Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?
Wright, Stephen; O'Hare, David
2015-03-01
The analog dials in traditional GA aircraft cockpits are being replaced by integrated electronic displays, commonly referred to as glass cockpits. Pilots may be trained on glass cockpit aircraft or encounter them after training on traditional displays. The effects of glass cockpit displays on initial performance and potential transfer effects between cockpit display configurations have yet to be adequately investigated. Flight-naïve participants were trained on either a simulated traditional display cockpit or a simulated glass display cockpit. Flight performance was measured in a test flight using either the same or different cockpit display. Loss of control events and accuracy in controlling altitude, airspeed and heading, workload, and situational awareness were assessed. Preferences for cockpit display configurations and opinions on ease of use were also measured. The results revealed consistently poorer performance on the test flight for participants using the glass cockpit compared to the traditional cockpit. In contrast the post-flight questionnaire data revealed a strong subjective preference for the glass cockpit over the traditional cockpit displays. There was only a weak effect of prior training. The specific glass cockpit display used in this study was subjectively appealing but yielded poorer flight performance in participants with no previous flight experience than a traditional display. Performance data can contradict opinion data. The design of glass cockpit displays may present some difficulties for pilots in the very early stages of training. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
14 CFR 27.777 - Cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 27.777 Section 27.777... Cockpit controls. Cockpit controls must be— (a) Located to provide convenient operation and to prevent... there is full and unrestricted movement of each control without interference from the cockpit structure...
14 CFR 25.777 - Cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit controls. 25.777 Section 25.777... Cockpit controls. (a) Each cockpit control must be located to provide convenient operation and to prevent confusion and inadvertent operation. (b) The direction of movement of cockpit controls must meet the...
14 CFR 25.777 - Cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 25.777 Section 25.777... Cockpit controls. (a) Each cockpit control must be located to provide convenient operation and to prevent confusion and inadvertent operation. (b) The direction of movement of cockpit controls must meet the...
14 CFR 23.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... intelligibility. (c) Each cockpit voice recorder must be installed so that the part of the communication or audio... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cockpit voice recorders. 23.1457 Section 23... Equipment § 23.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules...
14 CFR 23.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... intelligibility. (c) Each cockpit voice recorder must be installed so that the part of the communication or audio... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cockpit voice recorders. 23.1457 Section 23... Equipment § 23.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules...
14 CFR 23.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... intelligibility. (c) Each cockpit voice recorder must be installed so that the part of the communication or audio... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit voice recorders. 23.1457 Section 23... Equipment § 23.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules...
Cockpit Resource Management Proficiency as a Factor of Primary Flight Training
1992-07-01
Cockpit Resource Management ( CRM ). CRM attempts to explain and address the need and importance of "the communication process in the cockpit, and an...6 Definition of Terms Cockpit Resource Management ( CRM ) : The effective use and coordination of all skills and resources- hardware, software, liveware...E. & Williams K. R. (1987). The Application of CRM to Military Operations. In: Cockpit Resource Management Training-NASA Conference’Publication 2455
Hazard alerting and situational awareness in advanced air transport cockpits
NASA Technical Reports Server (NTRS)
Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan
1993-01-01
Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.
Casner, Stephen M
2009-05-01
Four types of advanced cockpit systems were tested in an in-flight experiment for their effect on pilot workload and error. Twelve experienced pilots flew conventional cockpit and advanced cockpit versions of the same make and model airplane. In both airplanes, the experimenter dictated selected combinations of cockpit systems for each pilot to use while soliciting subjective workload measures and recording any errors that pilots made. The results indicate that the use of a GPS navigation computer helped reduce workload and errors during some phases of flight but raised them in others. Autopilots helped reduce some aspects of workload in the advanced cockpit airplane but did not appear to reduce workload in the conventional cockpit. Electronic flight and navigation instruments appeared to have no effect on workload or error. Despite this modest showing for advanced cockpit systems, pilots stated an overwhelming preference for using them during all phases of flight.
Heat stress in front and rear cockpits of F-4 aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunneley, S.A.; Stribley, R.F.; Allan, J.R.
The thermal stresses encountered in the front and rear cockpits of F-4 aircraft flying low-level missions in warm, moderately humid weather and physiological responses to these stresses are investigated. Measurements of ground and cockpit environmental temperatures and subject skin and core temperatures were acquired for the preflight taxi, low-level flight, ordnance delivery and postflight taxi phases of 36 flights of F-4E aircraft performed to simulate low-level ground attack missions. Cockpit dry-bulb temperatures are found to exceed those on the ground during ground operations, and to decrease in flight in the front, but not the rear, cockpit. A linear relationship betweenmore » cockpit dry bulb and temperatures is also found in each of the mission phases, along with increases in skin and core temperatures with cockpit temperatures and sweat rates depending both on cockpit temperatures and the amount of clothing worn. Adverse physiological effects related to nausea and acceleration tolerances are also noted. It is concluded that the cockpit cooling system of the F-4 allows the development of operationally significant heat stress, which may be corrected by better design and testing of the cooling system.« less
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit voice recorders. 27.1457 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved, and...
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cockpit voice recorders. 27.1457 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved, and...
14 CFR 135.151 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Cockpit voice recorders. 135.151 Section... Equipment § 135.151 Cockpit voice recorders. (a) No person may operate a multiengine, turbine-powered... required by certification or operating rules unless it is equipped with an approved cockpit voice recorder...
14 CFR 135.151 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Cockpit voice recorders. 135.151 Section... Equipment § 135.151 Cockpit voice recorders. (a) No person may operate a multiengine, turbine-powered... required by certification or operating rules unless it is equipped with an approved cockpit voice recorder...
14 CFR 135.151 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cockpit voice recorders. 135.151 Section... Equipment § 135.151 Cockpit voice recorders. (a) No person may operate a multiengine, turbine-powered... required by certification or operating rules unless it is equipped with an approved cockpit voice recorder...
14 CFR 135.151 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cockpit voice recorders. 135.151 Section... Equipment § 135.151 Cockpit voice recorders. (a) No person may operate a multiengine, turbine-powered... required by certification or operating rules unless it is equipped with an approved cockpit voice recorder...
14 CFR 135.151 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Cockpit voice recorders. 135.151 Section... Equipment § 135.151 Cockpit voice recorders. (a) No person may operate a multiengine, turbine-powered... required by certification or operating rules unless it is equipped with an approved cockpit voice recorder...
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit voice recorders. 27.1457 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved, and...
14 CFR 29.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit voice recorders. 29.1457 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved...
14 CFR 23.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit voice recorders. 23.1457 Section 23... Equipment § 23.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules...) Voice communications transmitted from or received in the airplane by radio. (2) Voice communications of...
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit voice recorders. 25.1457 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1457 Cockpit voice recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 23.777 Section 23.777... Cargo Accommodations § 23.777 Cockpit controls. Link to an amendment published at 76 FR 75757, December 2, 2011. (a) Each cockpit control must be located and (except where its function is obvious...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit controls. 23.777 Section 23.777... Cargo Accommodations § 23.777 Cockpit controls. (a) Each cockpit control must be located and (except... inadvertent operation. (b) The controls must be located and arranged so that the pilot, when seated, has full...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
Cockpit avionics integration and automation
NASA Technical Reports Server (NTRS)
Pischke, Keith M.
1990-01-01
Information on cockpit avionics integration and automation is given in viewgraph form, with a number of photographs. The benefits of cockpit integration are listed. The MD-11 flight guidance/flight deck system is illustrated.
NASA’s Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms
2016-10-15
Flight Test Engineer Jacob Schaefer inspects the Cockpit Interactive Sonic Boom Display Avionics, or CISBoomDA, from the cockpit of his F-18 at NASA’s Armstrong Flight Research Center in Edwards, California.
AMLCD cockpit: promise and payoffs
NASA Astrophysics Data System (ADS)
Snow, Michael P.; Jackson, Timothy W.; Meyer, Frederick M.; Reising, John M.; Hopper, Darrel G.
1999-08-01
The active matrix liquid crystal display (AMLCD) has become the preferred flight instrument technology in avionics multifunction display applications. Current bubble canopy fighter cockpit applications involve sizes up to 7.8 X 7.8 in. active display. Dual use avionics versions of AMLCD technology are now as large as 6.7 X 6.7 in. active display area in the ARINC D sized color multifunction display (MFD). This is the standard instrument in all new Boeing transport aircraft and is being retrofitted into the C-17A. A special design of the ARINC D instrument is used in the Space Shuttle cockpit upgrade. Larger sizes of AMLCD were desired when decisions were made in the early 1990s for the F-22. Commercial AMLCD technology has now produced monitors at 1280 X 1024 resolution (1.3 megapixels) in sizes of 16 to 21 in. diagonal. Each of these larger AMLCDs has more information carrying capacity than the entire F-22A cockpit instrument panel shipset, comprising six separate smaller AMLCDs (1.2 megapixels total). The larger AMLCDs are being integrated into airborne mission crewstations for use in dim ambient lighting conditions. It is now time to identify and address the technology challenges of upgrading these larger AMLCDs for sunlight readable application and of developing concepts for their integration into advanced bubble canopy fighter cockpits. The overall goals are to significantly increase the informational carrying capacity to bring both sensor and information fusion into the cockpit and, thereby, to enable a significant increase in warfighter situational awareness and effectiveness. A research cockpit was built using specialized versions of the IBM 16.1 in and two smaller 10 in. AMLCDs to examine human factors and display design issues associated with these next-generation AMLCD cockpit displays. This cockpit was later upgraded to allow greater reconfigurability and flexibility in the display hardware used to conduct part- task mission simulations. The objective optical characterization of the AMLCDs used in this simulator and the cockpit design are described. Display formats under consideration for test in this cockpit are described together with some of the basic human factors engineering issues involved. Studies conducted in this cockpit will be part of an ongoing joint effort of the hardware-focused aerospace displays team and the pilot-focused human factors team in the Air Force Research Laboratory's Crew System Interface Division. The objective of these studies is to ascertain the payoffs of the large AMLCD promise in combat cockpits.
A Graphics Environment Supporting the Rapid Prototyping of Pictorial Cockpit Displays
1986-12-01
0 - niDi cO 3 FIL .OF I A GRAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF...COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF AFIT/GCS/IA/86D- 1 Appram:ed for public release; distribution unlimited AFIT/GCS/MA/80- 1 A...GRAPHICS ENVIROWNT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Preented to the Faculty Of the School of Engineering of the Air
Automated cockpits special report, part 1.
1995-01-30
Part one of this report includes the following articles: Accidents Direct Focus on Cockpit Automation; Modern Cockpit Complexity Challenges Pilot Interfaces; Airbus Seeks to Keep Pilot, New Technology in harmony; NTSB: Mode Confusion Poses Safety Threat; and, Certification Officials grapple with Flight Deck Complexity.
Cockpit Automation Technology CSERIAC-CAT
1991-06-01
AD-A273 124 AL-TR-1991-0078 A R COCKPIT AUTOMATION TECHNOLOGY M CSERIAC- CAT S JULY 1989 - DEC 1990: FINAL REPORT T R Trudy S. Abrams Cindy D. Martin...TITLE AND SUBTITLE 5. FUNDING NUMBERS Cockpit Automation Technology CSERIAC- CAT JUL 89 - DEC 90 PE 62202F Final Report (U) PR 7184 ,___,TA 12 6. AUTHOR(S...Boeing-developed CAT software tools, and for facilitating their use by the cockpit design community. A brief description of the overall task is given
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cockpit voice recorders. 25.1457 Section 25... recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved... interphone system. (4) Voice or audio signals identifying navigation or approach aids introduced into a...
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cockpit voice recorders. 25.1457 Section 25... recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved... interphone system. (4) Voice or audio signals identifying navigation or approach aids introduced into a...
14 CFR 29.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit voice recorders. 29.1457 Section 29... recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved... interphone system. (4) Voice or audio signals identifying navigation or approach aids introduced into a...
14 CFR 29.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cockpit voice recorders. 29.1457 Section 29... recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved... interphone system. (4) Voice or audio signals identifying navigation or approach aids introduced into a...
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit voice recorders. 25.1457 Section 25... recorders. (a) Each cockpit voice recorder required by the operating rules of this chapter must be approved... interphone system. (4) Voice or audio signals identifying navigation or approach aids introduced into a...
46 CFR 178.420 - Drainage of cockpit vessels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit...
46 CFR 178.420 - Drainage of cockpit vessels.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit...
46 CFR 178.420 - Drainage of cockpit vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit...
46 CFR 178.420 - Drainage of cockpit vessels.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit...
46 CFR 178.420 - Drainage of cockpit vessels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit...
Helicopter cockpit seat side and trapezius muscle metabolism with night vision goggles.
Harrison, Michael F; Neary, J Patrick; Albert, Wayne J; Veillette, Dan W; McKenzie, Neil P; Croll, James C
2007-10-01
Documented neck strain among military helicopter aircrew is becoming more frequent and many militaries use helicopters that provide pilots with the option of sitting in the left or right cockpit seat during missions. The purpose of this study was to use near infrared spectroscopy (NIRS) to investigate the physiological changes in trapezius muscle oxygenation and blood volume during night vision goggle (NVG) flights as a function of left and right cockpit seating. There were 25 pilots who were monitored during NVG flight simulator missions (97.7 +/- 16.1 min). Bilateral NIRS probes attached to the trapezius muscles at C7 level recorded total oxygenation index (TOI, %), total hemoglobin (tHb), oxyhemoglobin (Hbo2), and deoxyhemo-globin (HHb). No significant differences existed between variables for pilots seated in the right cockpit seat as compared with the pilots seated in the left cockpit seat in either trapezius muscle (pTOI = 0.72; ptHb = 0.72; pHbo2 = 0.57; pHHb = 0.21). Alternating cockpit seats on successive missions is not a means to decrease metabolic stress for helicopter pilots using NVG. This suggests that cockpit layout and location of essential instruments with respect to the horizontal and the increased head supported mass of the NVG may be important factors influencing metabolic stress of the trapezius muscle.
Cognitive engineering in aerospace application: Pilot interaction with cockpit automation
NASA Technical Reports Server (NTRS)
Sarter, Nadine R.; Woods, David D.
1993-01-01
Because of recent incidents involving glass-cockpit aircraft, there is growing concern with cockpit automation and its potential effects on pilot performance. However, little is known about the nature and causes of problems that arise in pilot-automation interaction. The results of two studies that provide converging, complementary data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS) is reported. A survey asking pilots to describe specific incidents with the FMS and observations of pilots undergoing transition training to a glass cockpit aircraft served as vehicles to gather a corpus on the nature and variety of FMS-related problems. The results of both studies indicate that pilots become proficient in standard FMS operations through ground training and subsequent line experience. But even with considerable line experience, they still have difficulties tracking FMS status and behavior in certain flight contexts, and they show gaps in their understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties which can affect pilots' situation awareness. The results of this research are relevant for both the design of cockpit automation and the development of training curricula specifically tailored to the needs of glass cockpits.
NASA Astrophysics Data System (ADS)
Shin, Sanghyun
The National Transportation Safety Board (NTSB) has recently emphasized the importance of analyzing flight data as one of the most effective methods to improve eciency and safety of helicopter operations. By analyzing flight data with Flight Data Monitoring (FDM) programs, the safety and performance of helicopter operations can be evaluated and improved. In spite of the NTSB's effort, the safety of helicopter operations has not improved at the same rate as the safety of worldwide airlines, and the accident rate of helicopters continues to be much higher than that of fixed-wing aircraft. One of the main reasons is that the participation rates of the rotorcraft industry in the FDM programs are low due to the high costs of the Flight Data Recorder (FDR), the need of a special readout device to decode the FDR, anxiety of punitive action, etc. Since a video camera is easily installed, accessible, and inexpensively maintained, cockpit video data could complement the FDR in the presence of the FDR or possibly replace the role of the FDR in the absence of the FDR. Cockpit video data is composed of image and audio data: image data contains outside views through cockpit windows and activities on the flight instrument panels, whereas audio data contains sounds of the alarms within the cockpit. The goal of this research is to develop, test, and demonstrate a cockpit video data analysis algorithm based on data mining and signal processing techniques that can help better understand situations in the cockpit and the state of a helicopter by efficiently and accurately inferring the useful flight information from cockpit video data. Image processing algorithms based on data mining techniques are proposed to estimate a helicopter's attitude such as the bank and pitch angles, identify indicators from a flight instrument panel, and read the gauges and the numbers in the analogue gauge indicators and digital displays from cockpit image data. In addition, an audio processing algorithm based on signal processing and abrupt change detection techniques is proposed to identify types of warning alarms and to detect the occurrence times of individual alarms from cockpit audio data. Those proposed algorithms are then successfully applied to simulated and real helicopter cockpit video data to demonstrate and validate their performance.
14 CFR 23.812 - Emergency lighting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... light that illuminates in the cockpit when power is on in the airplane and the emergency lighting... station and be provided with automatic activation. The cockpit control device must have “on,” “off,” and... “armed” or “on” positions. (e) The cockpit control device must have provisions to allow the emergency...
Automated cockpits special report, part 2.
1995-02-06
Part two of this report includes the following articles: Studies Highlight Automation 'Surprises'; Pilots Union Presses for Improved Displays; United Training Stresses Cockpit Discipline; Former NASA Ames Experts Hold Key Airline Posts; Aiding Mode Awareness; Military Cockpits Keep Autopilot Interface Simple; Gulfstream Using Vertical Profile Display; and, Data Recorders Crucial to State-of-art Crash Probes.
Device-Task Fidelity and Transfer of Training: Aircraft Cockpit Procedures Training.
ERIC Educational Resources Information Center
Prophet, Wallace W.; Boyd, H. Alton
An evaluation was made of the training effectiveness of two cockpit procedures training devices, differing greatly in physical fidelity and cost, for use on the ground for a twin-engine, turboprop, fixed-wing aircraft. One group of students received training in cockpit procedures in a relatively expensive, sophisticated, computerized trainer,…
Learning About Cockpit Automation: From Piston Trainer to Jet Transport
NASA Technical Reports Server (NTRS)
Casner, Stephen M.
2003-01-01
Two experiments explored the idea of providing cockpit automation training to airline-bound student pilots using cockpit automation equipment commonly found in small training airplanes. In a first experiment, pilots mastered a set of tasks and maneuvers using a GPS navigation computer, autopilot, and flight director system installed in a small training airplane Students were then tested on their ability to complete a similar set of tasks using the cockpit automation system found in a popular jet transport aircraft. Pilot were able to successfully complete 77% of all tasks in the jet transport on their first attempt. An analysis of a control group suggests that the pilot's success was attributable to the application of automation principles they had learned in the small airplane. A second experiment looked at two different ways of delivering small-aeroplane cockpit automation training: a self-study method, and a dual instruction method. The results showed a slight advantage for the self-study method. Overall, the results of the two studies cast a strong vote for the incorporation of cockpit automation training in curricula designed for pilot who will later transition to the jet fleet.
Human factor implications of the Eurocopter AS332L-1 Super Puma cockpit
NASA Technical Reports Server (NTRS)
Padfield, R. Randall
1993-01-01
The purpose of this paper is to identify and describe some of the human factor problems which can occur in the cockpit of a modern civilian helicopter. After examining specific hardware and software problems in the cockpit design of the Eurocopter (Aerospatiale) AS332L-1 Super Puma, the author proposes several principles that can be used to avoid similar human factors problems in the design of future cockpits. These principles relate to the use and function of warning lights, the design of autopilots in two-pilot aircraft, and the labeling of switches and warning lights, specifically with respect to abbreviations and translations from languages other than English. In the final section of the paper, the author describes current trends in society which he suggests should be taken into consideration when designing future aircraft cockpits.
NASA Technical Reports Server (NTRS)
Voorhees, J. W.; Bucher, N. M.
1983-01-01
The cockpit has been one of the most rapidly changing areas of new aircraft design over the past thirty years. In connection with these developments, a pilot can now be considered a decision maker/system manager as well as a vehicle controller. There is, however, a trend towards an information overload in the cockpit, and information processing problems begin to occur for the rotorcraft pilot. One approach to overcome the arising difficulties is based on the utilization of voice technology to improve the information transfer rate in the cockpit with respect to both input and output. Attention is given to the background of speech technology, the application of speech technology within the cockpit, voice interactive electronic warning system (VIEWS) simulation, and methodology. Information subsystems are considered along with a dynamic simulation study, and data collection.
State-of-the-art cockpit design for the HH-65A helicopters
NASA Technical Reports Server (NTRS)
Castleberry, D. E.; Mcelreath, M. Y.
1982-01-01
In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.
Overview of error-tolerant cockpit research
NASA Technical Reports Server (NTRS)
Abbott, Kathy
1990-01-01
The objectives of research in intelligent cockpit aids and intelligent error-tolerant systems are stated. In intelligent cockpit aids research, the objective is to provide increased aid and support to the flight crew of civil transport aircraft through the use of artificial intelligence techniques combined with traditional automation. In intelligent error-tolerant systems, the objective is to develop and evaluate cockpit systems that provide flight crews with safe and effective ways and means to manage aircraft systems, plan and replan flights, and respond to contingencies. A subsystems fault management functional diagram is given. All information is in viewgraph form.
Usability Evaluation Survey for Identifying Design Issues in Civil Flight Deck
NASA Astrophysics Data System (ADS)
Ozve Aminian, Negin; Izzuddin Romli, Fairuz; Wiriadidjaja, Surjatin
2016-02-01
Ergonomics assessment for cockpit in civil aircraft is important as the pilots spend most of their time during flight on the seating posture imposed by its design. The improper seat design can cause discomfort and pain, which will disturb the pilot's concentration in flight. From a conducted survey, it is found that there are some issues regarding the current cockpit design. This study aims to highlight potential mismatches between the current cockpit design and the ergonomic design recommendations for anthropometric dimensions and seat design, which could be the roots of the problems faced by the pilots in the cockpit.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
.... Therefore, * * * this [Canadian] directive is issued to require rework of the cockpit door striker plate and... these Do these actions-- serial numbers-- 8-52-54, Revision A, dated 003 through 407 Rework the cockpit... AD rework the cockpit door striker plate and replace the latch block, in accordance with the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
...] RIN 2120-AJ65 Extension of the Compliance Date for Cockpit Voice Recorder and Digital Flight Data... March 7, 2008, the FAA published a final rule titled ``Revisions to Cockpit Voice Recorder and Digital... digital flight data recorder equipment on certain aircraft beginning April 7, 2010. That compliance date...
14 CFR 91.609 - Flight data recorders and cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... recorder or cockpit voice recorder is turned off to test it or to test any communications or electrical... recorder or cockpit voice recorder is turned off to test it or to test any communications or electrical... continuously from the instant the airplane begins the takeoff roll or the rotorcraft begins lift-off until the...
46 CFR 171.145 - Drainage of a vessel with a cockpit.
Code of Federal Regulations, 2011 CFR
2011-10-01
... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...
46 CFR 171.145 - Drainage of a vessel with a cockpit.
Code of Federal Regulations, 2013 CFR
2013-10-01
... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...
46 CFR 171.145 - Drainage of a vessel with a cockpit.
Code of Federal Regulations, 2014 CFR
2014-10-01
... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...
46 CFR 171.145 - Drainage of a vessel with a cockpit.
Code of Federal Regulations, 2012 CFR
2012-10-01
... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...
46 CFR 171.145 - Drainage of a vessel with a cockpit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...
46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.
Code of Federal Regulations, 2013 CFR
2013-10-01
... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...
46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.
Code of Federal Regulations, 2010 CFR
2010-10-01
... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...
46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.
Code of Federal Regulations, 2014 CFR
2014-10-01
... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...
46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.
Code of Federal Regulations, 2012 CFR
2012-10-01
... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...
46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...
Dragon Stream Cipher for Secure Blackbox Cockpit Voice Recorder
NASA Astrophysics Data System (ADS)
Akmal, Fadira; Michrandi Nasution, Surya; Azmi, Fairuz
2017-11-01
Aircraft blackbox is a device used to record all aircraft information, which consists of Flight Data Recorder (FDR) and Cockpit Voice Recorder (CVR). Cockpit Voice Recorder contains conversations in the aircraft during the flight.Investigations on aircraft crashes usually take a long time, because it is difficult to find the aircraft blackbox. Then blackbox should have the ability to send information to other places. Aircraft blackbox must have a data security system, data security is a very important part at the time of information exchange process. The system in this research is to perform the encryption and decryption process on Cockpit Voice Recorder by people who are entitled by using Dragon Stream Cipher algorithm. The tests performed are time of data encryption and decryption, and avalanche effect. Result in this paper show us time encryption and decryption are 0,85 seconds and 1,84 second for 30 seconds Cockpit Voice Recorder data witn an avalanche effect 48,67 %.
Predictions of Cockpit Simulator Experimental Outcome Using System Models
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1984-01-01
This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.
Cockpit weather radar display demonstrator and ground-to-air sferics telemetry system
NASA Technical Reports Server (NTRS)
Nickum, J. D.; Mccall, D. L.
1982-01-01
The results of two methods of obtaining timely and accurate severe weather presentations in the cockpit are detailed. The first method described is a course up display of uplinked weather radar data. This involves the construction of a demonstrator that will show the feasibility of producing a course up display in the cockpit of the NASA simulator at Langley. A set of software algorithms was designed that could easily be implemented, along with data tapes generated to provide the cockpit simulation. The second method described involves the uplinking of sferic data from a ground based 3M-Ryan Stormscope. The technique involves transfer of the data on the CRT of the Stormscope to a remote CRT. This sferic uplink and display could also be included in an implementation on the NASA cockpit simulator, allowing evaluation of pilot responses based on real Stormscope data.
Cockpit resources management and the theory of the situation
NASA Technical Reports Server (NTRS)
Bolman, L.
1984-01-01
The cockpit resource management (CRM) and hypothetical cockpit situations are discussed. Four different conditions which influence pilot action are outlined: (1) wrong assumptions about a situation; (2) stress and workload; (3) frustration and delays to cause risk taking; and (4) ambigious incomplete or contradicting information. Human factors and behavior, and pilot communication and management in the simulator are outlined.
NASA Technical Reports Server (NTRS)
Helmreich, R. L.
1984-01-01
Distinctions are drawn between personality traits and attitudes. The stability of the personality and the malleability of attitudes are stressed. These concepts are related to pilot performance, especially in the areas of crew coordination and cockpit resource management. Airline pilots were administered a Cockpit Management Attitudes questionnaire; empirical data from that survey are reported and implications of the data for training in crew coordination are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
.... Therefore, * * * this [Canadian] directive is issued to require rework of the cockpit door striker plate and...-- serial numbers-- 8-52-54, Revision A, dated 003 through 407 Rework the cockpit November 5, 2004...: Within 12 months after the effective date of this AD rework the cockpit door striker plate and replace...
Manufacturing considerations for AMLCD cockpit displays
NASA Astrophysics Data System (ADS)
Luo, Fang-Chen
1995-06-01
AMLCD cockpit displays need to meet more stringent requirements compared with AMLCD commercial displays in areas such as environmental conditions, optical performance and device reliability. Special considerations are required for the manufacturing of AMLCD cockpit displays in each process step to address these issues. Some examples are: UV stable polarizers, wide-temperature LC material, strong LC glue seal, ESS test system, gray scale voltage EEPROM, etc.
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.; Schutte, Paul C.
1989-01-01
A development status evaluation is presented for the NASA-Langley Intelligent Cockpit Aids research program, which encompasses AI, human/machine interfaces, and conventional automation. Attention is being given to decision-aiding concepts for human-centered automation, with emphasis on inflight subsystem fault management, inflight mission replanning, and communications management. The cockpit envisioned is for advanced commercial transport aircraft.
Optimum culture in the cockpit
NASA Technical Reports Server (NTRS)
Yamamori, Hisaaki
1987-01-01
Even with the same program and objectives, if the culture is different, there will be different approaches to the goal of flight safety. However, the cockpit environment is culture-free so it is not as important to think of a person's cultural background as it is to think of the approach to the goal of ultimate safety. Crew members can look at their individual safety goals and compare them to their own performance to see if their behavior matches their own safety goals. The cockpit environment must be culture-free in order to obtain the ultimate safety goal. One must first realize how their culture affects their behavior before they can begin to change their attitude and actions in the cockpit.
Recommendations for a Cockpit Display that Integrates Weather Information with Traffic Information
NASA Technical Reports Server (NTRS)
Comerford, Doreen A.
2004-01-01
This effort was supported by the System-Wide Accident Prevention element of NASA s Aviation Safety Program. This document may serve as a first step toward the goal of integrating traffic, weather, and terrain information; it provides recommendations for a cockpit display that integrates weather information with traffic information. While some of the recommendations are general enough to be used for any type of operations, these recommendations are targeted for Federal Aviation Regulations Part 121 Operations. The document is organized in the following manner. First, weather information is discussed as an independent subject matter, and recommendations are presented for presenting weather in the cockpit. Second, traffic is discussed independently, but this discussion essentially reviews work on the display of traffic in the cockpit. Third, recommendations for the cockpit integration of weather and traffic information are discussed. Fourth, several research groups are recognized for their efforts in developing systems that are relevant to the current discussion. Finally, closing remarks provide suggestions for future efforts.
Human factors issues associated with the use of speech technology in the cockpit
NASA Technical Reports Server (NTRS)
Kersteen, Z. A.; Damos, D.
1983-01-01
The human factors issues associated with the use of voice technology in the cockpit are summarized. The formulation of the LHX avionics suite is described and the allocation of tasks to voice in the cockpit is discussed. State-of-the-art speech recognition technology is reviewed. Finally, a questionnaire designed to tap pilot opinions concerning the allocation of tasks to voice input and output in the cockpit is presented. This questionnaire was designed to be administered to operational AH-1G Cobra gunship pilots. Half of the questionnaire deals specifically with the AH-1G cockpit and the types of tasks pilots would like to have performed by voice in this existing rotorcraft. The remaining portion of the questionnaire deals with an undefined rotorcraft of the future and is aimed at determining what types of tasks these pilots would like to have performed by voice technology if anything was possible, i.e. if there were no technological constraints.
Hearing loss from cockpit noise in motor gliders.
Stueben, U
2001-09-01
Over the past 15 yr, remarkable progress has been made in the development of touring motor gliders and self-launching sail-planes with retractable propulsion units (RPU gliders.) Annually, over 50% of the gliders produced have had such units, often two-stroke engines which produce high frequency sound emissions. Sound emission regulations require that all power gliders be insulated to avoid external emissions and noise pollution in the airspace near airfields. However, these regulations do not cover noise within the cockpit. To determine the noise level in the cockpits of powered gliders and how this noise affects the hearing of pilots, cockpit noise in six touring motor gliders and nine RPU gliders were measured. Both types of motor gliders have noise levels that may be hazardous to pilots' hearing if they are not equipped with personal noise protection. In extreme cases an exposure time of only 20 seconds to the cockpit noise of an RPU glider may cause permanent hearing loss. Pilots must be warned not to fly motor gliders without personal noise protection.
NASA Technical Reports Server (NTRS)
Chan, Jeffrey W.; Simpson, Carol A.
1990-01-01
Active Noise Reduction (ANR) is a new technology which can reduce the level of aircraft cockpit noise that reaches the pilot's ear while simultaneously improving the signal to noise ratio for voice communications and other information bearing sound signals in the cockpit. A miniature, ear-cup mounted ANR system was tested to determine whether speech intelligibility is better for helicopter pilots using ANR compared to a control condition of ANR turned off. Two signal to noise ratios (S/N), representative of actual cockpit conditions, were used for the ratio of the speech to cockpit noise sound pressure levels. Speech intelligibility was significantly better with ANR compared to no ANR for both S/N conditions. Variability of speech intelligibility among pilots was also significantly less with ANR. When the stock helmet was used with ANR turned off, the average PB Word speech intelligibility score was below the Normally Acceptable level. In comparison, it was above that level with ANR on in both S/N levels.
COTS displays applied to cockpit avionics applications
NASA Astrophysics Data System (ADS)
Thomas, J.; Lorimer, S.
2007-04-01
Avionics displays, particularly for cockpit applications are associated with high performance and high cost solutions. COTS displays have well acknowledged limitations but provide a potential high value for money solution if this performance can be stretched to a level compatible with "fit for use". This paper will describe the initial design tradeoffs and decisions that formed the basis for development of a low-cost cockpit display for a military helicopter.
A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland
2003-01-01
Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.
Cockpit resource management training
NASA Technical Reports Server (NTRS)
Yocum, M.; Foushee, C.
1984-01-01
Cockpit resource management which is a multifaceted concept is outlined. The system involves the effective coordination of many resources: aircraft systems, company, air traffic control, equipment, navigational aids, documents, and manuals. The main concept, however, is group interaction. Problems which arise from lack of coordination, decision making, and lack of communication are pointed out. Implementation by the regional airline industry of cockpit resource management, designed to deal with human interactions problems in the most cost effective manner, is discussed.
Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests
2017-09-01
AFCEC-CO-TY-TR-2018-0001 CONVERTING HANGAR HIGH EXPANSION FOAM SYSTEMS TO PREVENT COCKPIT DAMAGE: FULL-SCALE VALIDATION TESTS Gerard G...REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b...09-2017 Final Test Report May 2017 Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests N00173-15-D
A MAG for the Twenty First Century: Lethal, Lighter, Energy Efficient, and Cheaper
2010-04-14
well as an advanced trainer. 40 25. Zero altitude-zero airspeed ejection seats . 26. Common multi-function display (MFD) cockpit configuration for...front cockpit, with seat belts/shoulder harnesses fastened. b. Aft cockpit capable of being reconfigured for flight control including conducting...Capability to carry two wounded Marines via internal litters. 24. Dual seat with dual controls to facilitate dual use as light attack/armed reconnaissance as
Cockpit System Situational Awareness Modeling Tool
NASA Technical Reports Server (NTRS)
Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara
2004-01-01
This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.
Human factors of advanced technology (glass cockpit) transport aircraft
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1989-01-01
A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.
Video concepts in CRM training
NASA Technical Reports Server (NTRS)
Yocum, M.
1984-01-01
Cockpit resource management (CRM) is discussed in the context of programs developed by Pennsylvania Airlines and Ransome Airlines. Video techniques in flight training are emphasized. Problems in cockpit interpersonal communication are addressed.
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1988-01-01
The aims and methods of aircraft cockpit automation are reviewed from a human-factors perspective. Consideration is given to the mixed pilot reception of increased automation, government concern with the safety and reliability of highly automated aircraft, the formal definition of automation, and the ground-proximity warning system and accidents involving controlled flight into terrain. The factors motivating automation include technology availability; safety; economy, reliability, and maintenance; workload reduction and two-pilot certification; more accurate maneuvering and navigation; display flexibility; economy of cockpit space; and military requirements.
Simple force feedback for small virtual environments
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten
1998-08-01
In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.
Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit
NASA Technical Reports Server (NTRS)
Rudisill, Marianne
2000-01-01
The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.
An evaluation of software tools for the design and development of cockpit displays
NASA Technical Reports Server (NTRS)
Ellis, Thomas D., Jr.
1993-01-01
The use of all-glass cockpits at the NASA Langley Research Center (LaRC) simulation facility has changed the means of design, development, and maintenance of instrument displays. The human-machine interface has evolved from a physical hardware device to a software-generated electronic display system. This has subsequently caused an increased workload at the facility. As computer processing power increases and the glass cockpit becomes predominant in facilities, software tools used in the design and development of cockpit displays are becoming both feasible and necessary for a more productive simulation environment. This paper defines LaRC requirements of a display software development tool and compares two available applications against these requirements. As a part of the software engineering process, these tools reduce development time, provide a common platform for display development, and produce exceptional real-time results.
NASA Technical Reports Server (NTRS)
Paries, Jean
1994-01-01
Automation related accidents or serious incidents are not limited to advanced technology aircraft. There is a full history of such accidents with conventional technology aircraft. However, this type of occurrence is far from sparing the newest 'glass cockpit' generation, and it even seems to be a growing contributor to its accident rate. Nevertheless, all these aircraft have been properly certificated according to the relevant airworthiness regulations. Therefore, there is a growing concern that with the technological advancement of air transport aircraft cockpits, the current airworthiness regulations addressing cockpit design and human factors may have reached some level of inadequacy. This paper reviews some aspects of the current airworthiness regulations and certification process related to human factors of cockpit design and focuses on questioning their ability to guarantee the intended safety objectives.
Effects of checklist interface on non-verbal crew communications
NASA Technical Reports Server (NTRS)
Segal, Leon D.
1994-01-01
The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.
Dual redundant display in bubble canopy applications
NASA Astrophysics Data System (ADS)
Mahdi, Ken; Niemczyk, James
2010-04-01
Today's cockpit integrator, whether for state of the art military fast jet, or piston powered general aviation, is striving to utilize all available panel space for AMLCD based displays to enhance situational awareness and increase safety. The benefits of a glass cockpit have been well studied and documented. The technology used to create these glass cockpits, however, is driven by commercial AMLCD demand which far outstrips the combined worldwide avionics requirements. In order to satisfy the wide variety of human factors and environmental requirements, large area displays have been developed to maximize the usable display area while also providing necessary redundancy in case of failure. The AMLCD has been optimized for extremely wide viewing angles driven by the flat panel TV market. In some cockpit applications, wide viewing cones are desired. In bubble canopy cockpits, however, narrow viewing cones are desired to reduce canopy reflections. American Panel Corporation has developed AMLCD displays that maximize viewing area, provide redundancy, while also providing a very narrow viewing cone even though commercial AMLCD technology is employed suitable for high performance AMLCD Displays. This paper investigates both the large area display architecture with several available options to solve redundancy as well as beam steering techniques to also limit canopy reflections.
Planar/dpiX common military avionics AMLCDs: roadmap and production
NASA Astrophysics Data System (ADS)
Wanner, John; Gard, Allen; Roselle, Paul; Lewis, Alan
2000-08-01
This paper reviews the current production approach and status at Planar and dpiX utilizing a common design architecture within a family of cockpit AMLCD displays. The present status of low volume production requirements to support military applications, as well as the unique display formats and performance requirements dictated by the specific cockpit applications has resulted in a manufacturing approach requiring common TFT substrate design flexibility and the use of a common foundation for the assembly of AMLCD displays suitable for a variety of high performance military cockpits.
Modern cockpit complexity challenges pilot interfaces.
Dornheim, M A
1995-01-30
Advances in the use of automated cockpits are examined. Crashes at Nagoya and Toulouse in 1994 and incidents at Manchester, England, and Paris Orly are used as examples of cockpit automation versus manual operation of aircraft. Human factors researchers conclude that flight management systems (FMS) should have fewer modes and less authority. Reducing complexity and authority override systems of FMS can provide pilots with greater flexibility during crises. Aircraft discussed include Boeing 737-300 and 757-200, Airbus A300-600 and A310, McDonnell Douglas MD-11, and Tarom A310-300.
NASA Technical Reports Server (NTRS)
1995-01-01
WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.
Potential benefits and hazards of increased reliance on cockpit automation
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1990-01-01
A review is presented of the introduction of advanced technology into the modern aircraft cockpit, bringing a new era of cockpit automation, and the opportunity for safe, fuel-efficient, computer-directed flight. It is shown that this advanced technology has also brought a number of problems, not due to equipment failure, but due to problems at the human-automation interface. Consideration is given to the interface, the ATC system, and to company, regulatory, and economic environments, as well as to how they contribute to these new problems.
NASA Technical Reports Server (NTRS)
Ellis, S. R.; Palmer, E.
1982-01-01
Subjective estimates of the threat posed by a single intruder aircraft were determined by showing pilots photographs of a cockpit display of traffic information. The time the intruder was away from the point of minimum separation was found to be the major determinant of the perception of threat. When asked to choose a maneuver to reduce the conflict, pilots selected maneuvers with a bias toward those that would have kept the intruders in sight had they been visible out the cockpit window.
Cockpit and cabin crew coordination
DOT National Transportation Integrated Search
1988-02-01
Cockpit and cabin crew coordination is crucial not only in emergencies, but : also during normal operations. The purposes of this study were to determine the : status of crew coordination in the industry and to identify the implications for : flight ...
Cockpit and cabin crew coordination
DOT National Transportation Integrated Search
1988-02-28
Cockpit and cabin crew coordination is crucial not only in emergencies, but also during normal operations. The purposes of this study were to determine the status of crew coordination in the industry and to identify the implications for flight safety...
Survey of cockpit visual problems of senior pilots.
DOT National Transportation Integrated Search
1977-01-01
Fifty general aviation pilots (average age 49; range 40-73) completed a questionnaire concerning cockpit visual problems. The results of the questionnaire indicated that proper interpretation of the airspeed indicator and the altimeter required the b...
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Shay, Richard F.; Swieringa, Kurt A.
2014-01-01
The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) Interval Management (IM) research team has conducted a wide spectrum of work in the recent past, ranging from development and testing of the concept, procedures, and algorithm. This document focuses on the research and evaluation of the IM pilot interfaces, cockpit displays, indications, and alerting concepts for conducting IM spacing operations. The research team incorporated knowledge of human factors research, industry standards for cockpit design, and cockpit design philosophies to develop innovative displays for conducting these spacing operations. The research team also conducted a series of human-in-the-loop (HITL) experiments with commercial pilots and air traffic controllers, in as realistic a high-density arrival operation environment as could be simulated, to evaluate the spacing guidance display features and interface requirements needed to conduct spacing operations.
Human factors of the high technology cockpit
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1990-01-01
The rapid advance of cockpit automation in the last decade has outstripped the ability of the human factors profession to understand the changes in human functions required. High technology cockpits require less physical (observable) workload, but are highly demanding of cognitive functions such as planning, alternative selection, and monitoring. Furthermore, automation creates opportunity for new and more serious forms of human error, and many pilots are concerned about the possibility of complacency affecting their performance. On the positive side, the equipment works as advertized with high reliability, offering highly efficient, computer-based flight. These findings from the cockpit studies probably apply equally to other industries, such as nuclear power production, other modes of transportation, medicine, and manufacturing, all of which traditionally have looked to aviation for technological leadership. The challenge to the human factors profession is to aid designers, operators, and training departments in exploiting the positive side of automation, while seeking solutions to the negative side. Viewgraphs are given.
Human performance in the modern cockpit
NASA Technical Reports Server (NTRS)
Dismukes, R. K.; Cohen, M. M.
1992-01-01
This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1982-01-01
In connection with the necessity to provide greater terminal area capacity, attention is given to approaches in which the required increase in capacity will be obtained by making use of more automation and by involving the pilot to a larger degree in the air traffic control (ATC) process. It was recommended that NASA should make extensive use of its research aircraft and cockpit simulators to assist the FAA in examining the capabilities and limitations of cockpit displays of traffic information (CDTI). A program was organized which utilizes FAA ATC (ground-based) simulators and NASA aircraft and associated cockpit simulators in a research project which explores applications of the CDTI system. The present investigation is concerned with several questions related to the CDTI-based terminal area traffic tactical control concepts. Attention is given to longitudinal separation criteria, a longitudinal following model, longitudinal capture, combined longitudinal/vertical control, and lateral control.
High temperature and performance in a flight task simulator.
DOT National Transportation Integrated Search
1972-05-01
The effects of high cockpit temperature on physiological responses and performance were determined on pilots in a general aviation simulator. The pilots (all instrument rated) 'flew' an instrument flight while exposed to each of three cockpit tempera...
Symbols for cockpit displays of traffic information
DOT National Transportation Integrated Search
2009-10-25
A web-based study assessed pilots ability to learn and remember traffic symbols that may be shown on a Cockpit Display of Traffic Information (CDTI). These displays convey data obtained from Automatic Dependent Surveillance-Broadcast (ADS B) and rela...
An Agent-Based Cockpit Task Management System
NASA Technical Reports Server (NTRS)
Funk, Ken
1997-01-01
An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.
Cockpit design for impact Survival.
DOT National Transportation Integrated Search
1966-02-01
Three principles for high delethalization within the cockpit are given: : 1.the elimination of sharp, elongated, brittle, pointed, or similarly shpaed objects within the envelope of motion of the occupant in a given location; : 2.the use of a body-re...
Symbols for cockpit displays of traffic information
DOT National Transportation Integrated Search
2010-03-01
A web-based study assessed pilots ability to learn and remember traffic symbols that may be shown on a Cockpit Display of Traffic Information (CDTI). These displays convey data obtained from Automatic Dependent Surveillance-Broadcast (ADS B) and rela...
Cockpit display of traffic information (CDTI) and airport moving map industry survey
DOT National Transportation Integrated Search
2016-08-01
This document provides an overview of Cockpit Display of Traffic Information (CDTI) products as of May 2016, including those with airport moving map functionality, and airport moving map applications without traffic depiction. This document updates a...
78 FR 9800 - Airworthiness Directives; Embraer S.A. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... striker and quick- release pin of the passive lock of the cockpit door, and replacing the upper and lower...) of this AD. (1) Replace the striker and quick-release pin of the passive lock of the cockpit door, in...
Operator Performance Evaluation of Fault Management Interfaces for Next-Generation Spacecraft
NASA Technical Reports Server (NTRS)
Hayashi, Miwa; Ravinder, Ujwala; Beutter, Brent; McCann, Robert S.; Spirkovska, Lilly; Renema, Fritz
2008-01-01
In the cockpit of the NASA's next generation of spacecraft, most of vehicle commanding will be carried out via electronic interfaces instead of hard cockpit switches. Checklists will be also displayed and completed on electronic procedure viewers rather than from paper. Transitioning to electronic cockpit interfaces opens up opportunities for more automated assistance, including automated root-cause diagnosis capability. The paper reports an empirical study evaluating two potential concepts for fault management interfaces incorporating two different levels of automation. The operator performance benefits produced by automation were assessed. Also, some design recommendations for spacecraft fault management interfaces are discussed.
Cockpit displayed traffic information and distributed management in air traffic control
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.
1980-01-01
A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.
1992-10-01
Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit
NASA Astrophysics Data System (ADS)
Pandurangareddy, Meenige
2002-07-01
The evolution of Pilot-Vehicle-Interface (PVI) of a fighter aircraft is a complex task. The PVI design involves both static and dynamic issues. Static issues involve the study of reach of controls and switches, ejection path clearance, readability of indicators and display symbols, etc. Dynamic issues involve the study of the effect of aircraft motion on display symbols, pilot emergency handling, situation awareness, weapon aiming, etc. This paper describes a method of addressing the above issues by building a facility with cockpit, which is ergonomically similar to the fighter cockpit. The cockpit is also fitted with actual displays, controls and switches. The cockpit is interfaced with various simulation models of aircraft and outside-window-image generators. The architecture of the facility is designed to represent the latencies of the aircraft and facilitates replacement of simulation models with actual units. A parameter injection facility could be used to induce faults in a comprehensive manner. Pilots could use the facility right from familiarising themselves with procedures to start the engine, take-off, navigate, aim the weapons, handling of emergencies and landing. This approach is being followed and further being enhanced on Cockpit-Environment-Facility (CEF) at Aeronautical Development Agency (ADA), Bangalore, India.
Fore, Amanda M; Sculli, Gary L; Albee, Doreen; Neily, Julia
2013-01-01
To implement the sterile cockpit principle to decrease interruptions and distractions during high volume medication administration and reduce the number of medication errors. While some studies have described the importance of reducing interruptions as a tactic to reduce medication errors, work is needed to assess the impact on patient outcomes. Data regarding the type and frequency of distractions were collected during the first 11 weeks of implementation. Medication error rates were tracked 1 year before and after 1 year implementation. Simple regression analysis showed a decrease in the mean number of distractions, (β = -0.193, P = 0.02) over time. The medication error rate decreased by 42.78% (P = 0.04) after implementation of the sterile cockpit principle. The use of crew resource management techniques, including the sterile cockpit principle, applied to medication administration has a significant impact on patient safety. Applying the sterile cockpit principle to inpatient medical units is a feasible approach to reduce the number of distractions during the administration of medication, thus, reducing the likelihood of medication error. 'Do Not Disturb' signs and vests are inexpensive, simple interventions that can be used as reminders to decrease distractions. © 2012 Blackwell Publishing Ltd.
General aviation structures directly responsible for trauma in crash decelerations.
DOT National Transportation Integrated Search
1971-01-01
An analytical study of general aviation accident injuries is presented. Needs for improvement of both the crash design of the interior of the cockpit and the structural integrity of the cockpit itself are clearly illustrated. Crash safety design in l...
NASA Technical Reports Server (NTRS)
Cook, ED
1987-01-01
The author briefly discusses the FAA's position as it relates to cockpit resource management. For example, if Cockpit Resource Management (CRM) is a positive concept, why isn't everyone required to implement it? The regulatory practice of the FAA is discussed and questions and answers are presented.
Three-Dimensional Measurement Applied in Design Eye Point of Aircraft Cockpits.
Wang, Yanyan; Guo, Xiaochao; Liu, Qingfeng; Xiao, Huajun; Bai, Yu
2018-04-01
Inappropriate design eye point (DEP) will lead to nonstandard sitting postures, including nonneutral head positions and other uncomfortable sitting postures, which are high risk factors for neck pain in fighter pilots exposed to high G forces. Therefore, application of a 3D measurement method to collect data regarding eye position while in the cruising sitting posture in the aircraft cockpit to guide the design eye point has been proposed. A total of 304 male fixed wing aircraft pilots were divided into two groups. Subgroup A (N = 48) were studied to define the cruising posture during flight. Subgroup B (N = 256) were studied with Romer 3D measurement equipment to locate the cruising eye position of the pilots in a simulated cockpit. The 3D data were compared to DEP data in the current standard cockpit. According to 3D measurement, the vertical distance from the cruising eye point to the neutral seat reference point was 759 mm, which is 36 mm lower than that of the Chinese standard DEP and also lower than the U.S. military standard. The horizontal distance was 131 mm, which is 24 mm shorter than that of the Chinese standard. The current DEP data cannot fulfill the needs of fighter pilots and should be amended according to the results of the 3D measurement so that pilots can acquire the optimal cruising posture in flight. This new method has the value of practical application to investigate cockpit ergonomics and the measurement data can guide DEP design.Wang Y, Guo X, Liu Q, Xiao H, Bai Y. Three-dimensional measurement applied in design eye point of aircraft cockpits. Aerosp Med Hum Perform. 2018; 89(4):371-376.
Subjective health complaints, work-related stress and self-efficacy in Norwegian aircrew.
Omholt, M L; Tveito, T H; Ihlebæk, C
2017-03-01
The European civilian aviation industry has undergone major changes in the last decade. Despite this, there is little knowledge about work-related stress and subjective health complaints (SHCs) affecting Norwegian aircrew. To investigate the relationships between work-related stress, self-efficacy and SHCs in commercial aircrew in Norway and to explore differences between cockpit and cabin crew. Aircrew members from the three major airlines operating from Norway completed an electronically distributed questionnaire. Linear regression analyses were used to investigate the association between work-related stress, self-efficacy and SHCs. There was a 21% response rate. Among the 843 study subjects, tiredness, sleep problems, bloating, low back pain, headaches and neck pain were the most prevalent SHCs. Cabin crew reported significantly higher numbers, prevalences and mean values for all SHCs compared with cockpit crew (P < 0.05). In total, 20% reported high stress levels. High levels of work-related stress were significantly associated with all SHC factors in both groups. Self-efficacy partly moderated the relationship between stress and psychological complaints in both cockpit and cabin crew, and for musculoskeletal complaints in cockpit crew. The model explained 23 and 32% of the variance in psychological complaints for cockpit and cabin crew, respectively. Commercial aircrew in Norway reported high numbers of SHCs, and high levels of work-related stress were associated with high numbers of SHC. More knowledge is needed on the physical, organizational and psychosocial stressors affecting cockpit and cabin crew in order to create a healthier work environment for these groups. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Nixon, C; Anderson, T; Morris, L; McCavitt, A; McKinley, R; Yeager, D; McDaniel, M
1998-11-01
The intelligibility of female and male speech is equivalent under most ordinary living conditions. However, due to small differences between their acoustic speech signals, called speech spectra, one can be more or less intelligible than the other in certain situations such as high levels of noise. Anecdotal information, supported by some empirical observations, suggests that some of the high intensity noise spectra of military aircraft cockpits may degrade the intelligibility of female speech more than that of male speech. In an applied research study, the intelligibility of female and male speech was measured in several high level aircraft cockpit noise conditions experienced in military aviation. In Part I, (Nixon CW, et al. Aviat Space Environ Med 1998; 69:675-83) female speech intelligibility measured in the spectra and levels of aircraft cockpit noises and with noise-canceling microphones was lower than that of the male speech in all conditions. However, the differences were small and only those at some of the highest noise levels were significant. Although speech intelligibility of both genders was acceptable during normal cruise noises, improvements are required in most of the highest levels of noise created during maximum aircraft operating conditions. These results are discussed in a Part I technical report. This Part II report examines the intelligibility in the same aircraft cockpit noises of vocoded female and male speech and the accuracy with which female and male speech in some of the cockpit noises were understood by automatic speech recognition systems. The intelligibility of vocoded female speech was generally the same as that of vocoded male speech. No significant differences were measured between the recognition accuracy of male and female speech by the automatic speech recognition systems. The intelligibility of female and male speech was equivalent for these conditions.
6. Detail of forward fuselage showing open cockpit hatch and ...
6. Detail of forward fuselage showing open cockpit hatch and ladder. View to southeast. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
DOT National Transportation Integrated Search
1995-06-01
Instrument approach procedure (IAP) charts can be densely packed with information. This high information density can : make information difficult to find, particularly in a poorly lit cockpit during turbulence. The Voipe Center's Cockpit : Hunan Fact...
Helicopter force-feel and stability augmentation system with parallel servo-actuator
NASA Technical Reports Server (NTRS)
Hoh, Roger H. (Inventor)
2006-01-01
A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.
NASA Technical Reports Server (NTRS)
Keyser, G. L., Jr.
1981-01-01
Both the advent of electronic displays for cockpit applications and the availability of high-capacity data transmission systems, linking aicraft with ATC ground computers, offer the opportunity of expanding the pilots' role in the distributive management process. A critical element in this process is believed to be the presentation to the pilot of his traffic situation. A representative cockpit display of traffic information (CDTI) system is presented as viewed from the pilot in the cockpit, and the research results from flight tests presented. The use of advanced controls and displays allows for presentation to the pilot, large quantities of information that he has not had before. The real challenge in the design of an operational CDTI system will be the satisfaction of needs for information and the presentation of all necessary information, only in a useable format in order to avoid clutter. Even though a reasonably large display was utilized in these tests, display clutter was the primary problem from the standpoint of information assimilation.
NASA Technical Reports Server (NTRS)
Jago, S.; Baty, D.; Oconnor, S.; Palmer, E.
1981-01-01
The concept of a cockpit display of traffic information (CDTI) includes the integration of air traffic, navigation, and other pertinent information in a single electronic display in the cockpit. Concise display symbology was developed for use in later full-mission simulator evaluations of the CDTI concept. Experimental variables used included the update interval motion of the aircraft, the update type, (that is, whether the two aircraft were updated at the same update interval or not), the background (grid pattern or no background), and encounter type (straight or curved). Only the type of encounter affected performance.
Alert generation and cockpit presentation for an integrated microburst alerting system
NASA Technical Reports Server (NTRS)
Wanke, Craig; Hansman, R. John, Jr.
1991-01-01
Alert generation and cockpit presentation issues for low level wind shear (microburst) alerts are investigated. Alert generation issues center on the development of a hazard criterion which allows integration of both ground based and airborne wind shear detection systems to form an accurate picture of the aviation hazard posed by a particular wind shear situation. A methodology for the testing of a hazard criteria through flight simulation has been developed, and has been used to examine the effectiveness and feasibility of several possible criteria. Also, an experiment to evaluate candidate graphical cockpit displays for microburst alerts using a piloted simulator has been designed.
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stations and voice communications of other crewmembers on the flight deck when directed to those stations... pilot stations. The microphone specified in this paragraph must be so located and, if necessary, the... are intelligible when recorded under flight cockpit noise conditions and played back. The level of...
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stations and voice communications of other crewmembers on the flight deck when directed to those stations... as practicable when recorded under flight cockpit noise conditions and played back. Repeated aural or... pilot station. (2) For the second channel from each boom, mask, or hand-held microphone, headset, or...
Format and basic geometry of a perspective display of air traffic for the cockpit
DOT National Transportation Integrated Search
1991-06-01
The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes all...
DOT National Transportation Integrated Search
1995-07-01
In support of the Federal Aviation Administration (FAA) Airborne Data Link : Program, CTA INCORPORATED researched airlines' anticipated near future cockpit : control and display capabilities and associated plans for Data Link : communication. This ef...
14 CFR 125.227 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Requirements § 125.227 Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine... external surface to facilitate its location under water; and (iii) Have an approved underwater locating... may operate a large turbine engine powered airplane or a large pressurized airplane with four...
14 CFR 125.227 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Requirements § 125.227 Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine... external surface to facilitate its location under water; and (iii) Have an approved underwater locating... may operate a large turbine engine powered airplane or a large pressurized airplane with four...
14 CFR 125.227 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Requirements § 125.227 Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine... external surface to facilitate its location under water; and (iii) Have an approved underwater locating... may operate a large turbine engine powered airplane or a large pressurized airplane with four...
14 CFR 125.227 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Requirements § 125.227 Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine... external surface to facilitate its location under water; and (iii) Have an approved underwater locating... may operate a large turbine engine powered airplane or a large pressurized airplane with four...
14 CFR 125.227 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Requirements § 125.227 Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine... external surface to facilitate its location under water; and (iii) Have an approved underwater locating... may operate a large turbine engine powered airplane or a large pressurized airplane with four...
Physiological effects of solar heat load in a fighter cockpit.
Nunneley, S A; Myhre, L G
1976-09-01
The use of bubble canopies to improve vision in fighter aircraft exposes the cockpit to a high radiant heat load. Incoming sunlight increases the heat stress on crewmembers, both by raising air temperature and by directly heating exposed skin and clothing. An F-15 aircraft at Edwards AFB was modified to permit cockpit ventilation by external ground carts. Eight volunteers from the Test Pilot School were studied during 1-h periods in the closed cockpit, in sun and in shade. Mean cockpit air temperatures were 35.2 degrees C in shade and 51.9 degrees C in sun with PH2O less than 10 torr. The corresponding WBGT's were 22.6 and 36.4 degrees C. Sunlight added significantly to overall heat stress, as indicated by a rising heart rate and evaporative weight loss of 284 g/m2 - h (shade value was 109 g/m2 - hr). Mean skin temperatures were 34.3 degrees C in shade and 35.8 degrees C in sun. Particularly high skin temperatures were observed on the chest, the forehead and the top of the head under the helmet. The legs remained cool due to the flow of conditioned air, and this may explain why rectal temperature showed no meaningful change. Heat stress, which alone poses no physiological hazard, may cause crew performance decrements as well as diminishing acceleration tolerance. Possible means of eliminating or ameliorating these effects are discussed.
Joint Cockpit Office: history and role in defense-wide issues regarding avionics displays
NASA Astrophysics Data System (ADS)
O'Connor, John C.; Kraemer, William A.
2000-08-01
The charter of the Joint Cockpit Office (JCO) is to plan, coordinate and accelerate the transition of advanced development cockpit/crew station technologies critical to crew effectiveness in current and future air vehicles. The JCO helps assure a single, coordinated, and highly integrated cockpit/crew station Science and Technology (S&T) program within and between the Air Force, the Army, and the Navy. It serves as the primary interface and focal point for issues involving these technologies for organizations within and external to the Services. The Services are at the advent of fielding new technologies such as helmet-mounted displays as a primary flight reference. They will most certainly evaluate the use of windowless cockpits to counter the laser threat and allow for less constraining aerodynamic conditions in future vehicle design. The transition to multi-spectral displays in future military and commercial aircraft is imminent. The JCO is well positioned to assess and focus the research needed to safely exploit these new technologies and meet customer requirements. Presently, the JCO is undertaking three initiatives: creation of a joint-service, Cooperative Research and Development Agreement (CRDA) with Lockheed Martin to study the thresholds of virtual helmet-mounted display attributes and effects on pilot performance; management of the Spatial Disorientation Countermeasures program, and facilitation of the actions determined by the DoD Executive Agent for Flat Panel Displays.
14 CFR 121.315 - Cockpit check procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cockpit check procedure. 121.315 Section 121.315 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his memory...
14 CFR 25.351 - Yaw maneuver conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... angle of paragraph (c) of this section, it is assumed that the cockpit rudder control is suddenly...) With the airplane in unaccelerated flight at zero yaw, it is assumed that the cockpit rudder control is suddenly displaced to achieve the resulting rudder deflection, as limited by: (1) The control system on...
14 CFR 25.351 - Yaw maneuver conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... angle of paragraph (c) of this section, it is assumed that the cockpit rudder control is suddenly...) With the airplane in unaccelerated flight at zero yaw, it is assumed that the cockpit rudder control is suddenly displaced to achieve the resulting rudder deflection, as limited by: (1) The control system on...
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... service to essential or emergency loads. (ii) It remains powered for as long as possible without... combination unit, no single electrical failure external to the recorder may disable both the cockpit voice... or by any other loss of power to the electrical power bus. (e) The record container must be located...
Synthesis of an integrated cockpit management system
NASA Technical Reports Server (NTRS)
Dasaro, J. A.; Elliott, C. T.
1982-01-01
The process used in the synthesis of an integrated cockpit management system was discussed. Areas covered included flight displays, subsystem management, checklists, and procedures (both normal and emergency). The process of evolving from the unintegrated conventional system to the integrated system is examined and a brief description of the results presented.
Determining Window Placement and Configuration for the Small Pressurized Rover (SPR)
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Litaker, Harry; Howard, Robert
2009-01-01
This slide presentation reviews the process of the evaluation of window placement and configuration for the cockpit of the Lunar Electric Rover (LER). The purpose of the evaluation was to obtain human-in-the-loop data on window placement and configuration for the cockpit of the LER.
14 CFR 121.359 - Cockpit voice recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine powered airplane or... its location under water; and (iii) Have an approved underwater locating device on or adjacent to the... person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 10-19...
14 CFR 121.359 - Cockpit voice recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine powered airplane or... its location under water; and (iii) Have an approved underwater locating device on or adjacent to the... person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 10-19...
14 CFR 121.359 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine powered airplane or... its location under water; and (iii) Have an approved underwater locating device on or adjacent to the... person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 10-19...
14 CFR 121.359 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine powered airplane or... its location under water; and (iii) Have an approved underwater locating device on or adjacent to the... person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 10-19...
14 CFR 121.359 - Cockpit voice recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Cockpit voice recorders. (a) No certificate holder may operate a large turbine engine powered airplane or... its location under water; and (iii) Have an approved underwater locating device on or adjacent to the... person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 10-19...
The Measurement of the Field of View from Airplane Cockpits
NASA Technical Reports Server (NTRS)
Gough, Melvin N
1936-01-01
A method has been devised for the angular measurement and graphic portrayal of the view obtained from the pilot's cockpit of an airplane. The assumption upon which the method is based and a description of the instrument, designated a "visiometer", used in the measurement are given. Account is taken of the fact that the pilot has two eyes and two separate sources of vision. The view is represented on charts using an equal-area polar projection, a description and proof of which are given. The use of this chart, aside from its simplicity, may make possible the establishment of simple criterions of the field of view. Charts of five representative airplanes with various cockpit arrangements are included.
Using Visualization in Cockpit Decision Support Systems
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2005-01-01
In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.
NASA Technical Reports Server (NTRS)
Sarter, Nadine B.; Woods, David D.
1992-01-01
Results are presented of two studies on the potential effect of cockpit automation on the pilot's performance, which provide data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS). The results of both studies indicate that, although pilots do become proficient in standard FMS operations through ground training and subsequent flight experience, they still have difficulties tracking the FMS status and behavior in certain flight contexts and show gaps in the understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties, which can affect the pilot's situation awareness.
Technical Workshop: Advanced Helicopter Cockpit Design
NASA Technical Reports Server (NTRS)
Hemingway, J. C. (Editor); Callas, G. P. (Editor)
1984-01-01
Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.
Views of Astronaut (Col.) Joe Engle and son Jon with L-5 Piper Cub
NASA Technical Reports Server (NTRS)
1981-01-01
Views of Astronaut (Col.) Joe Engle and son Jon with L-5 Piper Cub at Clover Airport. Photos include Engle turning propeller while his son sits in the cockpit (34323); both Engle and son examine propeller (34324); Engle works on engine while his son sits in cockpit (34325).
General Aviation Cockpit Weather Information System Simulation Studies
NASA Technical Reports Server (NTRS)
McAdaragh, Ray; Novacek, Paul
2003-01-01
This viewgraph presentation provides information on two experiments on the effectiveness of a cockpit weather information system on a simulated general aviation flight. The presentation covers the simulation hardware configuration, the display device screen layout, a mission scenario, conclusions, and recommendations. The second experiment, with its own scenario and conclusions, is a follow-on experiment.
NASA Technical Reports Server (NTRS)
Ricks, Wendell; Corker, Kevin
1990-01-01
Primary Flight Display (PFD) information management and cockpit display of information management research is presented in viewgraph form. The information management problem in the cockpit, information management burdens, the key characteristics of an information manager, the interface management system handling the flow of information and the dialogs between the system and the pilot, and overall system architecture are covered.
Hammer, Gaël P; Auvinen, Anssi; De Stavola, Bianca L; Grajewski, Barbara; Gundestrup, Maryanne; Haldorsen, Tor; Hammar, Niklas; Lagorio, Susanna; Linnersjö, Anette; Pinkerton, Lynne; Pukkala, Eero; Rafnsson, Vilhjálmur; dos-Santos-Silva, Isabel; Storm, Hans H; Strand, Trond-Eirik; Tzonou, Anastasia; Zeeb, Hajo; Blettner, Maria
2014-05-01
Commercial airline crew is one of the occupational groups with the highest exposures to ionising radiation. Crew members are also exposed to other physical risk factors and subject to potential disruption of circadian rhythms. This study analyses mortality in a pooled cohort of 93 771 crew members from 10 countries. The cohort was followed for a mean of 21.7 years (2.0 million person-years), during which 5508 deaths occurred. The overall mortality was strongly reduced in male cockpit (SMR 0.56) and female cabin crews (SMR 0.73). The mortality from radiation-related cancers was also reduced in male cockpit crew (SMR 0.73), but not in female or male cabin crews (SMR 1.01 and 1.00, respectively). The mortality from female breast cancer (SMR 1.06), leukaemia and brain cancer was similar to that of the general population. The mortality from malignant melanoma was elevated, and significantly so in male cockpit crew (SMR 1.57). The mortality from cardiovascular diseases was strongly reduced (SMR 0.46). On the other hand, the mortality from aircraft accidents was exceedingly high (SMR 33.9), as was that from AIDS in male cabin crew (SMR 14.0). This large study with highly complete follow-up shows a reduced overall mortality in male cockpit and female cabin crews, an increased mortality of aircraft accidents and an increased mortality in malignant skin melanoma in cockpit crew. Further analysis after longer follow-up is recommended.
Evaluation of MIL-L-23699 Lubricant Performance in the TF41-A-2 Engine
1975-05-01
provides the necessary signals to the cockpit indicator for the indication of engine oil pressure. The differential pressure switch controls a cockpit...light. If the light is on, it indicates that the differential oil pressure is low. The setting ot the differential pressure switch is 11 t 1 psi. The
Management training for cockpit crews at Piedmont flight
NASA Technical Reports Server (NTRS)
Sifford, J. C.
1984-01-01
A brief history of Piedmont Airlines' flight operations is presented. A captain-management seminar conducted regularly by Piedmont is discussed. Piedmont's approach to cockpit resource management (CRM) is reviewed, and the relationship of CRM training to other aspects of flight training is addressed. Future leadership research plans and CRM training is considered along with critical training issues.
Ambient-Light Simulator For Testing Cockpit Displays
NASA Technical Reports Server (NTRS)
Batson, Vernon M.; Gupton, Lawrence E.
1995-01-01
Apparatus provides illumination from outside, through windows and into interior of simulated airplane cockpit. Simulates sunlight, darkness, or lightning on demand. Ambient-lighting simulator surrounds forward section of simulated airplane. Provides control over intensity, color, and diffuseness of solar illumination and of position of Sun relative to airplane. Used to evaluate aircraft-instrumentation display devices under realistic lighting conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... structural degradation possibly leading to the loss of the windshield during flight. Also, water could leak... during flight. Also, water could leak into the cockpit and cause either a malfunction or failure of the... the windshield during flight. Also, water could leak into the cockpit and cause either a malfunction...
2004-03-27
The second X-43A hypersonic research vehicle, mounted under the right wing of the B-52B launch aircraft, viewed from the B-52 cockpit. The crew is working on closing out the research vehicle, preparing it for flight.
Group 13, 1990 ASCAN Ochoa in T-38 cockpit during Ellington flight training
NASA Technical Reports Server (NTRS)
1990-01-01
Group 13, 1990 Astronaut Candidate (ASCAN) Ellen Ochoa, wearing helmet with breathing mask, sits in T-38A rear cockpit and prepares for flight training. NASA staff pilots conducted the T-38A flight training at Ellington Field on 07-26-90 and 07-27-90. Ellington Field is located near JSC.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... with electronic flight controls as they relate to design roll-maneuver requirements. The applicable... load condition at design maneuvering speed V A , in which the cockpit roll control is returned to... neutral position. 3. At design cruising speed V C , the cockpit roll control must be moved suddenly and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... 400A airplanes. This AD was prompted by a report that the wiring for the 5- volt direct current (DC... control power supplies. We are issuing this AD to prevent failure of the wiring, which could result in smoke in the cockpit, loss of cockpit lighting, and potential damage to surrounding wiring for other...
NASA Technical Reports Server (NTRS)
Lee, A. T.
1984-01-01
The differences between flight training technology and flight simulation technology are highlighted. Examples of training technologies are provided, including the Navy's training system and the interactive cockpit training device. Training problems that might arise in the near future are discussed. These challenges follow from the increased amount and variety of information that a pilot must have access to in the cockpit.
Group-level issues in the design and training of cockpit crews
NASA Technical Reports Server (NTRS)
Hackman, J. Richard
1987-01-01
Cockpit crews always operate in an organizational context, and the transactions between the crew and representatives of that context (e.g., organizational managers, air traffic controllers) are consequential for any crew's performance. For a complete understanding of crew performance a look beyond the traditional focus on individual pilots is provided to see how team- and organization-level factors can enhance (or impede) the ability of even well-trained individuals to work together effectively. This way of thinking about cockpit crews (that is, viewing them as teams that operate in organizations) offers some potentially useful avenues for thinking about next steps in the development of CRM training programs. Those possibilities are explored, emphasizing how they can enrich (not replace) individually-focussed CRM training.
Performance specifications: the nearly impossible versus the merely difficult
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.
2000-08-01
Affordability is the objective of acquisition reform. The institution of 'performance' specifications in lieu of 'design' specifications is a key strategy. Design of a cockpit display, for example, is left to the prime contractor based on a performance requirement stated by the government. The prime delegates to the integrator. The integrator develops the display and bill of materials provided by vendors. There is no feedback loop from the vendors to the ultimate customer, the government. As a result of this situation a communication gap exists: the government, primes, and integrators have concluded that they should pay commodity prices for custom displays. One step in the closing of this gap is the establishment of cross- cutting common reference performance specifications for aerospace and defense displays. The performance specification for cockpit displays is nearly impossible to achieve -- the last ounce of technology and more is required. Commodity markets, such as consumer notebook computers, are based on but a fraction of currently available technology -- companies 'bank' technology and roll it out across several 18-month product generations. Ruggedized consumer displays can be used in aerospace and defense applications other than the cockpit, such as mission crew stations. The performance specification for non-cockpit aerospace and defense applications is merely difficult. Acquisition reform has been defined by the Secretary of Defense to mean DoD should leverage the commercial market to the maximal extent possible. For the achievement of this end, an entirely different approach is wanted for cockpit displays versus large platform mission displays. That is, the nearly impossible requires a different design and business approach from the merely difficult.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... loss of the windshield during flight. Also, water could leak into the cockpit and cause either a... structural degradation possibly leading to the loss of the windshield during flight. Also, water could leak... possibly leading to the loss of the windshield during flight. Also, water could leak into the cockpit and...
Cockpit resource management skills enhance combat mission performance in a B-52 simulator
NASA Technical Reports Server (NTRS)
Povenmire, H. Kingsley; Rockway, Marty R.; Bunecke, Joseph L.; Patton, Mark W.
1989-01-01
A cockpit resource management (CRM) program for mission-ready B-52 aircrew is developed. The relationship between CRM performance and combat mission performance is studied. The performances of six crew members flying a simulated high workload mission in a B-52 weapon system trainer are evaluated. The data reveal that CRM performance enhances tactical maneuvers and bombing accuracy.
NASA Astrophysics Data System (ADS)
Bailey, David C.
1994-06-01
The F-22 is the first exclusively glass cockpit where all instrumentation has been replaced by displays. The F-22 Engineering and Manufacturing Development Program is implementing the display technology proven during the Advanced Tactical Fighter Demonstration and Validation program. This paper will describe how the F-22 goals have been met and some of the tradeoffs that resulted in the current display design.
Review of Flight Training Technology
1976-07-01
the cockpit. They might be used to train pilots in procedures to cope with NOE-altitude emergencies; howeve-r, a combination of cinematic simulation...airplanes. Although cockpit motion adds realism , thereby i-nproving pilot performanc, in the simulater Fedderqon, Vil; Guercio and Wall, i7?. Ince...operations. Light aircraft, part-task trainers, motion pictures and video tares, cinematic simulators, and digital teaching machines are among the
Tactical Airspace Integration System Situation Awareness Integration Into the Cockpit: Phase 2
2013-03-01
ARL-TR-6371 March 2013 prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field...Situation Awareness Integration Into the Cockpit: Phase II Michael Sage Jessee and Anthony Morris Human Research and Engineering Directorate, ARL...prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field Element) Bldg 5400, Room C236
Automatic speech recognition in air-ground data link
NASA Technical Reports Server (NTRS)
Armstrong, Herbert B.
1989-01-01
In the present air traffic system, information presented to the transport aircraft cockpit crew may originate from a variety of sources and may be presented to the crew in visual or aural form, either through cockpit instrument displays or, most often, through voice communication. Voice radio communications are the most error prone method for air-ground data link. Voice messages can be misstated or misunderstood and radio frequency congestion can delay or obscure important messages. To prevent proliferation, a multiplexed data link display can be designed to present information from multiple data link sources on a shared cockpit display unit (CDU) or multi-function display (MFD) or some future combination of flight management and data link information. An aural data link which incorporates an automatic speech recognition (ASR) system for crew response offers several advantages over visual displays. The possibility of applying ASR to the air-ground data link was investigated. The first step was to review current efforts in ASR applications in the cockpit and in air traffic control and evaluated their possible data line application. Next, a series of preliminary research questions is to be developed for possible future collaboration.
Altitude deviations: Breakdowns of an error-tolerant system
NASA Technical Reports Server (NTRS)
Palmer, Everett A.; Hutchins, Edwin L.; Ritter, Richard D.; Vancleemput, Inge
1993-01-01
Pilot reports of aviation incidents to the Aviation Safety Reporting System (ASRS) provide a window on the problems occurring in today's airline cockpits. The narratives of 10 pilot reports of errors made in the automation-assisted altitude-change task are used to illustrate some of the issues of pilots interacting with automatic systems. These narratives are then used to construct a description of the cockpit as an information processing system. The analysis concentrates on the error-tolerant properties of the system and on how breakdowns can occasionally occur. An error-tolerant system can detect and correct its internal processing errors. The cockpit system consists of two or three pilots supported by autoflight, flight-management, and alerting systems. These humans and machines have distributed access to clearance information and perform redundant processing of information. Errors can be detected as deviations from either expected behavior or as deviations from expected information. Breakdowns in this system can occur when the checking and cross-checking tasks that give the system its error-tolerant properties are not performed because of distractions or other task demands. Recommendations based on the analysis for improving the error tolerance of the cockpit system are given.
Anthropometry of Brazilian Air Force pilots.
da Silva, Gilvan V; Halpern, Manny; Gordon, Claire C
2017-10-01
Anthropometric data are essential for the design of military equipment including sizing of aircraft cockpits and personal gear. Currently, there are no anthropometric databases specific to Brazilian military personnel. The aim of this study was to create a Brazilian anthropometric database of Air Force pilots. The methods, protocols, descriptions, definitions, landmarks, tools and measurements procedures followed the instructions outlined in Measurer's Handbook: US Army and Marine Corps Anthropometric Surveys, 2010-2011 - NATICK/TR-11/017. The participants were measured countrywide, in all five Brazilian Geographical Regions. Thirty-nine anthropometric measurements related to cockpit design were selected. The results of 2133 males and 206 females aged 16-52 years constitute a set of basic data for cockpit design, space arrangement issues and adjustments, protective gear and equipment design, as well as for digital human modelling. Another important implication is that this study can be considered a starting point for reducing gender bias in women's career as pilots. Practitioner Summary: This paper describes the first large-scale anthropometric survey of the Brazilian Air Force pilots and the development of the related database. This study provides critical data for improving aircraft cockpit design for ergonomics and comprehensive pilot accommodation, protective gear and uniform design, as well as digital human modelling.
Teaching Cockpit Automation in the Classroom
NASA Technical Reports Server (NTRS)
Casner, Stephen M.
2003-01-01
This study explores the idea of teaching fundamental cockpit automation concepts and skills to aspiring professional pilots in a classroom setting, without the use of sophisticated aircraft or equipment simulators. Pilot participants from a local professional pilot academy completed eighteen hours of classroom instruction that placed a strong emphasis on understanding the underlying principles of cockpit automation systems and their use in a multi-crew cockpit. The instructional materials consisted solely of a single textbook. Pilots received no hands-on instruction or practice during their training. At the conclusion of the classroom instruction, pilots completed a written examination testing their mastery of what had been taught during the classroom meetings. Following the written exam, each pilot was given a check flight in a full-mission Level D simulator of a Boeing 747-400 aircraft. Pilots were given the opportunity to fly one practice leg, and were then tested on all concepts and skills covered in the class during a second leg. The results of the written exam and simulator checks strongly suggest that instruction delivered in a traditional classroom setting can lead to high levels of preparation without the need for expensive airplane or equipment simulators.
Wrap-Around Out-the-Window Sensor Fusion System
NASA Technical Reports Server (NTRS)
Fox, Jeffrey; Boe, Eric A.; Delgado, Francisco; Secor, James B.; Clark, Michael R.; Ehlinger, Kevin D.; Abernathy, Michael F.
2009-01-01
The Advanced Cockpit Evaluation System (ACES) includes communication, computing, and display subsystems, mounted in a van, that synthesize out-the-window views to approximate the views of the outside world as it would be seen from the cockpit of a crewed spacecraft, aircraft, or remote control of a ground vehicle or UAV (unmanned aerial vehicle). The system includes five flat-panel display units arranged approximately in a semicircle around an operator, like cockpit windows. The scene displayed on each panel represents the view through the corresponding cockpit window. Each display unit is driven by a personal computer equipped with a video-capture card that accepts live input from any of a variety of sensors (typically, visible and/or infrared video cameras). Software running in the computers blends the live video images with synthetic images that could be generated, for example, from heads-up-display outputs, waypoints, corridors, or from satellite photographs of the same geographic region. Data from a Global Positioning System receiver and an inertial navigation system aboard the remote vehicle are used by the ACES software to keep the synthetic and live views in registration. If the live image were to fail, the synthetic scenes could still be displayed to maintain situational awareness.
Evaluating the effectiveness of cockpit resource management training
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1989-01-01
The concept of providing flight crews with intensive training in crew coordination and interpersonal skills (cockpit resource management training - CRM) is outlined with emphasis on full mission simulator training (line-oriented flight training - LOFT). Findings from several airlines that have instituted CRM and LOFT are summarized. Four types of criteria used for evaluating CRM programs: observer ratings of crew behavior, measures of attitudes regarding cockpit management, self-reports by participants on the value of the training, and case studies of CRM-related incidents and accidents are covered. Attention is focused on ratings of the performance of crews during line flights and during simulator sessions conducted as a part of LOFT. A boomerang effect - the emergence of a subgroup that has changed the attitudes in the opposite direction from that desired is emphasized.
Chemical warfare protection for the cockpit of future aircraft
NASA Technical Reports Server (NTRS)
Pickl, William C.
1988-01-01
Currently systems are being developed which will filter chemical and biological contaminants from crew station air. In order to maximize the benefits of these systems, a method of keeping the cockpit contaminant free during pilot ingress and egress is needed. One solution is to use a rectangular plastic curtain to seal the four edges of the canopy frame to the canopy sill. The curtain is stored in a tray which is recessed into the canopy sill and unfolds in accordion fashion as the canopy is raised. A two way zipper developed by Calspan could be used as an airlock between the pilot's oversuit and the cockpit. This system eliminates the pilot's need for heavy and restrictive CB gear because he would never be exposed to the chemical warfare environment.
ASCAN Helms sits in T-38A cockpit and prepares for Ellington Field training
NASA Technical Reports Server (NTRS)
1990-01-01
1990 Group 13 Astronaut Candidate (ASCAN) Susan J. Helms, wearing a helmet with oxygen mask, sits in T-38A cockpit while preparing for flight training at Ellington Field. Helms, along with other 1990 Astronaut Class members, participated in the training conducted by NASA staff pilots on 07-26-90 and 07-27-90. Ellington Field is located near JSC.
A function-based approach to cockpit procedure aids
NASA Technical Reports Server (NTRS)
Phatak, Anil V.; Jain, Parveen; Palmer, Everett
1990-01-01
The objective of this research is to develop and test a cockpit procedural aid that can compose and present procedures that are appropriate for the given flight situation. The procedure would indicate the status of the aircraft engineering systems, and the environmental conditions. Prescribed procedures already exist for normal as well as for a number of non-normal and emergency situations, and can be presented to the crew using an interactive cockpit display. However, no procedures are prescribed or recommended for a host of plausible flight situations involving multiple malfunctions compounded by adverse environmental conditions. Under these circumstances, the cockpit procedural aid must review the prescribed procedures for the individual malfunction (when available), evaluate the alternatives or options, and present one or more composite procedures (prioritized or unprioritized) in response to the given situation. A top-down function-based conceptual approach towards composing and presenting cockpit procedures is being investigated. This approach is based upon the thought process that an operating crew must go through while attempting to meet the flight objectives given the current flight situation. In order to accomplish the flight objectives, certain critical functions must be maintained during each phase of the flight, using the appropriate procedures or success paths. The viability of these procedures depends upon the availability of required resources. If resources available are not sufficient to meet the requirements, alternative procedures (success paths) using the available resources must be constructed to maintain the critical functions and the corresponding objectives. If no success path exists that can satisfy the critical functions/objectives, then the next level of critical functions/objectives must be selected and the process repeated. Information is given in viewgraph form.
NASA Technical Reports Server (NTRS)
Riccio, Gary E.; McDonald, P. Vernon; Irvin, Gregg E.; Bloomberg, Jacob J.
1998-01-01
This report reviews the operational demands made of a Shuttle pilot or commander within the context of a proven empirical methodology for describing human sensorimotor performance and whole-body coordination in mechanically and perceptually complex environments. The conclusions of this review pertain to a) methods for improving our understanding of the psychophysics and biomechanics of visual/manual control and whole-body coordination in space vehicle cockpits; b) the application of scientific knowledge about human perception and performance in dynamic inertial conditions to the development of technology, procedures, and training for personnel in space vehicle cockpits; c) recommendations for mitigation of safety and reliability concerns about human performance in space vehicle cockpits; and d) in-flight evaluation of flight crew performance during nominal and off-nominal launch and reentry scenarios.
Human factors in cockpit automation: A field study of flight crew transition
NASA Technical Reports Server (NTRS)
Wiener, E. L.
1985-01-01
The factors which affected two groups of airline pilots in the transition from traditional airline cockpits to a highly automated version were studied. All pilots were highly experienced in traditional models of the McDonnell-Douglas DC-9 prior to their transition to the more automated DC-9-80. Specific features of the new aircraft, particularly the digital flight guidance system (DFGS) and other automatic features such as the autothrottle system (ATS), autobrake, and digital display were studied. Particular attention was paid to the first 200 hours of line flying experience in the new aircraft, and the difficulties that some pilots found in adapting to the new systems during this initial operating period. Efforts to prevent skill loss from automation, training methods, traditional human factors issues, and general views of the pilots toward cockpit automation are discussed.
NASA Technical Reports Server (NTRS)
Williams, D. H.; Simpson, C. A.
1976-01-01
Line pilots (fifty captains, first officers, and flight engineers) from 8 different airlines were administered a structured questionnaire relating to future warning system design and solutions to current warning system problems. This was followed by a semantic differential to obtain a factor analysis of 18 different cockpit warning signals on scales such as informative/distracting, annoying/soothing. Half the pilots received a demonstration of the experimental text and voice synthesizer warning systems before answering the questionnaire and the semantic differential. A control group answered the questionnaire and the semantic differential first, thus providing a check for the stability of pilot preferences with and without actual exposure to experimental systems. Generally, the preference data obtained revealed much consistency and strong agreement among line pilots concerning advance cockpit warning system design.
The Measurement of Pilot Workload.
1983-01-01
measures produced two clusters for the easiest and inter - mediate flights (inflight and postflight) and four for the most difficult flight. Zn the...technique is intended for use ’n evaluating the potential impact associated with changes in cockpit procedures and instru- mentation. The technique would...for pitch, roll, and, to a certain extent, elevation changes . The cockpit is equipped with (1) Collins FD 109 Flight Director, (2) AP 106 Auto Pilot
The structure of cockpit management attitudes
NASA Technical Reports Server (NTRS)
Gregorich, S. E.; Helmreich, R. L.; Wilhelm, J. A.
1990-01-01
A revised version of the Cockpit Management Attitudes Questionnaire (CMAQ) is introduced. Factor analyses of responses from 3 different samples reveal comparable factor structure (previous attempts to factor analyze this measure had produced equivocal results). Implications for the measurement of attitudes and the assessment of attitude change are discussed. It is argued that the CMAQ will benefit both special training programs and efforts to explore attitude-performance linkages in air-transport operations.
E-2D Advanced Hawkeye Aircraft (E-2D AHE)
2013-12-01
integrating a full glass cockpit and full Communication Navigation Surveillance/Air Traffic Management capability. The glass cockpit will also provide the...hours at a station distance of 200nm Flat Turn Service Ceiling =>25,000 feet above MSL at mission profile =>25,000 feet above MSL at...confidential- ity, non- repudiation, and issuance of an ATO by the DAA (5) Operationally effective information exchanges; and MC- performance and IA
NASA Technical Reports Server (NTRS)
1975-01-01
The F-8 DFBW (Digital-Fly-By-Wire) simulator used an 'Iron-Bird' for its cockpit. It was used from 1971 to 1986. The F-8 DFBW simulator was used in the development, testing, and validation of an all digital flight-control system installed in the F-8 aircraft that replaced the normal mechanical/hydraulic controls. Many military and commercial aircraft have digital flight control systems based on the technologies developed at NASA Dryden.
A Human Factors Evaluation of the Space Shuttle Cockpit Avionics Upgrade
2012-09-01
cockpit design . This study assesses the CAU design employing human factors principles, evaluates baseline and CAU simulation data, and traces MW and SA...differences back to CAU design modifications. Significant improvements were found in all measures and across all conditions. These improvements were...found to be greater for ascent scenarios than for entry. From the findings, recommendations for the design and evaluation of future spacecraft
MOUT: Military Operations in Urban Terrain (Air Land Sea Bulletin, Issue No. 2008-1, January 2008)
2008-01-01
the outside world and inside the cockpit. IMPORTANCE OF UNOBSTRUCTED UNAIDED VISION OUTSIDE THE COCKPIT The Los Angeles Police Department ...you the Soldiers, Sailors, Marines, Airmen, and Coast Guardsmen who live and work at the tactical level every day. A special thanks to the writers...leader. Execution begins with an intelligence inject from the division G2, stating that the AIF cell leader
Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning
2015-06-05
High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.
NASA Technical Reports Server (NTRS)
Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.
1989-01-01
The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.
Whither CRM? Future directions in Crew Resource Management training in the cockpit and elsewhere
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1993-01-01
The past decade has shown worldwide adoption of human factors training in civil aviation, now known as Crew Resource Management (CRM). The shift in name from cockpit to crew reflects a growing trend to extend the training to other components of the aviation system including flight attendants, dispatchers, maintenance personnel, and Air Traffic Controllers. The paper reports findings and new directions in research into human factors.
Display Technology: An Annotated Bibliography.
1973-12-01
way in even the ’,test cockpit configurations. Why , then, should major changes be expected or sought? One reason for changes in cockpit...be no need for a separate navigator position, even on over- water routes, if the necessary information were displayed to another crew member, e.g. the...Burkowski, R. P., Kornblau, M., and Flint , W. L. Thermo- chromic Displays. Paper presented at NASA symposium on Recent Advances in Displ&y Media held in
Progress on Intelligent Guidance and Control for Wind Shear Encounter
NASA Technical Reports Server (NTRS)
Stratton, D. Alexander
1990-01-01
Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.
Initial, Cockpit Anthropometric Assessment of U.S. Navy T-6 Life Support Equipment
2007-11-05
DEP was not specified. Zone 1, 2, and 3 reach conditions to controls and pedals and clearances were in accordance with military standard...functional leg reach as operation of pedals ; cockpit volume clearances, including ejection clearances not striking objects unintention-ally; and overhead...was measured from knee to any obstruction. Reach to pedals was measured from a position where full control was achieved. Arm reach was measured for
2014-12-01
proportional dwell time OTW in order to assess the impact of novel cockpit instruments on situational awareness in nearby airspace (Cote, Krueger, & Simmons...frequency. In particular, Spady (1978) examined eye movements during simulated landing approach under instrument flight rules ( IFR ). Simulated turbulence...al. (2007) found that NNI varied across phases of simulated IFR flight, showing the least random (most clustered) distribution of fixations during
NASA Technical Reports Server (NTRS)
Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin
2002-01-01
In this study, current characteristics and future developments of Intelligent Transportation Systems (ITS) in the automobile and trucking industry are investigated to identify the possible implications of such systems for General Aviation (GA) cockpit weather systems. First, ITS are explained based on tracing their historical development in various countries. Then, current systems and the enabling communication technologies are discussed. Finally, a market analysis for GA is included.
Proposed Modifications for the RAAF Airtrainer CT-4A Cockpit.
1984-12-01
training effectiveness and improve flying safety. DTIC ELECTE COMWEALTH OF AUSTRALIA 1984 1A POSTAL ADDRESS: Director, Aeronautical Research Laboratories...P.O. box 4331, Melbourne, Victoria, 3001, Australia . Ib’I CONTENTS PAGE NO. 1. INTRODUCTION 1 2. CT-4A COCKPIT PROBLEMS 1 3. USE OF AUSTRALIAN...use. However, many of the space difficulties appear to be the result of inadequate consideration of anthropometry in the design. For example the
Research project evaluates the effect of national culture on flight crew behaviour.
Helmreich, R L; Merritt, A C; Sherman, P J
1996-10-01
The role of national culture in flight crew interactions and behavior is examined. Researchers surveyed Asian, European, and American flight crews to determine attitudes about crew coordination and cockpit management. Universal attitudes among pilots are identified. Culturally variable attitudes among pilots from 16 countries are compared. The role of culture in response to increasing cockpit automation is reviewed. Culture-based challenges to crew resource management programs and multicultural organizations are discussed.
Effects of UAV Supervisory Control on F-18 Formation Flight Performance in a Simulator Environment
2013-03-01
words) Continual advances in technology, along with increased cockpit workload— particularly the shift from two- seat to single- seat fighters to save...INTENTIONALLY LEFT BLANK v ABSTRACT Continual advances in technology, along with increased cockpit workload— particularly the shift from two- seat to...single- seat fighters to save money and reduce risk to life—push the limits of human mental capacity. Additionally, there is interest within the
NASA Technical Reports Server (NTRS)
Hosman, R. J. A. W.; Vandervaart, J. C.
1984-01-01
An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.
Chelette, T L
1997-06-01
Advances in technology have equipped high-performance combat aircraft with the capability of delivering higher and higher sustained acceleration or G-forces on the pilots flying them. While the physiological effects of increased g-forces on the human body continue to be investigated, studies examining the effects of acceleration on the cognitive abilities of high-performance aircraft pilots remain sparse. Additionally, as higher technology is making its way into the cockpit, so are female pilots. With even fewer studies investigating women's physiological and cognitive tolerances to the stressors in the high-performance cockpit and flight environment, Dr. Chelette's study aimed to investigate these issues. Examining pilot workload, flight task abilities, and the effects of sleeplessness on both male and female pilots, Dr. Chelette's results revealed findings that will make their way into the high-performance cockpit of the future.
NASA Technical Reports Server (NTRS)
Graeber, R. Curtis; Rosekind, Mark R.; Connell, Linda J.; Dinges, David F.
1990-01-01
The results of a NASA-sponsored study examining the effectiveness of a brief, preplanned cockpit rest period to improve pilot alertness and performance in nonaugmented long-haul flight operations are discussed. Four regularly scheduled trans-Pacific flight legs were studied. The shortest flight legs were about 7 h and the longest about 9.5 h, with duty periods averaging about 11 h and layovers about 25 h. Three-person B747 crews were divided randomly into two volunteer pilot groups. These crews were nonaugmented, and therefore no relief pilots were available. The rest group, consisting of four crews, was allowed a 40 min opportunity to rest during the overwater cruise portion of the flight. On a preplanned, rotating basis, individual crew members were allowed to nap. It is concluded that a preplanned cockpit nap is associated with significantly better behavioral performance and higher levels of physiological alertness and that this can be accomplished without disrupting normal flight operations or compromising safety.
Multimission helicopter cockpit displays
NASA Astrophysics Data System (ADS)
Terry, William S.; Terry, Jody K.; Lovelace, Nancy D.
1996-05-01
A new operator display subsystem is being incorporated as part of the next generation United States Navy (USN) helicopter avionics system to be integrated into the multi-mission helicopter (MMH) that replaces both the SH-60B and the SH-60F in 2001. This subsystem exploits state-of-the-art technology for the display hardware, the display driver hardware, information presentation methodologies, and software architecture. Both of the existing SH-60 helicopter display systems are based on monochrome CRT technology; a key feature of the MMH cockpit is the integration of color AMLCD multifunction displays. The MMH program is one of the first military programs to use modified commercial AMLCD elements in a tactical aircraft. This paper presents the general configuration of the MMH cockpit and multifunction display subsystem and discusses the approach taken for presenting helicopter flight information to the pilots as well as presentation of mission sensor data for use by the copilot.
Automation Bias: Decision Making and Performance in High-Tech Cockpits
NASA Technical Reports Server (NTRS)
Mosier, Kathleen L.; Skitka, Linda J.; Heers, Susan; Burdick, Mark; Rosekind, Mark R. (Technical Monitor)
1997-01-01
Automated aids and decision support tools are rapidly becoming indispensible tools in high-technology cockpits, and are assuming increasing control of "cognitive" flight tasks, such as calculating fuel-efficient routes, navigating, or detecting and diagnosing system malfunctions and abnormalities. This study was designed to investigate "automation bias," a recently documented factor in the use of automated aids and decision support systems. The term refers to omission and commission errors resulting from the use of automated cues as a heuristic replacement for vigilant information seeking and processing. Glass-cockpit pilots flew flight scenarios involving automation "events," or opportunities for automation-related omission and commission errors. Pilots who perceived themselves as "accountable" for their performance and strategies of interaction with the automation were more likely to double-check automated functioning against other cues, and less likely to commit errors. Pilots were also likely to erroneously "remember" the presence of expected cues when describing their decision-making processes.
Effects of Type and Strength of Force Feedback on Movement Time in a Target Selection Task
NASA Technical Reports Server (NTRS)
Rorie, Robert Conrad; Vu, Kim-Phuong L.; Marayong, Panadda; Robles, Jose; Strybel, Thomas Z.; Battiste, Vernol
2013-01-01
Future cockpits will likely include new onboard technologies, such as cockpit displays of traffic information, to help support future flight deck roles and responsibilities. These new technologies may benefit from multimodal feedback to aid pilot information processing. The current study investigated the effects of multiple levels of force feedback on operator performance in an aviation task. Participants were presented with two different types of force feedback (gravitational and spring force feedback) for a discrete targeting task, with multiple levels of gain examined for each force feedback type. Approach time and time in target were recorded. Results suggested that the two highest levels of gravitational force significantly reduced approach times relative to the lowest level of gravitational force. Spring force level only affected time in target. Implications of these findings for the design of future cockpit displays will be discussed.
Response time effects of alerting tone and semantic context for synthesized voice cockpit warnings
NASA Technical Reports Server (NTRS)
Simpson, C. A.; Williams, D. H.
1980-01-01
Some handbooks and human factors design guides have recommended that a voice warning should be preceded by a tone to attract attention to the warning. As far as can be determined from a search of the literature, no experimental evidence supporting this exists. A fixed-base simulator flown by airline pilots was used to test the hypothesis that the total 'system-time' to respond to a synthesized voice cockpit warning would be longer when the message was preceded by a tone because the voice itself was expected to perform both the alerting and the information transfer functions. The simulation included realistic ATC radio voice communications, synthesized engine noise, cockpit conversation, and realistic flight routes. The effect of a tone before a voice warning was to lengthen response time; that is, responses were slower with an alerting tone. Lengthening the voice warning with another work, however, did not increase response time.
NASA Technical Reports Server (NTRS)
Cowen, Brandon; Stringer, Mary T.; Hutchinson, Brian K.; Davidson, Paul C.; Gupton, Lawrence E.
2014-01-01
This report documents the updated performance characteristics of NASA Langley Research Center's (LaRC) Cockpit Motion Base (CMB) after recent revisions that were made to its inner-loop, feedback control law. The modifications to the control law will be briefly described. The performance of the Cockpit Motion Facility (CMF) will be presented. A short graphical comparison to the previous control law can be found in the appendix of this report. The revised controller will be shown to yield reduced parasitic accelerations with respect to the previous controller. Metrics based on the AGARD Advisory Report No. 144 are used to assess the overall system performance due to its recent control algorithm modification. This report also documents the standardized simulator test procedure which can be used in the future to evaluate potential updates to the control law.
NASA Astrophysics Data System (ADS)
Timi, Purnota Hannan; Shermin, Saima; Rahman, Asifur
2017-06-01
Flight data recorder is one of the most important sources of flight data in event of aviation disaster which records a wide range of flight parameters including altitude, airspeed, heading etc. and also helps monitoring and analyzing aircraft performance. Cockpit voice recorder records radio microphone transmissions and sounds in the cockpit. These devices help to find out and understand the root causes of aircraft crashes and help building better aircraft systems and technical solutions to prevent similar type of crashes in future, which lead to improvement in safety of aircrafts and passengers. There are other devices also which enhance the aircraft safety and assists in emergency or catastrophic situations. This paper discusses the concept of Flight Data Recorder (FDR), Cockpit Voice Recorder (CVR), Underwater Locator Beacon (ULB), Data logger and flarm-collision avoidance system for aircraft and their applications in aviation.
Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment
NASA Technical Reports Server (NTRS)
Frische, F.; Osterloh, J.-P.; Luedtke, A.
2011-01-01
This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.
Cockpit resource management training at People Express
NASA Technical Reports Server (NTRS)
Bruce, Keith D.; Jensen, Doug
1987-01-01
In January 1986 in a continuing effort to maintain and improve flight safety and solve some Cockpit Resource Management (CRM) problems, People Express implemented a new CRM training program. It is a continuously running program, scheduled over the next three years and includes state-of-the-art full-mission simulation (LOFT), semi-annual seminar workshops and a comprehensive academic program authored by Robert W. Mudge of Cockpit Management Resources Inc. That program is outlined and to maximize its contribution to the workshop's goals, is organized into four topic areas: (1) Program content: the essential elements of resource management training; (2) Training methods: the strengths and weaknesses of current approaches; (3) Implementation: the implementation of CRM training; and (4) Effectiveness: the effectiveness of training. It is confined as much as possible to concise descriptions of the program's basic components. Brief discussions of rationale are included, however no attempt is made to discuss or review popular CRM tenets or the supporting research.
Benefits assessment of active control technology and related cockpit technology for rotorcraft
NASA Technical Reports Server (NTRS)
Hampton, B. J.
1982-01-01
Two main-rotor active control concepts, one incorporating multicyclic actuators located just below the swashplate, and the other providing for the actuators and power supplies to be located in the rotating frame are considered. Each design concept is integrated with cockpit controllers and displays appropriate to the actuation concept in each case. The benefits of applying the defined ACT/RCT concepts to rotorcraft are quantified by comparison to the baseline model 412 helicopter. These benefits include, in the case of one active control concept; (1) up to 91% reduction in 4/rev hub shears; (2) a flight safety failure rate of 1.96 x 10 to the 8th power failures per flight-hour; (3) rotating controls/rotor hub drag reduction of 40%; (4) a 9% reduction in control system weight; and (5) vibratory deicing. The related cockpit concept reduces pilot workload for critical mission segments as much as 178% visual and 25% manual.
2014-12-01
An Investigation of Multiple Unmanned Aircraft Systems Control from the Cockpit of an AH-64 Apache Helicopter by Jamison S Hicks and David B...estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense , Washington...infantrymen, aircraft pilots, or dedicated UAS ground control station (GCS) operators. The purpose of the UAS is to allow for longer and more discrete
NASA Technical Reports Server (NTRS)
Mciver, D.; Hatfield, J. J.
1978-01-01
Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.
F18 Life Support: APECS and EDOX Cockpit Integration
NASA Technical Reports Server (NTRS)
Herrick, Paul
1998-01-01
Two systems are currently being integrated into the F18 Hornet support aircraft at NASA Dryden Flight Research Center (DFRC). The first system is the Aircrew Personal Environmental Control System (APECS). The system is designed to increase aircrew performance by combating heat stress in the cockpit. The second system is the Extended Duration Oxygen System (EDOX). This system will provide additional redundancy and oxygen system duration to the F18 without extensive modification to the current system.
Dynamic Function Allocation in Fighter Cockpits.
1987-06-30
their ability to play the video game simulation used in this study. This was done in an attempt to conceptually match the subject’s skills to those of...highly trained Air Force pilots. 4 Apparatus Simulation. A single seat fighter cockpit environment was simulated using the F-15 Strike Eagle video game developed...simulator containing three color CRTs. The video game was presented on the CRT located in the HUD position. The subjects controlled the game through a
E-2D Advanced Hawkeye Aircraft (E-2D AHE)
2015-12-01
and Homeland Defense. As a part of the E-2D AHE radar modernization effort, the Navy also invested in integrating a full glass cockpit and full...Communication Navigation Surveillance/Air Traffic Management capability. The glass cockpit will also provide the capability for the pilot or co-pilot to...hours at a station distance of 200nm Flat Turn Service Ceiling =>25,000 feet above MSL at mission profile =>25,000 feet above MSL at mission
NASA aviation safety reporting system
NASA Technical Reports Server (NTRS)
1978-01-01
An analytical study of reports relating to cockpit altitude alert systems was performed. A recent change in the Federal Air Regulation permits the system to be modified so that the alerting signal approaching altitude has only a visual component; the auditory signal would continue to be heard if a deviation from an assigned altitude occurred. Failure to observe altitude alert signals and failure to reset the system were the commonest cause of altitude deviations related to this system. Cockpit crew distraction was the most frequent reason for these failures. It was noted by numerous reporters that the presence of altitude alert system made them less aware of altitude; this lack of altitude awareness is discussed. Failures of crew coordination were also noted. It is suggested that although modification of the altitude alert system may be highly desirable in short-haul aircraft, it may not be desirable for long-haul aircraft in which cockpit workloads are much lower for long periods of time. In these cockpits, the aural alert approaching altitudes is perceived as useful and helpful. If the systems are to be modified, it appears that additional emphasis on altitude awareness during recurrent training will be necessary; it is also possible that flight crew operating procedures during climb and descent may need examination with respect to monitoring responsibilities. A selection of alert bulletins and responses to them is presented.
The retention of manual flying skills in the automated cockpit.
Casner, Stephen M; Geven, Richard W; Recker, Matthias P; Schooler, Jonathan W
2014-12-01
The aim of this study was to understand how the prolonged use of cockpit automation is affecting pilots' manual flying skills. There is an ongoing concern about a potential deterioration of manual flying skills among pilots who assume a supervisory role while cockpit automation systems carry out tasks that were once performed by human pilots. We asked 16 airline pilots to fly routine and nonroutine flight scenarios in a Boeing 747-400 simulator while we systematically varied the level of automation that they used, graded their performance, and probed them about what they were thinking about as they flew. We found pilots' instrument scanning and manual control skills to be mostly intact, even when pilots reported that they were infrequently practiced. However, when pilots were asked to manually perform the cognitive tasks needed for manual flight (e.g., tracking the aircraft's position without the use of a map display, deciding which navigational steps come next, recognizing instrument system failures), we observed more frequent and significant problems. Furthermore, performance on these cognitive tasks was associated with measures of how often pilots engaged in task-unrelated thought when cockpit automation was used. We found that while pilots' instrument scanning and aircraft control skills are reasonably well retained when automation is used, the retention of cognitive skills needed for manual flying may depend on the degree to which pilots remain actively engaged in supervising the automation.
Cockpit Adaptive Automation and Pilot Performance
NASA Technical Reports Server (NTRS)
Parasuraman, Raja
2001-01-01
The introduction of high-level automated systems in the aircraft cockpit has provided several benefits, e.g., new capabilities, enhanced operational efficiency, and reduced crew workload. At the same time, conventional 'static' automation has sometimes degraded human operator monitoring performance, increased workload, and reduced situation awareness. Adaptive automation represents an alternative to static automation. In this approach, task allocation between human operators and computer systems is flexible and context-dependent rather than static. Adaptive automation, or adaptive task allocation, is thought to provide for regulation of operator workload and performance, while preserving the benefits of static automation. In previous research we have reported beneficial effects of adaptive automation on the performance of both pilots and non-pilots of flight-related tasks. For adaptive systems to be viable, however, such benefits need to be examined jointly in the context of a single set of tasks. The studies carried out under this project evaluated a systematic method for combining different forms of adaptive automation. A model for effective combination of different forms of adaptive automation, based on matching adaptation to operator workload was proposed and tested. The model was evaluated in studies using IFR-rated pilots flying a general-aviation simulator. Performance, subjective, and physiological (heart rate variability, eye scan-paths) measures of workload were recorded. The studies compared workload-based adaptation to to non-adaptive control conditions and found evidence for systematic benefits of adaptive automation. The research provides an empirical basis for evaluating the effectiveness of adaptive automation in the cockpit. The results contribute to the development of design principles and guidelines for the implementation of adaptive automation in the cockpit, particularly in general aviation, and in other human-machine systems. Project goals were met or exceeded. The results of the research extended knowledge of automation-related performance decrements in pilots and demonstrated the positive effects of adaptive task allocation. In addition, several practical implications for cockpit automation design were drawn from the research conducted. A total of 12 articles deriving from the project were published.
Measurement of visibility from the pilot's cockpit on different airplane types
NASA Technical Reports Server (NTRS)
Kurz, Gerhard
1931-01-01
A process for the measurement of the visibility of airplanes from the pilot's cockpit is developed. The apparatus necessary for the measurements was suitably constructed and measurements of the fields of vision were made with it. The visibilities of six airplanes of different types of construction and use were measured, as well as the visibility of an automobile for comparison. An attempt was made to establish minimum visibility requirements and to express the excellence of visibility by means of a numerical coefficient.
Application of speech recognition and synthesis in the general aviation cockpit
NASA Technical Reports Server (NTRS)
North, R. A.; Mountford, S. J.; Bergeron, H.
1984-01-01
Interactive speech recognition/synthesis technology is assessed as a method for the aleviation of single-pilot IFR flight workloads. Attention was given during this series of evaluations to the conditions typical of general aviation twin-engine aircrft cockpits, covering several commonly encountered IFR flight condition scenarios. The most beneficial speech command tasks are noted to be in the data retrieval domain, which would allow the pilot access to uplinked data, checklists, and performance charts. Data entry tasks also appear to benefit from this technology.
Pilot Performance on New ATM Operations: Maintaining In-Trail Separation and Arrival Sequencing
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Yankosky, L. J.; Johnson, Walter (Technical Monitor)
1999-01-01
Cockpit Display of Traffic Information (CDTI) may enable new Air Traffic Management (ATM) operations. However, CDTI is not the only source of traffic information in the cockpit; ATM procedures may provide information, implicitly and explicitly, about other aircraft. An experiment investigated pilot ability to perform two new ATM operations - maintaining in-trail separation from another aircraft and sequencing into an arrival stream. In the experiment, pilots were provided different amounts of information from displays and procedures. The results are described.
NASA Technical Reports Server (NTRS)
Fricke, M.; Vees, C.
1983-01-01
To achieve optimum design for the man machine interface with aircraft, a description of the interaction and work organization of the cockpit crew is needed. The development of system procedure to evaluate the work organization of pilots while structuring the work process is examined. Statistical data are needed to simulate sequences of pilot actions on the computer. Investigations of computer simulation and applicability for evaluation of crew concepts are discussed.
Cockpit Resource Management (CRM) for FAR Parts 91 and 135 operators
NASA Technical Reports Server (NTRS)
Schwartz, Douglas
1987-01-01
The why, what, and how of CRM at Flight Safety International (FSI)--that is, the philosophy behind the program, the content of the program, and some insight regarding how it delivers that to the pilot is presented. A few of the concepts that are part of the program are discussed. This includes a view of statistics called the Safety Window, the concept of situational awareness, and an approach to training that we called the Cockpit Management Concept (CMC).
1988-03-29
View of the left cockpit and pilot's seat of the F-111 MAW aircraft. Unlike most fighter aircraft of the time, the F-111 had side-by-side seating. The pilot sat on the left side, and the weapons systems officer on the right. Both had control sticks to fly the aircraft. The two yellow and black striped handles would be used in an emergency to eject the entire F-111 cockpit. The F-111 also did not have ejection seats, but used a capsule.
STS-107 Pilot William McCool in the cockpit of Columbia during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William 'Willie' McCool checks instructions in the cockpit of Space Shuttle Columbia during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .
A Product Development Decision Model for Cockpit Weather Information System
NASA Technical Reports Server (NTRS)
Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)
2003-01-01
There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.
Assessment of cockpit interface concepts for data link retrofit
NASA Technical Reports Server (NTRS)
Mccauley, Hugh W.; Miles, William L.; Dwyer, John P.; Erickson, Jeffery B.
1992-01-01
The problem is examined of retrofitting older generation aircraft with data link capability. The approach taken analyzes requirements for the cockpit interface, based on review of prior research and opinions obtained from subject matter experts. With this background, essential functions and constraints for a retrofit installation are defined. After an assessment of the technology available to meet the functions and constraints, candidate design concepts are developed. The most promising design concept is described in detail. Finally, needs for further research and development are identified.
1984-07-01
12 5. Survival Vest-Armor Plate Insert Configurations Employed ...................... 14 6. Summary of Critical Anthropometric Measure- ments...to assure an adequate aviator-to-cockpit fit for personnel wearing cold weather, survival vest with armor plate , and chemical defense protective...trousers (NSN 8415-00-407-1060). Survival vest, armor plated (NSN 8470-00-935-3192) The armor- plated survival vest could have the armor inserted in
When training boomerangs - Negative outcomes associated with Cockpit Resource Management programs
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.; Wilhelm, John A.
1989-01-01
Participants' self-reports and measures of attitudes regarding flightdeck management indicate that Cockpit Resource Management training is positively received and causes highly significant changes in attitudes regarding crew coordination and personal capabilities. However, a subset of participants react negatively to the training and show boomerangs (negative change) in attitudes. Explorations into the causes of this effect pinpoint personality factors and group dynamics as critical determinants of reactions to training and the magnitude and direction of attitude change.
NASA Astrophysics Data System (ADS)
Baklanov, V. S.
2016-07-01
The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.
1980-07-02
View of the cockpit of NASA's F-14, tail number 991. This aircraft was the first of a series of post-Vietnam fighters, followed by the F-15, F-16, and F-18. They were designed for maneuverability in air-to-air combat. The F-14s had a spin problem that posed problems for its ability to engage successfully in a dogfight, since it tended to depart from controlled flight at the high angles of attack that frequently occur in close-in engagements.
1999-04-26
In this broad view, the new full-color, flat panel Multifunction Electronic Display Subsystem (MEDS) is shown in the cockpit of the orbiter Atlantis. It is often called the "glass cockpit." The recently installed MEDS upgrade improves crew/orbiter interaction with easy-to-read, graphic portrayals of key flight indicators like attitude display and mach speed. The installation makes Atlantis the most modern orbiter in the fleet and equals the systems on current commercial jet airliners and military aircraft. Atlantis is scheduled to fly on mission STS-101 in early December
Rationale and description of a coordinated cockpit display for aircraft flight management
NASA Technical Reports Server (NTRS)
Baty, D. L.
1976-01-01
The design for aircraft cockpit display systems is discussed in detail. The system consists of a set of three beam penetration color cathode ray tubes (CRT). One of three orthogonal projects of the aircraft's state appears on each CRT which displays different views of the same information. The color feature is included to obtain visual separation of information elements. The colors of red, green and yellow are used to differentiate control, performance and navigation information. Displays are coordinated in information and color.
1984-07-01
SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on rover&* side If necessary and Identify by block number) Anthropometry , Cockpit Compatibility, Aircraft...report is one of a series of reports on anthropometry in US Army Aviation produced by the US Army Aeromedical Research Laboratory (USAARL...and stick (OV-1D). 4 , 26 *w. I.. REFERENCES Churchill, E., Churchill, T., McConville, J.T., and White, R.M. 1977. Anthropometry of women of the U.S
Use of Very Weak Radiation Sources to Determine Aircraft Runway Position
NASA Technical Reports Server (NTRS)
Drinkwater, Fred J., III; Kibort, Bernard R.
1965-01-01
Various methods of providing runway information in the cockpit during the take-off and landing roll have been proposed. The most reliable method has been to use runway distance markers when visible. Flight tests were used to evaluate the feasibility of using weak radio-active sources to trigger a runway distance counter in the cockpit. The results of these tests indicate that a weak radioactive source would provide a reliable signal by which this indicator could be operated.
Aeronautical Decision Making - Cockpit Resource Management
1989-01-01
perspective, the development of CRM concepts as seen in the kickoff workshop held at the NASA Ames Research Center (Cooper, White, and Lauber, 1979...something to put in the place of worrying a pleasant thought. A though stoppage (Stop negative thought patterns by shouting words like ’stop’ or ’no’ in the...the Situation." In: G.E. Cooper, M.D. White, and J.K. Lauber (Eds) Resource management in the cockpit. Moffett Field, CA: NASA Ames Research Center
Digital Systems Validation Handbook. Volume 2. Chapter 19. Pilot - Vehicle Interface
1993-11-01
checklists, and other status messages. Voice interactive systems are defi-ed as "the interface between a cooperative human and a machine, which involv -he...Pilot-Vehicle Interface 19-85 5.6.1 Crew Interaction and the Cockpit 19-85 5.6.2 Crew Resource Management and Safety 19-87 5.6.3 Pilot and Crew Training...systems was a "stand-alone" component performing its intended function. Systems and their cockpit interfaces were added as technological advances were
A Product Development Decision Model for Cockpit Weather Information Systems
NASA Technical Reports Server (NTRS)
Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin
2003-01-01
There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.
Fatigue and Workload in Four-Man C-5A Cockpit Crews (Volant Galaxy).
1980-08-01
AD-AO91. 1.9 SCI400L OF AEROSPACE MEDICINE BROOKS AFB TX F/6 S/9 FATIGUE AND WORKLOAD ZN FOUR-NAN C-SA COCKPIT CREWS (VOLANT *AL--ETC(U$ AUG 80 W F...release; distribution unlimited. USAF SCHOOL OF ALROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas 78235 81 2 NOTICES...This final report was submitted by personnel of the Crew Performance Branch, Crew Technology Division, USAF School of Aerospace Medicine , Aerospace
A survey of the status of and philosophies relating to cockpit warning systems
NASA Technical Reports Server (NTRS)
Cooper, G. E.
1977-01-01
A survey was taken to study current cockpit caution and warning (c/w) systems, and to examine industry philosophies regarding c/w system design including current efforts to improve them. Guidelines currently in use were outlined and those which appear to have general acceptance, those which are considered ineffective or erroneous, and those with which there is broad disagreement as to validity, were delineated. Major airplane manufacturerd were surveyed and a manufacturer dealing specifically with aircraft instrumentation was consulted.
Discovery Orbiter Major Modifications
2003-08-27
During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a circuit reset on the cockpit console. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
A survey of new technology for cockpit application to 1990's transport aircraft simulators
NASA Technical Reports Server (NTRS)
Holt, A. P., Jr.; Noneaker, D. O.; Walthour, L.
1980-01-01
Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels.
Wang, Jenhung; Lin, Pei-Chun; Li, Shih-Chin
2014-01-01
This study assessed the ability of military aircrews to adapt to stressors when undergoing centrifuge training and determined what equipment items caused perceived stress and needed to be upgraded. We used questionnaires and the Rasch model to measure aircrew personnel's ability to adapt to centrifuge training. The measurement items were ranked by 611 military aircrew personnel. Analytical results indicated that the majority of the stress perceived by aircrew personnel resulted from the lightproof cockpit without outer reference. This study prioritized the equipment requiring updating as the lightproof cockpit design, the dim lighting of the cockpit, and the pedal design. A significant difference was found between pilot and non-pilot subjects' stress from the pedal design; and considerable association was discernible between the seat angle design and flight hours accrued. The study results provide aviators, astronauts, and air forces with reliable information as to which equipment items need to be urgently upgraded as their present physiological and psychological effects can affect the effectiveness of centrifuge training.
A New Definition for Ground Control
NASA Technical Reports Server (NTRS)
2002-01-01
LandForm(R) VisualFlight(R) blends the power of a geographic information system with the speed of a flight simulator to transform a user's desktop computer into a "virtual cockpit." The software product, which is fully compatible with all Microsoft(R) Windows(R) operating systems, provides distributed, real-time three-dimensional flight visualization over a host of networks. From a desktop, a user can immediately obtain a cockpit view, a chase-plane view, or an airborne tracker view. A customizable display also allows the user to overlay various flight parameters, including latitude, longitude, altitude, pitch, roll, and heading information. Rapid Imaging Software sought assistance from NASA, and the VisualFlight technology came to fruition under a Phase II SBIR contract with Johnson Space Center in 1998. Three years later, on December 13, 2001, Ken Ham successfully flew NASA's X-38 spacecraft from a remote, ground-based cockpit using LandForm VisualFlight as part of his primary situation awareness display in a flight test at Edwards Air Force Base, California.
NASA Technical Reports Server (NTRS)
Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.
1991-01-01
The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.
Advanced helicopter cockpit and control configurations for helicopter combat missions
NASA Technical Reports Server (NTRS)
Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel
1987-01-01
Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.
Cockpit Resource Management (CRM): A tool for improved flight safety (United Airlines CRM training)
NASA Technical Reports Server (NTRS)
Carroll, J. E.; Taggart, William R.
1987-01-01
The approach and methodology used in developing cockpit management skills is effective because of the following features: (1) A comparative method of learning is used enabling crewmembers to study different forms of teamwork. (2) The learning comes about as a result of crewmembers learning from one another instead of from an expert instructor. (3) Key elements of cockpit teamwork and effective management are studied so that crewmembers can determine how these elements can improve safety and problem solving. (4) Critique among the crewmembers themselves rather than from outsiders is used as a common focusing point for crews to provide feedback to one another on how each can be a more effective crewmember. (5) The training is continuous in the sense that it becomes part of recurrent, upgrade, and other forms of crewmember training and development. And (6) the training results in sound and genuine insights that come about through solid education as opposed to tutoring, coaching, or telling crewmembers how to behave more effectively.
Cockpit Ocular Recording System (CORS)
NASA Technical Reports Server (NTRS)
Rothenheber, Edward; Stokes, James; Lagrossa, Charles; Arnold, William; Dick, A. O.
1990-01-01
The overall goal was the development of a Cockpit Ocular Recording System (CORS). Four tasks were used: (1) the development of the system; (2) the experimentation and improvement of the system; (3) demonstrations of the working system; and (4) system documentation. Overall, the prototype represents a workable and flexibly designed CORS system. For the most part, the hardware use for the prototype system is off-the-shelf. All of the following software was developed specifically: (1) setup software that the user specifies the cockpit configuration and identifies possible areas in which the pilot will look; (2) sensing software which integrates the 60 Hz data from the oculometer and heat orientation sensing unit; (3) processing software which applies a spatiotemporal filter to the lookpoint data to determine fixation/dwell positions; (4) data recording output routines; and (5) playback software which allows the user to retrieve and analyze the data. Several experiments were performed to verify the system accuracy and quantify system deficiencies. These tests resulted in recommendations for any future system that might be constructed.
Mortality Among a Cohort of U.S. Commercial Airline Cockpit Crew
Yong, Lee C.; Pinkerton, Lynne E.; Yiin, James H.; Anderson, Jeri L.; Deddens, James A.
2015-01-01
Background We evaluated mortality among 5,964 former U.S. commercial cockpit crew (pilots and flight engineers). The outcomes of a priori interest were non-chronic lymphocytic leukemia, central nervous system (CNS) cancer (including brain), and malignant melanoma. Methods Vital status was ascertained through 2008. Life table and Cox regression analyses were conducted. Cumulative exposure to cosmic radiation was estimated from work history data. Results Compared to the U.S. general population, mortality from all causes, all cancer, and cardiovascular diseases was decreased, but mortality from aircraft accidents was highly elevated. Mortality was elevated for malignant melanoma but not for non-chronic lymphocytic leukemia. CNS cancer mortality increased with an increase in cumulative radiation dose. Conclusions Cockpit crew had a low all-cause, all-cancer, and cardiovascular disease mortality but elevated aircraft accident mortality. Further studies are needed to clarify the risk of CNS and other radiation-associated cancers in relation to cosmic radiation and other workplace exposures. PMID:24700478
Effects of distractors and force feedback on an aimed movement task in a CDTI environment
NASA Astrophysics Data System (ADS)
Monk, Kevin J., II
New onboard technologies will be required for future cockpits to support the altered responsibilities of pilots under the NextGen program. Effective Cockpit Displays of Information (CD Tis) should provide more flexibility to pilots en route and reduce the probability of conflicts. However, precise input from pilots can be difficult due to the unstable environment in the cockpit. The present study used a non-traditional input device (Novint Falcon) to examine the effect of force feedback on operator performance during point-and-click movements in a CDTI environment when distractors are present. Twelve participants performed point-and-click tasks with varying amounts of force feedback, distractor locations, target sizes, distances, and movement directions. Overall movement times (OMTs) were recorded. Results demonstrated that force feedback did not reduce or match OMTs relative to the computer mouse. However, significant interactions with other target variables highlighted conditional differences between the force levels, as well as distractor effects.
Checklists and Monitoring in the Cockpit: Why Crucial Defenses Sometimes Fail
NASA Technical Reports Server (NTRS)
Dismukes, R. Key; Berman, Ben
2010-01-01
Checklists and monitoring are two essential defenses against equipment failures and pilot errors. Problems with checklist use and pilots failures to monitor adequately have a long history in aviation accidents. This study was conducted to explore why checklists and monitoring sometimes fail to catch errors and equipment malfunctions as intended. Flight crew procedures were observed from the cockpit jumpseat during normal airline operations in order to: 1) collect data on monitoring and checklist use in cockpit operations in typical flight conditions; 2) provide a plausible cognitive account of why deviations from formal checklist and monitoring procedures sometimes occur; 3) lay a foundation for identifying ways to reduce vulnerability to inadvertent checklist and monitoring errors; 4) compare checklist and monitoring execution in normal flights with performance issues uncovered in accident investigations; and 5) suggest ways to improve the effectiveness of checklists and monitoring. Cognitive explanations for deviations from prescribed procedures are provided, along with suggestions for countermeasures for vulnerability to error.
PA-30 Twin Comanche - NASA 808 in flight
NASA Technical Reports Server (NTRS)
1979-01-01
Dryden Flight Research Center's Piper PA-30 Twin Commanche, which helped validate the RPRV concept, descends to a remotely controlled landing on Rogers Dry Lake, unassisted by the onboard pilot. A Piper PA-30 Twin Commanche, known as NASA 808, was used at the NASA Dryden Flight Research Center as a rugged workhorse in a variety of research projects associated with both general aviation and military projects. In the early 1970s, the PA-30, serial number 301498, was used to test a flight technique used to fly Remotely Piloted Research Vehicles (RPRV's). The technique was first tested with the cockpit windows of the light aircraft blacked out while the pilot flew the aircraft utilizing a television monitor which gave him a 'pilot's eye' view ahead of the aircraft. Later pilots flew the aircraft from a ground cockpit, a procedure used with all RPRV's. TV and two-way telemetry allow the pilot to be in constant control of the aircraft. The apparatus mounted over the cockpit is a special fish eye lens camera, used to obtain images that are transmitted to the ground based cockpit. This project paved the way for sophisticated, highly successful research programs involving high risk spin, stall, and flight control conditions, such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners.
PA-30 Twin Comanche - NASA 808 in flight
1971-10-08
Dryden Flight Research Center's Piper PA-30 Twin Commanche, which helped validate the RPRV concept, descends to a remotely controlled landing on Rogers Dry Lake, unassisted by the onboard pilot. A Piper PA-30 Twin Commanche, known as NASA 808, was used at the NASA Dryden Flight Research Center as a rugged workhorse in a variety of research projects associated with both general aviation and military projects. In the early 1970s, the PA-30, serial number 301498, was used to test a flight technique used to fly Remotely Piloted Research Vehicles (RPRV's). The technique was first tested with the cockpit windows of the light aircraft blacked out while the pilot flew the aircraft utilizing a television monitor which gave him a "pilot's eye" view ahead of the aircraft. Later pilots flew the aircraft from a ground cockpit, a procedure used with all RPRV's. TV and two-way telemetry allow the pilot to be in constant control of the aircraft. The apparatus mounted over the cockpit is a special fish eye lens camera, used to obtain images that are transmitted to the ground based cockpit. This project paved the way for sophisticated, highly successful research programs involving high risk spin, stall, and flight control conditions, such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners.
Beyond the cockpit: The visual world as a flight instrument
NASA Technical Reports Server (NTRS)
Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.
1992-01-01
The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).
Cockpit design and evaluation using interactive graphics
NASA Technical Reports Server (NTRS)
Evans, S. M.
1975-01-01
A general overview of the characteristics of an interactive graphics system which was developed to assist cockpit engineers design and evaluate work stations was presented. The manikin used in this COMputerized BIomechanical MAN-model (COMBIMAN) was described, as are provisions for generating work stations and assessing interactions between man and environment. The applications of the present system are explained, and critiques of COMBIMAN are presented. The limitations of the existing programs and the requirements of the designers necessitate future revisions and additions to the biomechanical and erogonomic properties of COMBIMAN. Some of these enhancements are discussed.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.; Hardy, G. H.
1980-01-01
A flight research program was conducted to assess the effectiveness of manual control concepts and various cockpit displays in improving altitude (pitch, roll, and yaw) and longitudinal path control during short takeoff aircraft approaches and landings. Satisfactory flying qualities were demonstrared to minimum decision heights of 30 m (100 ft) for selected stabilization and command augmentation systems and flight director combinations. Precise landings at low touchdown sink rates were achieved with a gentle flare maneuver.
In-Flight Ultraviolet Radiation on Commercial Airplanes.
Cadilhac, Pascal; Bouton, Marie-Christine; Cantegril, Monique; Cardines, Catherine; Gisquet, Alain; Kaufman, Noël; Klerlein, Michel
2017-10-01
Epidemiological studies suggest that pilots and cabin crew have higher incidences and mortality rates of cutaneous malignant melanoma than those of the general population. Exposure to UV radiation is one of the main risk factors for this type of cancer. The aim of this study was to evaluate the level of UV radiation in an airliner in flight. Measurements were taken with a three sensor-integrated electronics UV radiometer (A, B, and C) during 14 flights from July to October 2016. They were performed during daylight hours once the airliner had reached cruising altitude. We failed to find UVC radiation. The measurements detected neither UV A nor B in any parts of the cabins of the planes tested, nor in the Airbus cockpits. UVA radiation was however found in the cockpit of Boeing 777s. But UVA levels remained well below the values found at ground level and they were also strongly reduced (more than 10 times) by cockpit sun visors. Few studies have assessed the level of UV radiation in an airplane. They suggested that the cockpit windshields reduced this type of radiation to some degree (according mainly to the wavelength of the radiation and the nature of the windshield). Our study strongly confirms these results and suggests that increased incidence of melanoma and mortality by this type of illness found among pilots and airline cabin crews may not be related to in-flight UV radiation exposure.Cadilhac P, Bouton M-C, Cantegril M, Cardines C, Gisquet A, Kaufman N, Klerlein M. In-flight ultraviolet radiation on commercial airplanes. Aerosp Med Hum Perform 2017; 88(10):947-951.
Real-time synthetic vision cockpit display for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.
1999-07-01
Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.
Aviation spatial orientation in relationship to head position and attitude interpretation.
Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P
1997-06-01
Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.
Automation bias: decision making and performance in high-tech cockpits.
Mosier, K L; Skitka, L J; Heers, S; Burdick, M
1997-01-01
Automated aids and decision support tools are rapidly becoming indispensable tools in high-technology cockpits and are assuming increasing control of"cognitive" flight tasks, such as calculating fuel-efficient routes, navigating, or detecting and diagnosing system malfunctions and abnormalities. This study was designed to investigate automation bias, a recently documented factor in the use of automated aids and decision support systems. The term refers to omission and commission errors resulting from the use of automated cues as a heuristic replacement for vigilant information seeking and processing. Glass-cockpit pilots flew flight scenarios involving automation events or opportunities for automation-related omission and commission errors. Although experimentally manipulated accountability demands did not significantly impact performance, post hoc analyses revealed that those pilots who reported an internalized perception of "accountability" for their performance and strategies of interaction with the automation were significantly more likely to double-check automated functioning against other cues and less likely to commit errors than those who did not share this perception. Pilots were also lilkely to erroneously "remember" the presence of expected cues when describing their decision-making processes.
NASA Technical Reports Server (NTRS)
Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)
2002-01-01
Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.
Camachon, Cyril; Montagne, Gilles
2018-01-01
The present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing. Each participant performed 40 approaches to the runway. During 8 of the approaches, the point of view that the flight simulator used to compute the visual scene was slowly raised or lowered with 4 cm with respect to the cockpit, hence moving the projection of the visible part of the cockpit down or up in the visible scene in a hardly noticeable manner. The increases and decreases in the simulated eye height led to increases and decreases in the altitude of the approach trajectories, for all three groups of participants. On the basis of these results, it is argued that the eye position of pilots during visual approaches is a factor that contributes to the risk of black hole accidents. PMID:29795618
An evaluation of automatic control system concepts for general aviation airplanes
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Ragsdale, W. A.; Wunschel, A. J.
1988-01-01
A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit throttle inputs. That is, the cockpit throttle lever commanded only airspeed responses, and the longitudinal wheel position commanded only vertical speed responses. This system significantly reduced the pilot workload throughout an entire mission of the airplane from takeoff to landing. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.
Designing Flight Deck Procedures
NASA Technical Reports Server (NTRS)
Degani, Asaf; Wiener, Earl
2005-01-01
Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.
The development and implementation of cockpit resource management in UAL recurrent training
NASA Technical Reports Server (NTRS)
Shroyer, David H.
1987-01-01
Line Oriented Flight Training (LOFT) for United Airlines started in 1976. At that time it was basically no more than a line-simulated training function conducted in a full-mission simulator with no attention or stress on its human factor content. Very soon after the implementation of the LOFT program concerns were voiced about certain crew behavioral situations they were observing in the flight crew's execution of cockpit duties. These duties involved emergency procedures as well as irregular and normal procedures and situations. It was evident that new information was surfacing concerning crew interaction, or its lack thereof, in the cockpit and its effect on satisfactory performance. These observations naturally raised the question of how this information translated into the safety of aircraft operations. A training system had to be repetitive, the crew interactive, and the training had to be conducted under the crew concept. The foundation had to have two other factors: (1) it was necessary to have adequate human factor content, and (2) an advanced state-of-the-art simulator and appropriate electronic devices were required. These concepts are further discussed.
The Introduction of New Cockpit Technology: A Human Factors Study
NASA Technical Reports Server (NTRS)
Curry, R. E.
1985-01-01
A joint Airline/NASA field study of B-767 training and operations was conducted during the period this aircraft was being introduced into line service. The objectives of the study were: (1) to identify any adverse reactions to the new technology; (2) to provide a clearing house of information for the airlines and pilots during the introductory period; (3) to provide feedback on airline training programs for the new aircraft; and (4) to provide field data to NASA and other researchers to help them develop principles of human interaction with automated systems. It is concluded that: (1) a large majority of pilots enjoy flying the B-767 more than the older aircraft; (2) pilots accept new cockpit technology and find it useful; (3) pilots are aware of the potential loss of flying skills because of automation, and take steps to prevent this from happening; (4) autopilot/autothrottle interactions and FMS operations were sometimes confusing or surprising to pilots, and they desired more training in this area; and (5) highly automated cockpits can result in a loss of effective monitoring performance.
Cockpit weather graphics using mobile satellite communications
NASA Astrophysics Data System (ADS)
Seth, Shashi
Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.
Cockpit weather graphics using mobile satellite communications
NASA Technical Reports Server (NTRS)
Seth, Shashi
1993-01-01
Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.
NASA Technical Reports Server (NTRS)
Simpson, Robert W.
1991-01-01
Brief summaries are given of research activities at the Massachusetts Institute of Technology (MIT) under the sponsorship of the FAA/NASA Joint University Program. Topics covered include hazard assessment and cockpit presentation issues for microburst alerting systems; the situational awareness effect of automated air traffic control (ATC) datalink clearance amendments; a graphical simulation system for adaptive, automated approach spacing; an expert system for temporal planning with application to runway configuration management; deterministic multi-zone ice accretion modeling; alert generation and cockpit presentation for an integrated microburst alerting system; and passive infrared ice detection for helicopter applications.
Cockpit integration from a pilot's point of view
NASA Technical Reports Server (NTRS)
Green, D. L.
1982-01-01
Extensive experience in both operational and engineering test flight was used to suggest straightforward changes to helicopter cockpit and control system design that would improve pilot performance in marginal and instrument flight conditions. Needed control system improvements considered include: (1) separation of yaw from cyclic force trim; (2) pedal force proportional to displacement rate; and (3) integration of engine controls in collective stick. Display improvements needed include: (1) natural cuing of yaw rate in attitude indicator; (2) collective position indication and radar altimeter placed within primary scan; and (3) omnidirectional display of full range airspeed data.
Culture in the cockpit: do Hofstede's dimensions replicate?
NASA Technical Reports Server (NTRS)
Merritt, A.; Helmreich, R. L. (Principal Investigator)
2000-01-01
Survey data collected from 9,400 male commercial airline pilots in 19 countries were used in a replication study of Hofstede's indexes of national culture. The analysis that removed the constraint of item equivalence proved superior, both conceptually and empirically, to the analysis using Hofstede's items and formulae as prescribed, and rendered significant replication correlations for all indexes (Individualism-Collectivism .96, Power Distance .87, Masculinity-Femininity .75, and Uncertainty Avoidance .68). The successful replication confirms that national culture exerts an influence on cockpit behavior over and above the professional culture of pilots, and that "one size fits all" training is inappropriate.
Training - Behavioral and motivational solutions?
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1983-01-01
Psychological factors which govern interpersonal activities in the cockpit are examined. It is suggested that crew members should be selected based on personality characteristics required for the position and that training does not cause long lasting personality changes, it only teaches and improves task performance skills. The effects of mindlessness as defined by Langer (1978) and the attribution theory of Jones and Nisbett (1971) on flight deck communications and cockpit management are described. The needs for a new system of training crew members, with emphasis on strategies that induce cognitive processes and awareness, and for field investigations of pilots are discussed.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1989-01-01
Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.
Anthropometric accommodation in USAF cockpits
NASA Technical Reports Server (NTRS)
Zehner, Gregory F.
1994-01-01
Over the past three years, a new set of methodologies has been developed to specify and evaluate anthropometric accommodation in USAF crewstation designs. These techniques are used to improve the ability of the pilot to reach controls, to safely escape the aircraft, to achieve adequate mobility and comfort, and to assure full access to the visual field both inside and outside the aircraft. This paper summarized commonly encountered aircraft accommodation problems, explains the failure of the traditional 'percentile man' design concept to resolve these difficulties, and suggests an alternative approach for improving cockpit design to better accommodate today's more heterogeneous flying population.
High Acceleration Cockpit Controller Locations. Volume 3. Onsite Pilot Evaluations
1975-05-01
Ratings 31 9 Post Cockpit Questionnaire - Design Feature Ratings 32 VI A/A, A-A AAI A/C ACF ACM AFCS A/G CAP Chan CRT Coram DFC ...Negative Responses TASK RESPONSES NEGATIVE COMMENTS YES MAYBE NO MONITOR FBW STATUS 28 9 3 Obscured by throttles ACTIVATE FBW DFC , MVR, FUS AIM...4J 0 X O 4J O CO o Q UH U-l iH CJ i-H ^ i-1 TD CJ CO 4J CO 01 s c 0 O 4-1 o C 0 C X Si C 0) C -rl C cu C CO c
Draeger, J; Schröder, U; Vogt, L
1980-03-01
It is still forbidden by German law for cockpit aircrew to wear contact lenses. This is due in particular to experience gathered in the past with older types of contact lenses, especially those made of glass or PMMA. Meanwhile, technological progress has brought improvements in respect of material, size, tolerance and particularly the optical result. Investigations were carried out with regard to the tolerance of contact lenses in condition of low humidity, high g and sudden compression. The results are given and the consequences for cockpit aircrew and passengers are discussed.
Nixon, C W; Morris, L J; McCavitt, A R; McKinley, R L; Anderson, T R; McDaniel, M P; Yeager, D G
1998-07-01
Female produced speech, although more intelligible than male speech in some noise spectra, may be more vulnerable to degradation by high levels of some military aircraft cockpit noises. The acoustic features of female speech are higher in frequency, lower in power, and appear more susceptible than male speech to masking by some of these military noises. Current military aircraft voice communication systems were optimized for the male voice and may not adequately accommodate the female voice in these high level noises. This applied study investigated the intelligibility of female and male speech produced in the noise spectra of four military aircraft cockpits at levels ranging from 95 dB to 115 dB. The experimental subjects used standard flight helmets and headsets, noise-canceling microphones, and military aircraft voice communications systems during the measurements. The intelligibility of female speech was lower than that of male speech for all experimental conditions; however, differences were small and insignificant except at the highest levels of the cockpit noises. Intelligibility for both genders varied with aircraft noise spectrum and level. Speech intelligibility of both genders was acceptable during normal cruise noises of all four aircraft, but improvements are required in the higher levels of noise created during aircraft maximum operating conditions. The intelligibility of female speech was unacceptable at the highest measured noise level of 115 dB and may constitute a problem for other military aviators. The intelligibility degradation due to the noise can be neutralized by use of an available, improved noise-canceling microphone, by the application of current active noise reduction technology to the personal communication equipment, and by the development of a voice communications system to accommodate the speech produced by both female and male aviators.
NASA Technical Reports Server (NTRS)
Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa
1993-01-01
The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.
Experimental evaluation of a wind shear alert and energy management display
NASA Technical Reports Server (NTRS)
Kraiss, K.-F.; Baty, D. L.
1978-01-01
A method is proposed for onboard measurement and display of specific windshear and energy management data derived from an air data computer. An open-loop simulation study is described which was carried out to verify the feasibility of this display concept, and whose results were used as a basis to develop the respective cockpit instrumentation. The task was to fly a three-degree landing approach under various shear conditions with and without specific information on the shear. Improved performance due to augmented cockpit information was observed. Critical shears with increasing tailwinds could be handled more consistently and with less deviation from the glide path.
NASA Technical Reports Server (NTRS)
1979-01-01
The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.
The impact of initial and recurrent cockpit resource management training on attitudes
NASA Technical Reports Server (NTRS)
Irwin, Cheryl M.
1991-01-01
It is noted that previous analyses of the boomerang effect (attitude change as a result of training in the direction opposite of that intended) in aviation training environments were limited in that each subscale of the cockpit management attitudes questionnaire (CMAQ) was examined independently. This study develops and utilizes a new algorithm for grouping subjects such that a global attitude change score is derived from the attitude change scores on each CMAQ subscale. By evaluating global attitude change in addition to the more specific attitude change on each subscale, it might be possible to better comprehend the effects of crew resource management training on pilot attitudes.
Use of nontraditional flight displays for the reduction of central visual overload in the cockpit
NASA Technical Reports Server (NTRS)
Weinstein, Lisa F.; Wickens, Christopher D.
1992-01-01
The use of nontraditional flight displays to reduce visual overload in the cockpit was investigated in a dual-task paradigm. Three flight displays (central, peripheral, and ecological) were used between subjects for the primary tasks, and the type of secondary task (object identification or motion judgment) and the presentation of the location of the task in the visual field (central or peripheral) were manipulated with groups. The two visual-spatial tasks were time-shared to study the possibility of a compatibility mapping between task type and task location. The ecological display was found to allow for the most efficient time-sharing.
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Palmer, Michael T.; Swieringa, Kurt A.
2015-01-01
This document describes the IM cockpit interfaces, displays, and alerting capabilities that were developed for and used in the IMAC experiment, which was conducted at NASA Langley in the summer of 2015. Specifically, this document includes: (1) screen layouts for each page of the interface; (2) step-by-step instructions for data entry, data verification and input error correction; (3) algorithm state messages and error condition alerting messages; (4) aircraft speed guidance and deviation indications; and (5) graphical display of the spatial relationships between the Ownship aircraft and the Target aircraft. The controller displays for IM will be described in a separate document.
PROCRU: A model for analyzing flight crew procedures in approach to landing
NASA Technical Reports Server (NTRS)
Baron, S.; Zacharias, G.; Muraidharan, R.; Lancraft, R.
1982-01-01
A model for the human performance of approach and landing tasks that would provide a means for systematic exploration of questions concerning the impact of procedural and equipment design and the allocation of resources in the cockpit on performance and safety in approach-to-landing is discussed. A system model is needed that accounts for the interactions of crew, procedures, vehicle, approach geometry, and environment. The issues of interest revolve principally around allocation of tasks in the cockpit and crew performance with respect to the cognitive aspects of the tasks. The model must, therefore, deal effectively with information processing and decision-making aspects of human performance.
NASA Technical Reports Server (NTRS)
Bray, Richard S.; Larsen, William E.
1965-01-01
An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.
NASA Technical Reports Server (NTRS)
Bortolussi, Michael R.
1997-01-01
The General Aviation (GA) industry has suffered a ten-year decline in the number of airplanes sold. This decline is due mainly to the increase cost associated with purchasing, insuring, maintaining, operating, and pilot training a GA airplane. In response to this decline the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) developed a program (Advanced General Aviation Transport Experiments - AGATE) to address these issues. The purpose of AGATE focused within this report is to reduce the costs to acquire and maintain instrument-flight-proficiency. The AGATE program defined four elements necessary to accomplish these goals: (1) new and intuitive cockpit displays and controls, (2) situation technologies for weather, traffic, and navigation, (3) expert systems for system monitoring, and (4) reduced cost training methods. One recognized need for the GA pilot and airplane is to provide cockpit displays and systems already available to transport category airplane. These displays such as Electronic Flight and Instrument System (EFIS), graphic weather and traffic displays, and flight management systems. The goal of this grant was to develop the AGATE GA Display Evaluation Workstation as a tool to test these existing and emerging technologies in the GA environment.
Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Aponso, Bimal L.; Klyde, David H.
1992-01-01
This report presents the results of analysis of cockpit lateral control feel-system studies. Variations in feel-system natural frequency, damping, and command sensing reference (force and position) were investigated, in combination with variations in the aircraft response characteristics. The primary data for the report were obtained from a flight investigation conducted with a variable-stability airplane, with additional information taken from other flight experiments and ground-based simulations for both airplanes and helicopters . The study consisted of analysis of handling qualities ratings and extraction of open-loop, pilot-vehicle describing functions from sum-of-sines tracking data, including, for a limited subset of these data, the development of pilot models. The study confirms the findings of other investigators that the effects on pilot opinion of cockpit feel-system dynamics are not equivalent to a comparable level of added time delay, and until a more comprehensive set of criteria are developed, it is recommended that feel-system dynamics be considered a delay-inducing element in the aircraft response. The best correlation with time-delay requirements was found when the feel-system dynamics were included in the delay measurements, regardless of the command reference. This is a radical departure from past approaches.
Impact data from a transport aircraft during a controlled impact demonstration
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Alfaro-Bou, E.; Hayduk, R. J.
1986-01-01
On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage.
Visual and motion cueing in helicopter simulation
NASA Technical Reports Server (NTRS)
Bray, R. S.
1985-01-01
Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.
NASA Astrophysics Data System (ADS)
Kuehl, C. Stephen
1996-06-01
Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal conversion processing steps, major improvement in video noise reduction, and an added capability to pass audio/embedded digital data within the digital video signal stream are the significant performance increases associated with the incorporation of digital video interface standards. By analyzing the historical progression of military CMS developments, establishing a systems engineering process for CMS design, tracing the commercial evolution of video signal standardization, adopting commercial video signal terminology/definitions, and comparing/contrasting CMS architecture modifications using digital video interfaces; this paper provides a technical explanation on how a systems engineering process approach to video interface standardization can result in extendible and affordable cockpit management systems.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Liao, Min-Ju; Tse, Stephen
2003-01-01
The present experiment employed target detection tasks to investigate attentional deployment during visual search for target aircraft symbols on a cockpit display of traffic information (CDTI). Targets were defined by either a geometric property (aircraft on a collision course with Ownship) or a textual property (aircraft with associated altitude tags indicating an even altitude level). Effects of target location and target brightness (highlighting) were examined. Target location was systematically related to target detection time, and this interacted with the target's defining property (collision geometry or associated text). Highlighting (which was not linked to whether an aircraft symbol was the target) did not influence target detection time.
The dynamics of CRM attitude change: Attitude stability
NASA Technical Reports Server (NTRS)
Gregorich, Steven E.
1993-01-01
Special training seminars in cockpit resource management (CRM) are designed to enhance crew effectiveness in multicrew air-transport cockpits. In terms of CRM, crew effectiveness is defined by teamwork rather than technical proficiency. These seminars are designed to promote factual learning, alter aviator attitudes, and motivate aviators to make use of what they have learned. However, measures of attitude change resulting from CRM seminars have been the most common seminar evaluation technique. The current investigation explores a broader range of attitude change parameters with specific emphasis on the stability of change between recurrent visits to the training center. This allows for a comparison of training program strengths in terms of seminar ability to effect lasting change.
Format and basic geometry of a perspective display of air traffic for the cockpit
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael Wallace; Ellis, Stephen R.
1991-01-01
The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.
NASA Technical Reports Server (NTRS)
Wiener, Earl L. (Editor); Nagel, David C. (Editor)
1988-01-01
The fundamental principles of human-factors (HF) analysis for aviation applications are examined in a collection of reviews by leading experts, with an emphasis on recent developments. The aim is to provide information and guidance to the aviation community outside the HF field itself. Topics addressed include the systems approach to HF, system safety considerations, the human senses in flight, information processing, aviation workloads, group interaction and crew performance, flight training and simulation, human error in aviation operations, and aircrew fatigue and circadian rhythms. Also discussed are pilot control; aviation displays; cockpit automation; HF aspects of software interfaces; the design and integration of cockpit-crew systems; and HF issues for airline pilots, general aviation, helicopters, and ATC.
Cockpit display of hazardous wind shear information
NASA Technical Reports Server (NTRS)
Wanke, Craig; Hansman, R. John, Jr.
1990-01-01
Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.
Facility requirements for cockpit traffic display research
NASA Technical Reports Server (NTRS)
Chappell, S. L.; Kreifeldt, J. G.
1982-01-01
It is pointed out that much research is being conducted regarding the use of a cockpit display of traffic information (CDTI) for safe and efficient air traffic flow. A CDTI is a graphic display which shows the pilot the position of other aircraft relative to his or her aircraft. The present investigation is concerned with the facility requirements for the CDTI research. The facilities currently used for this research vary in fidelity from one CDTI-equipped simulator with computer-generated traffic, to four simulators with autopilot-like controls, all having a CDTI. Three groups of subjects were employed in the conducted study. Each of the groups included one controller, and three airline and four general aviation pilots.
NASA Technical Reports Server (NTRS)
UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.
2004-01-01
The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.
Effect of perceived threat on avoidance maneuvers selected while viewing cockpit traffic displays
NASA Technical Reports Server (NTRS)
Smith, J. D.; Ellis, S. R.
1982-01-01
Ten airline pilots rated the collision danger of air traffic presented on cockpit displays of traffic information (CDTI) while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate perceived collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threat situations pilots turned toward the intruder only at chance levels. Some of the implications of the pilots' turning-towards tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.
Multi-modal cockpit interface for improved airport surface operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)
2010-01-01
A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.
Pilot scanning patterns while viewing cockpit displays of traffic information
NASA Technical Reports Server (NTRS)
Ellis, S. R.; Stark, L.
1981-01-01
Scanning eye movements of airline pilots were recorded while they judged air traffic situations displayed on cockpit displays of traffic information (CDTI). The observed 1st order transition patterns between points of interest on the display showed reliable deviation from those patterns predicted by the assumption of statistical independence. However, both patterns of transitions correlated quite well with each other. Accordingly, the assumption of independence provided a surprisingly good model of the results. Nevertheless, the deviation between the observed patterns of transition and that based on the assumption of independence was for all subjects in the direction of increased determinism. Thus, the results provide objective evidence consistent with the existence of "scanpaths" in the data.
An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction
NASA Technical Reports Server (NTRS)
1982-01-01
Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance.
Applications of AMLCDs in U.S. military cockpits
NASA Astrophysics Data System (ADS)
Michaels, Robert A.; Desjardins, Daniel D.; Daniels, Reginald; Hopper, Darrel G.
1996-05-01
Active matrix liquid crystal displays have become the flat panel technology of choice for new cockpits as well as for retrofits of existing ones. Systems such as F-22, F-18, F-16, and C-141 have already begun extensive development efforts over the last few years. More recently, JPATS, AH-64, P-3, KC-135, T-45, and T-38 have announced plans to use AMLCDs also. Because of the advantages that AMLCDs have to offer, the list of platforms that will implement them will continue to grow over the next several years. The Displays Branch in Wright Laboratory is continually analyzing current as well as potential programs. An update on this analysis program is presented.
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.
2013-01-01
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.
Field study of communication and workload in police helicopters - Implications for AI cockpit design
NASA Technical Reports Server (NTRS)
Linde, Charlotte; Shively, Robert J.
1988-01-01
This paper reports on the work performed by civilian helicopter crews, using audio and video recordings and a variety of workload measures (heart rate and subjective ratings) obtained in a field study of public service helicopter missions. The number and frequency of communications provided a significant source of workload. This is relevant to the design of automated cockpit systems, since many designs presuppose the use of voice I/O systems. Fluency of communications (including pauses, hesitation markers, repetitions, and false starts) furnished an early indication of the effects of fatigue. Three workload measures were correlated to identify high workload segments of flight, and to suggest alternate task allocations between crew members.
Application of Human-Autonomy Teaming (HAT) Patterns to Reduce Crew Operations (RCO)
NASA Technical Reports Server (NTRS)
Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri
2011-01-01
Unmanned aerial systems, advanced cockpits, and air traffic management are all seeing dramatic increases in automation. However, while automation may take on some tasks previously performed by humans, humans will still be required to remain in the system for the foreseeable future. The collaboration between humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. This paper applies a methodology for identifying HAT patterns to an advanced cockpit project.
Yang, Biao; Lin, Yandan; Sun, Yaojie
2013-03-01
The aim of this work was to examine how harsh luminous conditions in a cockpit, such as lightning in a thunderstorm or direct sunlight immediately after an aircraft passes through clouds, may affect the visual performance of pilots, and how to improve it. Such lighting conditions can result in the temporary visual impairment of aviators, which may greatly increase the risk of accidents. Tests were carried out in a full-scale simulator cockpit in which two kinds of dynamic lighting scenes, namely pulse changed and step changed lighting, were used to represent harsh luminous conditions. Visual acuity (VA), reaction time (RT) and identification accuracy (IA) were recorded as dependent variables. Data analysis results indicate that standardized VA values decreased significantly in both pulsing and step conditions in comparison with the dark condition. Standardized RT values increased significantly in the step condition; on the contrary, less reaction time was observed in the pulsing condition. Such effects could be reduced by an ambient illumination provided by a fluorescent lamp in both conditions. The results are to be used as a principle for optimizing lighting design with a thunderstorm light. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Robust recognition of loud and Lombard speech in the fighter cockpit environment
NASA Astrophysics Data System (ADS)
Stanton, Bill J., Jr.
1988-08-01
There are a number of challenges associated with incorporating speech recognition technology into the fighter cockpit. One of the major problems is the wide range of variability in the pilot's voice. That can result from changing levels of stress and workload. Increasing the training set to include abnormal speech is not an attractive option because of the innumerable conditions that would have to be represented and the inordinate amount of time to collect such a training set. A more promising approach is to study subsets of abnormal speech that have been produced under controlled cockpit conditions with the purpose of characterizing reliable shifts that occur relative to normal speech. Such was the initiative of this research. Analyses were conducted for 18 features on 17671 phoneme tokens across eight speakers for normal, loud, and Lombard speech. It was discovered that there was a consistent migration of energy in the sonorants. This discovery of reliable energy shifts led to the development of a method to reduce or eliminate these shifts in the Euclidean distances between LPC log magnitude spectra. This combination significantly improved recognition performance of loud and Lombard speech. Discrepancies in recognition error rates between normal and abnormal speech were reduced by approximately 50 percent for all eight speakers combined.
NASA Technical Reports Server (NTRS)
Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.
1993-01-01
A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.
Determination of tricresyl phosphate air contamination in aircraft.
Denola, G; Hanhela, P J; Mazurek, W
2011-08-01
Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.
Duty hours and incidents in flight among commercial airline pilots.
O'Hagan, Anna Donnla; Issartel, Johann; Fletcher, Richard; Warrington, Giles
2016-01-01
Working long duty hours has often been associated with increased risk of incidents and accidents in transport industries. Despite this, information regarding the intermediate relationship between duty hours and incident risk is limited. This study aimed to test a work hours/incident model to identify the interplay of factors contributing to incidents within the aviation industry. Nine hundred and fifty-four European-registered commercial airline pilots completed a 30-item survey investigating self-report attitudes and experiences of fatigue. Path analysis was used to test the proposed model. The fit indices indicated this to be a good fit model (χ(2) = 11.066, df = 5, p = 0.05; Comparative Fit Index = 0.991; Normed Fit Index = 0.984; Tucker-Lewis Index = 0.962; Root Mean Square of Approximation = 0.036). Highly significant relationships were identified between duty hours and sleep disturbance (r = 0.18, p < 0.001), sleep disturbance and fatigue in the cockpit (r = 0.40, p < 0.001), and fatigue in the cockpit and microsleeps in the cockpit (r = 0.43, p < 0.001). A critical pathway from duty hours through to self-reported incidents in flight was identified. Further investigation employing both objective and subjective measures of sleep and fatigue is needed.
Cockpit Displays to Support Hazard Awareness in Free Flight
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Carbonari, Ron; Merwin, Dave; Morphew, Ephimia; OBrien, Janelle V.
1997-01-01
Three experiments are described which each examine different aspects of the formatting and integration of cockpit displays of traffic information to support pilots in traffic avoidance planning. The first two experiments compared two-dimensional (coplanar) with three-dimensional (perspective) versions of a cockpit display of traffic information. In Experiment 1, 30 certified flight instructors flew a series of traffic conflict detection and avoidance maneuvers around an intruder aircraft, sometimes in the presence of a second intruder. The results revealed an advantage for the coplanar display, particularly when there was vertical intruder behavior. In Experiment 2, 17 instructors flew with the coplanar and perspective formats when weather information was either overlaid or displayed separately. Again performance was best with the coplanar display, particularly when the weather data were overlaid. The results of both experiments are also discussed in ten-ns of the traffic maneuver stereotypes exhibited by the pilots. Experiment 3 examined the benefits of the two different predictor elements used in the coplanar displays of Experiments 1 and 2. The study was carried out in a multitask context. These elements were both found to improve safety (reduce actual and predicted conflicts) and to reduce workload, although the different elements affected workload in different ways. Neither predictor element imposed a cost to concurrent task performance.
NASA Technical Reports Server (NTRS)
Govindaraj, T.; Mitchell, C. M.
1994-01-01
One of the goals of the National Aviation Safety/Automation program is to address the issue of human-centered automation in the cockpit. Human-centered automation is automation that, in the cockpit, enhances or assists the crew rather than replacing them. The Georgia Tech research program focused on this general theme, with emphasis on designing a computer-based pilot's assistant, intelligent (i.e, context-sensitive) displays, and an intelligent tutoring system for understanding and operating the autoflight system. In particular, the aids and displays were designed to enhance the crew's situational awareness of the current state of the automated flight systems and to assist the crew's situational awareness of the current state of the automated flight systems and to assist the crew in coordinating the autoflight system resources. The activities of this grant included: (1) an OFMspert to understand pilot navigation activities in a 727 class aircraft; (2) an extension of OFMspert to understand mode control in a glass cockpit, Georgia Tech Crew Activity Tracking System (GT-CATS); (3) the design of a training system to teach pilots about the vertical navigation portion of the flight management system -VNAV Tutor; and (4) a proof-of-concept display, using existing display technology, to facilitate mode awareness, particularly in situations in which controlled flight into terrain (CFIT) is a potential.
Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System
NASA Technical Reports Server (NTRS)
Kocian, Dean F.
1992-01-01
The development and impact is described of new visually coupled system (VCS) equipment designed to support engineering and human factors research in the military aircraft cockpit environment. VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion. What has been missing is a 'systems' approach to technology advancement that is comprehensive enough to produce conclusive results concerning the operational viability of the VCS concept and verify any risk factors that might be involved with its general use in the cockpit. The advanced VCS configuration described here, was ruggedized for use in military aircraft environments and was dubbed the Virtual Panoramic Display (VPD). It was designed to answer the VCS portion of the systems problem, and is implemented as a modular system whose performance can be tailored to specific application requirements. The overall system concept and the design of the two most important electronic subsystems that support the helmet mounted parts, a new militarized version of the magnetic helmet mounted sight and correspondingly similar helmet display electronics, are discussed in detail. Significant emphasis is given to illustrating how particular design features in the hardware improve overall system performance and support research activities.
An electronic flight bag for NextGen avionics
NASA Astrophysics Data System (ADS)
Zelazo, D. Eyton
2012-06-01
The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.
Aerospace Communications Security Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Griner, James H.; Martzaklis, Konstantinos S.
2003-01-01
In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to the intercom system for audio surveillance. Audio, video, and "black box" data were simultaneously streamed to the ground, where they were displayed to a Glenn audience of senior management and aviation security team members.
The use of optical waveguides in head up display (HUD) applications
NASA Astrophysics Data System (ADS)
Homan, Malcolm
2013-06-01
The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume glareshield mounted HUD. In many current Business Jet and Air Transport cockpits overhead mounted HUDs employ a conventional optical combiner to relay the display from a separate projector to the pilot's eyes. In BAE Systems' Electronic Systems QHUDTM configuration this combiner is replaced by the waveguide and the bulky, intrusive overhead projector completely eliminated. The result is a significant reduction in equipment volume and mass and a much greater head clearance combined with a substantially larger Head Motion Box. This latter feature is a fundamental outturn of waveguide optical solutions which removes the restrictions on pilot eye positioning associated with current conventional systems. LiteHUD®, developed by BAE Systems, Electronic Systems achieves equivalent optical performance to in-service HUDs for less cost, mass and volume.
Selecting cockpit functions for speech I/O technology
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1985-01-01
A general methodology for the initial selection of functions for speech generation and speech recognition technology is discussed. The SCR (Stimulus/Central-Processing/Response) compatibility model of Wickens et al. (1983) is examined, and its application is demonstrated for a particular cockpit display problem. Some limits of the applicability of that model are illustrated in the context of predicting overall pilot-aircraft system performance. A program of system performance measurement is recommended for the evaluation of candidate systems. It is suggested that no one measure of system performance can necessarily be depended upon to the exclusion of others. Systems response time, system accuracy, and pilot ratings are all important measures. Finally, these measures must be collected in the context of the total flight task environment.
Alerting prefixes for speech warning messages. [in helicopters
NASA Technical Reports Server (NTRS)
Bucher, N. M.; Voorhees, J. W.; Karl, R. L.; Werner, E.
1984-01-01
A major question posed by the design of an integrated voice information display/warning system for next-generation helicopter cockpits is whether an alerting prefix should precede voice warning messages; if so, the characteristics desirable in such a cue must also be addressed. Attention is presently given to the results of a study which ascertained pilot response time and response accuracy to messages preceded by either neutral cues or the cognitively appropriate semantic cues. Both verbal cues and messages were spoken in direct, phoneme-synthesized speech, and a training manipulation was included to determine the extent to which previous exposure to speech thus produced facilitates these messages' comprehension. Results are discussed in terms of the importance of human factors research in cockpit display design.
Noise-immune multisensor transduction of speech
NASA Astrophysics Data System (ADS)
Viswanathan, Vishu R.; Henry, Claudia M.; Derr, Alan G.; Roucos, Salim; Schwartz, Richard M.
1986-08-01
Two types of configurations of multiple sensors were developed, tested and evaluated in speech recognition application for robust performance in high levels of acoustic background noise: One type combines the individual sensor signals to provide a single speech signal input, and the other provides several parallel inputs. For single-input systems, several configurations of multiple sensors were developed and tested. Results from formal speech intelligibility and quality tests in simulated fighter aircraft cockpit noise show that each of the two-sensor configurations tested outperforms the constituent individual sensors in high noise. Also presented are results comparing the performance of two-sensor configurations and individual sensors in speaker-dependent, isolated-word speech recognition tests performed using a commercial recognizer (Verbex 4000) in simulated fighter aircraft cockpit noise.
Application of Human-Autonomy Teaming (HAT) Patterns to Reduce Crew Operations (RCO)
NASA Technical Reports Server (NTRS)
Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri
2016-01-01
Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. This paper applies a methodology for identifying HAT patterns to an advanced cockpit project.
Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance
NASA Technical Reports Server (NTRS)
Dinges, David F.
1998-01-01
This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.
Research on tactical information display technology for interactive virtual cockpit
NASA Astrophysics Data System (ADS)
Sun, Zhongyun; Tian, Tao; Su, Feng
2018-04-01
Based on a fact that traditional tactical information display technology suffers from disadvantages of a large number of data to be transferred and low plotting efficiency in an interactive virtual cockpit, a GID protocol-based simulation has been designed. This method dissolves complex tactical information screens into basic plotting units. The indication of plotting units is controlled via the plotting commands, which solves the incompatibility between the tactical information display in traditional simulation and the desktop-based virtual simulation training system. Having been used in desktop systems for helicopters, fighters, and transporters, this method proves to be scientific and reasonable in design and simple and efficient in usage, which exerts a significant value in establishing aviation equipment technology support training products.
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
1988-01-01
The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.
Some human factors issues in the development and evaluation of cockpit alerting and warning systems
NASA Technical Reports Server (NTRS)
Randle, R. J., Jr.; Larsen, W. E.; Williams, D. H.
1980-01-01
A set of general guidelines for evaluating a newly developed cockpit alerting and warning system in terms of human factors issues are provided. Although the discussion centers around a general methodology, it is made specifically to the issues involved in alerting systems. An overall statement of the current operational problem is presented. Human factors problems with reference to existing alerting and warning systems are described. The methodology for proceeding through system development to system test is discussed. The differences between traditional human factors laboratory evaluations and those required for evaluation of complex man-machine systems under development are emphasized. Performance evaluation in the alerting and warning subsystem using a hypothetical sample system is explained.
Innovative approaches to recurrent training
NASA Technical Reports Server (NTRS)
Noon, H.; Murphy, M.
1984-01-01
Innovative approaches to recurrent training for regional airline aircrews are explored. Guidelines for recurrent training programs which include in corporation of cockpit resource management are discussed. B.W.
NASA Technical Reports Server (NTRS)
Helmreich, R. L.
1991-01-01
Formal cockpit resource management training in crew coordination concepts increases the percentage of crews rated as above average in performance and decreases the percentage of crews rated as below average.
Procedures in complex systems: the airline cockpit.
Degani, A; Wiener, E L
1997-05-01
In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations.
An anthropometric analysis of Korean male helicopter pilots for helicopter cockpit design.
Lee, Wonsup; Jung, Kihyo; Jeong, Jeongrim; Park, Jangwoon; Cho, Jayoung; Kim, Heeeun; Park, Seikwon; You, Heecheon
2013-01-01
This study measured 21 anthropometric dimensions (ADs) of 94 Korean male helicopter pilots in their 20s to 40s and compared them with corresponding measurements of Korean male civilians and the US Army male personnel. The ADs and the sample size of the anthropometric survey were determined by a four-step process: (1) selection of ADs related to helicopter cockpit design, (2) evaluation of the importance of each AD, (3) calculation of required sample sizes for selected precision levels and (4) determination of an appropriate sample size by considering both the AD importance evaluation results and the sample size requirements. The anthropometric comparison reveals that the Korean helicopter pilots are larger (ratio of means = 1.01-1.08) and less dispersed (ratio of standard deviations = 0.71-0.93) than the Korean male civilians and that they are shorter in stature (0.99), have shorter upper limbs (0.89-0.96) and lower limbs (0.93-0.97), but are taller on sitting height, sitting eye height and acromial height (1.01-1.03), and less dispersed (0.68-0.97) than the US Army personnel. The anthropometric characteristics of Korean male helicopter pilots were compared with those of Korean male civilians and US Army male personnel. The sample size determination process and the anthropometric comparison results presented in this study are useful to design an anthropometric survey and a helicopter cockpit layout, respectively.
ARINC 818 adds capabilities for high-speed sensors and systems
NASA Astrophysics Data System (ADS)
Keller, Tim; Grunwald, Paul
2014-06-01
ARINC 818, titled Avionics Digital Video Bus (ADVB), is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits including the Boeing 787, the A350XWB, the A400M, the KC- 46A and many others. Initially conceived of for cockpit displays, ARINC 818 is now propagating into high-speed sensors, such as infrared and optical cameras due to its high-bandwidth and high reliability. The ARINC 818 specification that was initially release in the 2006 and has recently undergone a major update that will enhance its applicability as a high speed sensor interface. The ARINC 818-2 specification was published in December 2013. The revisions to the specification include: video switching, stereo and 3-D provisions, color sequential implementations, regions of interest, data-only transmissions, multi-channel implementations, bi-directional communication, higher link rates to 32Gbps, synchronization signals, options for high-speed coax interfaces and optical interface details. The additions to the specification are especially appealing for high-bandwidth, multi sensor systems that have issues with throughput bottlenecks and SWaP concerns. ARINC 818 is implemented on either copper or fiber optic high speed physical layers, and allows for time multiplexing multiple sensors onto a single link. This paper discusses each of the new capabilities in the ARINC 818-2 specification and the benefits for ISR and countermeasures implementations, several examples are provided.
Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B
2015-03-04
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.
Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.
2015-01-01
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092
Synthetic vision in the cockpit: 3D systems for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth
2001-08-01
Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.
On the typography of flight-deck documentation
NASA Technical Reports Server (NTRS)
Degani, Asaf
1992-01-01
Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.
Loss of cabin pressurization in U.S. Naval aircraft: 1969-90.
Bason, R; Yacavone, D W
1992-05-01
During the 22-year period from 1 January 1969 to 31 December 1990, there were 205 reported cases of loss of cabin pressure in US Naval aircraft; 21 were crew-initiated and 184 were deemed accidental. The ambient altitudes varied from 10,000 ft (3048 m) to 40,000 ft. (12192 m). The most common reason for crew-initiated decompression was to clear smoke and fumes from the cockpit/cabin (95%). The most common cause for accidental loss of cabin pressure was mechanical (73.37%), with aircraft structural damage accounting for the remaining 26.63%. Serious physiological problems included 1 pneumothorax, 11 cases of Type I decompression sickness, 23 cases of mild to moderate hypoxia with no loss of consciousness, 18 cases of hypoxia with loss of consciousness, and 3 lost aircraft with 4 fatalities due to incapacitation by hypoxia. In addition, 12 ejections were attributed to loss of cockpit pressure. Nine of the ejections were deliberate and three were accidental, caused by wind blast activation of the face curtain. Three aviators lost their lives following ejection and seven aircraft were lost. While the incidence of loss of cabin pressure in Naval aircraft appears low, it none-the-less presents a definite risk to the aircrew. Lectures on the loss of cabin/cockpit pressurization should continue during indoctrination and refresher physiology training.
14 CFR 29.771 - Pilot compartment.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Flight and powerplant controls must be designed to prevent confusion or inadvertent operation when the rotorcraft is piloted from either position; (c) The vibration and noise characteristics of cockpit...
14 CFR 29.771 - Pilot compartment.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Flight and powerplant controls must be designed to prevent confusion or inadvertent operation when the rotorcraft is piloted from either position; (c) The vibration and noise characteristics of cockpit...
14 CFR 29.771 - Pilot compartment.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Flight and powerplant controls must be designed to prevent confusion or inadvertent operation when the rotorcraft is piloted from either position; (c) The vibration and noise characteristics of cockpit...
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
Development of a virtual flight simulator.
Kuntz Rangel, Rodrigo; Guimarães, Lamartine N F; de Assis Correa, Francisco
2002-10-01
We present the development of a flight simulator that allows the user to interact in a created environment by means of virtual reality devices. This environment simulates the sight of a pilot in an airplane cockpit. The environment is projected in a helmet visor and allows the pilot to see inside as well as outside the cockpit. The movement of the airplane is independent of the movement of the pilot's head, which means that the airplane might travel in one direction while the pilot is looking at a 30 degrees angle with respect to the traveled direction. In this environment, the pilot will be able to take off, fly, and land the airplane. So far, the objects in the environment are geometrical figures. This is an ongoing project, and only partial results are available now.
Tanker avionics and aircrew complement evaluation.
Moss, R W; Barbato, G J
1982-11-01
This paper describes an effort to determine control and display criteria for operating SAC's KC-135 tanker with a reduced crew complement. The Tanker Avionics and Aircrew Complement Evaluation (TAACE) Program was a four-phase effort addressing the control and display design issues associated with operating the tanker without the navigator position. Discussed are: the mission analysis phase, during which the tanker's operational responsibilities were defined and documented; the design phase, during which alternative crew station design concepts were developed; the mockup evaluation phase, which accomplished initial SAC crew member assessment of cockpit designs; and the simulation phase, which validated the useability of the crew system redesign. The paper also describes a recommended crew station configuration and discusses some of the philosophy underlying the selection of cockpit hardware and systems.
2004-01-22
KENNEDY SPACE CENTER, FLA. - Stephanie Stilson, NASA vehicle manager for Discovery, is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period, which included inspection, modifications and reservicing of most systems onboard Discovery, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
NASA Technical Reports Server (NTRS)
Burgess, Malcolm; Davis, Dean; Hollister, Walter; Sorensen, John A.
1991-01-01
The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight.
Avoidance maneuevers selected while viewing cockpit traffic displays
NASA Technical Reports Server (NTRS)
Smith, J. D.; Ellis, S. R.; Lee, E.
1982-01-01
Ten airline pilots rates the collision danger of air traffic presented on cockpit displays of traffic information while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threst situations pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's own ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilots' turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.
Situational awareness in the commercial aircraft cockpit - A cognitive perspective
NASA Technical Reports Server (NTRS)
Adams, Marilyn J.; Pew, Richard W.
1990-01-01
A cognitive theory is presented that has relevance for the definition and assessment of situational awareness in the cockpit. The theory asserts that maintenance of situation awareness is a constructive process that demands mental resources in competition with ongoing task performance. Implications of this perspective for assessing and improving situational awareness are discussed. It is concluded that the goal of inserting advanced technology into any system is that it results in an increase in the effectiveness, timeliness, and safety with which the system's activities can be accomplished. The inherent difficulties of the multitask situation are very often compounded by the introduction of automation. To maximize situational awareness, the dynamics and capabilities of such technologies must be designed with thorough respect for the dynamics and capabilities of human information-processing.
Integration of energy management concepts into the flight deck
NASA Technical Reports Server (NTRS)
Morello, S. A.
1981-01-01
The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Space Act Agreement between Boeing North America and BSR Products, Space Shuttle Thermal Protection System (TPS) materials are now used to insulate race cars. BSR has created special TPS blanket insulation kits for use on autos that take part in NASCAR events, and other race cars through its nationwide catalog distribution system. Temperatures inside a race car's cockpit can soar to a sweltering 140 to 160 degrees, with the extreme heat coming through the engine firewall, transmission tunnel, and floor. It is common for NASCAR drivers to endure blisters and burns due to the excessive heat. Tests on a car insulated with the TPS material showed a temperature drop of some 50 degrees in the driver's cockpit. BSR-TPS Products, Inc. now manufactures insulation kits for distribution to race car teams around the world.
1999-07-08
KENNEDY SPACE CENTER, FLA. -- In the cockpit of the orbiter Atlantis, which is in the Orbiter Processing Facility, U.S. Rep. Dave Weldon looks at the newly installed Multifunction Electronic Display Subsystem (MEDS), known as the "glass cockpit." Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. He was in Palmdale, Calif., when Atlantis underwent the modification and he wanted to see the final product. The full-color, flat-panel MEDS upgrade improves crew/orbiter interaction with easy-to-read, graphic portrayals of key flight indicators like attitude display and mach speed. The installation makes Atlantis the most modern orbiter in the fleet and equals the systems on current commercial jet airliners and military aircraft. Atlantis is scheduled to fly on mission STS-101 in early December
Longitudinal Study of the Market Penetration of Cockpit Weather Information Systems
NASA Technical Reports Server (NTRS)
Stough, Harry Paul, III; Sireli, Yesim; Ozan, Erol; Kauffmann, Paul
2005-01-01
The purpose of the longitudinal research of the market penetration of cockpit weather information systems (CWIS) is to contribute to the body of knowledge on modeling advanced technology feasibility in aviation by tracking and analyzing the market adoption of CWIS over a three year period. This research takes advantage of a previous study, conducted by Dr. Paul Kauffmann in 2000, which demonstrated an integrated and cost effective approach to evaluate advanced technology feasibility, examining the feasibility of CWIS in five market segments: transport, commuter, general aviation, business, and rotorcraft. The longitudinal research consists of two consecutive studies and produced two reports. The first report was submitted in August 2003 and included general market analysis about the CWIS products in the market at the time, identified their characteristics and examined developing market dynamics.
14 CFR 142.47 - Training center instructor eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and procedures. (iii) The fundamental principles of the learning process. (iv) Instructor duties...) Cockpit resource management and crew coordination. (2) Satisfactorily complete a written test— (i) On the...
Cockpit Electronic Display Workshop: A Synopsis
DOT National Transportation Integrated Search
1993-12-01
Thirty-six government, academic, and industry human factors professionals participated : in a workshop convened at the Voipe National Transportation Systems Center to identify : human factors issues associated with depicting terminal area operations ...
Infrared Avionics Signal Distribution using Wavelength Division Multiplexing
NASA Technical Reports Server (NTRS)
Atiquzzaman, Mohammed; Sluss, Jim; Nguyen, Hung; Ngo, Duc
2003-01-01
Pilots in the cockpits of aircrafts currently communicate with ground stations using Radio Frequency (RF) signals. Antennas mounted outside the aircraft receive and transmit RF signals from and to the ground stations. The RF signals received at the antennas are sent to the cockpit using coaxial cables. As the number of antennas needed to provide more than one frequency band in aircrafts increases, RF distribution media (such as coaxial cable) adds to the complexity and weight of the cockpit wiring. Concomitantly, the safety and signal to noise ratio also decreases due to the use of RF signals. The University of Oklahoma is collaborating with the National Aeronautics and Space Administration to develop optical fiber based schemes to replace the coaxial cable used for RF signal distribution within an aircraft. The project aims at exploiting emerging Wavelength Division Multiplexing (WDM) techniques to reduce the weight of cabling, and increase the signal to noise ratio and reliability. This will be achieved by wavelength division multiplexing the signals from the various antennas and then demultiplexing the signals to recover the original signals at the cockpit. This paper will show that (i) RF signals can not only be wavelength multiplexed at the end of a fiber, but additional signals can be inserted into the middle of the fiber using WDM technology, and (ii) the signals can also be successfully extracted by tapping into the middle of the fiber. We are currently extending our previous laboratory prototype (which could multiplex signals only at the end of the fiber) to include additional multiplexing and demultiplexing of RF signals from the middle of the optical backbone with a view to validating the proof of concept, and carrying out measurements to determine the effectiveness of Wavelength Division Multiplexing for avionics applications. A test bed to perform measurements of several relevant parameters for various modulation schemes and frequencies (such as VHF, UHF, and L-Band) has been implemented. In particular, results of transmitter and receiver noise, bit-error-rate (BER), effect of cross talk on the quality of the multiplexed signals, and Signal to Noise ratio and Carrier to Noise ratio, obtained using the aforementioned test bed, will be presented.
14 CFR 29.812 - Emergency lighting.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the passenger compartment that is readily accessible. The cockpit control device must have an “on... ground, with the rotorcraft in each of the attitudes corresponding to the collapse of one or more legs of...
14 CFR 29.812 - Emergency lighting.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the passenger compartment that is readily accessible. The cockpit control device must have an “on... ground, with the rotorcraft in each of the attitudes corresponding to the collapse of one or more legs of...
14 CFR 29.812 - Emergency lighting.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the passenger compartment that is readily accessible. The cockpit control device must have an “on... ground, with the rotorcraft in each of the attitudes corresponding to the collapse of one or more legs of...
14 CFR 29.812 - Emergency lighting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the passenger compartment that is readily accessible. The cockpit control device must have an “on... ground, with the rotorcraft in each of the attitudes corresponding to the collapse of one or more legs of...
14 CFR 142.53 - Training center instructor training and testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... instruction in at least— (i) The fundamental principles of the learning process; (ii) Elements of effective... limitations; (iv) Training policies and procedures; (v) Cockpit resource management and crew coordination; and...
Introduction to MAC CRM training
NASA Technical Reports Server (NTRS)
Brown, Donald D.
1987-01-01
The author introduces the Military Airlift Command (MAC) and its mission. A brief history of Cockpit Resource Management (CRM) as it relates to MAC is given. He also states why MAC is currently interested in CRM.
2002-04-02
Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital camera mounted in the rear cockpit of a NASA Dryden F/A-18B before taking off on an astronomy mission.
1971-03-19
Visual Flgiht Attachment 2 (REDIFON) is a terrain model that is video-coupled with a simulator cockpit to integrate the pilot with the machine for actual STOL operations of the future N-210 Flight Simulation Laboratory
14 CFR 23.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for right tanks, left for left tanks. Landing gear Down to extend. Speed brakes Aft to extend. [Amdt... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...
14 CFR 23.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... for right tanks, left for left tanks. Landing gear Down to extend. Speed brakes Aft to extend. [Amdt... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...
14 CFR 23.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... for right tanks, left for left tanks. Landing gear Down to extend. Speed brakes Aft to extend. [Amdt... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...
14 CFR 23.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... for right tanks, left for left tanks. Landing gear Down to extend. Speed brakes Aft to extend. [Amdt... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...
14 CFR 23.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... for right tanks, left for left tanks. Landing gear Down to extend. Speed brakes Aft to extend. [Amdt... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...
Aviators intoxicated by inhalation of JP-5 fuel vapors.
Porter, H O
1990-07-01
This case of intoxication of two aviators by inhalation of JP-5 fuel vapors emphasizes a dangerous safety hazard. One or both aviators experienced burning eyes, nausea, fatigue, impairment of eye-hand coordination, euphoria, and memory defects when their cockpit became overwhelmed with the odor of JP-5 fuel. Physical and laboratory examinations were normal except for their ill appearance, conjunctivitis, and mild hypertension, which resolved without sequelae. Exposure to JP-5 fuel vapor occurs frequently, particularly after acrobatic flight in some aircraft. The neurologic effects and insidious nature of intoxication makes continued operation under such conditions extremely hazardous. The following is recommended: in the event the odor of JP-5 or any noxious or irritating substance is detected in the cockpit, serious consideration should be given to terminating the flight, using precautionary emergency landing procedures and 100% O2.
Joe Walker in pressure suit with X-1E
NASA Technical Reports Server (NTRS)
1958-01-01
Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers focus on part of the cockpit collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
Application of Human-Autonomy Teaming (HAT) Patterns to Reduced Crew Operations (RCO)
NASA Technical Reports Server (NTRS)
Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri
2016-01-01
As part of the Air Force - NASA Bi-Annual Research Council Meeting, slides will be presented on recent Reduced Crew Operations (RCO) work. Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. A methodology for identifying HAT patterns to an advanced cockpit project is discussed.
An Evaluation of Automatic Control System Concepts for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Stewart, E. C.
1990-01-01
A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit controller inputs. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.
Perceived threat and avoidance maneuvers in response to cockpit traffic displays
NASA Technical Reports Server (NTRS)
Smith, J. D.; Ellis, S. R.; Lee, E. C.
1984-01-01
Airline pilots rated their perception of the danger of an air-to-air collision based on cockpit displays of traffic information while they monitored simulated departures. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with lowor moderate-collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threat situations, pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilot's turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.
Hori, Kenta; Kuroda, Tomohiro; Oyama, Hiroshi; Ozaki, Yasuhiko; Nakamura, Takehiko; Takahashi, Takashi
2005-12-01
For faultless collaboration among the surgeon, surgical staffs, and surgical robots in telesurgery, communication must include environmental information of the remote operating room, such as behavior of robots and staffs, vital information of a patient, named supporting information, in addition to view of surgical field. "Surgical Cockpit System, " which is a telesurgery support system that has been developed by the authors, is mainly focused on supporting information exchange between remote sites. Live video presentation is important technology for Surgical Cockpit System. Visualization method to give precise location/posture of surgical instruments is indispensable for accurate control and faultless operation. In this paper, the authors propose three-side-view presentation method for precise location/posture control of surgical instruments in telesurgery. The experimental results show that the proposed method improved accurate positioning of a telemanipulator.
Advanced electronic displays and their potential in future transport aircraft
NASA Technical Reports Server (NTRS)
Hatfield, J. J.
1981-01-01
It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.
1999-07-08
KENNEDY SPACE CENTER, FLA. -- In the cockpit of the orbiter Atlantis, which is in the Orbiter Processing Facility, U.S. Rep. Dave Weldon (right) looks at the newly installed Multifunction Electronic Display Subsystem (MEDS), known as the "glass cockpit." At left is Laural Patrick, a systems engineer with MEDS. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. He was in Palmdale, Calif., when Atlantis underwent the modification and he wanted to see the final product. The full-color, flat-panel MEDS upgrade improves crew/orbiter interaction with easy-to-read, graphic portrayals of key flight indicators like attitude display and mach speed. The installation makes Atlantis the most modern orbiter in the fleet and equals the systems on current commercial jet airliners and military aircraft. Atlantis is scheduled to fly on mission STS-101 in early December
Joe Walker in pressure suit with X-1E
1958-01-27
Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and "Little Joe" are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading "Little Joe the II" - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.
Wickens, Christopher; Colcombe, Angela
2007-10-01
Performance consequences related to integrating an imperfect alert within a complex task domain were examined in two experiments. Cockpit displays of traffic information (CDTIs) are being designed for use in airplane cockpits as responsibility for safe separation becomes shared between pilots and controllers. Of interest in this work is how characteristics of the alarm system such as threshold, modality, and number of alert levels impact concurrent task (flight control) performance and response to potential conflicts. Student pilots performed a tracking task analogous to flight control while simultaneously monitoring for air traffic conflicts with the aid of a CDTI alert as the threshold, modality, and level of alert was varied. As the alerting system became more prone to false alerts, pilot compliance decreased and concurrent performance improved. There was some evidence of auditory preemption with auditory alerts as the false alarm rate increased. Finally, there was no benefit to a three-level system over a two-level system. There is justification for increased false alarm rates, as miss-prone systems appear to be costly. The 4:1 false alarm to miss ratio employed here improved accuracy and concurrent task performance. More research needs to address the potential benefits of likelihood alerting. The issues addressed in this research can be applied to any imperfect alerting system such as in aviation, driving, or air traffic control. It is crucial to understand the performance consequences of new technology and the efficacy of potential mitigating design features within the specific context desired.
NASA Technical Reports Server (NTRS)
Jones, J. A.; Hart, S. F.; Baskin, D. S.; Effenhauser, R.; Johnson, S. L.; Novas, M. A.; Jennings, R.; Davis, J.
2000-01-01
In high-performance aircraft, the need for total environmental awareness coupled with high-g loading (often with abrupt onset) creates a predilection for cervical spine injury while the pilot is performing routine movements within the cockpit. In this study, the prevalence and severity of cervical spine injury are assessed via a modified cross-sectional survey of pilots of multiple aircraft types (T-38 and F-14, F-16, and F/A-18 fighters). Ninety-five surveys were administered, with 58 full responses. Fifty percent of all pilots reported in-flight or immediate post-flight spine-based pain, and 90% of fighter pilots reported at least one event, most commonly (> 90%) occurring during high-g (> 5 g) turns of the aircraft with the head deviated from the anatomical neutral position. Pre-flight stretching was not associated with a statistically significant reduction in neck pain episodes in this evaluation, whereas a regular weight training program in the F/A-18 group approached a significant reduction (mean = 2.492; p < 0.064). Different cockpit ergonomics may vary the predisposition to cervical injury from airframe to airframe. Several strategies for prevention are possible from both an aircraft design and a preventive medicine standpoint. Countermeasure strategies against spine injury in pilots of high-performance aircraft require additional research, so that future aircraft will not be limited by the human in control.
The application of CRM to military operations
NASA Technical Reports Server (NTRS)
Cavanagh, Dale E.; Williams, Kenneth R.
1987-01-01
The detailed content of the CRM training component of the C-5 Aircrew Training System (ATS) was left to the discretion of the contractor. As a part of determining what the content should be, United Airlines Services Corporation has made an effort to understand how the needs of MAC crews compare with those of civilian airline crews. There are distinct similarities between the crew roles in the cockpits of civilian airliners and military air transports. Many of the attitudes and behaviors exhibited by civil and military crew members are comparable, hence much of the training in the field referred to as Cockpit Resource Management (CRM) is equally appropriate to civil or military aircrews. At the same time, there are significant differences which require assessment to determine if modifications to what might be termed generic CRM are necessary. The investigation enabled the definition and specification of CRM training which is believed to address the needs of the C-5 operational community. The study has concentrated largely on military airlift, but the training objectives and course content of the CRM training are readily adaptable to a wider range of military cockpits than are found in strategic airlift. For instance, CRM training focusing on communication, leadership, situational awareness, and crew coordination is just as appropriate, with some modification, to the pilots manning a flight to Tactical Airlift Command A-7's as it is to the pilots, flight engineers, and loadmasters crewing a C-5.
Human Factors for Loran-C Receivers
DOT National Transportation Integrated Search
1990-04-01
Loran-C is an inexpensive, compact, and functionally powerful area navigation system. : The application of this system to aeronautical navigation is an exciting occurrence for : general aviation pilots. In the cockpit these systems simplify and incre...
The effects of tobacco on aviation safety.
DOT National Transportation Integrated Search
1980-08-01
In 1976, the FAA was petitioned to issue regulations that would prohibit all smoking in the cockpit during commercial flight operations and prohibit preflight smoking by flight crew members within 8 hours before commercial flight operations. A review...
Securing Aircraft Cockpits Against Lasers Act of 2011
Rep. Lungren, Daniel E. [R-CA-3
2011-01-20
Senate - 03/01/2011 Received in the Senate and Read twice and referred to the Committee on the Judiciary. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Securing Aircraft Cockpits Against Lasers Act of 2010
Rep. Lungren, Daniel E. [R-CA-3
2010-07-21
Senate - 07/28/2010 Received in the Senate and Read twice and referred to the Committee on the Judiciary. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
77 FR 55770 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... Internet at http://www.regulations.gov ; or in person at the Docket Management Facility between 9 a.m. and... within the aircraft's cockpit/cabin. This style of hydraulic power pack is also used on Cessna Aircraft...
Conflict resolution maneuvers during near miss encounters with cockpit traffic displays
NASA Technical Reports Server (NTRS)
Palmer, E.
1983-01-01
The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the cockpit of the orbiter Atlantis, which is in the Orbiter Processing Facility, Laural Patrick (left), a systems engineer with MEDS, points out a feature of the newly installed Multifunction Electronic Display Subsystem (MEDS), known as the 'glass cockpit,' to U.S. Rep. Dave Weldon. The congressman is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. He was in Palmdale, Calif., when Atlantis underwent the modification and he wanted to see the final product. The full-color, flat-panel MEDS upgrade improves crew/orbiter interaction with easy-to-read, graphic portrayals of key flight indicators like attitude display and mach speed. The installation makes Atlantis the most modern orbiter in the fleet and equals the systems on current commercial jet airliners and military aircraft. Atlantis is scheduled to fly on mission STS- 101 in early December.
Automation design and crew coordination
NASA Technical Reports Server (NTRS)
Segal, Leon D.
1993-01-01
Advances in technology have greatly impacted the appearance of the modern aircraft cockpit. Where once one would see rows upon rows. The introduction of automation has greatly altered the demands on the pilots and the dynamics of aircrew task performance. While engineers and designers continue to implement the latest technological innovations in the cockpit - claiming higher reliability and decreased workload - a large percentage of aircraft accidents are still attributed to human error. Rather than being the main instigators of accidents, operators tend to be the inheritors of system defects created by poor design, incorrect installation, faulty maintenance and bad management decisions. This paper looks at some of the variables that need to be considered if we are to eliminate at least one of these inheritances - poor design. Specifically, this paper describes the first part of a comprehensive study aimed at identifying the effects of automation on crew coordination.
Autonomous System Technologies for Resilient Airspace Operations
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Le Vie, Lisa R.
2017-01-01
Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.
Polyplanar optic display for cockpit application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veligdan, J.; Biscardi, C.; Brewster, C.
1998-04-01
The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments,more » Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less
Polyplanar optic display for cockpit application
NASA Astrophysics Data System (ADS)
Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Freibott, William C.
1998-09-01
The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, we discuss the electronic interfacing to the DLPTM chip, the opto-mechanical design and viewing angle characteristics.
NASA Technical Reports Server (NTRS)
Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.
1980-01-01
Traffic symbology was encoded to provide additional information concerning the traffic, which was displayed on the pilot's electronic horizontal situation indicators (EHSI). A research airplane representing an advanced operational environment was used to assess the benefit of coded traffic symbology in a realistic work-load environment. Traffic scenarios, involving both conflict-free and conflict situations, were employed. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefings. These results grouped conveniently under two categories: display factors and task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few airplanes. In terms of task performance, the cockpit-displayed traffic information was found to provide excellent overall situation awareness. Additionally, mile separation prescribed during these tests.
Control in the cockpit: crews vs. computers.
Ropelewski, R
1996-08-01
In the no-holds-barred competition between Boeing and Europe's Airbus Industrie for dominance in the world's commercial jet airliner markets, the question of who--or what--is in charge in the cockpit has been a significant selling point. Airbus, which pioneered highly automated flight controls with its A320 narrow-body transport in the late 1980s, likes to emphasize the "protection" features built into the aircraft through those automated systems. Boeing, which employs many of the same concepts in its new 777 twin-engine widebody transport, tends to put more emphasis on crew involvement in the operation of that aircraft. Is there a difference? In fact, the question has broader implications than those involving the marketing battle between Boeing and Airbus. Airlines, aircraft manufacturers, flight training specialists, human factors gurus, and aviation authorities in various countries are struggling with the isse as automation becomes more and more prevalent on passenger and cargo-carrying aircraft around the world.
Training and cockpit design to promote expert performance
NASA Technical Reports Server (NTRS)
Chappell, Sheryl L.
1991-01-01
The behavior of expert pilots in familiar situations is explored and the implications for better training programs and cockpit designs are stated. Experts in familiar operational situations performing highly practiced tasks are said to recognize and respond to complex situations using pattern recognition or intuition. For some tasks this class of behaviors is desirable; performance can be improved by reducing cognitive load and increasing speed and accuracy. Part-task training, training for monitoring and techniques for the transfer of knowledge can facilitate the development of these skills. Methods for promoting pattern recognition through pilot-aircraft interface design include the use of spatial presentations of information and providing triggering events. In some instances, the familiar, well-practiced behavior is not appropriate and it is desirable to prevent the response. When prevention is necessary, barriers can be constructed in the interface to remind the pilot of the inappropriateness of the response.
NASA Technical Reports Server (NTRS)
Abercromby, Andrew F. J.; Thaxton, Sherry S.; Onady, Elizabeth A.; Rajulu, Sudhakar L.
2006-01-01
The Science Crew Operations and Utility Testbed (SCOUT) project is focused on the development of a rover vehicle that can be utilized by two crewmembers during extra vehicular activities (EVAs) on the moon and Mars. The current SCOUT vehicle can transport two suited astronauts riding in open cockpit seats. Among the aspects currently being developed is the cockpit design and layout. This process includes the identification of possible locations for a socket to which a crewmember could connect a portable life support system (PLSS) for recharging power, air, and cooling while seated in the vehicle. The spaces in which controls and connectors may be situated within the vehicle are constrained by the reach and vision capabilities of the suited crewmembers. Accordingly, quantification of the volumes within which suited crewmembers can both see and reach relative to the vehicle represents important information during the design process.
Active noise reduction in aviation helmets during a military jet trainer test flight.
Pääkkönen, R; Kuronen, P; Korteoja, M
2001-01-01
Cockpit noise measurements were carried out in a two-seat jet trainer. For the continuous time and frequency analyses a two-channel tape-recording system was constructed of two miniature microphones connected through an amplifier to a digital tape-recorder. The analysed and averaged noise exposure including radio communication was 80-81 dB when the ANC system was on and 84-89 dB when the ANC system was off. For the conventional flight helmet the same noise exposure was 86 dB, and the noise exposure in the cockpit was 104-106 dB. The effect of the ANC system on the averaged noise exposure (L(Aeq8min)) was an improvement of 4-8 dB over the noise attenuation of the same helmets when the ANC system was off. Both ANC systems worked properly during the test flights. No severe ringing or voice circulation was found except during extreme vibration.
Color and Luminance Analysis of the Space Shuttle Multifunction Display Units(MDUs)
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey W.
2003-01-01
The purpose of this evaluation is to measure and analyze the colors that can be shown on the Multifunction Display Units (MDUs) of the Space Shuttle cockpit. The evaluation was conducted in the JSC Avionics Engineering Laboratory (JAEL) in building 16A at NASA Johnson Space Center. The JAEL contains a suite of 11 MDUs, each of which can be configured to show colors based on input values of the MDU red, green and blue (RGB) channels. Each of the channels has a range of 0 to 15. For example, bright green is produced by setting RGB to 0,15,0, and orange is produced by setting RGB to 15,4,0. The Cockpit Avionics Upgrade (CAU) program has specified the RGB settings for 14 different colors in the Display Design document (Rev A, 29 June 2001). The analysis in this report may help the CAU program determine better RGB settings for the colors.
NASA Technical Reports Server (NTRS)
Billings, Charles
1991-01-01
An overview is presented of the growth and role of automation in civil aircraft operations for both cockpit management and ground control. NASA has initiated a research program centered on furthering automation and developing a consistent and rational philosophy of human centered aircraft and air traffic control automation. Introduction of the NASA Aviation Safety Reporting System (ASRS) has proved successful in bringing together pilots and ground controllers to report incidents of operational anomalies that can then be analyzed, leading to corrective action to prevent similar reoccurrences. Attention is given to the growing trend of extensive automation in the cockpit that appears to be leading to a diminution of management control of the aircraft by the decreasing number of flight crew members. A majority of reports indicate that there is a serious mismatch between new aircraft capabilities and ATC procedures, which were designed for older aircraft. ASRS has also kept research oriented toward real problems and community needs.
Horizontal Conflict Resolution Maneuvers with a Cockpit Display of Traffic Information
NASA Technical Reports Server (NTRS)
Palmer, E.; Jago, S.; Dubord, M.
1981-01-01
Pilot resolution of potential conflicts in the horizontal plane when the only information available on the other aircraft was presented on a Cockpit Display of Traffic Information (CDTI) is investigated. The pilot's task was to assess the situation and if necessary maneuver so as to avoid the other aircraft. No instructions were given on evasive strategy or on what was considered to be an acceptable minimum separation. The results indicate that pilots had a strong bias of turning toward the intruder aircraft in order to pass behind it. In more than 50% of the encounters with a 90 degree crossing angle in which the intruder aircraft was programmed to pass behind the aircraft, the pilots maneuvered so as to pass behind the intruder. This bias was not as strong with the display which showed a prediction of the intruder's relative velocity. The average miss distance for all encounters was about 4500 feet.
Quantifying driver's field-of-view in tractors: methodology and case study.
Gilad, Issachar; Byran, Eyal
2015-01-01
When driving a car, the visual awareness is important for operating and controlling the vehicle. When operating a tractor, it is even more complex. This is because the driving is always accompanied with another task (e.g., plough) that demands constant changes of body postures, to achieve the needed Field-of-View (FoV). Therefore, the cockpit must be well designed to provide best FoV. Today, the driver's FoV is analyzed mostly by computer simulations of a cockpit model and a Digital Human Model (DHM) positioned inside. The outcome is an 'Eye view' that displays what the DHM 'sees'. This paper suggests a new approach that adds quantitative information to the current display; presented on three tractor models as case studies. Based on the results, the design can be modified. This may assist the engineer, to analyze, compare and improve the design, for better addressing the driver needs.
Improved LED backlight with unique color and intensity control and NVIS capability
NASA Astrophysics Data System (ADS)
Herman, Robert; Zagar, Pete; Ulijasz, Ted; Hansen, Hans C.; Ellner, Fred
2006-05-01
Currently deployed conventional flat panel AMLCD displays employ fluorescent lamp backlights to achieve the required lighting levels for cockpits in high performance aircraft. Advances have been made in backlighting technology by replacing fluorescent lamps with high performance LEDs. However, these new LED-based backlights are lacking in control of color and luminance intensity especially when related to NVIS requirements in a cockpit. This paper describes a unique integration of LED, electronic, and optical components to meet the requirements of high performance aircraft over their extreme range of operating environments. The LED-based backlight utilizes state-of-art components to enable daylight, night, and NVIS requirements to be implemented in a simple cost-effective package. The performance results presented highlight the advantages of this new design when compared to currently available backlighting designs. Techniques as described in section 2 of this paper are covered under patent application to the US and International Patent Offices.
Experimental evaluation of candidate graphical microburst alert displays
NASA Technical Reports Server (NTRS)
Wanke, Craig R.; Hansman, R. John
1992-01-01
A piloted flight simulator experiment was conducted to evaluate issues related to the display of microburst alerts on electronic cockpit instrumentation. Issues addressed include display clarity, usefulness of multilevel microburst intensity information, and whether information from multiple sensors should be presented separately or 'fused' into combined alerts. Nine active airline pilots of 'glass cockpit' aircraft participated in the study. Microburst alerts presented on a moving map display were found to be visually clear and useful to pilots. Also, multilevel intensity information coded by colors or patterns was found to be important for decision making purposes. Pilot opinion was mixed on whether to 'fuse' data from multiple sensors, and some resulting design tradeoffs were identified. The positional information included in the graphical alert presentation was found useful by the pilots for planning lateral missed approach maneuvers, but may result in deviations which could interfere with normal airport operations. A number of flight crew training issues were also identified.
NASA Astrophysics Data System (ADS)
Holter, Borre; Kamfjord, Thor G.; Fossum, Richard; Fagerberg, Ragnar
2000-08-01
The Norwegian based company PolyDisplayR ASA, in collaboration with the Norwegian Army Material Command and SINTEF, has refined, developed and shown with color and black/white technology demonstrators an electrically addressed Smectic A reflective LCD technology featuring: (1) Good contrast, all-round viewing angle and readability under all light conditions (no wash-out in direct sunlight). (2) Infinite memory -- image remains without power -- very low power consumption, no or very low radiation ('silent display') and narrow band updating. (3) Clear, sharp and flicker-free images. (4) Large number of gray tones and colors possible. (5) Simple construction and production -- reduced cost, higher yield, more robust and environmentally friendly. (6) Possibility for lighter, more robust and flexible displays based on plastic substrates. The results and future implementation possibilities for cockpit and soldier-system displays are discussed.
NASA Technical Reports Server (NTRS)
Kelly, J. R.
1983-01-01
A simulator investigation was conducted to determine the effect of the lead-aircraft ground-speed quantization level on self-spacing performance using a Cockpit Display of Traffic Information (CDTI). The study utilized a simulator employing cathode-ray tubes for the primary flight and navigation displays and highly augmented flight control modes. The pilot's task was to follow, and self-space on, a lead aircraft which was performing an idle-thrust profile descent to an instrument landing system (ILS) approach and landing. The spacing requirement was specified in terms of both a minimum distance and a time interval. The results indicate that the ground-speed quantization level, lead-aircraft scenario, and pilot technique had a significant effect on self-spacing performance. However, the ground-speed quantization level only had a significant effect on the performance when the lead aircraft flew a fast final approach.
Heat shock protein 70 as a biomarker of heat stress in a simulated hot cockpit.
Kumar, Yadunanda; Chawla, Anuj; Tatu, Utpal
2003-07-01
Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. Induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Six healthy volunteers were subjected to heat stress at 55 degrees C in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.
Shared Situation Awareness in the Flight Deck-ATC System
NASA Technical Reports Server (NTRS)
Endsley, Mica R.; Hansman, R. John; Farley, Todd C.
1998-01-01
New technologies and operational concept changes have been proposed for implementation in the National Airspace System (NAS). These changes include improved datalink (CPDLC) technologies for providing improved weather, traffic, Flight Object (FO) and navigation information to the pilot and controller, and new forms of automation for both the flight deck and air traffic management system. In addition, the way business is conducted in the NAS is under consideration. Increases in the discretion provided to pilots (and dispatchers in commercial airlines) are being contemplated in an effort to increase system capacity and flexibility. New concepts of operation (e.g., Collaborative Decision Making and Free Flight) allow for more control to be given to the cockpit or airline with correspondingly greater monitoring responsibilities on the ground. In addition, new technologies and displays make possible much greater information flow between the ground and the cockpit and also dramatic changes in the type of information provided. Designing to support these changes suggests two integrally linked questions: (1) What display technologies and information are needed to support desired changes responsibilities? (2) How will the changes in information availability influence the negotiation process between the cockpit and the ground? Each of these proposed changes (both in technology and operational concept) will have a marked impact on the performance, workload, and Situation Awareness (SA) of both pilots and controllers. Typically such changes are evaluated independently in terms of the effects of the proposed change on either pilot performance or ATC performance. It is proposed here, however, that in order to fully understand the effects of such changes, the joint pilot/controller system must be considered.
Pilots' Visual Scan Patterns and Attention Distribution During the Pursuit of a Dynamic Target.
Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham; Greaves, Matthew
2016-01-01
The current research was to investigate pilots' visual scan patterns in order to assess attention distribution during air-to-air maneuvers. A total of 30 qualified mission-ready fighter pilots participated in this research. Eye movement data were collected by a portable head-mounted eye-tracking device, combined with a jet fighter simulator. To complete the task, pilots had to search for, pursue, and lock on a moving target while performing air-to-air tasks. There were significant differences in pilots' saccade duration (ms) in three operating phases, including searching (M = 241, SD = 332), pursuing (M = 311, SD = 392), and lock-on (M = 191, SD = 226). Also, there were significant differences in pilots' pupil sizes (pixel(2)), of which the lock-on phase was the largest (M = 27,237, SD = 6457), followed by pursuit (M = 26,232, SD = 6070), then searching (M = 25,858, SD = 6137). Furthermore, there were significant differences between expert and novice pilots in the percentage of fixation on the head-up display (HUD), time spent looking outside the cockpit, and the performance of situational awareness (SA). Experienced pilots have better SA performance and paid more attention to the HUD, but focused less outside the cockpit when compared with novice pilots. Furthermore, pilots with better SA performance exhibited a smaller pupil size during the operational phase of lock on while pursuing a dynamic target. Understanding pilots' visual scan patterns and attention distribution are beneficial to the design of interface displays in the cockpit and in developing human factors training syllabi to improve the safety of flight operations.
Shared leadership in multiteam systems: how cockpit and cabin crews lead each other to safety.
Bienefeld, Nadine; Grote, Gudela
2014-03-01
In this study, we aimed to examine the effect of shared leadership within and across teams in multiteam systems (MTS) on team goal attainment and MTS success. Due to different and sometimes competing goals in MTS, leadership is required within and across teams. Shared leadership, the effectiveness of which has been proven in single teams, may be an effective strategy to cope with these challenges. We observed leadership in 84 cockpit and cabin crews that collaborated in the form of six-member MTS aircrews (N = 504) during standardized simulations of an in-flight emergency. Leadership was coded by three trained observers using a structured observation system. Team goal attainment was assessed by two subject matter experts using a checklist-based rating tool. MTS goal attainment was measured objectively on the basis of the outcome of the simulated flights. In successful MTS aircrews, formal leaders and team members displayed significantly more leadership behaviors, shared leadership by pursers and flight attendants predicted team goal attainment, and pursers' shared leadership across team boundaries predicted cross-team goal attainment. In cockpit crews, leadership was not shared and captains' vertical leadership predicted team goal attainment regardless of MTS success. The results indicate that in general, shared leadership positively relates to team goal attainment and MTS success,whereby boundary spanners' dual leadership role is key. Leadership training in MTS should address shared rather than merely vertical forms of leadership, and component teams in MTS should be trained together with emphasis on boundary spanners' dual leadership role. Furthermore, team members should be empowered to engage in leadership processes when required.
Cockpit noise intensity : eleven twin-engine light aircraft.
DOT National Transportation Integrated Search
1968-10-01
Eleven of the most popular twin-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, 6000, and 10000 feet MSL (mean sea level). Although generally quieter than single-engine pla...
Cockpit Human Factors Research Requirements
DOT National Transportation Integrated Search
1989-04-01
The safety, reliability, and efficiency of the National Airspace System (NAS) depend upon : the men and women who operate and use it. Aviation human factors research is the study of : how people function in the performance of their jobs as pilots, co...
Kinematic behavior of the human body during deceleration.
DOT National Transportation Integrated Search
1962-06-01
The geometry of motion of the head, trunk and appendages was established for one hundred male subjects restrained by a safety belt during forward and side dynamic loadings. Lethal structures of present aircraft seating and cockpit arrangements are re...
Recommended minimal cockpit head motion box dimensions
DOT National Transportation Integrated Search
2001-09-26
This memo provides recommendations for the dimensions of the minimal CHMB based on a study of pilot head motion in actual flight. These recommended dimensions should accommodate the vast majority of the targeted head motion exhibited by the vast majo...
A Common Cockpit Training System
2005-01-01
a learning environment where students can practice ASW via free - play simulated tactical situations while receiving feedback and instruction customized...Mission Display and includes free play simulation capability to maximize training. This intelligent tutoring system (ITS) will observe the operator’s
Terrain Display Alternatives Assessment of Information Density and Alerting Strategies
DOT National Transportation Integrated Search
1998-04-01
Current technology makes it possible to display navigation and terrain information on electronic : screens in the cockpit. The conventions used for position and terrain information must be clearly : presented so pilots can maintain their positional a...
14 CFR 15.101 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... (b) Aeronautical data that— (1) Is visually displayed in the cockpit of an aircraft; and (2) When visually displayed, accurately depicts a defective or deficient flight procedure or airway promulgated by...
The Integrated Mode Management Interface
NASA Technical Reports Server (NTRS)
Hutchins, Edwin
1996-01-01
Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the functions of the FMCS control and display unit. The purpose of the INMI is to provide flight crews with a shared medium in which they can assess the state of the autoflight system, take control actions on it, reason about its behavior, and communicate with each other about its behavior. The design is intended to increase mode awareness and provide a better interface to autoflight mode management. This report describes the IMMI, the methods that were used in designing and developing it, and the theory underlying the design and development processes.
Volcanic ash clouds; a continuing threat to international aviation
Scarone, H.
1987-01-01
Suddenly, an acrid odour began to pervade the aircraft, an eerie bluish glow lit up the edges of the wings, and in the cockpit the familiar hum of static started to break up the high-frequency communications. Then it happened.
Use of simplifier scenarios for CRM training
NASA Technical Reports Server (NTRS)
Weatherly, D.
1984-01-01
Cockpit resource management (CRM) at Metro Airlines is discussed. The process by which the program of CRM training was initiated is mentioned. Management aspects of various flying scenarios are considered. The transfer of training from the classroom to the field is assessed.
Pilot performance and workload using simulated GPS track angle error displays
DOT National Transportation Integrated Search
1995-01-01
The effect on simulated GPS instrument approach performance and workload resulting from the addition of Track Angle Error (TAE) information to cockpit RNAV receiver displays in explicit analog form was studied experimentally (S display formats, 6 pil...
Keyboard and message evaluation for cockpit input to data link
DOT National Transportation Integrated Search
1971-11-01
The project reported-herein studied some methods for implementation of the man-machine interface of Digital Data Link for Air Traffic Control. An analysis of information transfer requirements indicated that a vocabulary or less than 200 words could y...
Human Factors Experiments for Data Link : Final Report
DOT National Transportation Integrated Search
1975-11-01
This report describes the results of a series of experiments to evaluate cockpit Input/Output devices for Data Link as Phase I of a larger project to explore all facets of the digital transmission of air traffic control information. Following prelimi...
1974-11-22
X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft in flight over Sunnyvale golf course. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.
NASA’s Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms
2016-10-06
Engineers and researchers at NASA’s Armstrong Flight Research Center monitored the flights, and were able to observe the mapping of the sonic boom carpet from the F-18, from the center’s Mission Control Center.
Cockpit noise intensity : fifteen single-engine light aircraft.
DOT National Transportation Integrated Search
1968-09-01
Fifteen of the most popular single-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, and 10,000 feet MSL (mean sea level). In comparison with currently accepted DRC (damage-r...
Gender differences in a refractive surgery population of civilian aviators : final report.
DOT National Transportation Integrated Search
2000-07-01
INTRODUCTION. Refractive surgical procedures performed in the United States have increased in recent years and : continued growth is projected. Postoperative side effects can affect the quality of vision and may be unacceptable in a : cockpit environ...
Gender differences in a refractive surgery population of civilian aviators : final report.
DOT National Transportation Integrated Search
2000-07-01
INTRODUCTION. Refractive surgical procedures performed in the United States have increased in recent years and continued growth is projected. Postoperative side effects can affect the quality of vision and may be unacceptable in a cockpit environment...
TRACON controller weather information needs : I. literature review.
DOT National Transportation Integrated Search
2003-01-01
This report is the first in a series on the use of weather information by Terminal Radar Approach Control (TRACON) controllers and weather displays for the cockpit. The document provides a literature review with an emphasis on research relating to th...
14 CFR 25.777 - Cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... any member of this flight crew, from 5′2″ to 6′3″ in height, is seated with the seat belt and shoulder... belt and shoulder harness (if provided) fastened. (g) Control knobs must be shaped in accordance with...
14 CFR 25.777 - Cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... any member of this flight crew, from 5′2″ to 6′3″ in height, is seated with the seat belt and shoulder... belt and shoulder harness (if provided) fastened. (g) Control knobs must be shaped in accordance with...
Human factors in cockpit input and display for data link.
DOT National Transportation Integrated Search
1971-01-01
Problems associated with the entry of air-ground-air : messages via keyboard for transmission by Data Link : are discussed. The ARINC proposal for a keyboard is : presented, and an alternative method for coding keys : is proposed for comparative eval...
The Use of Analog Track Angle Error Display for Improving Simulated GPS Approach Performance
DOT National Transportation Integrated Search
1995-08-01
The effect of adding track angle error (TAE) information to general aviation aircraft cockpit displays used for GPS : nonprecision instrument approaches was studied experimentally. Six pilots flew 120 approaches in a Frasca 242 light : twin aircraft ...
Communications skills for CRM training
NASA Technical Reports Server (NTRS)
Shearer, M.
1984-01-01
A pilot training program in communication skills, listening, conflict solving, and task orientation, for a small but growing commuter airline is discussed. The interactions between pilots and management, and communication among crew members are examined. Methods for improvement of cockpit behavior management personnel relations are investigated.
Aviation behavioral technology program cockpit human factors research plan
DOT National Transportation Integrated Search
1985-01-15
The safety, reliability, and efficiency of the National Airspace System depend : upon the men and women who operate and use it. Aviation human factors : research is the study of how these people function in the performance of their : jobs as pilots, ...
Lunar Landing Research Facility and Model at Night
1969-06-20
Lunar Landing Module photographed at night at the Lunar Landing Research Facility. Gantry facility 1297. Upright cockpit design lander over moonscape pavement at LLRF. 69-4872 was published in Winds of Change, 75th Anniversary Publication of NASA, P.88, by James Schultz.
14 CFR 27.771 - Pilot compartment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment. 27.771 Section 27.771 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) The vibration and noise characteristics of cockpit appurtenances may not interfere with safe operation. ...
14 CFR 27.771 - Pilot compartment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 27.771 Section 27.771 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) The vibration and noise characteristics of cockpit appurtenances may not interfere with safe operation. ...
NASA Technical Reports Server (NTRS)
Dorpinghaus, R.
1982-01-01
A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.
A comparison of the effects of navigational display formats and memory aids on pilot performance.
DOT National Transportation Integrated Search
1996-05-01
A great deal of effort has been invested in examining integrated instrumentation for advanced cockpits, but little comparable effort has been directed toward the greatest number of aircraft presently flying - those in the general aviation environment...
Aviation Behavioral Technology Program: Cockpit Human Factors Research Plan
DOT National Transportation Integrated Search
1985-01-15
The safety, reliability, and efficiency of the National Airspace System depend upon the men and women who operate and use it. Aviation human factors research is the study of how these people function in the performance of their jobs as pilots, cont...
NASA Tech Briefs, May 1989. Volume 13, No. 5
NASA Technical Reports Server (NTRS)
1989-01-01
This issue contains a special feature on the flight station of the future, discussing future enhancements to Aircraft cockpits. Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences.
DOT National Transportation Integrated Search
2013-06-30
Traffic Alert and Collision Avoidance Systems (TCAS) displays depict traffic advisories, resolution advisories, and information on other aircraft. Symbols for other aircraft include the proximate status indication where the symbols of proximate...
Pilot/vehicle model analysis of visually guided flight
NASA Technical Reports Server (NTRS)
Zacharias, Greg L.
1991-01-01
Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.
Wadhera, Rishi K; Parker, Sarah Henrickson; Burkhart, Harold M; Greason, Kevin L; Neal, James R; Levenick, Katherine M; Wiegmann, Douglas A; Sundt, Thoralf M
2010-02-01
There is general enthusiasm for applying strategies from aviation directly to medical care; the application of the "sterile cockpit" rule to surgery has accordingly been suggested. An implicit prerequisite to the evidence-based transfer of such a concept to the clinical domain, however, is definition of periods of high mental workload analogous to takeoff and landing. We measured cognitive demands among operating room staff, mapped critical events, and evaluated protocol-driven communication. With the National Aeronautics and Space Administration Task Load Index and semistructured focus groups, we identified common critical stages of cardiac surgical cases. Intraoperative communication was assessed before (n = 18) and after (n = 16) introduction of a structured communication protocol. Cognitive workload measures demonstrated high temporal diversity among caregivers in various roles. Eight critical events during cardiopulmonary bypass were then defined. A structured, unambiguous verbal communication protocol for these events was then implemented. Observations of 18 cases before implementation including 29.6 hours of cardiopulmonary bypass with 632 total communication exchanges (average 35.1 exchanges/case) were compared with observations of 16 cases after implementation including 23.9 hours of cardiopulmonary bypass with 748 exchanges (average 46.8 exchanges/case, P = .06). Frequency of communication breakdowns per case decreased significantly after implementation (11.5 vs 7.3 breakdowns/case, P = .008). Because of wide variations is cognitive workload among caregivers, effective communication can be structured around critical events rather than defined intervals analogous to the sterile cockpit, with reduction in communication breakdowns. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Prediction of anthropometric accommodation in aircraft cockpits
NASA Astrophysics Data System (ADS)
Zehner, Gregory Franklin
Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.
Advanced automated glass cockpit certification: Being wary of human factors
NASA Technical Reports Server (NTRS)
Amalberti, Rene; Wilbaux, Florence
1994-01-01
This paper presents some facets of the French experience with human factors in the process of certification of advanced automated cockpits. Three types of difficulties are described: first, the difficulties concerning the hotly debated concept of human error and its non-linear relationship to risk of accident; a typology of errors to be taken into account in the certification process is put forward to respond to this issue. Next, the difficulties connected to the basically gradual and evolving nature of pilot expertise on a given type of aircraft, which contrasts with the immediate and definitive style of certifying systems. The last difficulties to be considered are those related to the goals of certification itself on these new aircraft and the status of findings from human factor analyses (in particular, what should be done with disappointing results, how much can the changes induced by human factors investigation economically affect aircraft design, how many errors do we need to accumulate before we revise the system, what should be remedied when human factor problems are discovered at the certification stage: the machine? pilot training? the rules? or everything?). The growth of advanced-automated glass cockpits has forced the international aeronautical community to pay more attention to human factors during the design phase, the certification phase and pilot training. The recent creation of a human factor desk at the DGAC-SFACT (Official French services) is a direct consequence of this. The paper is divided into three parts. Part one debates human error and its relationship with system design and accident risk. Part two describes difficulties connected to the basically gradual and evolving nature of pilot expertise on a given type of aircraft, which contrasts with the immediate and definitive style of certifying systems. Part three focuses on concrete outcomes of human factors for certification purposes.
Thoughts in flight: automation use and pilots' task-related and task-unrelated thought.
Casner, Stephen M; Schooler, Jonathan W
2014-05-01
The objective was to examine the relationship between cockpit automation use and task-related and task-unrelated thought among airline pilots. Studies find that cockpit automation can sometimes relieve pilots of tedious control tasks and afford them more time to think ahead. Paradoxically, automation has also been shown to lead to lesser awareness. These results prompt the question of what pilots think about while using automation. A total of 18 airline pilots flew a Boeing 747-400 simulator while we recorded which of two levels of automation they used. As they worked, pilots were verbally probed about what they were thinking. Pilots were asked to categorize their thoughts as pertaining to (a) a specific task at hand, (b) higher-level flight-related thoughts (e.g.,planning ahead), or (c) thoughts unrelated to the flight. Pilots' performance was also measured. Pilots reported a smaller percentage of task-at-hand thoughts (27% vs. 50%) and a greater percentage of higher-level flight-related thoughts (56% vs. 29%) when using the higher level of automation. However, when all was going according to plan, using either level of automation, pilots also reported a higher percentage of task-unrelated thoughts (21%) than they did when in the midst of an unsuccessful performance (7%). Task-unrelated thoughts peaked at 25% when pilots were not interacting with the automation. Although cockpit automation may provide pilots with more time to think, it may encourage pilots to reinvest only some of this mental free time in thinking flight-related thoughts. This research informs the design of human-automation systems that more meaningfully engage the human operator.
Shared Problem Models and Crew Decision Making
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Statler, Irving C. (Technical Monitor)
1994-01-01
The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.
STS-38 Mission Specialist Gemar climbs into T-38A cockpit at Ellington Field
1990-06-18
S90-41527 (August 1990) --- Astronaut Charles D. (Sam) Gemar, prepares to climb aboard on of NASA's T-38 jet trainers, located near the Johnson Space Center (JSC). Gemar began training as an astronaut candidate in summer of 1985.
A pilot evaluation of text display formats for weather information in the cockpit
DOT National Transportation Integrated Search
1995-10-01
This study focuses on the weather (WX) services portion of Data Link. A : two-phase evaluation was conducted with 16 air transport (ATP) and general : aviation (GA) pilots. The pilots evaluated four data formatting options and : four data entry metho...
DOT National Transportation Integrated Search
1971-07-01
A previous CAMI laboratory investigation showed that alcohol impairs the ability of men to suppress vestibular nystagmus while visually fixating on a cockpit instrument, thus degrading visual tracking performance (eye-hand coordination) during angula...
2. Looking glass aircraft with open main entry door and ...
2. Looking glass aircraft with open main entry door and cockpit hatch. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
1988-03-29
View of the right cockpit of the F-111 MAW aircraft. Unlike most fighter aircraft of the time, the F-111 had side-by-side seating. The pilot sat on the left side, and the weapons systems officer on the right. Both had control sticks to fly the aircraft.
1974-11-22
X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft over Highway 101 in approach to Moffett Field, California. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.
1974-11-22
X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft over Highway 101 in approach to Moffett Field, California. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.
Use of color on airport moving maps and cockpit displays of traffic information (CDTIs)
DOT National Transportation Integrated Search
2014-06-01
Color can be an effective method for coding visual information, making it easier to find and identify symbols on a display (Christ, 1975). However, careful consideration should be given when applying color because excessive or inappropriate use of co...
DOT National Transportation Integrated Search
1971-07-01
The problem of displaying visibility information to both : controller and pilot is discussed in the context of visibility : information flow in the airport-aircraft system. : The optimum amount of visibility information, as well as its : rate of flow...
14 CFR 135.152 - Flight data recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... airplane); (23) Ground spoiler position or speed brake selection (except when parameters of paragraph (h...) Ground spoiler position and speed brake selection; and (88) All cockpit flight control input forces... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Aircraft and...
14 CFR 135.152 - Flight data recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... airplane); (23) Ground spoiler position or speed brake selection (except when parameters of paragraph (h...) Ground spoiler position and speed brake selection; and (88) All cockpit flight control input forces... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Aircraft and...
14 CFR 135.152 - Flight data recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... airplane); (23) Ground spoiler position or speed brake selection (except when parameters of paragraph (h...) Ground spoiler position and speed brake selection; and (88) All cockpit flight control input forces... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Aircraft and...
14 CFR 135.152 - Flight data recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... airplane); (23) Ground spoiler position or speed brake selection (except when parameters of paragraph (h...) Ground spoiler position and speed brake selection; and (88) All cockpit flight control input forces... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Aircraft and...
14 CFR 135.152 - Flight data recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... airplane); (23) Ground spoiler position or speed brake selection (except when parameters of paragraph (h...) Ground spoiler position and speed brake selection; and (88) All cockpit flight control input forces... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Aircraft and...
Integrating cockpit display and video recorder systems
NASA Astrophysics Data System (ADS)
Bailey, David C.; Jones, Romie; Testerman, David
1995-06-01
A pair of flight data recording and playback systems are described for the F-22 and F-15. These systems employ multiplexing techniques to expand the amount of data recorded and inherent benefit therefrom. Variations between the system accommodate the different avionics architecture of each aircraft.
DOT National Transportation Integrated Search
2000-03-26
This study compared the effect of alternative graphic or : numeric cockpit display formats on the tactical aspects of : vertical navigation (VNAV). Display formats included: : a) a moving map with altitude range arc, b) the same : format, supplemente...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exclusions. 15.103 Section 15.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... chart or map; (3) Was not accurately displayed on a visual display in the cockpit, or (4) Was obviously...
Flight Testing the X-36: The Test Pilots Perspective
NASA Technical Reports Server (NTRS)
Walker, Laurence A.
1997-01-01
The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.
Approximate entropy: a new evaluation approach of mental workload under multitask conditions
NASA Astrophysics Data System (ADS)
Yao, Lei; Li, Xiaoling; Wang, Wei; Dong, Yuanzhe; Jiang, Ying
2014-04-01
There are numerous instruments and an abundance of complex information in the traditional cockpit display-control system, and pilots require a long time to familiarize themselves with the cockpit interface. This can cause accidents when they cope with emergency events, suggesting that it is necessary to evaluate pilot cognitive workload. In order to establish a simplified method to evaluate cognitive workload under a multitask condition. We designed a series of experiments involving different instrument panels and collected electroencephalograms (EEG) from 10 healthy volunteers. The data were classified and analyzed with an approximate entropy (ApEn) signal processing. ApEn increased with increasing experiment difficulty, suggesting that it can be used to evaluate cognitive workload. Our results demonstrate that ApEn can be used as an evaluation criteria of cognitive workload and has good specificity and sensitivity. Moreover, we determined an empirical formula to assess the cognitive workload interval, which can simplify cognitive workload evaluation under multitask conditions.
NASA Astrophysics Data System (ADS)
Welch, Sharon S.
Topics discussed in this volume include aircraft guidance and navigation, optics for visual guidance of aircraft, spacecraft and missile guidance and navigation, lidar and ladar systems, microdevices, gyroscopes, cockpit displays, and automotive displays. Papers are presented on optical processing for range and attitude determination, aircraft collision avoidance using a statistical decision theory, a scanning laser aircraft surveillance system for carrier flight operations, star sensor simulation for astroinertial guidance and navigation, autonomous millimeter-wave radar guidance systems, and a 1.32-micron long-range solid state imaging ladar. Attention is also given to a microfabricated magnetometer using Young's modulus changes in magnetoelastic materials, an integrated microgyroscope, a pulsed diode ring laser gyroscope, self-scanned polysilicon active-matrix liquid-crystal displays, the history and development of coated contrast enhancement filters for cockpit displays, and the effect of the display configuration on the attentional sampling performance. (For individual items see A93-28152 to A93-28176, A93-28178 to A93-28180)
A Framework for Modeling Human-Machine Interactions
NASA Technical Reports Server (NTRS)
Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)
1996-01-01
Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.
Modeling to predict pilot performance during CDTI-based in-trail following experiments
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1984-01-01
A mathematical model was developed of the flight system with the pilot using a cockpit display of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. Both in-trail and vertical dynamics were included. The nominal spacing was based on one of three criteria (Constant Time Predictor; Constant Time Delay; or Acceleration Cue). This model was used to simulate digitally the dynamics of a string of multiple following aircraft, including response to initial position errors. The simulation was used to predict the outcome of a series of in-trail following experiments, including pilot performance in maintaining correct longitudinal spacing and vertical position. The experiments were run in the NASA Ames Research Center multi-cab cockpit simulator facility. The experimental results were then used to evaluate the model and its prediction accuracy. Model parameters were adjusted, so that modeled performance matched experimental results. Lessons learned in this modeling and prediction study are summarized.
Why is it Doing That? - Assumptions about the FMS
NASA Technical Reports Server (NTRS)
Feary, Michael; Immanuel, Barshi; Null, Cynthia H. (Technical Monitor)
1998-01-01
In the glass cockpit, it's not uncommon to hear exclamations such as "why is it doing that?". Sometimes pilots ask "what were they thinking when they set it this way?" or "why doesn't it tell me what it's going to do next?". Pilots may hold a conceptual model of the automation that is the result of fleet lore, which may or may not be consistent with what the engineers had in mind. But what did the engineers have in mind? In this study, we present some of the underlying assumptions surrounding the glass cockpit. Engineers and designers make assumptions about the nature of the flight task; at the other end, instructor and line pilots make assumptions about how the automation works and how it was intended to be used. These underlying assumptions are seldom recognized or acknowledged, This study is an attempt to explicitly arti culate such assumptions to better inform design and training developments. This work is part of a larger project to support training strategies for automation.
NASA Technical Reports Server (NTRS)
Quach, Cuong C.
2004-01-01
NASA/Langley Research Center collaborated with the Federal Aviation Administration (FAA) to test a Runway Incursion Prevention System (RIPS) at the Dallas Fort Worth International Airport (DFW) in October 2000. The RIPS combines airborne and ground sensor data with various cockpit displays to improve pilots' awareness of traffic conditions on the airport surface. The systems tested at DFW involved surface radar and data systems that gather and send surface traffic information to a research aircraft outfitted with the RIPS software, cockpit displays, and data link transceivers. The data sent to the airborne systems contained identification and GPS location of traffic. This information was compared with the own-ship location from airborne GPS receivers to generate incursion alerts. A total of 93 test tracks were flown while operating RIPS. This report compares the accuracy of the airborne GPS systems that gave the own-ship position of the research aircraft for the 93 test tracks.
A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research
NASA Technical Reports Server (NTRS)
Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)
1995-01-01
A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.
High-speed civil transport - Advanced flight deck challenges
NASA Technical Reports Server (NTRS)
Swink, Jay R.; Goins, Richard T.
1992-01-01
This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.
Collimated autostereoscopic displays for cockpit applications
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-06-01
The use of an autostereoscopic display (a display that produces stereoscopic images that the user can see without wearing special glasses) for cockpit applications is now under investigation at Wright Patterson Air Force Base. DTI reported on this display, built for testing in a simulator, at last year's conference. It is believed, based on testing performed at NASA's Langley Research Center, that collimating this type of display will accrue benefits to the user including a grater useful imaging volume and more accurate stereo perception. DTI has therefore investigated the feasibility of collimating an autostereoscopic display, and has experimentally demonstrated a proof of concept model of such a display. As in the case of conventional displays, a collimated autostereoscopic display utilizes an optical element located one focal length from the surface of the image forming device. The presence of this element must be taken into account when designing the optics used to create the autostereoscopic images. The major design issues associated with collimated 2D displays are also associated with collimated autostereoscopic displays.
The Human Dimension of Closing the Training Gap for Fifth-Generation Fighters
NASA Technical Reports Server (NTRS)
Hoke, Jaclyn; Postnikov, Alex; Schnell, Thomas
2012-01-01
Based on a review of the recent technical literature there is little question that a serious training gap exists for fifth-generation fighters, primarily arising from the need to provide their own red-air. There are several methods for reducing this gap, including injecting virtual and constructive threats into the live cockpit. This live-virtual-constructive (LVC) training approach provides a cost effective means for addressing training needs but faces several challenges. Technical challenges include data links and information assurance. A more serious challenge may be the human factors dimension of representing virtual and constructive entities in the cockpit while ensuring safety-of-flight. This also needs to happen without increasing pilot workload. This paper discusses the methods Rockwell Collins and the University of Iowa's Operator Performance Lab use to assess pilot workload and training fidelity measures in an LVC training environment and the research we are conducting in safety-of-flight requirements of integrated LVC symbology.
2004-01-22
KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager for Discovery, Stephanie Stilson poses for a photo after working with a KSC Web team who were filming a special feature for the KSC Web. Stilson explained her role in the recent Orbiter Major Modification period, which included inspection, modifications and reservicing of most systems onboard. The work on Discovery also included the installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
[Clarity of flight information in the cockpit of the new aircraft generation].
Stern, C; Schwartz, R; Groenhoff, S; Draeger, J; Hüttig, G; Bernhard, H
1994-08-01
Fundamental changes of cockpit design in recent years, especially the transition from analogue to digital flight information systems and the use of colour-coded displays, lead to new demands on the visual system of the pilot. Twenty experienced pilots each participated in four 15-min sessions with a simulator program in the new Airbus 340 Simulator of the Technical University of Berlin. The pilots were confronted with various flight situations and events. The simulation program was carried out with visual acuity of 1.0 or better, with acuity reduced to 0.5 and with red and green filters. The time between the display of information and the pilot's reaction was determined. The probands were classified into two groups according to their age (< or = 45 years, > or = 45 years). In both age groups a significant difference was found only with green filters. There was no difference with reduced visual acuity or with red filters, and no differences were seen between the two age groups.
Cockpit emergency safety system
NASA Astrophysics Data System (ADS)
Keller, Leo
2000-06-01
A comprehensive safety concept is proposed for aircraft's experiencing an incident to the development of fire and smoke in the cockpit. Fire or excessive heat development caused by malfunctioning electrical appliance may produce toxic smoke, may reduce the clear vision to the instrument panel and may cause health-critical respiration conditions. Immediate reaction of the crew, safe respiration conditions and a clear undisturbed view to critical flight information data can be assumed to be the prerequisites for a safe emergency landing. The personal safety equipment of the aircraft has to be effective in supporting the crew to divert the aircraft to an alternate airport in the shortest possible amount of time. Many other elements in the cause-and-effect context of the emergence of fire, such as fire prevention, fire detection, the fire extinguishing concept, systematic redundancy, the wiring concept, the design of the power supplying system and concise emergency checklist procedures are briefly reviewed, because only a comprehensive and complete approach will avoid fatal accidents of complex aircraft in the future.
NASA Technical Reports Server (NTRS)
Burgess, Malcolm A.; Thomas, Rickey P.
2004-01-01
This experiment investigated improvements to cockpit weather displays to better support the hazardous weather avoidance decision-making of general aviation pilots. Forty-eight general aviation pilots were divided into three equal groups and presented with a simulated flight scenario involving embedded convective activity. The control group had access to conventional sources of pre-flight and in-flight weather products. The two treatment groups were provided with a weather display that presented NEXRAD mosaic images, graphic depiction of METARs, and text METARs. One treatment group used a NEXRAD image looping feature and the second group used the National Convective Weather Forecast (NCWF) product overlaid on the NEXRAD display. Both of the treatment displays provided a significant increase in situation awareness but, they provided incomplete information required to deal with hazardous convective weather conditions, and would require substantial pilot training to permit their safe and effective use.
CDTI target selection criteria
NASA Technical Reports Server (NTRS)
Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.
1984-01-01
A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.
2004-01-22
KENNEDY SPACE CENTER, FLA. - Standing on a workstand (at left) in the Orbiter Processing Facility is Stephanie Stilson, NASA vehicle manager for Discovery. She is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period on Discovery, which included inspection, modifications and reservicing of most systems onboard, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
2004-01-22
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Stephanie Stilson, NASA vehicle manager for Discovery, stands in front of a leading edge on the wing of Discovery. She is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period on Discovery, which included inspection, modifications and reservicing of most systems onboard, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
2003-08-27
KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
2003-08-27
KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician turns on a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
Literature review of voice recognition and generation technology for Army helicopter applications
NASA Astrophysics Data System (ADS)
Christ, K. A.
1984-08-01
This report is a literature review on the topics of voice recognition and generation. Areas covered are: manual versus vocal data input, vocabulary, stress and workload, noise, protective masks, feedback, and voice warning systems. Results of the studies presented in this report indicate that voice data entry has less of an impact on a pilot's flight performance, during low-level flying and other difficult missions, than manual data entry. However, the stress resulting from such missions may cause the pilot's voice to change, reducing the recognition accuracy of the system. The noise present in helicopter cockpits also causes the recognition accuracy to decrease. Noise-cancelling devices are being developed and improved upon to increase the recognition performance in noisy environments. Future research in the fields of voice recognition and generation should be conducted in the areas of stress and workload, vocabulary, and the types of voice generation best suited for the helicopter cockpit. Also, specific tasks should be studied to determine whether voice recognition and generation can be effectively applied.
Evaluating Flight Crew Operator Manual Documentation
NASA Technical Reports Server (NTRS)
Sherry, Lance; Feary, Michael
1998-01-01
Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein settles in the cockpit of the shuttle training aircraft (STA) before taking off for orbiter landing practice. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein climbs toward the cockpit of the shuttle training aircraft (STA) to practice landing the orbiter. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett