence in both groups, they were related to fewer externalizing behaviors only in cochlear implant children. Our results indicate that cochlear implant children have less adequate emotion-regulation strategies and less social competence than normal hearing children. Since they received their implants relatively recently, they might eventually catch up with their hearing peers. Longitudinal studies should further explore the development of emotion regulation and social functioning in cochlear implant children. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. [The development of musicality in children after cochlear implantation].

    PubMed

    Zheng, Yan; Liu, Bo; Dong, Ruijuan; Xu, Tianqiu; Chen, Jing; Chen, Xuejing; Zhong, Yan; Meng, Chao; Wang, Hong; Chen, Xueqing

    2014-08-01

    The purpose of this study is to analyze the development of musicality in children after cochlear implantation, and provide a clinical database for the evaluation of their musicality. Twenty-six children with cochlear implants (CI group) participated in this research. They received cochlear implants at the age of 11 to 68 months with a mean of 35.6 months. Seventy-six infants as a control group aged from 1 to 24 months with a mean of 6.1 months participated in this study, whose hearing were considered normal by passing the case history collection, high-risk registers for hearing loss and hearing screening using DPOAE. The music and young children with CIs: Musicality Rating Scale was used to evaluate their musicality. The evaluation was performed before cochlear implantation and 1, 3, 6, 9, 12, 24 months after cochlear implantation for children with cochlear implants. The evaluation was also performed at 1, 3, 6, 9, 12, 24 months for children with normal hearing. The mean scores of musicality showed significant improvements with time of CI use for CI group (P<0.05). The mean scores of musicality also showed significant improvements with time for control group (P<0.05). There were no significant differences in mean scores between CI group and control group at 1, 3, 6, 9, 12 months of hearing age by rank sum test (P>0.05). Significant difference was noted between the two groups at 24 months (P<0.05). The musicality of children with cochlear implants improved significantly with time after cochlear implantation. The most rapid growth was found in the first year after cochlear implantation.

  13. Hearing impairment associated with oral terbinafine use: a case series and case/non-case analysis in the Netherlands Pharmacovigilance Centre Lareb database and VigiBase™.

    PubMed

    Scholl, Joep H G; van Puijenbroek, Eugene P

    2012-08-01

    The Netherlands Pharmacovigilance Centre Lareb received reports of six cases of hearing impairment in association with oral terbinafine use. This study describes these cases and provides support for this association from the Lareb database for spontaneous adverse drug reaction (ADR) reporting and from Vigibase™, the ADR database of the WHO Collaborating Centre for International Drug Monitoring, the Uppsala Monitoring Centre. The objective of the current study was to identify whether the observed association between oral terbinafine use and hearing impairment, based on cases received by Lareb, constitutes a safety signal. Cases of hearing impairment in oral terbinafine users are described. In a case/non-case analysis, the strength of the association in Vigibase™ and the Lareb database was determined (date of analysis August 2011) by calculating the reporting odds ratios (RORs), adjusted for possible confounding by age, sex and ototoxic concomitant medication. For the purpose of this study, RORs were calculated for deafness, hypoacusis and the combination of both, defined as hearing impairment. In the Lareb database, six reports concerning individuals aged 31-82 years, who developed hearing impairment after starting oral terbinafine, were present. The use of oral terbinafine was disproportionally associated with hypoacusis in both the Lareb database (adjusted ROR 3.9; 95% CI 1.7, 9.0) and in Vigibase™ (adjusted ROR 1.7; 95% CI 1.0, 2.8). Deafness was not disproportionally present in either of the databases. Based on the described cases and the statistical analyses from both databases, a causal relationship between the use of oral terbinafine and hearing impairment is possible. The mechanism by which terbinafine could cause hearing impairment has not been elucidated yet. The pharmacological action of terbinafine is based on the inhibition of squalene epoxidase, an enzyme present in both fungal and human cells. This inhibition might result in a decrease in cholesterol levels in human cells, among which are the outer hair cells of the cochlea. It may be possible that the reduction in cochlear cholesterol levels leads to impaired cochlear function and possibly hearing impairment. In this study we describe hearing impairment as a possible ADR of oral terbinafine, based on six case reports and statistical support from Vigibase™ and the Lareb database. To our knowledge this association has not been described before.

  14. Cochlear Implants:System Design, Integration and Evaluation

    PubMed Central

    Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong

    2009-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  15. Remote programming of cochlear implants: a telecommunications model.

    PubMed

    McElveen, John T; Blackburn, Erin L; Green, J Douglas; McLear, Patrick W; Thimsen, Donald J; Wilson, Blake S

    2010-09-01

    Evaluate the effectiveness of remote programming for cochlear implants. Retrospective review of the cochlear implant performance for patients who had undergone mapping and programming of their cochlear implant via remote connection through the Internet. Postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for 7 patients who had undergone remote mapping and programming of their cochlear implant were compared with the mean scores of 7 patients who had been programmed by the same audiologist over a 12-month period. Times required for remote and direct programming were also compared. The quality of the Internet connection was assessed using standardized measures. Remote programming was performed via a virtual private network with a separate software program used for video and audio linkage. All 7 patients were programmed successfully via remote connectivity. No untoward patient experiences were encountered. No statistically significant differences could be found in comparing postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for patients who had undergone remote programming versus a similar group of patients who had their cochlear implant programmed directly. Remote programming did not require a significantly longer programming time for the audiologist with these 7 patients. Remote programming of a cochlear implant can be performed safely without any deterioration in the quality of the programming. This ability to remotely program cochlear implant patients gives the potential to extend cochlear implantation to underserved areas in the United States and elsewhere.

  16. Cochlear Patency After Transmastoid Labyrinthectomy for Ménière's Syndrome.

    PubMed

    Sargent, Eric W; Liao, Eric; Gonda, Roger L

    2016-08-01

    Labyrinthectomy is considered the "gold standard" in the treatment of intractable vertigo attacks because of Ménière's Disease (MD) but sacrifices all residual hearing. Interest in auditory rehabilitation has lead to cochlear implantation in some patients. Concern remains that the cochlear lumen may fill with tissue or bone after surgery. This study sought to determine the incidence of obliteration of the cochlea after transmastoid labyrinthectomy. Retrospective observational study. Tertiary referral center. Eighteen patients with intractable vertigo from MD who underwent surgery. Transmastoid labyrinthectomy between 2008 and 2013. Cochleas were imaged with unenhanced, heavily T2-weighted magnetic resonance imaging (MRI). Presence of symmetrical cochlear fluid signals on MRI. There was no loss of fluid signal in the cochleas of operated ear compared with the contralateral, unoperated ear in any subject an average of 3 years (standard deviation [SD]: 1.2) after surgery. Five of 18 patients had the vestibule blocked with bone wax at the time of surgery. Blocking the vestibule with bone wax did not change the cochlear fluid signal. The risk of cochlear obstruction after labyrinthectomy for MD is very low. The significance of this finding is that patients with MD who undergo labyrinthectomy will likely remain candidates for cochlear implantation in the labyrinthectomized ear long after surgery if this becomes needed. Immediate cochlear implantation or placement of a cochlear lumen keeper during labyrinthectomy for MD is probably not necessary.

  17. Music mixing preferences of cochlear implant recipients: a pilot study.

    PubMed

    Buyens, Wim; van Dijk, Bas; Moonen, Marc; Wouters, Jan

    2014-05-01

    Music perception and appraisal are generally poor in cochlear implant recipients. Simple musical structures, lyrics that are easy to follow, and clear rhythm/beat have been reported among the top factors to enhance music enjoyment. The present study investigated the preference for modified relative instrument levels in music with normal-hearing and cochlear implant subjects. In experiment 1, test subjects were given a mixing console and multi-track recordings to determine their most enjoyable audio mix. In experiment 2, a preference rating experiment based on the preferred relative level settings in experiment 1 was performed. Experiment 1 was performed with four postlingually deafened cochlear implant subjects, experiment 2 with ten normal-hearing and ten cochlear implant subjects. A significant difference in preference rating was found between normal-hearing and cochlear implant subjects. The latter preferred an audio mix with larger vocals-to-instruments ratio. In addition, given an audio mix with clear vocals and attenuated instruments, cochlear implant subjects preferred the bass/drum track to be louder than the other instrument tracks. The original audio mix in real-world music might not be suitable for cochlear implant recipients. Modifying the relative instrument level settings potentially improves music enjoyment.

  18. Betahistine metabolites, aminoethylpyridine, and hydroxyethylpyridine increase cochlear blood flow in guinea pigs in vivo.

    PubMed

    Bertlich, Mattis; Ihler, Fritz; Sharaf, Kariem; Weiss, Bernhard G; Strupp, Michael; Canis, Martin

    2014-10-01

    Betahistine is a histamine-like drug that is used in the treatment of Ménière's disease. It is commonly believed that betahistine increases cochlear blood flow and thus decreases the endolymphatic hydrops that is the cause of Ménière's. Despite common clinical use, there is little understanding of the kinetics or effects of its metabolites. This study investigated the effect of the betahistine metabolites aminoethylpyridine, hydroxyethylpyridine, and pyridylacetic acid on cochlear microcirculation. Guinea pigs were randomly assigned to one of the groups: placebo, betahistine, or equimolar amounts of aminoethylpyridine, hydroxyethylpyridine, or pyridylacetic acid. Cochlear blood flow and mean arterial pressure were recorded for three minutes before and 15 minutes after treatment. Thirty Dunkin-Hartley guinea pigs assigned to one of five groups with six guinea pigs per group. Betahistine, aminoethylpyridine, and hydroxyethylpyridine caused a significant increase in cochlear blood flow in comparison to placebo. The effect seen under aminoethylpyridin was greatest. The group treated with pyridylacetic acid showed no significant effect on cochlear blood flow. Aminoethylpyridine and hydroxyethylpyridine are, like betahistine, able to increase cochlear blood flow significantly. The effect of aminoethylpyridine was greatest. Pyridylacetic acid had no effect on cochlear microcirculation.

  19. Histaminergic H3-Heteroreceptors as a Potential Mediator of Betahistine-Induced Increase in Cochlear Blood Flow.

    PubMed

    Bertlich, Mattis; Ihler, Friedrich; Freytag, Saskia; Weiss, Bernhard G; Strupp, Michael; Canis, Martin

    2015-01-01

    Betahistine is a histamine-like drug that is considered beneficial in Ménière's disease by increasing cochlear blood flow. Acting as an agonist at the histamine H1-receptor and as an inverse agonist at the H3-receptor, these receptors as well as the adrenergic α2-receptor were investigated for betahistine effects on cochlear blood flow. A total of 54 Dunkin-Hartley guinea pigs were randomly assigned to one of nine groups treated with a selection of H1-, H3- or α2-selective agonists and antagonists together with betahistine. Cochlear blood flow and mean arterial pressure were recorded for 3 min before and 15 min after infusion. Blockage of the H3- or α2-receptors caused a suppression of betahistine-mediated typical changes in cochlear blood flow or blood pressure. Activation of H3-receptors caused a drop in cochlear blood flow and blood pressure. H1-receptors showed no involvement in betahistine-mediated changes of cochlear blood flow. Betahistine most likely affects cochlear blood flow through histaminergic H3-heteroreceptors. © 2015 S. Karger AG, Basel.

  20. Fingolimod (FTY-720) is Capable of Reversing Tumor Necrosis Factor Induced Decreases in Cochlear Blood Flow.

    PubMed

    Bertlich, Mattis; Ihler, Friedrich; Weiss, Bernhard G; Freytag, Saskia; Jakob, Mark; Strupp, Michael; Pellkofer, Hannah; Canis, Martin

    2017-09-01

    The potential of Fingolimod (FTY-720), a sphingosine-1-phosphate analogue, to revoke the changes in cochlear blood flow induced by tumor necrosis factor (TNF) was investigated. Impairment of cochlear blood flow has often been considered as the common final pathway of various inner ear pathologies. TNF, an ubiquitous cytokine, plays a major role in these pathologies, reducing cochlear blood flow via sphingosine-1-phosphate-signaling. Fifteen Dunkin-Hartley guinea pigs were randomly assigned to one of three groups (placebo/placebo, TNF/placebo, TNF/FTY-720). Cochlear microcirculation was quantified over 60 minutes by in vivo fluorescence microscopy before and after topical application of placebo or TNF (5 ng/ml) and after subsequent application of placebo or FTY-720 (200 μg/ml). Treatment with TNF led to a significant decrease of cochlear blood flow.Following this, application of placebo caused no significant changes while application of FTY-720 caused a significant rise in cochlear blood flow. FTY-720 is capable of reversing changes in cochlear blood flow induced by application of TNF. This makes FTY-720 a valid candidate for potential treatment of numerous inner ear pathologies.

Top