Sample records for cod loading rates

  1. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation.

    PubMed

    Ghangrekar, M M; Asolekar, S R; Joshi, S G

    2005-03-01

    Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.

  2. Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.

    PubMed

    Zielinska, M; Wojnowska-Baryla, I

    2006-05-01

    Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.

  3. Anaerobic biodegradation of aircraft deicing fluid in UASB reactors.

    PubMed

    Tham, P T Pham thi; Kennedy, K J Kevin J

    2004-05-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions (0.8% 1.6% ADF (6000-12,000mg/L COD), 12-56h HRT, and 18-36gVSS/L) were conducted in continuous mode. The development of four empirical models describing process responses (i.e. COD removal efficiency, biomass-specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time, and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass-specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass-specific acetoclastic activity was improved two-fold from 0.23gCOD/gVSS/d for inoculum to a maximum of 0.55gCOD/gVSS/d during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. The predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate is increased. ADF toxicity effects were evident for 1.6% ADF at medium organic loadings (SOLR above 0.5gCOD/gVSS/d). In contrast, good reactor stability and excellent COD removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73gCOD/gVSS/d).

  4. Nitrogen removal from high organic loading wastewater in modified Ludzack-Ettinger configuration MBBR system.

    PubMed

    Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza

    2015-01-01

    A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.

  5. High solids co-digestion of food and landscape waste and the potential for ammonia toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drennan, Margaret F.; DiStefano, Thomas D., E-mail: thomas.distefano@bucknell.edu

    Highlights: • We evaluated co-digestion of food and landscape waste with a pilot-scale anaerobic dry digester. • We evaluated reactor performance at 35 °C under low and high organic loading rates. • Performance was stable under low organic loading rate, but declined under high organic loading rate. • Respirometry was employed to investigate potential inhibition due to ammonia. • Landscape waste was unsuitable in increasing the C:N ratio during codigestion. - Abstract: A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvaniamore » (USA). HSAD was stable at low loadings (2 g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15 g COD/L-day). At low loadings, methane yields were 232 L CH{sub 4}/kg COD fed and 229 L CH{sub 4}/kg VS fed, and at high loadings yields were 211 L CH{sub 4}/kg COD fed and 272 L CH{sub 4}/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15 g COD/L-day.« less

  6. Influence of organic loading rate on integrated bioreactor treating hypersaline mustard wastewater.

    PubMed

    Kang, Wei; Chai, Hongxiang; Yang, Shiwei; Du, Guojun; Zhou, Jian; He, Qiang

    2016-07-01

    Mustard tuber wastewater is characterized by high salinity and high organic content that is potentially detrimental to the biological treatment system and affects the treatment efficiency accordingly. The experiment used the integrated bioreactor to reduce much of the organics in mustard tuber wastewater, and found the influence of organic loading rate on effluent chemical oxygen demand (COD) and phosphate (PO4 (3-) -P). Results showed that under the condition of 10-15 °C, 6 mg/L of dissolved oxygen, the reduction value of COD removal rate in anaerobic and aerobic area was 14.5% and 31.7% when the organic loading rate increased from 2.0 to 4.0 kg COD/m(3) /day. Therefore, an integrated bioreactor should take 2.0 kg COD/m(3) /day organic loading rate in mustard wastewater treatment if the effluent is expected to meet the third level of "Integrated Wastewater Discharge Standard" (GB 8978-1996). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  7. High solids co-digestion of food and landscape waste and the potential for ammonia toxicity.

    PubMed

    Drennan, Margaret F; DiStefano, Thomas D

    2014-07-01

    A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvania (USA). HSAD was stable at low loadings (2g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15 g COD/L-day). At low loadings, methane yields were 232 L CH4/kg COD fed and 229 L CH4/kg VS fed, and at high loadings yields were 211 L CH4/kg COD fed and 272 L CH4/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15 g COD/L-day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E

    2016-05-01

    Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interpreting the effect of increasing COD loading rates on the performance of a pre-anoxic MBBR system: implications on the attached and suspended biomass dynamics and nitrification-denitrification activity.

    PubMed

    Lima, P S; Dezotti, M; Bassin, J P

    2016-06-01

    A pre-anoxic MBBR system was subjected to increasing organic loading rates up to 18 gCOD/(m(2) day). At 3 gCOD/(m(2) day), most of the incoming organic matter was removed via denitrification. However, at higher loads, anoxic COD removal became limited by the nitrite/nitrate supply from the aerobic reactor, which assumed an important role in this conversion. Despite the application of low dissolved oxygen (DO) levels (<2 mg/L) in this tank, nitrification was observed to be nearly complete until 8 gCOD/(m(2) day). As the organic input was increased, the maximum specific nitrifying activity gradually declined. Activity tests suggested that an oxygen-limited environment was established in the biofilm. At lower loads [3-8 gCOD/(m(2) day)], the nitrification product obtained was affected by the DO concentration, whereas from 16 to 21 gCOD/(m(2) day), nitrite/nitrate profiles were likely associated with microbial stratification in the biofilm. The results also indicated that the role of the suspended biomass in the overall nitrification and denitrification can be very significant in high loaded MBBRs and should not be neglected, even at low HRTs.

  10. Anaerobic treatment of landfill leachate by sulfate reduction.

    PubMed

    Henry, J G; Prasad, D

    2000-01-01

    The present study was conducted to investigate the effectiveness of the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The effects of several COD/SO4 ratios (keeping COD constant) and loadings on anaerobic filter performance were studied and compared with the results from anaerobic filters which followed the methanogenic pathway. Results indicated that the treatability of leachate by sulphate reducing bacteria (SRB) was dependent upon the leachate strength. With high strength leachate (COD = 15,000 mg/L) from the Keele Valley Landfill, it was found that at lower COD/SO4 ratios (< or = 1.6) toxic conditions developed in the system that were more inhibitory to the SRB than to the methane producing bacteria (MPB). As the COD/SO4 ratio increased, methanogenesis predominated. No predominance of SRB occurred at any COD/SO4 ratio with high strength leachate. The highest COD removal achieved was about 70% of which 20% was accomplished by the SRB at a COD/SO4 ratio of 1.6 and an organic loading rate (OLR) of 4 kg COD/m3.d. With low strength leachate (COD = 1500-3300 mg/L) from the Brock West Landfill, and a COD/SO4 ratio < or = 1, SRB became predominant. In these anaerobic filters in which SRB were predominant, the SRB reduced the COD as well as the MPB could. Sulphide inhibition did not take place at any loading in units treating low strength leachate. Consequently, both SRB and MPB should function at COD/SO4 ratios between 1 and 3. About 60% COD removal was achieved at a loading of 2.8 kg COD/m3.d and a COD/SO4 ratio of 1.0. However at a loading of 6 kg COD/m3.d only 27% COD removal was achieved, all of it through the sulphate-reduction pathway. These OLR values are comparable to those applied in systems where methanogenesis was dominant. It was also observed that once the methanogens were established in the units, it was not possible to displace them completely. However, where methanogenesis had not been previously established, it was found that sulphate-reduction could be the sole pathway for COD removal. From this study, it can be concluded that there is no advantage to the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The other options for increasing the loadings, i.e. the use of high surface/volume filter media (to achieve higher biomass concentrations) or high rate systems are likely to be more successful.

  11. Influence of organic load rate (OLR) on the hydrolytic acidification of 2-butenal manufacture wastewater and analysis of bacterial community structure.

    PubMed

    Song, Guangqing; Xi, Hongbo; Zhou, Yuexi; Fu, Liya; Xing, Xin; Wu, Changyong

    2017-11-01

    The influence of organic loading rate (OLR) on the performance of hydrolytic acidification process for treating 2-butenal manufacture wastewater was comprehensively studied, while its impact on microbial community was thoroughly investigated. The results demonstrated that over 21.0% of the average COD removal rate was observed in the range of OLR from 0.52 to 3.98g COD/L·d, whereas it reduced to 15.3% with increasing OLR to 6.09g COD/L·d. The acidification degree dramatically decreased from 17.1% to 4.7% when OLR increased from 3.98 to 6.09g COD/L·d. In addition, the removal rates of three kinds of typical matters were less than 65% at the OLR 6.09g COD/L·d. Illumina MiSeq sequencing revealed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were dominant phyla at different OLRs. Finally, multivariate analysis suggested that the genera Longilinea and T78 had a positive correlation with the degradation of three kinds of typical matters and COD removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhanced biological nutrients removal using an integrated oxidation ditch with vertical circle from wastewater by adding an anaerobic column.

    PubMed

    Wang, Shu-mei; Liu, Jun-xin

    2005-01-01

    Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77.5% was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN > 6, COD/TP > 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS x d), TN loading rate = 0.028-0.034 kgTN/(kgSS x d) and TP loading rate = 0.003-0.005 kgTP/(kgSS x d), respectively.

  13. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    PubMed

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  15. [Comparison between porous polymer carrier and activated carbon carrier used for treating organic wastewater in anaerobic fluidized-bed reactor].

    PubMed

    Yang, P; Fang, Z; Shi, Y

    2001-01-01

    A comparative performance between porous polymer carriers (HP) and granular activated carbon carriers (GAC) in anaerobic fluidied-bed reactors was undertaken to evaluate their characters. The results showed that the COD removal and the biogas volume yield rate were 84% and 16.5 m3/(m3.d) respectively when HP was used as carrier to treat synthetic wastewater, at the top COD organic load rate of 65.5 kg/(m3.d), however those were 74.2% and 14.5% respectively for GAC carrier at the top load rate of 63.25 kg/(m3.d). The COD removal and biogas volume yield rate were 64.7%-54.5% and 1.89-2.7 m3/(m3.d) respectively when HP was used as carriers to treat straw pulping wastewater, at the load rate of 14.5-36.15 kg/(m3.d), and those were 61.0%-52.1% and 0.73-2.0 m3/(m3.d) respectively for GAC carriers at the load rate 9.16-19.06 kg/(m3.d). The study revealed that the HP carriers reactor is more efficient than the GAC carriers reactor in microbial immobilization and the wastewater treatment.

  16. Grey water treatment by the slanted soil system with unsorted soil media.

    PubMed

    Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei

    2015-01-01

    This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.

  17. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  18. Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.

    PubMed

    Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R

    2006-11-01

    In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).

  19. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.

    PubMed

    Denac, M; Dunn, I J

    1988-07-05

    Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted in large increases inorganic acids, especially acetic and propionic, as well as large increases in the CO(2) gas content. In general, the CO(2) content of the gas was very low, due to the large amount of dissolved CO(2) that exited with the liquid phase at low residence times. The performance of the FBR with whey was comparable to its performance with molasses, and switching of molasses to whey feed resulted in immediate good performance without adaptation.

  20. An experimental model of COD abatement in MBBR based on biofilm growth dynamic and on substrates' removal kinetics.

    PubMed

    Siciliano, Alessio; De Rosa, Salvatore

    2016-08-01

    In this study, the performance of a lab-scale Moving Bed Biofilm Reactor (MBBR) under different operating conditions was analysed. Moreover, the dependence of the reaction rates both from the concentration and biodegradability of substrates and from the biofilm surface density, by means of several batch kinetic tests, was investigated. The reactor controls exhibited an increasing COD (Chemical Oxygen Demand) removal, reaching maximum yields (close to 90%) for influent loadings of up to12.5 gCOD/m(2)d. From this value, the pilot plant performance decreased to yields of only about 55% for influent loadings greater than 16 gCOD/m(2)d. In response to the influent loading increase, the biofilm surface density exhibited a logistic growing trend until reaching a maximum amount of total attached solids of about 9.5 g/m(2). The kinetic test results indicated that the COD removal rates for rapidly biodegradable, rapidly hydrolysable and slowly biodegradable substrates were not affected by the organic matter concentrations. Instead, first-order kinetics were detected with respect to biofilm surface density. The experimental results permitted the formulation of a mathematical model to predict the MBBR organic matter removal efficiency. The validity of the model was successfully tested in the lab-scale plant.

  1. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    PubMed

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of Organic Loading Rates on biodegradation of linear alkyl benzene sulfonate, oil and grease in greywater by Integrated Fixed-film Activated Sludge (IFAS).

    PubMed

    Eslami, Hadi; Ehrampoush, Mohammad Hassan; Ghaneian, Mohammad Taghi; Mokhtari, Mehdi; Ebrahimi, Aliasghar

    2017-05-15

    In this study, performance of Integrated Fixed-film Activated Sludge (IFAS) system in treatment of Linear Alkylbenzene Sulfonate (LAS), and oil & grease in synthetic greywater and effect of Organic Loading Rates (OLRs) on removal efficiency within a period of 105 days were investigated. Present study was carried out in a pilot scale under such conditions as temperature of 30 ± 1 °C, dissolved oxygen of 2.32 ± 0.91 mg/l, pH of 8.01 ± 0.95 and OLRs of 0.11-1.3gCOD/L.d. Also, Scanning Electron Microscopy (SEM) images were employed to specify rate of the biofilm formed on the media inside the reactor IFAS. The best removal efficiency for COD, LAS and oil and grease were respectively obtained as 92.52%, 94.24% and 90.07% in OLR 0.44gCOD/L.d. The assessment of loading rate indicated that with increased OLR to 0.44gCOD/L.d, removal efficiency of COD, oil and grease was increased while with increased OLR, removal efficiency was decreased. In doing so, based on the statistical test ANOVA, such a difference between removal efficiencies in diverse OLRs was significant for COD (p = 0.003), oil and grease (p = 0.01). However, in terms of LAS, with increased value of OLR to 0.44gCOD/L.d, the removal efficiency was increased and then with higher OLRs, removal efficiency was slightly decreased that is insignificant (p = 0.35) based on the statistical test ANOVA. The SEM images also showed that the biofilm formed on the media inside IFAS reactor plays a considerable role in adsorption and biodegradation of LAS, and oil & grease in greywater. The linear relation between inlet COD values and rate of removed LAS indicated that the ratio of inlet COD (mg/L) to removed LAS (mg/L) was 0.4. Therefore, use of IFAS system for biodegradation of LAS, oil and grease in greywater can be an applicable option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays

    PubMed Central

    Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana

    2016-01-01

    This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater. PMID:27907122

  4. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.

    PubMed

    Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2016-01-01

    This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.

  5. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    NASA Astrophysics Data System (ADS)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant effects on acidogenesis and methanogenesis at the concentration levels studied. A significant inhibition of acetoclastic activity was observed for NP at 100 mg/L, with acetic acid consumption rate at 38% of that for controls. No evidence for anaerobic degradation of benzotriazole and its derivatives was observed; however, both batch and continuous experiments suggested that anaerobic degradation of NP occurred. Kinetic analysis of operational data obtained for the anaerobic treatment of ADF in UASB reactors indicated that the substrate utilization rate was independent of the reactor biomass concentration. The maximum rate of substrate utilization and the half-velocity constants for ADF treatment were 28.4 g COD/L/d and 648 mg COD/L, respectively. For 1.2% ADF, the biomass yield and endogenous decay coefficients were 0.027 g VSS/g COD and 0.012 d-1 , respectively.

  6. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    PubMed

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  7. Performance assessment of two-stage anaerobic digestion of kitchen wastes.

    PubMed

    Bo, Zhang; Pin-Jing, He

    2014-01-01

    This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process.

  8. The effect of transient loading on the performance of a mesophilic anaerobic contact reactor at constant feed strength.

    PubMed

    Sentürk, Elif; Ince, Mahir; Engin, Guleda Onkal

    2012-12-15

    Anaerobic contact reactor is a high rate anaerobic process consisting of an agitated reactor and a solids settling tank for recycling. It was proved earlier that this type of reactor design offers highly efficient performance in the conversion of organic matter to biogas. In this study, the effect of transient loading on reactor performance in terms of a number of key intermediates and parameters such as, COD removal, pH and alkalinity change, VFAs, effluent MLSS concentration and biogas efficiency over time was examined. For this purpose, a step increase of organic loading rate from 3.35kg COD/m(3)day to 15.61kg COD/m(3)day was employed. The hydraulic retention time decreased to a value of 8.42h by an increase in the influent flow-rate during the transient loading. It was observed that the mesophilic anaerobic contact reactor (MACR) was quite resistant to large transient shocks. The reactor recovered back to its baseline performance only in 15h after the shock loading was stopped. Hence, it can be concluded that this type of reactor design has a high potential in treating food processing wastewaters with varying flow characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR).

    PubMed

    Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad

    2017-12-01

    Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.

  10. Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period.

    PubMed

    Yilmaz, Tuba; Erdirencelebi, Dilek; Berktay, Ali

    2012-01-01

    This study investigates the performance of an anaerobic baffled reactor (ABR) during the start-up period of raw young landfill leachate treatment at two chemical oxygen demand (COD) to SO4(2-) ratios of 20 and 4. The reactor was operated at ambient temperature and low organic loading rates (0.52, 0.76 and 1.05 kg COD/m3 per day). During the study, sulfate-reducing bacteria (SRB) activity increased at the lower ratio of COD/SO4(2-) producing higher levels of sulfide and alkalinity. The dissolved sulfide concentration reached an inhibitory level above 250 mg/L, which caused a sharp reduction in the total COD removal efficiency from 77-80% to 32%. Total volatile fatty acid (TVFA) production proceeded at a constant level despite increased organic loading. As the effluent total and organic COD concentrations increased, the inhibitory effect of the inborn sulfide was correlated to the limitation experienced in the hydrolysis/acidogenesis stages, and thus VFA production and organic matter removal.

  11. Formation and hydrodynamic characteristics of aerobic granules in an activated sludge system.

    PubMed

    Ganesan, M V; Saravanan, V; Sreekrishnan, T R

    2007-02-01

    Development of aerobic granules in the aeration tank of an activated sludge system has been studied. The introduction of activated carbon particles into the aeration tank resulted in the formation of biogranules containing activated carbon as core nuclei. The presence of activated carbon also induced the formation of self-immobilized granules, which did not have any carrier particle at their core. The presence of aerobic granules enhanced the treatment efficiency of the reactor. At an organic loading rate of 32.8 kg COD m(-3)d(-1) and 0.78 h hydraulic retention time (HRT), the reactor showed 96% COD removal efficiency. At an HRT of 0.272 h and organic loading rate of 46.7 kg COD m(-3)d(-1), the reactor outlet COD remained below 100 mg l(-1). Settling velocity studies carried out on the biogranules showed that the drag coefficient of biogranules is greater than that of the rigid particle at the same Reynolds number.

  12. Effect of non-feeding period length on the intermittent operation of UASB reactors treating dairy effluents.

    PubMed

    Coelho, N M; Rodrigues, A A; Arroja, L M; Capela, I F

    2007-02-01

    Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)). (c) 2006 Wiley Periodicals, Inc.

  13. Performance characteristics of anaerobic downflow stationary fixed film reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, L.; Kennedy, K.J.

    1982-01-01

    Stationary fixed film reactors operated to ensure a net downflow of substrate have several characteristics different from other retained biomass reactors. The active biomass attaches itself to stationary surface and hence is difficult to wash out. Performance is related to the surface-to-volume of the film support as well as to the composition of the support. Methane production rates of up to 8 cym day at loading rates of up to 30 kg COD/m cym day, are possible. Severe hydraulic and organic overloadings can be tolerated with operation back to normal 24 hours following cessation of mistreatment. Reactors can operate withmore » dilute and concentrated wastes (4000-130,000 mg COD/L) and can change readily over from one waste to another. Intermittent loading at high loading rates are possible. Methane production rates and loading rates decreased linearly with temperature (35) to 10); at 10 C they were about 20% of those at 35 C.« less

  14. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.

    PubMed

    Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

    2014-11-01

    The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ulva biomass as a co-substrate for stable anaerobic digestion of spent coffee grounds in continuous mode.

    PubMed

    Kim, Jaai; Kim, Hakchan; Lee, Changsoo

    2017-10-01

    Ulva biomass was evaluated as a co-substrate for anaerobic digestion of spent coffee grounds at varying organic loads (0.7-1.6g chemical oxygen demand (COD)/Ld) and substrate compositions. Co-digestion with Ulva (25%, COD basis) proved beneficial for SCG biomethanation in both terms of process performance and stability. The beneficial effect is much more pronounced at higher organic and hydraulic loads, with the highest COD removal and methane yield being 51.8% and 0.19L/g COD fed, respectively. The reactor microbial community structure changed dynamically during the experiment, and a dominance shift from hydrogenotrophic to aceticlastic methanogens occurred with increase in organic loading rate. Network analysis provides a comprehensive view of the microbial interactions involved in the system and confirms a direct positive correlation between Ulva input and methane productivity. A group of populations, including Methanobacterium- and Methanoculleus-related methanogens, was identified as a possible indicator for monitoring the biomethanation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.

    PubMed

    Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J

    2016-07-08

    In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.

  18. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment.

    PubMed

    Shen, Fei; Li, Hanguang; Wu, Xiaoyu; Wang, Yuanxiu; Zhang, Qinghua

    2018-02-01

    In this study, rice straw (RS) and pig manure (PM) mixtures with or without bio-pretreatment were used as the substrates and digested in a 9 L of anaerobic reactor at Organic loading rates (OLRs) of 0.4-3.1 kg COD/(m 3  d). The volumetric methane production rate (VMPR), methane yield and anaerobic stability were comparatively investigated. The results showed the co-anaerobic digestion processes of RS and PM mixture after biological pretreatment were very stable at OLRs of 0.4-2.5 kg COD/(m 3  d), and its optimal VMPR and methane yield could reach 0.64 L CH 4 /(L d) and 0.4557 L CH 4 /g COD removed at OLR of 2.5 kg COD/(m 3  d), which were 62.4% and 37.8% higher than those of the control under the same OLR condition. This study indicated the biological pretreatment with a cellulolytic microbial consortium own great potential in improving the methane yield and productivity of RS and PM wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater.

    PubMed

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2006-10-15

    Complex oily wastewater from a food industry was treated in three different UASB reactors at different operating conditions. Although all three systems achieved fat, oil, and grease (FOG) and COD removal efficiencies above 80% at an organic loading of 3 kg COD/m3 x d, system performance deteriorated sharply at higher loading rates, and the presence of high FOG caused a severe sludge flotation resulting in failure. Initially, FOG accumulated onto the biomass which led to sludge flotation and washout of biomass. The loss of sludge in the bed increased the FOG loading to the biomass and failure ensued. Contrary to previous findings, accumulation of FOG rather than influent FOG concentrations or volumetric FOG loading rate was the most importantfactor governing the high-rate anaerobic reactor performance. The critical accumulated FOG loading was identified as 1.04 +/- 0.13 g FOG/g VSS for all three reactors. Furthermore, FOG accumulation onto the biomass was identified mainly as palmitic acid (>60%) whereas the feed LCFA contained only 30% of palmitic acid and 50% of oleic acid.

  20. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  1. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR) - recovery after shock loading.

    PubMed

    Bajaj, Mini; Gallert, Claudia; Winter, Josef

    2009-03-15

    An anaerobic fixed bed reactor (AFBR) was run for 550 days with a mixed microbial flora to stabilize synthetic wastewater that contained glucose and phenol as main carbon sources. The influent phenol concentration was gradually increased from 2 to 40 mmol/l within 221 days. The microbial flora was able to adapt to this high phenol concentration with an average of 94% phenol removal. Microbial adaptation at such a high phenol concentration is not reported elsewhere. The maximum phenol removal observed before the phenol shock load was 39.47 mmol/l or 3.7 g phenol/l at a hydraulic retention time (HRT) of 2.5 days and an organic loading rate (OLR) of 5.3 g/l.d which amounts to a phenol removal rate of ca. 15.8 mmol phenol/l.d. The chemical oxygen demand (COD) removal before exposing the reactor to a shock load corresponded with phenol removal. A shock load was induced in the reactor by increasing the phenol concentration from 40 to 50 mmol/l in the influent. The maximum phenol removal rate observed after shock load was 18 mmol/l.d at 5.7 g COD/l.d. But this was not a stable rate and a consistent drop in COD and phenol removal was observed for 1 week, followed by a sharp decline and production of fatty acids. Recovery of the reactor was possible only when no feed was provided to the reactor for 1 month and the phenol concentration was increased gradually. When glucose was omitted from the influent, unknown intermediates of anaerobic phenol metabolism were observed for some time.

  3. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    PubMed

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  4. Quantitative characterization of organic diffusion using an analytical diffusion-reaction model and its application to assessing BOD removal when treating municipal wastewater in a plug flow reactor.

    PubMed

    Fan, Chihhao; Kao, Chen-Fei; Liu, Yu-Hsi

    2017-09-15

    The present study aimed to derive an analytical formula to quantify the diffusion of organic contaminant in a biofilm. The experiments were conducted to investigate the BOD degradation under the conditions of influent COD concentration from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with and without auxiliary aeration. The BOD removal rate was around 73% for non-aerated influent COD of 50 mg/L with 1-h hydraulic retention time. The BOD removal rate increased as the influent loading and hydraulic retention time increased while the influent COD was no more than 150 mg/L. Without aeration, the removal rate dropped significantly when influent COD increased to the range no less than 200 mg/L, due to the fact that the BOD diffusive flux driven by the biomass uptake was not further enhanced by higher ambient organic loading. The diffusion coefficient was calculated to be 1.12 × 10 -6  m 2 /d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 and 1 h hydraulic retention time and aeration, and the coefficient increased to 3.35 × 10 -6  m 2 /d as the influent COD concentration increased to 300 mg/L. The diffusion coefficient decreased to 4.09 × 10 -7  m 2 /d as the retention time increased to 3 h. The overall diffusion coefficients showed an increasing trend as the influent organic loading increased. The difference in diffusion coefficients between 1 and 2 h was apparently greater than that between 2 and 3 h, indicating a smaller overall diffusive flux due to a longer retention time. Further analysis revealed that BOD diffusion activity exhibited a declining trend as the wastewater travelled through the system. An analytical diffusion-reaction model was developed to characterize the diffusion behaviour, and applied to estimating the treatment efficiency for real domestic sewage. The result showed that the estimated effluent BOD concentrations were quite comparable to those from experimental measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Treatment of high organic content wastewater from food-processing industry with the French vertical flow constructed wetland system.

    PubMed

    Paing, J; Serdobbel, V; Welschbillig, M; Calvez, M; Gagnon, V; Chazarenc, F

    2015-01-01

    This study aimed at determining the treatment performances of a full-scale vertical flow constructed wetlands designed to treat wastewater from a food-processing industry (cookie factory), and to study the influence of the organic loading rate. The full-scale treatment plant was designed with a first vertical stage of 630 m², a second vertical stage of 473 m² equipped with a recirculation system and followed by a final horizontal stage of 440 m². The plant was commissioned in 2011, and was operated at different loading rates during 16 months for the purpose of this study. Treatment performances were determined by 24 hour composite samples. The mean concentration of the raw effluent was 8,548 mg.L(-1) chemical oxygen demand (COD), 4,334 mg.L(-1) biochemical oxygen demand (BOD5), and 2,069 mg.L(-1) suspended solids (SS). Despite low nutrients content with a BOD5/N/P ratio of 100/1.8/0.5, lower than optimum for biological degradation (known as 100/5/1), mean removal performances were very high with 98% for COD, 99% for BOD5 and SS for the two vertical stages. The increasing of the organic load from 50 g.m(-2).d(-1) COD to 237 g.m(-2).d(-1) COD (on the first stage) did not affect removal performances. The mean quality of effluent reached French standards (COD < 125 mg.L(-1), BOD5 < 25 mg.L(-1), SS < 35 mg.L(-1)).

  6. [Research on pollution load of sediments in storm sewer in Beijing district].

    PubMed

    Li, Hai-Yan; Xu, Bo-Ping; Xu, Shang-Ling; Cui, Shuang

    2013-03-01

    Based on the investigation of sewer sediments in Xi Cheng district in Beijing, scour-release pollution load in one rainfall from sewer sediments was studied by monitoring the pollutants in the run-off of manhole's section. It was shown that the contribution of scour-release pollutants from sewer sediments to sewer outflow was obvious. The contribution rate of the sediments pollution load to runoff outflow in the 84 m pipeline in one rainfall (9 Jul., 2010) was as follows: TN 8.5%, TP 8.2%, COD 18.3%, SS 7.7%, respectively. And the pollutant contribution rate in the 295 m pipeline in another rainfall (4 Aug., 2010) was TN 23.12%, TP 60.01%, COD 33.78%, SS 31.89%. Therefore, it is important to control the pollution from sewer sediments for the improvement of water environment.

  7. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Treatment performances of French constructed wetlands: results from a database collected over the last 30 years.

    PubMed

    Morvannou, A; Forquet, N; Michel, S; Troesch, S; Molle, P

    2015-01-01

    Approximately 3,500 constructed wetlands (CWs) provide raw wastewater treatment in France for small communities (<5,000 people equivalent). Built during the past 30 years, most consist of two vertical flow constructed wetlands (VFCWs) in series (stages). Many configurations exist, with systems associated with horizontal flow filters or waste stabilization ponds, vertical flow with recirculation, partially saturated systems, etc. A database analyzed 10 years earlier on the classical French system summarized the global performances data. This paper provides a similar analysis of performance data from 415 full-scale two-stage VFCWs from an improved database expanded by monitoring data available from Irstea and the French technical department. Trends presented in the first study are confirmed, exhibiting high chemical oxygen demand (COD), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN) removal rates (87%, 93% and 84%, respectively). Typical concentrations at the second-stage outlet are 74 mgCOD L(-1), 17 mgTSS L(-1) and 11 mgTKN L(-1). Pollutant removal performances are summarized in relation to the loads applied at the first treatment stage. While COD and TSS removal rates remain stable over the range of applied loads, the spreading of TKN removal rates increases as applied loads increase.

  9. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.

  12. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor.

    PubMed

    Tawfik, A; El-Qelish, M

    2012-06-01

    This study was carried out to assess the impact of organic loading rate (OLR) on the performance of mesophilic anaerobic baffled reactor (ABR) for H(2) production from a co-digestion of municipal food waste and kitchen wastewater. The reactor was operated at different organic loading rates (OLRs) of 29, 36 and 47 g COD(total)/Ld. The hydraulic retention time (HRT) was kept constant at 1.6d. The results showed that increasing the OLR from 29 to 36 g COD(total)/Ld, leads to a significant (p □ 0.01) drop in the H(2) production from 6.0±0.5 to 5.4±1.04 L H(2)/d, respectively. However, the H(2) production remained at the same level of 5.3±1.04 L H(2)/d at increasing the OLR from 36 to 47 g COD(total)/Ld. The H(2) generation was mainly due to conversion of COD (57%) and carbohydrate (81%). Protein and lipids conversion represents only 23.3% and 4.1% respectively for H(2) production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. High rate manure supernatant digestion.

    PubMed

    Bergland, Wenche Hennie; Dinamarca, Carlos; Toradzadegan, Mehrdad; Nordgård, Anna Synnøve Røstad; Bakke, Ingrid; Bakke, Rune

    2015-06-01

    The study shows that high rate anaerobic digestion may be an efficient way to obtain sustainable energy recovery from slurries such as pig manure. High process capacity and robustness to 5% daily load increases are observed in the 370 mL sludge bed AD reactors investigated. The supernatant from partly settled, stored pig manure was fed at rates giving hydraulic retention times, HRT, gradually decreased from 42 to 1.7 h imposing a maximum organic load of 400 g COD L(-1) reactor d(-1). The reactors reached a biogas production rate of 97 g COD L(-1) reactor d(-1) at the highest load at which process stress signs were apparent. The yield was ∼0.47 g COD methane g(-1) CODT feed at HRT above 17 h, gradually decreasing to 0.24 at the lowest HRT (0.166 NL CH4 g(-1) CODT feed decreasing to 0.086). Reactor pH was innately stable at 8.0 ± 0.1 at all HRTs with alkalinity between 9 and 11 g L(-1). The first stress symptom occurred as reduced methane yield when HRT dropped below 17 h. When HRT dropped below 4 h the propionate removal stopped. The yield from acetate removal was constant at 0.17 g COD acetate removed per g CODT substrate. This robust methanogenesis implies that pig manure supernatant, and probably other similar slurries, can be digested for methane production in compact and effective sludge bed reactors. Denaturing gradient gel electrophoresis (DGGE) analysis indicated a relatively fast adaptation of the microbial communities to manure and implies that non-adapted granular sludge can be used to start such sludge bed bioreactors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions.

    PubMed

    Farghaly, Ahmed; Tawfik, Ahmed

    2017-01-01

    Multi-phase anaerobic reactor for H 2 and CH 4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m 3  day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m 3  day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g COD removed and volumetric substrate uptake rate (-rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (Y VFA ) of 0.21 ± 0.03 g VFA/g COD, confirming that H 2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g COD removed ) and -rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m 3  day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H 2 and CH 4 production.

  15. Biomethanation of poultry litter leachate in UASB reactor coupled with ammonia stripper for enhancement of overall performance.

    PubMed

    Gangagni Rao, A; Sasi Kanth Reddy, T; Surya Prakash, S; Vanajakshi, J; Joseph, Johny; Jetty, Annapurna; Rajashekhara Reddy, A; Sarma, P N

    2008-12-01

    In the present study possibility of coupling stripper to remove ammonia to the UASB reactor treating poultry litter leachate was studied to enhance the overall performance of the reactor. UASB reactor with stripper as ammonia inhibition control mechanism exhibited better performance in terms of COD reduction (96%), methane yield (0.26m(3)CH(4)/kg COD reduced), organic loading rate (OLR) (18.5kg COD m(-3)day(-1)) and Hydraulic residence time (HRT) (12h) compared to the UASB reactor without stripper (COD reduction: 92%; methane yield: 0.21m(3)CH(4)/kg COD reduced; OLR: 13.6kg CODm(-3)day(-1); HRT: 16h). The improved performance was due to the reduction of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) in the range of 75-95% and 80-95%, respectively by the use of stripper. G/L (air flow rate/poultry leachate flow rate) in the range of 60-70 and HRT in the range of 7-9min are found to be optimum parameters for the operation of the stripper.

  16. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    PubMed

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  17. Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry.

    PubMed

    Ortigara, A R C; Foladori, P; Andreottola, G

    2011-01-01

    Although oxygen uptake rate has been widely used in activated sludge for measuring kinetic and stoichiometric parameters or for wastewater characterization, its application in constructed wetlands (CWs) cores has been recently proposed. The aim of this research is to estimate the kinetic and stoichiometric parameters of the heterotrophic biomass in CW cores. Respirometric tests were carried out with pure carbonaceous substrate and real wastewater. Endogenous respiration was about 2 gO2 m(-3) h(-1) (per unit of bed volume), while the kinetic parameters obtained for COD oxidation were very high (maximum rate per unit of bed volume of 10.7-26.8 gCOD m(-3) h(-1)) which indicates high biodegradation potential in fully aerobic environment. Regarding to stoichiometric parameter, the maximum growth yield, Y(H), was 0.56-0.59 mgCOD/mgCOD, while the storage yield, Y(STO), was 0.75-0.77 mgCOD/mgCOD. The storage mechanism was observed in CW cores during COD oxidation, which leads to the transformation of the external soluble substrate in internal storage products, probably as response to intermittent loads applied in CW systems, transient concentrations of readily biodegradable substrate and alternance of feast/famine periods.

  18. Treatment of low strength industrial cluster wastewater by anaerobic hybrid reactor.

    PubMed

    Kumar, Amit; Yadav, Asheesh Kumar; Sreekrishnan, T R; Satya, Santosh; Kaushik, C P

    2008-05-01

    The study was aimed at treating the complex, combined wastewater generated in Mangolpuri industrial cluster. It was considered as a low strength wastewater with respect to its organic content. Anaerobic treatment of this wastewater was studied using an anaerobic hybrid reactor (AHR) which combined the best features of both the upflow anaerobic sludge blanket (UASB) reactor and anaerobic fluidized bed rector (AFBR). The performance of the reactor under different organic and hydraulic loading rates were studied. The COD removal reached 94% at an organic loading rate (OLR) of 2.08 kg COD m(-3)d(-1) at an hydraulic retention time (HRT) of 6.0 h. The granules developed were characterized in terms of their diameter and terminal settling velocity.

  19. Organic pollutant loading and biodegradability of firefighting foam

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Zhong; Bao, Zhi-ming; Hu, Cheng; Li-Shuai, Jing; Chen, Yang

    2017-11-01

    Firefighting foam has been widely used as the high-performance extinguishing agent in extinguishing the liquid poor fire. It was concerned for its environmental impacts due to its massive usage. In this study, the organic loading level and the biodegradability of 18 firefighting foams commonly used in China were evaluated and compared. The COD and TOC of firefighting foam concentrates are extremely high. Furthermore, those of foam solutions are also much higher than regular wastewater. The COD/TOC ratio of synthetic foams are higher than protein foams. The 28-day biodegradation rates of 18 firefighting foams are all over 60%, indicating that they are all ready biodegradable. Protein foams (P, FP and FFFP) have the higher organic loading and lower 28-day biodegradation rates compared to the synthetic foams (Class A foam, AFFF and S). The short and long-term impact of protein foams on the environment are larger than synthetic foams.

  20. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system.

    PubMed

    Kheradmand, S; Karimi-Jashni, A; Sartaj, M

    2010-06-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25g COD/L/d and 93% at loading rate of 3.37g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD(rem) for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, S.; Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d.more » The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.« less

  2. Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate.

    PubMed

    Zhang, Xiaomeng; Inoue, Takashi; Kato, Kunihiko; Izumoto, Hayato; Harada, June; Wu, Da; Sakuragi, Hiroaki; Ietsugu, Hidehiro; Sugawara, Yasuhide

    2017-01-01

    This study followed three field-scale hybrid subsurface flow constructed wetland (CW) systems constructed in Hokkaido, northern Japan: piggery O (2009), dairy G (2011), and dairy S (2006). Treatment performance was monitored from the outset of operation for each CW. The ranges of overall purification efficiency for these systems were 70-86%, 40-85%, 71-90%, 91-96%, 94-98%, 84-97%, and 70-97% for total N (TN), NH 4 -N, total P, chemical oxygen demand (COD), biochemical oxygen demand, suspended solid, and total Coliform, respectively. The hybrid system's removal rates were highest when influent loads were high. COD removal rates were 46.4 ± 49.2, 94.1 ± 36.6, and 25.1 ± 15.5 g COD m -2 d -1 in piggery O, dairy G, and dairy S, with average influent loads of 50.5 ± 51.5, 98.9 ± 37.1, and 26.9 ± 16.0 g COD m -2 d -1 , respectively. The systems had overall COD removal efficiencies of around 90%. TN removal efficiencies were 62 ± 19%, 82 ± 9%, and 82 ± 15% in piggery O, dairy G, and dairy S, respectively. NH 4 -N removal efficiency was adversely affected by the COD/TN ratio. Results from this study prove that these treatment systems have sustained and positive pollutant removal efficiencies, which were achieved even under extremely cold climate conditions and many years after initial construction.

  3. High organic loading influences the physical characteristics of aerobic sludge granules.

    PubMed

    Moy, B Y-P; Tay, J-H; Toh, S-K; Liu, Y; Tay, S T-L

    2002-01-01

    The effect of high organic loading rate (OLR) on the physical characteristics of aerobic granules was studied. Two column-type sequential aerobic sludge blanket reactors were fed with either glucose or acetate as the main carbon source, and the OLR was gradually raised from 6 to 9, 12 and 15 kg chemical oxygen demand (COD) m(-3) d(-1). Glucose-fed granules could sustain the maximum OLR tested. At a low OLR, these granules exhibited a loose fluffy morphology dominated by filamentous bacteria. At higher OLRs, these granules became irregularly shaped, with folds, crevices and depressions. In contrast, acetate-fed granules had a compact spherical morphology at OLRs of 6 and 9 kg COD m(-3) d(-1), with better settling and strength characteristics than glucose-fed granules at similar OLRs. However, acetate-fed granules could not sustain high OLRs and disintegrated when the OLR reached 9 kg COD m(-3) d(-1). The compact regular microstructure of the acetate-fed granules appeared to limit mass transfer of nutrients at an OLR of 9 kg COD m(-3) d(-1). The looser filamentous microstructure of the glucose-fed granules and the subsequent irregular morphology delayed the onset of diffusion limitation and allowed significantly higher OLRs to be attained. SIGNIFICNACE AND IMPACT OF THE STUDY: High organic loading rates are possible with aerobic granules. This research would be helpful in the development of aerobic granule-based systems for high-strength wastewaters.

  4. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters.

    PubMed

    Healy, M G; Rodgers, M; Mulqueen, J

    2007-06-01

    A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.

  5. Acute effects of a loaded warm-up protocol on change of direction speed in professional badminton players.

    PubMed

    Maloney, Sean J; Turner, Anthony N; Miller, Stuart

    2014-10-01

    It has previously been shown that a loaded warm-up may improve power performances. We examined the acute effects of loaded dynamic warm-up on change of direction speed (CODS), which had not been previously investigated. Eight elite badminton players participated in three sessions during which they performed vertical countermovement jump and CODS tests before and after undertaking the dynamic warm-up. The three warm-up conditions involved wearing a weighted vest (a) equivalent to 5% body mass, (b) equivalent to 10% body mass, and (c) a control where a weighted vest was not worn. Vertical jump and CODS performances were then tested at 15 seconds and 2, 4, and 6 minutes post warm-up. Vertical jump and CODS significantly improved following all warm-up conditions (P < .05). Post warm-up vertical jump performance was not different between conditions (P = .430). Post warm-up CODS was significantly faster following the 5% (P = .02) and 10% (P < .001) loaded conditions compared with the control condition. In addition, peak CODS test performances, independent of recovery time, were faster than the control condition following the 10% loaded condition (P = .012). In conclusion, the current study demonstrates that a loaded warm-up augmented CODS, but not vertical jump performance, in elite badminton players.

  6. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.; Banks, C.J.

    2007-07-01

    The research looks at the feasibility of treating an alkaline sulphate-rich leachate arising from the co-disposal of municipal solid waste with cement kiln dust by means of an anaerobic filter (AF). This type of leachate with a high sulphate concentration is commonly prohibited for discharge to sewer and requires an on-site treatment solution. The AF used had a working volume of 4 l and contained reticulated polyurethane foam as the biomass support material. The filters were operated over a 152 day experimental period during which the COD loading onto the filter was increased from 0.76 to 7.63 kg COD m{supmore » -3} d{sup -1}. In the early stages of operation at low loading, soluble sulphides accumulated that inhibited methanogenic activity. This was restored by dosing FeCl{sub 3} to the reactor. The continued dosing allowed efficient COD removal of between 75% and 90% until the nominal retention time in the reactor was 3 days, at which point reactor performance declined significantly. The main mechanism for COD removal was by sulphate-reducing bacteria, which also resulted in up to 88% sulphate removal from the leachate. The average methane generation rate was 0.10 l g{sup -1} COD removed. The results indicate the potential for using this approach as a pre-treatment that could significantly reduce the COD load to a second stage treatment process, but problems associated with the implementation of the technology at a larger scale have been identified.« less

  7. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  8. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  9. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  10. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    PubMed

    Rao, A Gangagni; Naidu, G Venkata; Prasad, K Krishna; Rao, N Chandrasekhar; Mohan, S Venkata; Jetty, Annapurna; Sarma, P N

    2004-07-01

    Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS. Copyright 2003 Elsevier Ltd.

  11. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    PubMed

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  12. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    PubMed

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  13. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayono, Satoto E.; Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe; Winter, Josef, E-mail: josef.winter@iba.uka.d

    2010-10-15

    A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated atmore » an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.« less

  14. Effect of culture residence time on substrate uptake and storage by a pure culture of Thiothrix (CT3 strain) under continuous or batch feeding.

    PubMed

    Valentino, Francesco; Beccari, Mario; Villano, Marianna; Tandoi, Valter; Majone, Mauro

    2017-05-25

    A pure culture of the filamentous bacterium Thiothrix, strain CT3, was aerobically cultured in a chemostat under continuous acetate feeding at three different culture residence times (RT 6, 12 or 22 d) and the same volumetric organic load rate (OLR 0.12gCOD/L/d). Cells cultured at decreasing RT in the chemostat had an increasing transient response to acetate spikes in batch tests. The maximum specific acetate removal rate increased from 25 to 185mgCOD/gCOD/h, corresponding to a 1.8 to 8.1 fold higher respective steady-state rate in the chemostat. The transient response was mainly due to acetate storage in the form of poly(3-hydroxybutyrate) (PHB), whereas no growth response was observed at any RT. Interestingly, even though the storage rate also decreased as the RT increased, the storage yield increased from 0.41 to 0.50 COD/COD. This finding does not support the traditional view that storage plays a more important role as the transient response increases. The transient response of the steady-state cells was much lower than in cells cultured under periodic feeding (at 6 d RT, from 82 to 247mgCOD/gCOD/h), with the latter cells showing both storage and growth responses. On the other hand, even though steady-state cells had no growth response and their storage rate was also less, steady-state cells showed a higher storage yield than cells cultured under dynamic feeding. This suggests that in Thiothrix strain CT3, the growth response is triggered by periodic feeding, whereas the storage response is a constitutive mechanism, independent from previous acclimation to transient conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    PubMed

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Performance and fouling characteristics of a submerged anaerobic membrane bioreactor for kraft evaporator condensate treatment.

    PubMed

    Xie, K; Lin, H J; Mahendran, B; Bagley, D M; Leung, K T; Liss, S N; Liao, B Q

    2010-04-14

    Submerged anaerobic membrane bioreactor (SAnMBR) technology was studied for kraft evaporator condensate treatment at 37 +/- 1 degrees C over a period of 9 months. Under tested organic loading rates of 1-24 kg COD/m3/day, a chemical oxygen demand (COD) removal efficiency of 93-99% was achieved with a methane production rate of 0.35 +/- 0.05 L methane/g COD removed and a methane content of 80-90% in produced biogas. Bubbling of recycled biogas was effective for in-situ membrane cleaning, depending on the biogas sparging rate used. The membrane critical flux increased and the membrane fouling rate decreased with an increase in the biogas sparging rate. The scanning electron microscopy images showed membrane pore clogging was not significant and sludge cake formation on the membrane surface was the dominant mechanism of membrane fouling. The results suggest that the SAnMBR is a promising technology for energy recovery from kraft evaporator condensate.

  17. Transient simulations of nitrogen load for a coastal aquifer and embayment, Cape Cod, MA

    USGS Publications Warehouse

    Colman, J.A.; Masterson, J.P.

    2008-01-01

    A time-varying, multispecies, modular, three-dimensional transport model (MT3DMS) was developed to simulate groundwater transport of nitrogen from increasing sources on land to the shore of Nauset Marsh, a coastal embayment of the Cape Cod National Seashore. Simulated time-dependent nitrogen loads at the coast can be used to correlate with current observed coastal eutrophic effects, to predict current and ultimate effects of development, and to predict loads resulting from source remediation. A time-varying nitrogen load, corrected for subsurface loss, was applied to the land subsurface in the transport model based on five land-use coverages documenting increasing development from 1951 to 1999. Simulated nitrogen loads to Nauset Marsh increased from 230 kg/yr before 1930 to 4390 kg/yr in 2001 to 7130 kg/yr in 2100, assuming future nitrogen sources constant at the 1999 land-use rate. The simulated nitrogen load per area of embayment was 5 times greater for Salt Pond, a eutrophic landward extension of Nauset Marsh, than for other Nauset Marsh areas. Sensitivity analysis indicated that load results were little affected by changes in vertical discretization and annual recharge but much affected by the nitrogen loss rate assumed for a kettle lake downgradient from a landfill.

  18. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  19. Influence of substrate surface loading on the kinetic behaviour of aerobic granules.

    PubMed

    Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa

    2005-06-01

    In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.

  20. Effect of influent COD/SO4(2-) ratios on UASB treatment of a synthetic sulfate-containing wastewater.

    PubMed

    Hu, Yong; Jing, Zhaoqian; Sudo, Yuta; Niu, Qigui; Du, Jingru; Wu, Jiang; Li, Yu-You

    2015-07-01

    The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    PubMed

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  2. Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates.

    PubMed

    Aloui, Fathi; Fki, Firas; Loukil, Slim; Sayadi, Sami

    2009-01-01

    Landfill leachate (LFL) is a very complex wastewater that poses considerable hazards to local communities and the environment. With this concern in mind, the present study was undertaken to investigate the performance of an aerobic membrane bioreactor treating raw LFL from Djebel Chekir (Tunisia) discharge. The LFL samples collected from this site were found to be highly loaded with organic matter, ammonia, salts, greases, phenols and hydrocarbons. Important removals of chemical oxygen demand (COD) and NH4+-N were attained after 44 days of treatment at optimum conditions for the membrane and with organic loading rates (OLR) of 1.9 and 2.7 grams COD per litter and day. This treatment allowed for an important detoxification of the landfill leachates and a significant elimination of the microorganisms. Electrochemical oxidation using Pi/Ti was applied as a post-treatment and after the biological process in order to reduce the residual ammonia and COD. At a pH value of 9, current density of 4 A dm(-2) and electrolysis time of 60 minutes, COD and ammonia nitrogen were reduced to 1,000 mg L(-1) and 27 mg L(-1), respectively. COD and NH4+-N removals were accompanied by significant detoxification.

  3. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web.

    PubMed

    Niiranen, Susa; Yletyinen, Johanna; Tomczak, Maciej T; Blenckner, Thorsten; Hjerne, Olle; Mackenzie, Brian R; Müller-Karulis, Bärbel; Neumann, Thomas; Meier, H E Markus

    2013-11-01

    Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat-dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod-dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem-based management context. © 2013 John Wiley & Sons Ltd.

  4. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis.

    PubMed

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A; Soni, Nipunjot; Mandal, Raju K; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y; Govender, Thavendran; Kruger, Hendrik G; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD 600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD 600 nm ): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  5. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis

    PubMed Central

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A.; Soni, Nipunjot; Mandal, Raju K.; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y.; Govender, Thavendran; Kruger, Hendrik G.; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600 nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties. PMID:27920762

  6. Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).

    PubMed

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2012-12-01

    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Roughness and temperature effects on the filter media of a trickling filter for nitrification.

    PubMed

    Kishimoto, Naoyuki; Ohara, Tetsuya; Hinobayashi, Jouji; Hashimoto, Tsutomu

    2014-01-01

    The performance of trickling filters using two types of plastic media with the same material, the same shape and different roughness was evaluated during a temperature-decreasing period to understand the roughness and temperature effects on the filter media. Real restaurant wastewater was used for the experiments. The chemical oxygen demand (COD) removal and nitrification performance of plastic media with a rough surface (LT-15) was superior to that with a smooth surface (KT-15). Because the biomass of microorganisms attached on the LT-15 was twice that attached on the KT-15, the larger biomass attached on the LT-15 was thought to be responsible for the higher performance. During the operation, the COD loading and water temperature varied in the range from 0.37 to 1.9 kg m(-3) d(-1) and 17.0--10.0 degrees C, respectively. However, the COD removal performance was not dependent on the COD loading or water temperature. On the contrary, the COD loading and the water temperature influenced the nitrification performance. Although a nitrification efficiency of 100% was recorded at a COD loading of 0.37 kg m(-3) d(-1), it deteriorated to 17-28% at higher COD loading. Moreover, a decline in the water temperature decreased the nitrification performance. The temperature-activity coefficient for nitrification was estimated to be 1.096. Based on this value, it was inferred that the COD loading should be set at less than 0.20 kg m(-3) d(-1) for the complete nitrification of the restaurant wastewater in winter, when the water temperature usually drops to around 10 degrees C.

  8. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD-removal rate in the ozone step allowed for economical usage and therefore acceptable operation costs in relation to the paper production.

  9. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors.

    PubMed

    Rico, Carlos; Montes, Jesús A; Rico, José Luis

    2017-08-01

    Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  11. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    PubMed

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Playerload Variables are Sensitive to Changes in Direction and Not Related to Collision Workloads in Rugby League Match-Play.

    PubMed

    Hulin, Billy T; Gabbett, Tim J; Johnston, Rich D; Jenkins, David G

    2018-03-15

    Determine: 1) how change of direction (COD) workloads influence PlayerLoad variables when controlling total distance covered, and 2) relationships among collision workloads and PlayerLoad variables during rugby league match-play. Participants completed 3 protocols (crossover design) consisting of 10 repetitions of a 60 m effort in 15 s. The difference between each protocol was the COD demands required to complete 1 repetition; no COD (SL), 1 x 180º COD (1COD), or 3 x 180º COD (3COD). During rugby league matches, relationships among collision workloads, tri-axial PlayerLoad (PLVM), anterior-posterior + medio-lateral PlayerLoad (PL2D), and PLVM accumulated at locomotor velocities below 2 m.sec -1 (i.e. PLSLOW) were examined using Pearson correlations (r) with coefficients of determination (R 2 ). Comparing 3COD to SL drills: PLVM.min -1 (d = 1.50 ± 0.49, large, likelihood = 100%, almost certainly), PL2D.min -1 (d = 1.38 ± 0.53, large, likelihood = 100%, almost certainly), and PLSLOW.min -1 (d = 1.69 ± 0.40, large, likelihood = 100%, almost certainly) were greater. Collisions.min -1 demonstrated a distinct (i.e. R 2 <0.50) relationship from PLVM.min -1 (R 2 = 0.30, r = 0.55), and PL2D.min -1 (R 2 = 0.37, r = 0.61). Total distance.min 1 demonstrated a very large relationship with PLVM.min -1 (R 2 = 0.62, r = 0.79), and PL2D.min -1 (R 2 = 0.57, r = 0.76). PlayerLoad variables demonstrate: 1) large increases as COD demands intensify, 2) separate relationships from collision workloads, and 3) moderate to very large relationships with total distance during match-play. PlayerLoad variables should be used with caution to measure collision workloads in team sport.

  13. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.

    PubMed

    Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo

    2009-04-01

    A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.

  14. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed media at a plant in Singapore.

    PubMed

    Wessman, F G; Yan Yuegen, E; Zheng, Q; He, G; Welander, T; Rusten, B

    2004-01-01

    The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.

  15. Anaerobic treatment of distillery spent wash - a study on upflow anaerobic fixed film bioreactor.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Madamwar, Datta

    2008-07-01

    Anaerobic digestion of wastewater from a distillery industry having very high COD (1,10,000-1,90,000 mg/L) and BOD (50,000-60,000 mg/L) was studied in a continuously fed, up flow fixed film column reactor using different support materials such as charcoal, coconut coir and nylon fibers under varying hydraulic retention time and organic loading rates. The seed consortium was prepared by enrichment with distillery spent wash in a conventional type reactor having working capacity of 3 L and was used for charging the anaerobic column reactor. Amongst the various support materials studied the reactor having coconut coir could treat distillery spent wash at 8d hydraulic retention time with organic loading rate of 23.25 kg COD m(-3)d(-1) leading to 64% COD reduction with biogas production of 7.2 m3 m(-3)d(-1) having high methane yield without any pretreatment or neutralization of the distillery spent wash. This study indicates fixed film biomethanation of distillery spent wash using coconut coir as the support material appears to be a cost effective and promising technology for mitigating the problems caused by distillery effluent.

  16. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.

    PubMed

    Rodgers, M; Walsh, G; Healy, M G

    2011-01-01

    The objective of this study was to apply hydraulic and chemical oxygen demand (COD) loading rates at the upper limits of the design criteria for buried sand filters to test the sand filter depth design criteria. Over a 274-day study duration, synthetic effluent with a strength of domestic wastewater was intermittently dosed onto two sand filters of 0.2 m diameter, with depths of 0.3 and 0.4 m. Hydraulic and organic carbon loading rates of 105 L m(-2) d(-1) and 40 g COD m(-2) d(-1), respectively, were applied to the filters. The filters did not clog and had good effluent removal capabilities for 274 and 190 days, respectively. However, the 0.3 m-deep filter did experience a reduced performance towards the end of the study period. In the 0.3 and 0.4 m-deep filters, the effluent COD and SS concentrations were less than 86 and 31 mg L(-1), respectively, and nitrification was nearly complete in both these columns. Ortho-phosphorus (PO(4)-P) removal in fine sand and laterite 'upflow' filters, receiving effluent from the 0.3 m-deep filter, was 10% and 44%, respectively.

  17. Treatment of spent wash in anaerobic mesophilic suspended growth reactor (AMSGR).

    PubMed

    Banu, J Rajesh; Kaliappan, S; Rajkumar, M; Beck, Dieter

    2006-01-01

    Approximately 400 KL of spent wash or vinasse per annum is generated at an average COD concentration of 100,000 mg/l, by over 250 distilleries in India. There is an urgent need to develop, assess and use ecofriendly methods for the disposal of this high strength wastewater. Therefore, an attempt was made to investigate a few aspects of anaerobic digestion of spent wash collected from a distillery. The study was carried out in a 4 L laboratory scale anaerobic mesophilic suspended growth reactor. After the successful startup, the organic loading was increased stepwise to assess the performance of the reactor. During the study period, biogas generated was recorded and the maximum gas generated was found to be 16.9 L at an Organic Loading Rate (OLR) of 38 g COD/L. A 500% increase in the Volatile Fatty Acid (VFA) concentration (2150 mg/L) was observed, when the OLR was increased from 38 to 39 g COD/L. During the souring phase the removal of COD, Total Solids (TS) and Volatile Solids (VS) were in the order of 52%, 40% and 46% respectively. The methane content in the biogas varied from 65% to 75%.

  18. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility.

    PubMed

    Da Ros, C; Cavinato, C; Cecchi, F; Bolzonella, D

    2014-01-01

    In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m(3)d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm(3)biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.

  19. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia.

    PubMed

    Zayen, Amal; Mnif, Sami; Aloui, Fathi; Fki, Firas; Loukil, Slim; Bouaziz, Mohamed; Sayadi, Sami

    2010-05-15

    Landfill leachate (LFL) collected from the controlled discharge of Jebel Chakir in Tunisia was treated without any physical or chemical pretreatment in an anaerobic membrane bioreactor (AnMBR). The organic loading rate (OLR) in the AnMBR was gradually increased from 1 g COD l(-1)d(-1) to an average of 6.27 g COD l(-1)d(-1). At the highest OLR, the biogas production was more than 3 volumes of biogas per volume of the bioreactor. The volatile suspended solids (VSSs) reached a value of approximately 3 g l(-1) in the bioreactor. At stable conditions, the treatment efficiency was high with an average COD reduction of 90% and biogas yield of 0.46 l biogas per g COD removed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor.

    PubMed

    Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario

    2007-01-01

    The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.

  1. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    PubMed

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Municipal-wastewater treatment using upflow-anaerobic filters.

    PubMed

    Manariotis, loannis D; Grigoropoulos, Sotirios G

    2006-03-01

    Three 12.5-L upflow-anaerobic filters (AF), with ceramic-saddle, plastic-ring, and crushed-stone packing, were used to evaluate the sustained treatment of municipal wastewater. The reactors were initially fed dogfood-fortified wastewater and then raw municipal wastewater, and operated at 25.4 degrees C (32 months) and 15.5 degrees C (2 months). During 23 months, the AF units treated municipal wastewater (mean chemical oxygen demand [COD] 442 mg/L and total suspended solids [TSS] 247 mg/L), the hydraulic retention time (HRT) ranged from 3.1 to 0.30 d (empty bed), and the organic loading rate ranged from 0.115 to 1.82 kg COD/m3d. At the higher temperature and an HRT (void volume) of 1.0 d, COD and TSS removals ranged from 74 to 79% and 95 to 96%, respectively; however, efficiencies declined substantially at HRT values less than 0.4 d. Reactor performance, under the same hydraulic and organic loadings, deteriorated with time and was adversely affected by lower temperature.

  3. Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater.

    PubMed

    Li, Weiguang; Su, Chengyuan; Liu, Xingzhe; Zhang, Lei

    2014-01-01

    The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90% of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m(3) day). However, increasing the OLR to 20 kg COD/(m(3) day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78%. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51% of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m(3) day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca(2+) and Mg(2+) in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C-H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption.

  4. Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor.

    PubMed

    Aghapour, Ali Ahmad; Moussavi, Gholamreza; Yaghmaeian, Kamyar

    2015-07-01

    The effect of ozonation catalyzed with MgO/granular activated carbon (MgO/GAC) composite as a pretreatment process on the performance of cyclic rotating-bed biological reactor (CRBR) for the catechol removal from wastewater has been investigated. CRBR with acclimated biomasses could efficiently remove catechol and its related COD from wastewater at organic loading rate (OLR) of 7.82 kg COD/m(3).d (HRT of 9 h). Then, OLR increased to 15.64 kg COD/m(3).d (HRT of 4.5 h) and CRBR failed. Catalytic ozonation process (COP) used as a pre-treatment and could improve the performance of the failed CRBR. The overall removal efficiency of the combined process attained respective steady states of 91% and 79% for degradation and COD removal of catechol. Therefore, the combined process is more effective in degradation and COD removal of catechol; it is also a viable alternative for upgrading industrial wastewater treatment plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pathway governing nitrogen removal in artificially aerated constructed wetlands: Impact of aeration mode and influent chemical oxygen demand to nitrogen ratios.

    PubMed

    Hou, Jie; Wang, Xin; Wang, Jie; Xia, Ling; Zhang, Yiqing; Li, Dapeng; Ma, Xufa

    2018-06-01

    This study aimed at assessing the influence of aeration mode and influent COD/N ratio on nitrogen removal in constructed wetlands (CWs). The results showed that a simultaneous partial nitrification, anammox and denitrification (SNAD) process was established in the intermittent aerated V1. While nitrogen removal pathway gradually changed from partial nitrification-denitrification to complete nitrification-denitrification along with reducing COD/N ratio in the continuous limited aerated V2. Effective inhibition of NOBs under intermittent aeration conditions, good retention of anammox bacteria biomass and much faster depletion of COD prior to substantial NH 4 + -N conversion jointly led to the successful achievement of stable SNDA process with elevated influent COD/N ratios in V1. Furthermore, the presence of SNAD ensured a robust ammonium (84-92%) and TN (80-91%) removal efficiency in V1 under varying COD loading rates. In contrast, the TN removal efficiency decreased rapidly along with the reducing influent COD/N ratios in V2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    PubMed

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  7. Effect of organic loading rates and proton exchange membrane surface area on the performance of an up-flow cylindrical microbial fuel cell.

    PubMed

    Jana, Partha S; Behera, Manaswini; Ghangrekar, M M

    2012-01-01

    The effect of organic loading rates (OLRs) and proton exchange membrane (PEM) surface area on the performance of microbial fuel cells (MFCs) was evaluated. Three MFCs (MFC-1, MFC-2 and MFC-3) having PEM surface area of 10 cm2, 20 cm2 and 40 cm2, respectively, were used in the study. The MFCs were operated at influent chemical oxygen demand (COD) of 500 mg L(-1) and hydraulic retention time (HRT) of 20 h, 17 h, 13 h and 6 h in experimental Run-1 to Run-4. MFC-3, with highest PEM surface area showed highest power generation throughout the study. The optimum performancewas obtained at HRT of 13 h. In Run-5 and Run-6, the influent COD was increased to 1000 mg L(-1) and 1500 mg L(-1), respectively, maintaining the HRT at 13 h. Maximum volumetric powers of 4.26 W m(-3), 9.41 W m(-3) and 17.24 W m(-3) were obtained in MFC-1, MFC-2 and MFC-3, respectively, in Run-5 under the OLR of 1.84 kg COD m(-3) d(-1). These power values are among the higher values reported in literature; MFCs with higher PEM surface area showed better electricity generation, which clearly demonstrates that proton mass transfer is the main constraint in the MFCs which limits the power output. Combined effect of influent COD and HRT was found on electricity generation.

  8. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Qi; Graduate School of Chinese Academy of Sciences, Beijing 100049; Li Daping

    2009-04-15

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l{sup -1} d{sup -1} and 3.84 g COD l{sup -1} d{sup -1}, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factorsmore » affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t{sup -1} TS d{sup -1} and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t{sup -1} TS d{sup -1} and the inhibition was enhanced with the increase of TON loading.« less

  9. Evaluation of Simultaneous Nutrient and COD Removal with Polyhydroxybutyrate (PHB) Accumulation Using Mixed Microbial Consortia under Anoxic Condition and Their Bioinformatics Analysis

    PubMed Central

    Jena, Jyotsnarani; Kumar, Ravindra; Dixit, Anshuman; Pandey, Sony; Das, Trupti

    2015-01-01

    Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL) in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms) were able to remove maximum COD (87%) at 2g/L of ICL whereas maximum nitrate-N (97%) and phosphate (87%) removal along with PHB accumulation (49 mg/L) was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria). Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H’) was used to study the diversity of sampling. “UCI95” and “LCI95” indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve. PMID:25689047

  10. Evaluation of simultaneous nutrient and COD removal with polyhydroxybutyrate (PHB) accumulation using mixed microbial consortia under anoxic condition and their bioinformatics analysis.

    PubMed

    Jena, Jyotsnarani; Kumar, Ravindra; Dixit, Anshuman; Pandey, Sony; Das, Trupti

    2015-01-01

    Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL) in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms) were able to remove maximum COD (87%) at 2 g/L of ICL whereas maximum nitrate-N (97%) and phosphate (87%) removal along with PHB accumulation (49 mg/L) was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria). Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H') was used to study the diversity of sampling. "UCI95" and "LCI95" indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve.

  11. Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms.

    PubMed

    Pendashteh, A R; Fakhru'l-Razi, A; Chuah, T G; Radiah, A B Dayang; Madaeni, S S; Zurina, Z A

    2010-10-01

    Produced water or oilfield wastewater is the largest volume ofa waste stream associated with oil and gas production. The aim of this study was to investigate the biological pretreatment of synthetic and real produced water in a sequencing batch reactor (SBR) to remove hydrocarbon compounds. The SBR was inoculated with isolated tropical halophilic microorganisms capable of degrading crude oil. A total sequence of 24 h (60 min filling phase; 21 h aeration; 60 min settling and 60 min decant phase) was employed and studied. Synthetic produced water was treated with various organic loading rates (OLR) (0.9 kg COD m(-3) d(-1), 1.8 kg COD m(-3) d(-1) and 3.6 kg COD m(-3) d(-1)) and different total dissolved solids (TDS) concentration (35,000 mg L(-1), 100,000 mg L(-1), 150,000 mg L(-1), 200,000 mg L(-1) and 250,000 mg L(-1)). It was found that with an OLR of 0.9 kg COD m(-3) d(-1) and 1.8 kg COD m(-3) d(-1), average oil and grease (O&G) concentrations in the effluent were 7 mg L(-1) and 12 mg L(-1), respectively. At TDS concentration of 35,000 mg L(-1) and at an OLR of 1.8 kg COD m(-3)d(-1), COD and O&G removal efficiencies were more than 90%. However, with increase in salt content to 250,000 mg L(-1), COD and O&G removal efficiencies decreased to 74% and 63%, respectively. The results of biological treatment of real produced water showed that the removal rates of the main pollutants of wastewater, such as COD, TOC and O&G, were above 81%, 83%, and 85%, respectively.

  12. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  13. [Anaerobic membrane bioreactors for treating agricultural and food processing wastewater at high strength].

    PubMed

    Wei, Yuan-Song; Yu, Da-Wei; Cao, Lei

    2014-04-01

    As the second largest amounts of COD discharged in 41 kinds of industrial wastewater, it is of great urgency for the agricultural and food processing industry to control water pollution and reduce pollutants. Generally the agricultural and food processing industrial wastewater with high strength COD of 8 000-30 000 mg x L(-1), is mainly treated with anaerobic and aerobic processes in series, but which exists some issues of long process, difficult maintenance and high operational costs. Through coupling anaerobic digestion and membrane separation together, anaerobic membrane bioreactor (AnMBR) has typical advantages of high COD removal efficiency (92%-99%), high COD organic loading rate [2.3-19.8 kg x (m3 x d)(-1)], little sludge discharged (SRT > 40 d) and low cost (HRT of 8-12 h). According to COD composition of high strength industrial wastewater, rate-limiting step of methanation could be either hydrolysis and acidification or methanogenesis. Compared with aerobic membrane bioreactor (MBR), membrane fouling of AnMBR is more complicated in characterization and more difficult in control. Measures for membrane fouling control of AnMBR are almost the same as those of MBR, including cross flow, air sparging and membrane relaxation. For meeting discharging standard of food processing wastewater with high strength, AnMBR is a promising technology with very short process, by enhancing COD removal efficiency, controlling membrane fouling and improving energy recovery.

  14. Biodegradation kinetics of thin-stillage treatment by Aspergillus awamori and characterization of recovered chitosan.

    PubMed

    Ray, S Ghosh; Ghangrekar, M M

    2016-02-01

    An attempt has been made to provide solution for distillery wastewater using fungal pretreatment followed by an anaerobic process to achieve higher organic matter removal, which is a challenge at present with currently adopted technologies. Submerged growth kinetics of distillery wastewater supernatant by Aspergillus awamori was also evaluated. The proposed kinetic models using a logistic equation for fungal growth and the Leudeking-Piret equation for product formation were validated experimentally, and substrate consumption equation was derived using estimated kinetic coefficients. Up to 59.6 % chemical oxygen demand (COD) and 70 % total organic carbon (TOC) removals were observed in 96 h of fungal incubation. Maximum specific growth rate of fungi, coefficient of biomass yield on substrate and growth-associated product formation coefficient were estimated to be 0.07 ± 0.01 h(-1), 0.614 kg biomass/kg utilized COD and 0.215 kg CO2/kg utilized TOC, respectively. The chitosan recovery of 0.072-0.078 kg/kg of dry mycelium was obtained using dilute sulphuric acid extraction, showing high purity and characteristic chitosan properties according to FTIR and XRD analyses. After anaerobic treatment of the fungal pretreated effluent with COD concentration of 7.920 ± 0.120 kg COD/m(3) (organic loading rate of 3.28 kg COD/m(3) day), overall COD reduction of 91.07 % was achieved from distillery wastewater.

  15. Optimized biogas-fermentation by neural network control.

    PubMed

    Holubar, P; Zani, L; Hager, M; Fröschl, W; Radak, Z; Braun, R

    2003-01-01

    In this work several feed-forward back-propagation neural networks (FFBP) were trained in order to model, and subsequently control, methane production in anaerobic digesters. To produce data for the training of the neural nets, four anaerobic continuous stirred tank reactors (CSTR) were operated in steady-state conditions at organic loading rates (Br) of about 2 kg x m(-3) x d(-1) chemical oxygen demand (COD), and disturbed by pulse-like increase of the organic loading rate. For the pulses additional carbon sources were added to the basic feed (surplus- and primary sludge) to simulate cofermentation and to increase the COD. Measured parameters were: gas composition, methane production rate, volatile fatty acid concentration, pH, redox potential, volatile suspended solids and COD of feed and effluent. A hierarchical system of neural nets was developed and embedded in a Decision Support System (DSS). A 3-3-1 FFBP simulated the pH with a regression coefficient of 0.82. A 9-3-3 FFBP simulated the volatile fatty acid concentration in the sludge with a regression coefficient of 0.86. And a 9-3-2 FFBP simulated the gas production and gas composition with a regression coefficient of 0.90 and 0.80 respectively. A lab-scale anaerobic CSTR controlled by this tool was able to maintain a methane concentration of about 60% at a rather high gas production rate of between 5 to 5.6 m3 x m(-3) x d(-1).

  16. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    PubMed Central

    Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio

    2006-01-01

    Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023

  17. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations.

    PubMed

    Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G

    2017-03-01

    Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable solution for ongoing leachate treatment in the cases examined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis.

    PubMed

    Shan, Lili; Zhang, Zhaohan; Yu, Yanling; Ambuchi, John Justo; Feng, Yujie

    2017-06-01

    Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO 4 2- ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m 3 ·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.

  19. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    PubMed

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  1. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    PubMed

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  2. Microbial community structure associated with the high loading anaerobic codigestion of olive mill and abattoir wastewaters.

    PubMed

    Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib

    2016-02-01

    The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-01-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.

  4. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    PubMed

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor.

    PubMed

    Liao, B Q; Xie, K; Lin, H J; Bertoldo, Daniel

    2010-01-01

    The feasibility of using a thermophilic submerged anaerobic membrane bioreactor (SAnMBR) for kraft evaporator condensate treatment was studied at 55+/-1 degrees C over 6.5 months. Under tested organic loading rate of 1-7 kg COD/m(3) day, a soluble COD removal efficiency of 85-97% was obtained. The methane production rate was 0.35+/-0.1 L methane/g COD and the produced biogas was of excellent fuel quality with 80-90% methane. A higher membrane fouling rate was related to the presence of a larger portion of fine colloidal particles (1-10 mum). The thermophilic SAnMBR was sensitive to the presence of toxic compounds in feed and unexpected pH probe failure (leading to a higher pH). Feed toxic shock caused sludge deflocculation and thus deteriorated membrane performance. Operating the reactor as a conventional anaerobic reactor to waste some of the fine flocs in treated effluent during the start-up process was an effective strategy to reduce membrane fouling. The experimental results from this study indicate that treatment of kraft evaporator condensate is feasible in terms of COD removal and biogas production using thermophilic SAnMBRs but pre-treatment may be needed to remove toxic sulfur compounds and membrane fouling caused by the large portion of fine particles may be a challenge.

  6. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanguang; Zhou Xuefei; Zhang Yalei, E-mail: zhangyalei2003@163.com

    Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5more » kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.« less

  7. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  8. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  9. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    PubMed

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.

  10. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    PubMed

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Upflow bio-filter circuit (UBFC): biocatalyst microbial fuel cell (MFC) configuration and application to biodiesel wastewater treatment.

    PubMed

    Sukkasem, Chontisa; Laehlah, Sunee; Hniman, Adilan; O'thong, Sompong; Boonsawang, Piyarat; Rarngnarong, Athirat; Nisoa, Mudtorlep; Kirdtongmee, Pansak

    2011-11-01

    A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 kΩ. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Anaerobic digestion for treatment of stillage from cellulosic bioethanol production.

    PubMed

    Tian, Zhuoli; Mohan, Gayathri Ram; Ingram, Lonnie; Pullammanappallil, Pratap

    2013-09-01

    Thermophilic anaerobic digestion of stillage from a cellulosic ethanol process that uses sugarcane bagasse as feedstock was investigated. A biochemical methane potential (BMP) of 200 ml CH4 at STP (g VS)(-1) was obtained. The whole stillage was separated into two fractions: a fraction retained on 0.5 mm screen called residue and a fraction passing through 0.5 mm screen called filtrate. About 70% of total methane yield of stillage was produced from the filtrate. The filtrate was anaerobically digested in a 15 L semi-continuously fed digester operated for 91 days at HRTs of 21 and 14 days and organic loading rate (OLR) of 1.85 and 2.39 g COD L(-1) d(-1). The methane yield from the stillage from the digester was about 90% of the yield from the BMP assays. The influent soluble COD (sCOD) was reduced from between 35.4 and 38.8 g COD (L(-1)) to between 7.5 and 8 g COD (L(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs.

    PubMed

    Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min

    2017-03-01

    The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3  d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P < 0.01). The reduction of ARGs was further demonstrated by metagenomic sequencing. By comparison, the full-scale anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3  d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P < 0.01). The above result demonstrated that enhanced hydrolysis as a pretreatment method could enable efficient anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Removal of High -Concentration and Refractory Organic Matter from Diosgenin Manufacture Wastewater : a case study of a demonstration project in Hubei Province, P R China

    NASA Astrophysics Data System (ADS)

    Bao, J.; Wang, L.

    2009-12-01

    Wastewater from diosgenin manufacture is dark brown (3,500 ~4,000 times of the chroma) and acidic(pH=0.8~1.5)with high concentration of organic matter(COD=25,000~38,000 mg/L)and poor biodegradability(BOD5/COD= 0.25~0.30). It is highly toxic to biota due to the water-soluble saponin, tannins and pectin. Therefore removal of the organic matter is of great importance before the discharge of the wastewater into the environment. Here we presented a set of data from a demonstration project in Hubei province, P R China with an improved technics. This technics, focusing on the treatment of diosgenin wastewater, included hydrolytic acidification, internal electrolysis, neutralization, aerating-improved Up-flow Anaerobic Sludge Bed (UASB) and bio-contact oxidation treatment in sequence to remove the organic matter. After 60 days of starting-up, the water quality from hydrolytic acidification reactor was greatly improved. The effluent became clear, indicating the obvious removal of suspended solids in the water; the ratio of BOD/COD increased to 0.44, suggesting an significant increase of biodegradability; the content of volatile fatty acid (VFA) increased from 22.6 mmol/L to 86.8 mmol/L and the volume loading of COD reached 9.48 kg COD/(m3d). Basically at this stage the removal efficiency of COD was stabilized at 25%. Further treatment was conducted on the effluent from hydrolytic acidification reactor through the Improved UASB Reactor after the internal electrolysis and neutralization. The Improved UASB Reactor can start up at room temperature with an influent of 1,500 mg/L COD and inflow rate of 50(m3/d). Then, temperature was increased gradually to 38 oC (± 2 oC) to optimize the growth of the mesophilic anaerobes in the reactor. The content of VFA of the effluent was controlled below 8 mmol/L to guarantee the pH in the range of 6.8~7.2. After 150 days of debugging, the COD of the influent to UASB increased to 9,600 mg/L, hydraulic retaining time (HRT) was around 70 hrs , the volume loading and the removal efficiency of COD reached 3.42 kg COD/(m3.d) and 75% respectively. Bio-contact oxidation process dealt with the effluent from the Improved UASB at room temperature. The HRT was 54 hrs and dissolved oxygen was controlled between 2 to 4 mg/L. Currently, the COD volume loading reached 1.05 kg COD/(m3.d) and the removal efficiency of COD was over 90%. The total removal efficiencies of COD and color were over 99% and 98% respectively in the overall process. The pH, color and COD content of the final effluent were 7, about 200 mg/L and 50 times of the chroma respectively. All these indexes met the criteria of “The National Discharge Standard of Industry Water Pollutants for Sapogenin”(GB 20425-2006). This work was supported by National Key Technologies R&D Program No. 2006BAB04A14-2), the Hubei Provincial Science and Technology Department (No. 2006AA305A05) and Wuhan Science and Technology Bureau (20066002101).

  15. N2O emissions from an intermittently aerated semi-aerobic aged refuse bioreactor: Combined effect of COD and NH4+-N in influent leachate.

    PubMed

    Li, Weihua; Sun, Yingjie; Bian, Rongxing; Wang, Huawei; Zhang, Dalei

    2017-11-01

    The carbon-nitrogen ratio (COD/NH 4 + -N) is an important factor affecting nitrification and denitrification in wastewater treatment; this factor also influences nitrous oxide (N 2 O) emissions. This study investigated two simulated intermittently aerated semi-aerobic aged refuse bioreactors (SAARB) filled with 8-year old aged refuse (AR). The research analyzed how differences in and the combination of influent COD and NH 4 + -N impact N 2 O emissions in leachate treatment. Experimental results showed that N 2 O emissions increased as the influent COD/NH 4 + -N decreased. The influent COD had a greater effect on N 2 O emissions than NH 4 + -N at the same influent ratios of COD/NH 4 + -N (2.7 and 8.0, respectively). The maximum N 2 O emission accounted for 8.82±2.65% of the total nitrogen removed from the influent leachate; the maximum level occurred when the COD was 2000mg/L. An analysis of differences in influent carbon sources at the same COD/NH 4 + -N ratios concluded that the availability of biodegradable carbon substrates (i.e. glucose) is an important factor affecting N 2 O emissions. At a low influent COD/NH 4 + -N ratio (2.7), the N 2 O conversion rate was greater when there were more biodegradable carbon substrates. Although the SAARB included the N 2 O generation and reduction processes, N 2 O reduction mainly occurred later in the process, after leachate recirculation. The maximum N 2 O emission rate occurred in the first hour of single-period (24h) experiments, as leachate contacted the surface AR. In practical SAARB applications, N 2 O emissions may be reduced by measures such as reducing the initial recirculation loading of NH 4 + -N substrates, adding a later supplement of biodegradable carbon substrates, and/or prolonging hydraulic retention time (HRT) of influent leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Wastewater treatment using a novel bioreactor with submerged packing bed of polyethylene tape.

    PubMed

    Mijaylova Nacheva, P; Moeller Chávez, G

    2010-01-01

    The performance of a novel aerobic bioreactor with a specially designed submerged packing bed of high specific surface area density, made of polyethylene tape, was studied for the treatment of domestic wastewater. The reactor has a volume of 0.71 m(3) and the specific area of the packing bed was 1,098 m(2)/m(3). The operation was performed with and without effluent recycling, applying different organic loads in the range of 4.0-17.6 g COD m(-2) d(-1). No back-washings were carried out. Overall BOD(5) removals of 90-95% were obtained with organic loads of 4.0-17.6 g COD m(-2) d(-1) and HRT of 0.2-1.1 h. Overall TN removal of 69-72% was obtained at loads of 0.8-4.6 g TN m(-2) d(-1) when effluent recycling was used. The reactor allowed obtaining high quality water for urban reuse and demonstrated an effective process performance and resistance to load variations. The developed biofilm was completely penetrated by the organic matter, ammonia and oxygen, providing high removal rates. Large biomass quantities, up to 13 g dry VS/m(2), were reached in the reactor and the determined sludge yield coefficient was relatively low, of 0.25 g VSS/g COD. These results allow obtaining compact treatment systems with low sludge production and make the technology a suitable option for small wastewater treatment plants.

  17. The fate of chlorinated aliphatics in anaerobic treatment under transient loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Y.C.

    1993-01-01

    A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less

  18. Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Liu, WanQing

    2018-02-01

    TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.

  19. Using CSLD Method to Calculate COD Pollution Load of Wei River Watershed above Huaxian Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2017-12-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.

  20. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    PubMed

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  1. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.

  2. Integration of ozonation and an anaerobic sequencing batch reactor (AnSBR) for the treatment of cherry stillage.

    PubMed

    Alvarez, Pedro M; Beltrán, Fernando J; Rodríguez, Eva M

    2005-01-01

    Cherry stillage is a high strength organic wastewater arising from the manufacture of alcoholic products by distillation of fermented cherries. It is made up of biorefractory polyphenols in addition to readily biodegradable organic matter. An anaerobic sequencing batch reactor (AnSBR) was used to treat cherry stillage at influent COD ranging from 5 to 50 g/L. Different cycle times were selected to test biomass organic loading rates (OLR(B)), from 0.3 to 1.2 g COD/g VSS.d. COD and TOC efficiency removals higher than 80% were achieved at influent COD up to 28.5 g/L but minimum OLR(B) tested. However, as a result of the temporary inhibition of acetogens and methanogens, volatile fatty acids (VFA) noticeably accumulated and methane production came to a transient standstill when operating at influent COD higher than 10 g/L. At these conditions, the AnSBR showed signs of instability and could not operate efficiently at OLR(B) higher than 0.3 g COD/g VSS.d. A feasible explanation for this inhibition is the presence of toxic polyphenols in cherry stillage. Thus, an ozonation step prior to the AnSBR was observed to be useful, since more than 75% of polyphenols could be removed by ozone. The integrated process was shown to be a suitable treatment technology as the following advantages compared to the single AnSBR treatment were observed: greater polyphenols and color removals, higher COD and TOC removal rates thus enabling the process to effectively operate at higher OLR, higher degree of biomethanation, and good stability with less risk of acidification.

  3. Analysis of the relationship between economic growth and industrial pollution in Zaozhuang, China-based on the hypothesis of the environmental Kuznets curve.

    PubMed

    Liu, Xiao-Hui; Wang, Wei-Liang; Lu, Shao-Yong; Wang, Yu-Fan; Ren, Zongming

    2016-08-01

    In Zaozhuang, economic development affects the discharge amount of industrial wastewater, chemical oxygen demand (COD), and ammonia nitrogen (NH3-N). To reveal the trend of water environmental quality related to the economy in Zaozhuang, this paper simulated the relationships between industrial wastewater discharge, COD, NH3-N load, and gross domestic product (GDP) per capita for Zaozhuang (2002-2012) using environmental Kuznets curve (EKC) models. The results showed that the added value of industrial GDP, the per capita GDP, and wastewater emission had average annual growth rates of 16.62, 16.19, and 17.89 %, respectively, from 2002 to 2012, while COD and NH3-N emission in 2012, compared with 2002, showed average annual decreases of 10.70 and 31.12 %, respectively. The export of EKC models revealed that industrial wastewater discharge had a typical inverted-U-shaped relationship with per capita GDP. However, both COD and NH3-N showed the binding curve of the left side of the "U" curve and left side U-shaped curve. The economy in Zaozhuang had been at the "fast-growing" stage, with low environmental pollution according to the industrial pollution level. In recent years, Zaozhuang has abated these heavy-pollution industries emphatically, so pollutants have been greatly reduced. Thus, Zaozhuang industrial wastewater treatment has been quite effective, with water quality improved significantly. The EKC models provided scientific evidence for estimating industrial wastewater discharge, COD, and NH3-N load as well as their changeable trends for Zaozhuang from an economic perspective.

  4. Influence of Ammonium Ions, Organic Load and Flow Rate on the UV/Chlorine AOP Applied to Effluent of a Wastewater Treatment Plant at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Minke, Ralf

    2018-06-16

    This work investigates the influence of ammonium ions and the organic load (chemical oxygen demand (COD)) on the UV/chlorine AOP regarding the maintenance of free available chlorine (FAC) and elimination of 16 emerging contaminants (ECs) from wastewater treatment plant effluent (WWTE) at pilot scale (UV chamber at 0.4 kW). COD inhibited the FAC maintenance in the UV chamber influent at a ratio of 0.16 mg FAC per mg COD ( k HOCl⁻COD = 182 M −1 s −1 ). An increase in ammonium ion concentration led to a stoichiometric decrease of the FAC concentration in the UV chamber influent. Especially in cold seasons due to insufficient nitrification, the ammonium ion concentration in WWTE can become so high that it becomes impossible to achieve sufficiently high FAC concentrations in the UV chamber influent. For all ECs, the elimination effect by the UV/combined Cl₂ AOP (UV/CC) was not significantly higher than that by sole UV treatment. Accordingly, the UV/chlorine AOP is very sensitive and loses its effectiveness drastically as soon as there is no FAC but only CC in the UV chamber influent. Therefore, within the electrical energy consumption range tested (0.13⁻1 kWh/m³), a stable EC elimination performance of the UV/chlorine AOP cannot be maintained throughout the year.

  5. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.

    PubMed

    Venkata Mohan, S; Chandrasekhara Rao, N; Krishna Prasad, K; Murali Krishna, P; Sreenivas Rao, R; Sarma, P N

    2005-06-20

    The Taguchi robust experimental design (DOE) methodology has been applied on a dynamic anaerobic process treating complex wastewater by an anaerobic sequencing batch biofilm reactor (AnSBBR). For optimizing the process as well as to evaluate the influence of different factors on the process, the uncontrollable (noise) factors have been considered. The Taguchi methodology adopting dynamic approach is the first of its kind for studying anaerobic process evaluation and process optimization. The designed experimental methodology consisted of four phases--planning, conducting, analysis, and validation connected sequence-wise to achieve the overall optimization. In the experimental design, five controllable factors, i.e., organic loading rate (OLR), inlet pH, biodegradability (BOD/COD ratio), temperature, and sulfate concentration, along with the two uncontrollable (noise) factors, volatile fatty acids (VFA) and alkalinity at two levels were considered for optimization of the anae robic system. Thirty-two anaerobic experiments were conducted with a different combination of factors and the results obtained in terms of substrate degradation rates were processed in Qualitek-4 software to study the main effect of individual factors, interaction between the individual factors, and signal-to-noise (S/N) ratio analysis. Attempts were also made to achieve optimum conditions. Studies on the influence of individual factors on process performance revealed the intensive effect of OLR. In multiple factor interaction studies, biodegradability with other factors, such as temperature, pH, and sulfate have shown maximum influence over the process performance. The optimum conditions for the efficient performance of the anaerobic system in treating complex wastewater by considering dynamic (noise) factors obtained are higher organic loading rate of 3.5 Kg COD/m3 day, neutral pH with high biodegradability (BOD/COD ratio of 0.5), along with mesophilic temperature range (40 degrees C), and low sulfate concentration (700 mg/L). The optimization resulted in enhanced anaerobic performance (56.7%) from a substrate degradation rate (SDR) of 1.99 to 3.13 Kg COD/m3 day. Considering the obtained optimum factors, further validation experiments were carried out, which showed enhanced process performance (3.04 Kg COD/m3-day from 1.99 Kg COD/m3 day) accounting for 52.13% improvement with the optimized process conditions. The proposed method facilitated a systematic mathematical approach to understand the complex multi-species manifested anaerobic process treating complex chemical wastewater by considering the uncontrollable factors. Copyright (c) 2005 Wiley Periodicals, Inc.

  6. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    PubMed

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-01-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs.

  7. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    NASA Astrophysics Data System (ADS)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  8. Investigation of lab-scale horizontal subsurface flow constructed wetlands treating industrial cork boiling wastewater.

    PubMed

    Gomes, Arlindo C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Stefanakis, Alexandros I

    2018-09-01

    The feasibility and treatment efficiency of horizontal subsurface flow constructed wetlands (HSFCW) was assessed for the first time for cork boiling wastewater (CBW) through laboratory experiments. CBW is known for its high content of phenolic compounds, complex composition of biorecalcitrant and toxic nature. Two lab-scale units, one planted with Phragmites australis (CWP) and one unplanted (CWC), were used to evaluate the removals of COD, BOD, total phenolic compounds (TPh) and decolourization over a 2.5-years monitoring period under Mediterranean climatic conditions. Seven organic and hydraulic loading rates ranging from 2.6 to 11.5 g COD/m 2 /d and 5.7-9.1 L/m 2 /d were tested under average hydraulic retention time (HRT) of 5 ± 1 days required due to the CWB limited biodegradability (i.e., BOD 5 /COD of 0.19). Average removals of the CWP exceeded those of the CWC and reached 74.6%, 91.7% and 69.1% for COD, BOD 5 and TPh, respectively, with respective mass removals rates up to 7.0, 1.7 and 0.5 (in g/m 2 /d). Decolourization was limited to 35%, since it mainly depends on physical processes rather than biodegradation. CBW concentration of nine phenolic compounds ranged from 1.2 to 38.4 mg/L (for the syringic and ellagic acids, respectively) in the raw CBW, with respective removals in the CWP unit ranging from 41.8 to 76.3%, higher than those in the control unit. Despite CBW high concentration of TPhs (average of 116.3 mg/L), the HSFCW reached organic load removals higher than those of conventional biological treatment methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Organics removal of combined wastewater through shallow soil infiltration treatment: a field and laboratory study.

    PubMed

    Zhang, Zhiyin; Lei, Zhongfang; Zhang, Zhenya; Sugiura, Norio; Xu, Xiaotian; Yin, Didi

    2007-11-19

    Soil infiltration treatment (SIT) was proved to be an effective and low-cost treatment technique for decentralized effluents in the areas without perfect sewage systems. Field-scale experiments were conducted under several conditions to assess organics removals through a shallow soil infiltration treatment (SSIT, with effective depth 0.3m) of combined wastewater (discharge from toilets, restaurants and a gas station), while bench-scale soil column experiments were performed in laboratory in parallel to investigate biological and abiological effects of this kind of system. From the start-up to the 10th month, the field SSIT trenches experienced the lowest and highest temperatures of the operation period in Shanghai and exhibited effective organics removals after maturation, with the highest removal rate 75.8% of chemical oxygen demand (COD), highest ultraviolet absorption at 254 nm (UV(254)) decrease by 67.2% and 35.2-100% removals of phenolic and phthalate pollutants. The laboratory results indicated that more organics could be removed in room-temperatured (25+/-2 degrees C) SSIT systems under different influent COD concentrations from 45 mg/l to 406 mg/l, and the highest total COD removal rate could reach 94.0%, in which biological effect accounted for 57.7-71.9%. The results showed that temperature and hydraulic loading rate were the most important factors influencing the removals of COD and organic pollutants in SSIT.

  10. Effect of Solids Retention Time on the Denitrification Potential of Anaerobically Digested Swine Waste

    NASA Astrophysics Data System (ADS)

    Kinyua, Maureen Njoki

    Three continuously stirred tank reactors (CSTR) were operated in semi continuous mode treating swine waste using anaerobic digestion. The reactors were used to test the effect of solid retention time (SRT) on CH4 yield, total ammonia nitrogen (TAN) concentrations, % volatile solids (VS), chemical oxygen demand (COD) and volatile fatty acids (VFA) removal, readily biodegradable COD concentration and the denitrification potential for the effluent in a biological nutrient removal (BNR) system. During Phase I of the study, the three reactors were operated at the same 28 day SRT for 16 weeks. SRTs were then changed during the 12 week Phase II period. The SRTs studied were 14, 21 and 28 days, with the same organic loading rate (OLR) of 1.88 ± 0.2 kg VS/ m3-day. The reactor with the lowest SRT (14 days) had the highest VS and VFA removal at 73.6 and 67.6% and lowest TAN concentration at 0.78 g NH4+-N/L, followed by the 21 day and 28 day reactors. This was likely due to the fast microbial growth rates and substrate utilization rates in this reactor compared with the other two. The 14 day reactor had the highest CH4 yield at 0.33 m3CH 4/kg VS added and readily biodegradable COD concentration at 0.93 COD/L. The variations in CH4 yield and readily biodegradable COD concentrations between the three reactors were not statistically significant. Denitrification potential for the reactors was 1.20, 0.73 and 0.56 g COD/g N for 14, 21 and 28 day reactors, respectively, and the differences were statistically significant. None of the reactors achieved a denitrification potential of 5 g COD/g N, the amount required to use effluent of anaerobically digested swine waste as an internal carbon source in a BNR. This was attributed to operating conditions such as freezing and thawing of the raw swine waste that maximized CH4 yield and lowered the readily biodegradable COD concentration. In addition the 14 day reactor had low TAN concentrations thus increasing the denitrification potential of the centrate from that reactor.

  11. Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL).

    PubMed

    Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M

    2018-01-01

    This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.

  12. Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater.

    PubMed

    Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P

    2007-01-01

    Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.

  13. Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors.

    PubMed

    Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E

    2009-10-01

    This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.

  14. Anaerobic digestion of glycerol derived from biodiesel manufacturing.

    PubMed

    Siles López, José Angel; Martín Santos, María de Los Angeles; Chica Pérez, Arturo Francisco; Martín Martín, Antonio

    2009-12-01

    The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H(3)PO(4) was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m(3) CH(4)/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21-0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.

  15. Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR.

    PubMed

    Li, Qian; Li, Yu-You; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki

    2015-06-01

    This study was conducted to investigate the effects of sulfate on propionate degradation and higher organic loading rate (OLR) achievement in a thermophilic AnMBR for 373days using coffee grounds, milk and waste activated sludge (WAS) as the co-substrate. Without the addition of sulfate, the anaerobic system failed at an OLR of 14.6g-COD/L/d, with propionate accumulating to above 2.23g-COD/L, and recovery by an alkalinity supplement was not successful. After sulfate was added into substrates at a COD/SO4(2-) ratio of 200:1 to 350:1, biogas production increased proportionally with OLR increasing from 4.06 to 15.2g-COD/L/d. Propionic acid was maintained at less than 100mg-COD/L due to the effective conversion of propionic acid to methane after the sulfate supplement was added. The long-term stable performance of the AnMBR indicated that adding sulfate was beneficial for the degradation of propionate and achieving a higher OLR under the thermophilic condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-01-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Organic loading rate effect on the acidogenesis of cheese whey: a comparison between UASB and SBR reactors.

    PubMed

    Calero, R; Iglesias-Iglesias, R; Kennes, C; Veiga, M C

    2017-09-16

    Volatile fatty acids (VFA) production and degree of acidification (DA) were investigated in the anaerobic treatment of cheese whey by comparison of two processes: a continuous process using a laboratory upflow anaerobic sludge blanket (UASB) reactor and a discontinuous process using a sequencing batch reactor (SBR). The main purpose of this work was to study the organic loading rate (OLR) effect on the yield of VFA in two kinds of reactors. The predominant products in the acidogenic process in both reactors were: acetate, propionate, butyrate and valerate. The maximum DA obtained was 98% in an SBR at OLR of 2.7 g COD L -1 d -1 , and 97% in the UASB at OLR at 15.1 g COD L -1 d -1 . The results revealed that the UASB reactor was more efficient at a medium OLR with a higher VFA yield, while with the SBR reactor, the maximum acidification was obtained at a lower OLR with changes in the VFA profile at different OLRs applied.

  18. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    PubMed

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Investigation of soluble microbial products in a full-scale UASB reactor running at low organic loading rate.

    PubMed

    Zhou, Weili; Wu, Bingtao; She, Qianhong; Chi, Lina; Zhang, Zhenjia

    2009-07-01

    Investigation on a full-scale UASB treating industrial wastewater at a low organic loading rate (OLR) was conducted. Excellent treatment performance was achieved when treating the evaporator condensate of distillery wastewater at the OLR of less than 1 kg COD/m(3)d. Anaerobic effluent could be discharged without further treatment, which saved energy and running cost considerably. GC-MS analysis showed that the soluble microbial products (SMPs) were decreased to a low level at the low OLR. The main SMP in the anaerobic effluent were long chain carbohydrates and esters, accounting for 55-65% of the total organic matters. Anaerobic SMP was more complex than the aerobic ones. Soluble COD, protein and polysaccharide showed an obvious decrease at the sludge layer from 10 to 15m despite the low MLSS/MLVSS content. Methanogens were found to be predominant in this layer, which indicated that the methanogens might be the main consumers of the SMP in anaerobic reactors. Economic comparison confirmed that the anaerobic treatment at low OLR could be a good option.

  1. Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor.

    PubMed

    Zhao, Q I; Li, W; You, S J

    2006-01-01

    Some industrial wastewaters may contain ammonium-nitrogen and/or sulphate, which need to be removed before their discharge into natural water bodies to eliminate their severe pollution. In this paper, simultaneous removal of ammonium-nitrogen and sulphate with an anaerobic attached-growth bioreactor of 3.8 L incubated with sulphate reducing bacteria (SRB) was investigated. Artificial wastewater containing sodium sulphate as electron acceptor, ammonium chlorine as electron donor and glucose as carbon source for bacteria growth was used as the feed for the bioreactor. The loading rates of ammonium-nitrogen, sulphate and COD were 2.08 gN/m3 x d, 2.38 gS/m3 x d, 104.17 gCOD/m3 x d, respectively, with a N/S ratio of 1:1.14. The results demonstrated that removal rates of ammonium-nitrogen, sulphate and COD could reach 43.35%, 58.74% and 91.34%, respectively. Meanwhile, sulphur production was observed in effluent as well as molecular nitrogen in biogas, whose amounts increased with time substantially, suggesting the occurrence of simultaneous removal of ammonium-nitrogen and sulphate. This novel reaction provided the possibility to eliminate ammonium-nitrogen and sulphate simultaneously with accomplishment of COD removal from wastewater, making wastewater treatment more economical and sustainable.

  2. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from baker's yeast wastewater.

    PubMed

    Pirsaheb, Meghdad; Mohamadi, Samira; Rahmatabadi, Sama; Hossini, Hooshyar; Motteran, Fabrício

    2017-08-30

    In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Y m ) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g COD removed d at the experimental condition. The Y m was between 0.31 and 0.44 L/g COD removed .d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.

  3. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    NASA Astrophysics Data System (ADS)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  4. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    PubMed Central

    2012-01-01

    Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984

  5. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor.

    PubMed

    España-Gamboa, Elda I; Mijangos-Cortés, Javier O; Hernández-Zárate, Galdy; Maldonado, Jorge A Domínguez; Alzate-Gaviria, Liliana M

    2012-11-21

    A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  6. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.

    PubMed

    Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki

    2012-08-01

    Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption.

    PubMed

    Petta, Luigi; De Gisi, Sabino; Casella, Patrizia; Farina, Roberto; Notarnicola, Michele

    2017-10-01

    A multi-stage pilot-scale treatment cycle consisting of an Upflow Anaerobic Sludge Blanket reactor (UASB) followed by an anoxic-aerobic Ultra Filtration Membrane Bio Reactor (UF-MBR) and a post treatment based on chemical precipitation with lime or adsorption on Granular Activated Carbons (GAC), was applied in order to evaluate the treatment feasibility of a real winery distillery wastewater at laboratory and bench scale. The wastewater was classified as high strength with acidic pH (3.8), and concentrations of 44,600, 254, 604 and 660 mg/l for COD tot , total nitrogen, total phosphorous and phenols, respectively. The UASB reactor was operated at Organic Loading Rates (OLR) in the range 3.0-11.5 kgCOD tot /m 3 /d achieving treatment efficiency up to 97%, with an observed methane production of 340 L of CH 4 /kgCOD. The MBR system was operated with an organic load in the range 0.070-0.185 kgCOD/kgVSS/d, achieving a removal up to 48%, 67% and 65% of the influent COD, total nitrogen and phenols, respectively. The combination of UASB and UF-MBR treatment units was not effective in phosphate and colour removal assigning to further chemical precipitation and adsorption processes, respectively, their complete removal in order to comply with legal standards for wastewater discharge. Subsequently, the optimization of the investigated treatment chain was assessed by applying a chemical precipitation step upstream and downstream the UASB reactor, and a related treatment unit cost assessment is presented in view of a further technological scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electricity generation from food wastes and microbial community structure in microbial fuel cells.

    PubMed

    Jia, Jianna; Tang, Yu; Liu, Bingfeng; Wu, Di; Ren, Nanqi; Xing, Defeng

    2013-09-01

    Microbial fuel cell (MFC) was studied as an alternate and a novel way to dispose food wastes (FWs) in a waste-to-energy form. Different organic loading rate obviously affected the performance of MFCs fed with FWs. The maximum power density of ~18 W/m(3) (~556 mW/m(2)) was obtained at COD of 3200±400 mg/L and the maximum coulombic efficiency (CE) was ~27.0% at COD of 4900±350 mg/L. The maximum removals of COD, total carbohydrate (TC) and total nitrogen (TN) were ~86.4%, ~95.9% and ~16.1%, respectively. Microbial community analysis using 454 pyrosequencing of 16S rRNA gene demonstrated the combination of the dominant genera of the exoelectrogenic Geobacter and fermentative Bacteroides effectively drove highly efficient and reliable MFC systems with functions of organic matters degradation and electricity generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biogas production from Jatropha curcas press-cake.

    PubMed

    Staubmann, R; Foidl, G; Foidl, N; Gübitz, G M; Lafferty, R M; Arbizu, V M; Steiner, W

    1997-01-01

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m3 m"3 d"1 was obtained in the anaerobic filter with a loading rate of 13 kg COD m~3 d"1. However, the UASB reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane.

  10. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    PubMed

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Volke-Sepúlveda, Tania; González-Sánchez, Armando; Revah, Sergio

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO4(2-) ratio. This work relates the feed COD/SO4(2-) ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470+/-7 mg S/L was obtained at a feed COD/SO4(2-) ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145+/-10 mg S/L) was observed with a feed COD/SO4(2-) ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO4(2-) ratio of 1.5. It was found that the feed COD/SO4(2-) ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  12. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    PubMed

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  13. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be best explained by the establishment of POB with low affinities (high K(s)) for propionate. Achieving low levels of propionate with either thermophilic or short HRT digesters is challenging and a relatively long HRT mesophilic digester should be employed for this purpose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste.

    PubMed

    Park, Jong-Hun; Kumar, Gopalakrishnan; Yun, Yeo-Myeong; Kwon, Joong-Chun; Kim, Sang-Hyoun

    2018-01-01

    The effect of feeding mode and dilution was studied in anaerobic digestion of food waste. An upflow anaerobic digester with a settler was fed at six different organic loading rates (OLRs) from 4.6 to 8.6kgCOD/m 3 /d for 200days. The highest methane productivity of 2.78LCH 4 /L/d was achieved at 8.6kgCOD/m 3 /d during continuous feeding of diluted FW. Continuous feeding of diluted food waste showed more stable and efficient performance than stepwise feeding of undiluted food waste. Sharp increase in propionate concentration attributed towards deterioration of the digester performances in stepwise feeding of undiluted food waste. Microbial communities at various OLRs divulged that the microbial distribution in the continuous feeding of diluted food waste was not significantly perturbed despite the increase of OLR up to 8.6kgCOD/m 3 /d, which was contrast to the unstable distribution in stepwise feeding of undiluted food waste at 6.1kgCOD/m 3 /d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide.

    PubMed

    Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W

    2014-04-01

    The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Behaviour of molecular weight distribution for the liquid fraction of pig slurry treated by anaerobic digestion.

    PubMed

    Rodríguez, D C; Belmonte, M; Peñuela, G; Campos, J L; Vidal, G

    2011-01-01

    Pig slurry was treated in an upflow anaerobic sludge blanket (UASB) reactor. To maintain a stable operation, the organic loading rate (OLR) applied to the system was increased stepwise by decreasing the dilution ratio of the pig slurry. Finally, during the last operational stage, no dilution was applied to the influent. The reactor maintained a soluble chemical oxygen demand (CODs) removal efficiency of 82% when OLRs lower than 1.73 g CODs l(-1) d(-1) were applied, although its efficiency fell to 55% when operated at 2.48 g CODs l(-1) d(-1). System performance was not affected by the presence of free ammonia (concentrations up to 375 mg NH3 l(-1)). The distribution of the different molecular weight fractions changed significantly during anaerobic digestion. Proteins contained in the fractions higher than 10,000 Daltons are less degraded than those belonging to the lower fractions. An important percentage of both COD and BOD5 in the effluent were observed in the lowest fraction, probably caused by the presence of volatile fatty acids (VFA).

  17. Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR.

    PubMed

    Castrillón, L; Fernández-Nava, Y; Ormaechea, P; Marañón, E

    2013-01-01

    The aim of the present research work was to optimise biogas production from cattle manure by adding crude glycerin from the biodiesel industry. For this purpose, 6%v/v crude glycerin (the optimum amount according to previous research) was added to ground manure and the mixture was sonicated to enhance biodegradability prior to anaerobic co-digestion at 55 °C. Two different reactors were used: continuously stirred (CSTR) and induced bed (IBR). The methanol and pure glycerin contents of the crude glycerin used in this study were 5.6% and 49.4% (w/w), respectively. The best results when operating in CSTR were obtained for an organic loading rate (OLR) of 5.4 kg COD/m(3) day, obtaining 53.2m(3) biogas/t wet waste and 80.7% COD removal. When operating in IBR, the best results were obtained for an OLR of 6.44 kg COD/m(3)day, obtaining 89.6% COD removal and a biogas production of 56.5m(3)/t wet waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Comparison of bioreactors with different kinds of submerged packed beds for domestic wastewater treatment.

    PubMed

    Nacheva, P Mijaylova; Moeller Chávez, G; Bustos, C; Garzón Zúñiga, M A; Hornelas Orozco, Y

    2008-01-01

    The performance of aerobic submerged packed bed reactors was studied for the treatment of domestic wastewater using different kinds of packing materials with high specific areas (760-1,200 m(2)/m(3)). The tested materials were ceramic spheres, crushed tezontle, grains of high density polyethylene (HDPE), of low density polyethylene (LDPE) and of polypropylene (PP), cubes of polyurethane (PU) and polyethylene tape (SESSIL). The bioreactors were operated in continuous regime, applying organic loads in the range of 0.8-6.0 g COD.m(-2).d(-1). The obtained specific COD removal rates were very similar in all the reactors when they were operated at organic loads up to 2.0 g COD.m(-2).d(-1), after which differences in effectiveness appeared and the best results were determined in the reactors with SESSIL, LDPE and PU. Very low TSS, O&G and turbidity were obtained in all the effluents. The NH(3)-N and TN removals were dependent on the dissolved oxygen (DO) concentration and the removals at DO of 5 mg/l were 84-99% and 61-74% respectively. The best removals were determined in the reactors with PU, SESSIL and LDPE. The reactor with tezontle had also a good performance when operated with loads up to 1.0 g TN.m(-2).d(-1). The best phosphate removals (38-49%) were obtained in the reactors with PU, tezontle, ceramic sheres and SESSIL. (c) IWA Publishing 2008.

  19. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor.

    PubMed

    Kim, Tae Gwan; Yun, Jeonghee; Cho, Kyung-Suk

    2015-10-01

    The up-flow anaerobic sludge blanket (UASB) reactor is a promising method for the treatment of high-strength industrial wastewaters due to advantage of its high treatment capacity and settleable suspended biomass retention. Molasses wastewater as a sugar-rich waste is one of the most valuable raw material for bioenergy production due to its high organic strength and bioavailability. Interpretation for complex interactions of microbial community structures and operational parameters can help to establish stable biogas production. RNA-based approach for biogas production systems is recommended for analysis of functionally active community members which are significantly underestimated. In this study, methane production and active microbial community were characterized in an UASB reactor using molasses wastewater as feedstock. The UASB reactor achieved a stable process performance at an organic loading rate of 1.7~13.8-g chemical oxygen demand (COD,·L(-1) day(-1); 87-95 % COD removal efficiencies), and the maximum methane production rate was 4.01 L-CH4·at 13.8 g-COD L(-1) day(-1). Lactococcus and Methanosaeta were comprised up to 84 and 80 % of the active bacterial and archaeal communities, respectively. Network analysis of reactor performance and microbial community revealed that Lactococcus and Methanosaeta were network hub nodes and positively correlated each other. In addition, they were positively correlated with methane production and organic loading rate, and they shared the other microbial hub nodes as neighbors. The results indicate that the close association between Lactococcus and Methanosaeta is responsible for the stable production of methane in the UASB reactor using molasses wastewater.

  1. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA).

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani

    2017-01-01

    Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m 2 /g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pH i ) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

  2. Start-up of a pilot-scale anaerobic fixed film reactor at low temperature treating slaughterhouse wastewater.

    PubMed

    del Pozo, R; Diez, V; Salazar, G

    2002-01-01

    A pilot-scale anaerobic fixed film reactor (AFFR) with vertically arranged PVC tubes as biomass carrier, treating poultry slaughterhouse wastewater was started-up in 74 days at temperatures between 20-24 degrees C. The start-up process consisted of a long acclimatization phase followed by a low loaded growth phase, a gradual increase of OLR upto 9.2 kg COD/m3d, and a final maturation phase at moderated loads of 2.7 kg COD/m3d at which total COD removal efficiencies of 57% were achieved. Alkalinity ratio IA:PA was found to be the best control parameter to avoid VFA accumulation. OLR increase based on pH control was not satisfactory because changes in CO2 solubility caused daily by temperature and flow variations led to pH oscillations of 0.2 units. The low wastewater alkalinity, 260 mg/l CaCO3 was insufficient to buffer the pH system, therefore the pH decrease associated with the VFA accumulation was not easily detected and could not be used as a way of OLR control. Organic matter removal took place by accumulation and biodegradation processes. Limitation in the reactor hydrodynamics and particulate fraction hydrolysis was detected at high flow rates.

  3. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater.

    PubMed

    Dalahmeh, Sahar S; Pell, Mikael; Hylander, Lars D; Lalander, Cecilia; Vinnerås, Björn; Jönsson, Håkan

    2014-01-01

    Greywater flows and concentrations vary greatly, thus evaluation and prediction of the response of on-site treatment filters to variable loading regimes is challenging. The performance of 0.6 m × 0.2 m (height × diameter) filters of bark, activated charcoal and sand in reduction of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total nitrogen (Tot-N) and total phosphorus (Tot-P) under variable loading regimes was investigated and modelled. During seven runs, the filters were fed with synthetic greywater at hydraulic loading rates (HLR) of 32-128 L m(-2) day(-1) and organic loading rates (OLR) of 13-76 g BOD5 m(-2) day(-1). Based on the changes in HLR and OLR, the reduction in pollutants was modelled using multiple linear regression. The models showed that increasing the HLR from 32 to 128 L m(-2) day(-1) decreased COD reduction in the bark filters from 74 to 40%, but increased COD reduction in the charcoal and sand filters from 76 to 90% and 65 to 83%, respectively. Moreover, the models showed that increasing the OLR from 13 to 76 g BOD5 m(-2) day(-1) enhanced the pollutant reduction in all filters except for Tot-P in the bark filters, which decreased slightly from 81 to 73%. Decreasing the HLR from 128 to 32 L m(-2) day(-1) enhanced the pollutant reduction in all filters, but decreasing the OLR from 76 to 14 g BOD5 m(-2) day(-1) detached biofilm and decreased the Tot-N and Tot-P reduction in the bark and sand filters. Overall, the bark filters had the capacity to treat high OLR, while the charcoal filters had the capacity to treat high HLR and high OLR. Both bark and charcoal filters had higher capacity than sand filters in dealing with high and variable loads. Bark seems to be an attractive substitute for sand filters in settings short in water and its effluent would be valuable for irrigation, while charcoal filters should be an attractive alternative for settings both rich and short in water supply and when environmental eutrophication has to be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Phenolic refinery wastewater biodegradation by an expanded granular sludge bed reactor.

    PubMed

    Almendariz, F J; Meraz, M; Olmos, A D; Monroy, O

    2005-01-01

    Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SW(CO2)) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L(-1) of phenol, p-cresol and o-cresol, respectively. The mixture was teated anaerobically in an EGSB reactor fed with 1.5 gCOD L(-1) d(-1), without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L(-1) d(-1). The mixture SC/SWco2 added to the phenol load, was step increased from 0.10 to 0.87 gCODL(-1) d(-1) maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.

  5. Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment.

    PubMed

    Guo, Chunmei; Chen, Yi; Chen, Jinfu; Wang, Xiaojun; Zhang, Guangqing; Wang, Jingxiu; Cui, Wenfeng; Zhang, Zhongzhi

    2014-10-01

    This paper investigated the enhancement of the COD reduction of an oilfield wastewater treatment process by installing air-lift tubes and adding an activated carbon bioreactor (ACB) to form a combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes (HA/air-lift BCO) and an ACB. Three heat-resistant bacterial strains were cultivated and subsequently applied in above pilot plant test. Installing air-lift tubes in aerobic tanks reduced the necessary air to water ratio from 20 to 5. Continuous operation of the HA/air-lift BCO system for 2 months with a hydraulic retention time of 36 h, a volumetric load of 0.14 kg COD/(m(3)d) (hydrolysis-acidification or anaerobic tank), and 0.06 kg COD/(m(3)d) (aerobic tanks) achieved an average reduction of COD by 60%, oil and grease by 62%, total suspended solids by 75%, and sulfides by 77%. With a COD load of 0.56 kg/(m(3)d), the average COD in the ACB effluent was 58 mg/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.

    PubMed

    Yogalakshmi, K N; Joseph, Kurian

    2010-09-01

    Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Potential removal of organic loads from petroleum wastewater and its effect on the corrosion behavior of municipal networks.

    PubMed

    El-Shamy, A M; Abdelfattah, Ibrahim; Elshafey, Ola I; Shehata, M F

    2018-05-09

    A potential and cost-effective treatment method utilizing thermally activated bentonite was evaluated for the treatment of highly loaded real petroleum processing wastewater (COD = 4500 mg/L) in order to reduce its COD and improve the corrosion properties. A save discharging COD limit of the treated effluent (800 mg/L) is achieved by using 6 g/L of calcinated bentonite after reaching the steady state (1 h of shaking) at pH 5. The durability of bentonite is proved. The corrosion behavior of the treated wastewater was investigated for mild steel by using electrochemical and weight loss measurements. The results proved that the corrosion rate of the wastewater was slightly reduced after the treatment process. More improvement of the corrosion resistance was achieved by adding sodium hexa-meta-phosphate (SHMP) corrosion inhibitor to the treated water. Tri-methyl ammonium bromide (CTAB) biocide was also added before discharging into municipal networks. Copyright © 2018. Published by Elsevier Ltd.

  8. Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry.

    PubMed

    Mosquera-Corral, A; Sánchez, M; Campos, J L; Méndez, R; Lema, J M

    2001-02-01

    A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.

  9. [Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City].

    PubMed

    Wang, Jun; Bi, Chun-juan; Chen, Zhen-lou; Zhou, Dong

    2013-05-01

    Four typical rainfalls were monitored in two different research areas of Wenzhou Municipality. Concentrations of BOD5 and COD in six different urban runoffs were measured. In addition the event mean concentration (EMC), M (V) curve and BOD5/COD of pollutant were calculated. The results showed that concentrations of BOD5 and COD in different urban runoffs of Wenzhou ranged from ND to 69.21 mg x L(-1) and ND to 636 mg x L(-1). Concentrations of BOD5 and COD in different urban runoffs were decreasing over time, so it is greatly significant to manage the initial runoff for reducing organic pollution. Judged by EMC of BOD5 and COD in these five rainfalls, concentrations of pollutant in some urban runoffs were out of the integrated wastewater discharge standard. If these runoffs flowed into river, it would cause environmental pressure to the next level receiving water bodies. According to the M (V) curve, the first flush effect of COD in most urban runoffs was common; while the first flush effect of BOD5 was same as that of COD. The result also showed that organic pollution was serious at the beginning of runoff. The underlying surface type could affect the concentration of BOD5 and COD in urban runoff. While the results of BOD5/COD also suggested that biodegradation was considered as one of the effective ways to decrease the pollution load of organics in urban runoff, and the best management plans (BMPs) should be selected for various urban runoff types for the treatment of organic pollution.

  10. Quali-quantitative characterization and wastewater treatment of a winery located in the mid-west of Santa Catarina state, South of Brazil.

    PubMed

    Ortigara, A R C; Sezerino, P H; Bento, A P; Scaratti, D

    2009-01-01

    This paper analyses variations in the quali-quantitative characterization of winery wastewater, and the behavior of the treatment of these effluents. The wastewater produced is sent to two disposition systems: Point A receives the wastewater from the production area whereas Point B receives the wastewater from the area where the washing of bottles takes place. Two Aerated Submerged Biofilter (ASB) reactors (with oyster shells as support material) were built at lab scale to promote the treatment of the winery effluent. Water usage and effluent production values of the 2008 harvest season indicate that grape processing accounted for 30% of the total water usage. The median value found for the effluent at Point A was 8,260 mg COD L(-1) and at Point B 358 mg COD L(-1). The average C/N/P ratio found at Point A was 100/0.29/0.28 during the harvest and 100/0.27/0.25 during the non harvest. For ASB 1 the COD removal efficiency ranged from 56% to 90%, with the removed organic load ranging from 1.5 kg COD m(-3) d(-1) to 2.7 kg COD m(-3) d(-1), respectively. For ASB 2 the COD removal efficiency ranged from 63% to 82%, with the removed organic load ranging from 1.8 kg COD m(-3) d(-1) to 1.7 kg COD m(-3) d(-1), respectively.

  11. Biogas production from Jatropha curcas press-cake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staubmann, R.; Guebitz, G.M.; Lafferty, R.M.

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter eachmore » reactor having a total volume of 110 L. A maximum production rate of 3.5 m{sup 3} m{sup -3} d{sup -1} was obtained in the anaerobic filter with a loading rate of 13 kg COD m{sup -3} d{sup -1}. However, the UAS reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane. 28 refs., 3 figs., 4 tabs.« less

  12. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR).

    PubMed

    Galib, Mohamed; Elbeshbishy, Elsayed; Reid, Robertson; Hussain, Abid; Lee, Hyung-Sool

    2016-11-01

    An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    PubMed

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  14. Molasses as an external carbon source for anaerobic treatment of sulphite evaporator condensate.

    PubMed

    Silva, Flávio; Nadais, Helena; Prates, António; Arroja, Luís; Capela, Isabel

    2009-03-01

    Failures in stability and COD removal performance often occurred in full-scale anaerobic reactors treating the evaporator condensate from a sulphite pulp mill due to substrate inhibition and occasional contaminations with red liquor (wood cooking liquor). With this work, the beneficial effect provided by the continuous addition of an external carbon source (sugarcane molasses) on the overall performance and stability of the biological process was evaluated. With a moderate addition of molasses the inhibition was mitigated which led to an increase of the COD removal rate from 52% to 77% and a methane production increase from 460 to 1650mld(-1) at an organic loading rate of 2.61g CODl(-1)d(-1). A similar conclusion can be drawn for the case when contamination with red liquor occurs. These results suggest that sugarcane molasses addition may be regarded as a low-cost operational strategy for the anaerobic treatment of sulphite evaporator condensate.

  15. Biotreatment of Petrochemical Wastewater: A Case Study from Northern Tunisia.

    PubMed

    Jemli, Meryem; Zaghden, Hatem; Rezgi, Fatma; Kchaou, Sonia; Aloui, Fathi; Sayadi, Sami

    2017-03-01

      A full-scale study has been conducted to assess the bioaugmentation efficiency of trickling filter process to treat petrochemical wastewater from a lubricant industry recycling waste oils. During 45 weeks, the organic loading rate (OLR) in the trickling filter was increased stepwise from 0.9 to 4 kg of chemical oxygen demand (COD)/(m3·day) at the end of the upgrading period as the flow rate (FR) reached the value of 30 m3/day. The removal, obtained in terms of percentage, for COD ranged from 60 to 84.5 and greater than 98 for total n-alkane (TNA), while those of total kjeldahl nitrogen (TKN) and total phosphor (TP) were about 32 and 55, respectively. The analytical profile index (API) of trickling biofilm has confirmed that 5 strains are closely related to Acinobacter junii, Stenotrophomonas maltophilia, Vibrio vulnificus, Vibrio metschnikovi, Pseudomona slulzeri and Trichosporon spp2.

  16. Anaerobic degradation of coconut husk leachate using UASB-reactor.

    PubMed

    Neena, C; Ambily, P S; Jisha, M S

    2007-07-01

    Reffing of coconut husk, the majorprocess in quality coir fibre extraction, causes serious pollution with brackish water lagoons of Kerala. An attempt is made to treat the coconut husk leachate by using a laboratory scale UASB-reactor The experiment was conducted with loading of leachate from 1 kg of fresh coconut husk. The anaerobic treatment was done continuously The parameters like VFA, pH, COD and polyphenols were analysed regularly during the evaluation of the reactor performance. The polyphenol, VFA and COD were diminished gradually with time. The pH of the reactor during the study was found to be in the range of 6-8. The biogas production was increased with loading and about 82% of the total COD/kg husk could be converted to biogas. The maximum polyphenol loading in the reactor was reached to about 298.51 mg/l of husk.

  17. Application of cigarette filter rods as biofilm carrier in an integrated fixed-film activated sludge reactor.

    PubMed

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2013-01-01

    Bio-carriers are an important component of integrated fixed-film activated sludge (IFAS) processes. In this study, the capability of cigarette filter rods (CFRs) as a bio-carrier in IFAS processes was evaluated. Two similar laboratory-scale IFAS systems were operated over a 4-month period using Kaldnes-K3 and CFRs as IFAS media. The process performance was studied by using chemical oxygen demand (COD). The organic loading rate was in the range 0.5-2.8 kgCOD/(m(3)·d). The COD average removal efficiencies were 89.3 and 93.9% for Kaldnes-K3 (reactor A) and cigarette filters (reactor B), respectively. The results demonstrate that the performance of the IFAS reactor containing CFRs was comparable to the reactor using Kaldnes. The CFRs, which have a high porous surface area and entrapment ability for microbial cells, could be successfully used in biofilm reactors as a bio-carrier.

  18. Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios.

    PubMed

    Lei, Zhongfang; Wu, Ting; Zhang, Yi; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong; Tay, Joo-Hwa

    2013-01-01

    Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l(-1). This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN>100 mg l(-1) and of chemical oxygen demand (COD)/TN ratio of 3.2-8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m(3) m(-2) d(-1) for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m(3) m(-2) d(-1) of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Kinetics of anaerobic treatment of landfill leachates combined with urban wastewaters.

    PubMed

    Fueyo, Gema; Gutiérrez, Antonio; Berrueta, José

    2003-04-01

    The anaerobic degradation of landfill leachates mixed with domestic wastewater has been studied in a pilot-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. A previous work in laboratory-scale had shown that a fraction (5%) of the refractory organic matter could be additionally degraded when these two substrates were treated in conjunction, but this synergistic effect in the Chemical Oxygen Demand (COD) removal was not reproduced. However, the mass loading rate for which the maximum degradation was obtained was higher for the mixtures (0.5 kg COD/kg SSV x d) than for the separated components (0.18 and 0.19), allowing an increase in the treatment capacity of the leachates. The methane productivity (304 L/kg COD) was close to the theoretical maximum and independent of the proportion of the mixture components. The experimental data were fitted to a modification of Haldane's kinetic model, in which the parameters depend on the hydraulic residence time and the biomass concentration.

  20. A super high-rate sulfidogenic system for saline sewage treatment.

    PubMed

    Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao

    2016-11-01

    This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m 3 ·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m 3 ·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s -1 ) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    PubMed

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu(max-autotroph), 3.2day(-1) for mu(max-heterotroph), and 1.5day(-1) for mu(max-PAO).

  2. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations.

    PubMed

    Liu, Fang; Zhao, Chao-Cheng; Zhao, Dong-Feng; Liu, Guo-Hua

    2008-12-15

    An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH(4)(+)-N and total nitrogen (TN) in the effluent were 31, 2 and 8mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78m(3)/(m(2)h), the removal efficiencies of COD, NH(4)(+)-N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH(4)(+)-N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1mg/L, the removal efficiencies of COD and NH(4)(+)-N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%.

  3. Incremental sanitation improvement strategy: comparison of options for Hanoi, Vietnam.

    PubMed

    Harada, H; Matsui, S; Dong, N T; Shimizu, Y; Fujii, S

    2010-01-01

    Urban sanitation issues should be tackled strategically, and may be addressed effectively when sewage development is pursued in conjunction with complementary sanitation measures. Five sanitation improvement scenarios employing sewage, night-soil collection-and-treatment (NSCT) system, and/or septic-tank improvement by annual dislodging were analyzed from the perspective of COD loads, total nitrogen loads, and cost under the conditions found in Hanoi, Vietnam. Compared to the development of sewage alone, the scenario of developing NSCT systems in a complementary manner with sewage development was estimated to be the most effective for a rapid decrease of both COD and total nitrogen loads. However, it may be difficult in some cases to replace ordinary water-flush toilet by the micro-flush toilet that are used in NSCT systems. In this case, the scenario employing septic-tank improvement in conjunction with sewage development may be effective for a rapid decrease of COD in locations where septic tanks are widely used under poor maintenance conditions and nitrogen pollution is not serious compared to COD. It was calculated that the two scenarios above would respectively require cost increases of 16 and 22% over the sewage development scenario.

  4. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics.

    PubMed

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan

    2018-02-01

    Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids.

    PubMed

    MacAdam, Jitka; Ozgencil, Haci; Autin, Olivier; Pidou, Marc; Temple, Clive; Parsons, Simon; Jefferson, Bruce

    2012-12-01

    The treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge. A three-stage treatment is generally applied, with the oil phase being removed first, followed by a reduction in COD loading and then polishing of the effluent's quality in the final stage. The performance of advanced oxidation processes (AOPs), which could be of benefit to both types of businesses was studied. After assessing the biodegradability of spent MFW, different AOPs were used (UV/H2O2, photo-Fenton and UV/TiO2) to establish the treatability of this wastewater by hydroxyl radicals (*OH). The interactions of both the chemical and biological treatments were also investigated. The wastewater was found to be readily biodegradable in the Zahn-Wellens test with 69% COD and 74% DOC removal. The UV/TiO2 reactor was found to be the cheapest option achieving a very good COD removal (82% at 20 min retention time and 10 L min(-1) aeration rate). The photo-Fenton process was found to be efficient in terms of degradation rate, achieving 84% COD removal (1 M Fe2+, 40 M H2O2, 20.7 J cm(-2), pH 3) and also improving the wastewater's biodegradability. The UV/H202 process was the most effective in removing recalcitrant COD in the post-biological treatment stage.

  6. Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR).

    PubMed

    Tawfik, A; El-Kamah, H

    2012-01-01

    This study has been carried out to assess the performance of a combined system consisting of an anaerobic hybrid (AH) reactor followed by a sequencing batch reactor (SBR) for treatment of fruit-juice industry wastewater at a temperature of 26 degrees C. Three experimental runs were conducted in this investigation. In the first experiment, a single-stage AH reactor was operated at a hydraulic retention time (HRT) of 10.2 h and organic loading rate (OLR) of 11.8 kg COD m(-3) d(-1). The reactor achieved a removal efficiency of 42% for chemical oxygen demand (COD), 50.8% for biochemical oxygen demand (BOD5), 50.3% for volatile fatty acids (VFA) and 56.4% for total suspended solids (TSS). In the second experiment, two AH reactors connected in series achieved a higher removal efficiency for COD (67.4%), BOD5 (77%), and TSS (71.5%) at a total HRT of 20 h and an OLR of 5.9 kg COD m(-3) d(-1). For removal of the remaining portions of COD, BOD5 and TSS from the effluent of the two-stage AH system, a sequencing batch reactor (SBR) was investigated as a post-treatment unit. The reactor achieved a substantial reduction in total COD, resulting in an average effluent concentration of 50 mg L(-1) at an HRT of 11 h and OLR of 5.3 kg COD m(-3) d(-1). Almost complete removal of total BOD5 and oil and grease was achieved, i.e. 10 mg L(-1) and 1.2 mg L(-1), respectively, remained in the final effluent of the SBR.

  7. Combining UASB and the "fourth generation" down-flow hanging sponge reactor for municipal wastewater treatment.

    PubMed

    Tandukar, M; Uemura, S; Ohashi, A; Harada, H

    2006-01-01

    A "fourth generation" down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100-125 d. Removal of coliforms obtained was 3-4 log10 with the final count of 10(3) to 10(4) MPN/100 ml in DHS effluent.

  8. Comparison of constructed wetland and stabilization pond for the treatment of digested effluent of swine wastewater.

    PubMed

    Liu, Gang-Jin; Zheng, Dan; Deng, Liang-Wei; Wen, Quan; Liu, Yi

    2014-01-01

    A laboratory-scale horizontal subsurface flow constructed wetland (HSFCW) and a stabilization pond (SP) were constructed to compare their performances on the treatment of digested effluent of swine wastewater. After 457 days of operation, the removal efficiencies of the HSFCW were as follows: chemical oxygen demand (COD), 17-54%; total phosphorus (TP), 32-45% and ammonia nitrogen [Formula: see text], 27-88%, while they were 25-55%, 31-56% and 56-98%, respectively, for the SP, with a hydraulic retention time of 54 days and hydraulic loading of 0.01 m³ m⁻² d⁻¹. The average removed loads for the HSFCW were as follows: COD, 0.25-4.33; TP, 0.01-0.11 and [Formula: see text], 0.34-2.54 g m⁻² d⁻¹, while they were 0.25-4.45, 0.02-0.13 and 0.72-2.87 g m⁻² d⁻¹, respectively, for the SP. The SP performed better than the HSFCW because the SP showed a 20% of higher removal efficiency for [Formula: see text] than the HSFCW. Especially, the COD removal rate of SP was 10% higher than the HSFCW when the influent concentration was at the lowest and highest stages. Meanwhile, given the lower costs, the SP is more suitable for the treatment of digested effluent of swine wastewater than the HSFCW.

  9. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature.

    PubMed

    Bao, Ruiling; Yu, Shuili; Shi, Wenxin; Zhang, Xuedong; Wang, Yulan

    2009-09-15

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 degrees C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4mm, wet density 1.036 g mL(-1), sludge volume index 37 mL g(-1), and settling velocity 18.6-65.1 cm min(-1). Nitrite accumulation was observed, with a nitrite accumulation rate (NO(2)(-)-N/NO(x)(-)-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO(x) was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH(4)(+)-N, and PO(4)(3-)-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m(-3)d(-1), the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  10. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.

    PubMed

    van Lier, J B; Lens, P N; Pol, L W

    2001-01-01

    Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60 degrees C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates "S" as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55 degrees C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l-1.day-1 at COD/SO4(2-) ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h-1 and an EGSB reactor, operated at 6.8 m.h-1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m-2.day-1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.

  11. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse.

    PubMed

    Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail

    2017-01-01

    Residual fermented dairy products resulting from process defects or from expired shelf life products are considered as waste. Thus, dairies wastewater treatment plants (WWTP) suffer high input effluents polluting load. In this study, fermented residuals separation from the plant wastewater is proposed. In the aim to meet the municipal WWTP input limits, a pretreatment combining physical-chemical and biological processes was investigated to reduce residual fermented dairy products polluting effect. Yoghurt (Y) and fermented milk products (RL) were considered. Raw samples chemical oxygen demand (COD) values were assessed at 152 and 246 g.L -1 for Y and RL products, respectively. Following the thermal coagulation, maximum removal rates were recorded at 80 °C. Resulting whey stabilization contributed to the removal rates enhance to reach 72% and 87% for Y and RL samples; respectively. Residual whey sugar content was fermented using Candida strains. Bacterial growth and strains degrading potential were discussed. C. krusei strain achieved the most important removal rates of 78% and 85% with Y and RL medium, respectively. Global COD removal rates exceeded 93%.

  13. Grey water biodegradability.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  14. Effect of Agitation on Acidogenesis Stage of Two-Stage Anaerobic Digestion of Palm Oil Mill Effluent (POME) into Biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Irvan; Adipasah, H.; Taslim; Turmuzi, M.

    2017-03-01

    The acidogenesis stage in two-stage anaerobic digestion of palm oil mill effluent (POME) was studied in a continuous stirred tank reactor (CSTR). This research investigated the effect of agitation rate on the growth of microorganisms, the degradation of organic substances, and volatile fatty acids (VFA) production and composition. Initially, the suitable loading up was determined by varying the HRT 6.7, 5.0, and 4.0 days in a 2 L CSTR with agitation rate 50 rpm, pH 6.0 ± 0.2, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 25, 50, 100, and 200 rpm. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and volatile fatty acids (VFA) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce VFA. The highest growth of microorganisms was achieved at HRT 4.0 day with microorganism concentration was 20.62 mg VSS/L and COD reduction was 15.7%. The highest production of total VFA achieved was 5,766.61 mg/L mg/L at agitation rate 200 rpm, with concentration of acetic acid, propionic acid and butyric acid were 1,889.23; 1,161.43; and 2,725.95 mg/L, respectively. While degradation VS and COD were 16.61 and 38.79%.

  15. High-rate treatment of molasses wastewater by combination of an acidification reactor and a USSB reactor.

    PubMed

    Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki

    2011-01-01

    A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.

  16. Bisphenol A emission factors from industrial sources and elimination rates in a sewage treatment plant.

    PubMed

    Fuerhacker, M

    2003-01-01

    Bisphenol A (BPA) is widely used for the production of epoxy resins and polycarbonate plastics and is considered an endocrine disruptor. Special in vitro test systems and animal experiments showed a weak estrogenic activity. Aquatic wildlife especially could be endangered by waste water discharges. To manage possible risks arising from BPA emissions the major fluxes need to be investigated and the sources of the contamination of municipal treatment plants need to be determined. In this study, five major industrial point sources, two different household areas and the influent and effluent of the corresponding treatment plant (WWTP) were monitored simultaneously at a plant serving 120,000 population equivalents. A paper producing plant was the major BPA contributor to the influent load of the wastewater treatment plant. All the other emissions from point sources, including the two household areas, were considerably lower. The minimum elimination rate in the WTTP could be determined at 78% with an average of 89% of the total BPA-load. For a possible pollution-forecast, or for a comparison between different point sources, emission factors based on COD-emissions were calculated for industrial and household point sources at BPA/COD-ratios between 1.4 x 10(-8) - 125 x 10(-8) and 1.3 x 10(-6) - 6.3 x 10(-6), respectively.

  17. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation of [COD] in influent endured by the UASB reactor was decreasing. The ratios of [COD] and [PCP] in influent could affect removal efficiency of PCP and COD, the concentration of total volatile fatty acids (VFA) in effluent, biogas quantity and methane content in biogas. [PCP] in influent was linearly or semi-logarithmically correlated to [COD] in effluent when [COD] in influent was 5750+/-250 mg L(-1), and so was the relationship between [COD] in influent and [PCP] in effluent when [PCP] in influent was 100.4 or 151.6 mg L(-1), less than the maximum permissible [PCP]. The sources of seeded sludge, the way of sludge acclimation and the characteristics of anaerobic sludge could all affect the UASB reactor capacity treating PCP. When [PCP] were less than 180.8 mg L(-1) for Reactor I and 151.6 mg L(-1) for Reactor II, the variation of [PCP] in influent had little effect on the UASB reactor volume gas production rate and substrate gas production rate. And [VFA] and pH value in effluent were affected a little. Volume biogas production rate and substrate biogas production rate of the UASB reactor were only affected by [COD] and loading rate in influent. But when [PCP] was more than 151.6 mg L(-1) for Reactor II, the biogas production fell quickly and was over 3 days later. [VFA] in effluent from Reactor II increased up to 2198.1 mg L(-1) quickly and the pH value fell to less than 7. Reactor II could not run normally. The component of VFA accumulated quickly was mainly acetate (above 50%). With [PCP] increased from 7.9 to 180.8 mg L(-1) gradually in influent, the methane content in biogas from Reactor II decreased from 70% to 60%, but the reactor could still run normally. Then as for Reactor II, the content of methane have fallen from 75% to 45% or so quickly. And Reactor II could not run steadily. So the conclusion could be drown that too high [PCP] in influent for UASB reactor mainly inhibited the activity of methane-producing bacteria cultures utilizing the acetate.

  18. Application of a membrane bioreactor for winery wastewater treatment.

    PubMed

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  19. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    PubMed

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  20. A case study of coupling upflow anaerobic sludge blanket (UASB) and ANITA™ Mox process to treat high-strength landfill leachate.

    PubMed

    Lu, Ting; George, Biju; Zhao, Hong; Liu, Wenjun

    2016-01-01

    A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m(3)·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m(2)·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m(2)·d).

  1. Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes.

    PubMed

    Khoufi, Sonia; Feki, Firas; Sayadi, Sami

    2007-04-02

    Olive mill wastewater (OMW) is characterised by its high suspended solids content (SS), high turbidity (NTU), chemical oxygen demand (COD) concentration up to 100 gl(-1) and toxic phenolic compounds concentration up to 10 gl(-1). This study examined the effect of a physico-electrochemical method to detoxify olive mill wastewater prior an anaerobic biotreatment process. The proposed pre-treatment process consisted in a preliminary electrocoagulation step in which most phenolic compounds were polymerised, followed by a sedimentation step. The BOD(5)/COD ratio of the electrocoagulated OMW increased from 0.33, initial value, to 0.58. Furthermore, the sedimentation step yielded the removal of 76.2%, 75% and 71% of phenolic compounds, turbidity and suspended solid, respectively, after 3 days of plain settling. The combination of electrocoagulation and sedimentation allowed a COD reduction and decoloration of about 43% and 90%, respectively. This pre-treatment decreases the inhibition of Vibrio fisheri luminescence by 66.4%. Continuous anaerobic biomethanization experiments conducted in parallel with raw OMW and electrocoagulated OMW before and after sedimentation at a loading rate of 6g COD l(-1)day(-1), proved that the final pre-treated OMW was bioconverted into methane at high yield while raw OMW was very toxic to anaerobic microorganisms.

  2. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    PubMed

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  3. Treatment of sanitary landfill leachates in a lab-scale gradual concentric chamber (GCC) reactor.

    PubMed

    Mendoza, Lourdes; Verstraete, Willy; Carballa, Marta

    2010-03-01

    Sanitary landfill leachates are a major environmental problem in South American countries where sanitary landfills are still constructed and appropriate designs for the treatment of these leachates remain problematic. The performance of a lab-scale Gradual Concentric Chamber (GCC) reactor for leachates treatment is presented in this study. Two types of sanitary landfill residuals were evaluated, one directly collected from the garbage trucks (JGL), with high organic strength (84 g COD/l) and the second one, a 6-month-generated leachate (YL) collected from the lagoon of the sanitary landfill in Quito, Ecuador, with an organic strength of 66 g COD/l. Different operational parameters, such as organic loading rate (OLR), temperature, recycling and aeration, were tested. The GCC reactor was found to be a robust technology to treat these high-strength streams with organic matter removal efficiencies higher than 65%. The best performance of the reactors (COD removal efficiencies of 75-80%) was obtained at a Hydraulic Retention Time (HRT) of around 20 h and at 35 degrees C, with an applied OLR up to 70 and 100 g COD/l per day. Overall, the GCC reactor concept appears worth to be further developed for the treatment of leachates in low-income countries.

  4. Carrier effects on tertiary nitrifying moving bed biofilm reactor: An examination of performance, biofilm and biologically produced solids.

    PubMed

    Forrest, Daina; Delatolla, Robert; Kennedy, Kevin

    2016-01-01

    Increasingly stricter ammonia and nitrogen release regulations with respect to wastewater effluents are creating a need for tertiary treatment systems. The moving bed biofilm reactor (MBBR) is being considered as an upgrade option for an increasing number of wastewater treatment facilities due to its small footprint and ease of operation. Despite the MBBRs creation as a system to remove nitrogen, recent research on MBBR systems showing that the system's performance is directly related to carrier surface area and is irrespective of carrier shape and type has been performed exclusively on chemical oxygen demand (COD) removal systems. Furthermore, the influence of carrier type on the solids produced by MBBR systems has also been exclusively studied for COD removal systems. This work investigates the effects of three specific carrier types on ammonia removal rates, biofilm morphology, along with solids production and settleability of tertiary nitrifying MBBR systems. The study concludes that carrier type has no significant effect on tertiary nitrifying MBBR system performance under steady, moderate loading conditions. The research does however highlight the propensity of greater surface area to volume carriers to become clogged under high loading conditions and that the high surface area carriers investigated in this study required longer adjustment periods to changes in loading after becoming clogged.

  5. FEASIBILITY STUDY OF CLIMATE CHANGE IMPACTS ON NITROGEN IN CAPE COD EMBAYMENTS

    EPA Science Inventory

    The objective of this study is to explore the feasibility of studying potential effects of climate change on impairments resulting from nitrogen loadings in the salt water embayments of Cape Cod. The report includes a recommended plan for studying these impacts, an estimate of t...

  6. Buoyant Filter Bio-Reactor (BFBR)--a novel anaerobic wastewater treatment unit.

    PubMed

    Panicker, Soosan J; Philipose, M C; Haridas, Ajit

    2008-01-01

    The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70-80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80-90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost. IWA Publishing 2008.

  7. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands.

    PubMed

    Collison, R S; Grismer, M E

    2013-09-01

    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  8. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    PubMed

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  9. Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness.

    PubMed

    Almeida Streitwieser, Daniela

    2017-10-01

    An overall kinetic power law model has been successfully applied to study the anaerobic digestion of agricultural wastes. In this comparative kinetic study feed composition, organic load rate, residence time and process temperature have been systematically varied in an automated semi-continuous fermentation system to obtain the dependency of the rate of degradation as biogas production on the organic load rate and temperature. The results show that the overall reaction order depend only on the Chemical Oxygen Demand (COD) at values between 3.6 and 3.7. The Arrhenius approach shows a shift in the rate determining step between the mesophilic and thermophilic temperature regimes. The activation energy at the temperature insensitive mesophilic regime is very small at 8.9 (kJ/mole), while the activation energy at the temperature sensitive thermophilic regime lies around 117 (kJ/mole). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  11. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste.

    PubMed

    Park, Jungyu; Lee, Beom; Shin, Wonbeom; Jo, Sangyeol; Jun, Hangbae

    2018-07-01

    In this study, a practical bioelectrochemical anaerobic digestion (BEAD) reactor equipped with a rotating STS304 impeller was tested to verify its methane production performance. Methane production in the BEAD reactor was possible without accumulation of volatile fatty acids (VFAs) and decreases in pH at high organic loading rates (OLRs) up to 6 kg-COD/m 3 ·d (COD: chemical oxygen demand). Methane production in a BEAD-O (open circuit) reactor was inhibited at OLRs above 4 kg-COD/m 3 ·d; however, the performance could be recovered bioelectrochemically by supplying voltage. The population density of hydrogenotrophic methanogens increased to 73.3% in the BEAD-C (closed circuit) reactor, even at high OLRs, through the removal of VFAs and conversion of hydrogen to methane. The energy efficiency in the BEAD-C reactor was 85.6%, indicating that the commercialization of BEAD reactors equipped with rotating STS304 impeller electrodes is possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    PubMed

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  13. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    PubMed

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    PubMed

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  16. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    PubMed

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    PubMed

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.

  18. Anaerobic digestion of soft drink beverage waste and sewage sludge.

    PubMed

    Wickham, Richard; Xie, Sihuang; Galway, Brendan; Bustamante, Heriberto; Nghiem, Long D

    2018-08-01

    Soft drink beverage waste (BW) was evaluated as a potential substrate for anaerobic co-digestion with sewage sludge to increase biogas production. Results from this study show that the increase in biogas production is proportional to the increase in organic loading rate (OLR) rate due to BW addition. The OLR increase of 86 and 171% corresponding to 10 and 20% BW by volume in the feed resulted in 89 and 191% increase in biogas production, respectively. Under a stable condition, anaerobic co-digestion with BW did not lead to any significant impact on digestate quality (in terms of COD removal and biosolids odour) and biogas composition. The results suggest that existing nutrients in sewage sludge can support an increase in OLR by about 2 kg COD/m 3 /d from a carbon rich substrate such as soft drink BW without inhibition or excessive impact on subsequent handling of the digestate. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  19. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  20. Current status of urban wastewater treatment plants in China.

    PubMed

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of intermittent operation model on the function of soil infiltration system.

    PubMed

    Hou, Lizhu; Hu, Bill X; He, Mengmeng; Xu, Xue; Zhang, Wenjing

    2018-04-01

    To enhance denitrification in a process of solute infiltration through a soil, a two-section mixed-medium soil infiltration system (TMSIS) for urban non-point pollution was developed. The artificial aerobic respiration and nitrification took place in the upper aerobic section (AES), while grass powders and sawdust were mixed in the bottom anaerobic section (ANS) to supply organic carbon source for denitrification bacteria, and the reduction was increased by iron addition in the ANS. Measured resident concentrations from the bottom of each ANS column were assumed to represent mean values averaged over the column cross-sectional area. The TMSIS with hydraulic loading rates (HLR) of 0.32, 0.24, and 0.16 m 3  m -2  day -1 and with wetting-drying ratio (R WD ) of 1.0 showed remarkable removal efficiencies for chemical oxygen demand (COD), NH 4 + -N, and TP, respectively. The hydraulic loading rate of 0.32 m 3  m -2  day -1 was selected as the optimal HLR due to the high contaminated runoff treatment efficiency. When R WD was 1.0, 0.5, or 0.2 with hydraulic loading rate of 0.32 m 3  m -2  day -1 , the TMSIS could treat synthetic urban runoff contaminants very well. The corresponding effluent water met the China's national quality standard for class V surface water. The wetting-drying ratio of 0.5 with hydraulic loading of 0.32 m 3  m -2  day -1 was selected as the optimal operation conditions for the TMSIS. Aerobic respiration and nitrification mainly took place in the upper AES, in which most of the COD and the NH 4 + -N were removed. Mixed sawdust and grass powders used as a carbon source and heterotrophic denitrification were put at the bottom of the ANS. The developed TMSIS has the potential to be applied for urban non-point pollution removal.

  2. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models.

    PubMed

    Nguyen, X Cuong; Chang, S Woong; Nguyen, Thi Loan; Ngo, H Hao; Kumar, Gopalakrishnan; Banu, J Rajesh; Vu, M Cuong; Le, H Sinh; Nguyen, D Duc

    2018-09-15

    A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M 2 ) model did not fit the data (P > 0.05, and R 2  < 0.5), whereas the first-order-CSTR (M 1 ) model for the chemical oxygen demand (COD Cr ) and Monod-CSTR (M 3 ) model for the COD Cr and ammonium nitrogen (NH 4 -N) showed a high correlation with the experimental data (R 2  > 0.5). The pollutant removal rates in the case of M 1 were 0.19 m/d (COD Cr ) and those for M 3 were 25.2 g/m 2 ∙d for COD Cr and 2.63 g/m 2 ∙d for NH 4 -N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD 5 ) and NH 4 -N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of hydraulic retention time on the performance of down-flow hanging sponge system treating grey wastewater.

    PubMed

    Tawfik, Ahmed; Wahab, Rifaat Abdel; Al-Asmer, Azza; Matary, Fatma

    2011-08-01

    Grey wastewater (GW) treatment via down-flow hanging sponge (DHS) system was the subject of the study. The reactor was operated at different hydraulic retention times (HRTs) of 11.7, 5.8 and 2.9 h, corresponding to organic loading rates (OLRs) of 1.9, 3.6 and 6.8 kgCOD/m3 day, respectively. The results obtained revealed that decreasing the HRT from 11.7 to 2.9 h negatively affected on the performance of the DHS system. COD(total), COD(soluble), COD(particulate) and detergent removal efficiency were reduced from 96 ± 2.4 to 90 ± 2.3%, from 83 ± 10 to 69 ± 8%, from 98 ± 2 to 94 ± 3% and from 96 ± 12 to 88 ± 6.9%, respectively. However, the removal efficiency of the distinguished COD fractions and detergent remained unaffected when decreasing the HRT from 11.7 to 5.8 h. The DHS system provided a removal efficiency of 95 ± 1% for COD(total), 79 ± 8% for COD(soluble), 98 ± 2 for COD(particulate) and 94.7% for detergent at an HRT of 5.8 h. Based on these results, it is recommended to operate such a system at an HRT of 5.8 h and OLR not exceeding 3.6 kgCOD/m3 day for producing an effluent quality complying for reuse in unrestricted irrigation purposes. The removal of TKj-N and nitrification efficiency in the DHS system was significantly affected by increasing the OLR from 1.9 to 3.6 kgCOD/m3 day and from 3.6 to 6.8 kgCOD/m3 day. At an OLR of 1.9 kgCOD/m3 day, the DHS system removed 80 ± 12% of TKj-N and 91 ± 22% of ammonia which is significantly higher than that at an OLR of 3.6 (58.5 ± 13%) and 6.8 kgCOD/m3 day (26.8 ± 16%). Similar results were recorded for the removal of total coliform (TC), viz., the efficiencies dropped for TC from 99.8 ± 0.2 to 99.4 ± 0.8% and from 99.4 ± 0.8 to 90.0 ± 7.6%, respectively. DHS profile results showed that the major part of COD was removed in the upper portion of the system while the nitrification process was taken place in the lower part of the DHS system at OLR of 1.9 kgCOD/m3 day and HRT of 11.7 h.

  4. Catalytic ozonation of aqueous phenol over metal-loaded HZSM-5.

    PubMed

    Amin, Nor Aishah Saidina; Akhtar, Javaid; Rai, H K

    2011-01-01

    The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.

  5. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.

    PubMed

    Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu

    2004-09-05

    A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.

  6. [Explore the spatial and temporal patterns of water pollution in the Yincungang canal of the Lake Taihu basin, China].

    PubMed

    Yang, Xiao-Ying; Luo, Xing-Zhang; Zheng, Zheng; Fang, Shu-Bo

    2012-09-01

    Two high-density snap-shot samplings were conducted along the Yincungang canal, one important tributary of the Lake Tai, in April (low flow period) and June (high flow period) of 2010. Geostatistical analysis based on the river network distance was used to analyze the spatial and temporal patterns of the pollutant concentrations along the canal with an emphasis on chemical oxygen demand (COD) and total nitrogen (TN). Study results have indicated: (1) COD and TN concentrations display distinctly different spatial and temporal patterns between the low and high flow periods. COD concentration in June is lower than that in April, while TN concentration has the contrary trend. (2) COD load is relatively constant during the period between the two monitoring periods. The spatial correlation structure of COD is exponential for both April and June, and the change of COD concentration is mainly influenced by hydrological conditions. (3) Nitrogen load from agriculture increased significantly during the period between the two monitoring periods. Large amount of chaotic fertilizing by individual farmers has led to the loss of the spatial correlation among the observed TN concentrations. Hence, changes of TN concentration in June are under the dual influence of agricultural fertilizing and hydrological conditions. In the view of the complex hydrological conditions and serious water pollution in the Lake Taihu region, geostatistical analysis is potentially a useful tool for studying the characteristics of pollutant distribution and making predictions in the region.

  7. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.

    PubMed

    El-Bery, Haitham; Tawfik, Ahmed; Kumari, Sheena; Bux, Faizal

    2013-01-01

    The effect of thermal pre-treatment on inoculum sludge for continuous H2 production from alkali hydrolysed rice straw using anaerobic baffled reactor (ABR) was investigated. Two reactors, ABR1 and ABR2, were inoculated with untreated and thermally pre-treated sludge, respectively. Both reactors were operated in parallel at a constant hydraulic retention time of 20 h and organic loading rate ranged from 0.5 to 2.16 g COD/L d. The results obtained indicated that ABR2 achieved a better hydrogen conversion rate and hydrogen yield as compared with ABR1. The hydrogen conversion rates were 30% and 24%, while the hydrogen yields were 1.19 and 0.97 mol H2/mol glucose for ABR2 and ABR1, respectively. Similar trend was observed for chemical oxygen demand (COD) and carbohydrate removal, where ABR2 provided a removal efficiency of 53 +/- 2.3% for COD and 46 +/- 2% for carbohydrate. The microbial community analysis using 16S rRNA phylogeny revealed the presence of different species of bacteria, namely Clostridium, Prevotella, Paludibacter, Ensifer, and Petrimonas within the reactors. Volatile fatty acids generated from ABR1 and ABR2 were mainly in the form of acetate and butyrate and a relatively low fraction ofpropionate was detected in ABR1. Based on these results, thermal pre-treatment ofinoculum sludge is preferable for hydrogen production from hydrolysed rice straw.

  8. Metagenomic analysis of a desulphurisation system used to treat biogas from vinasse methanisation.

    PubMed

    Dias, Marcela França; Colturato, Luis Felipe; de Oliveira, João Paulo; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto; de Araújo, Juliana Calabria

    2016-04-01

    We investigated the response of microbial community to changes in H2S loading rate in a microaerated desulphurisation system treating biogas from vinasse methanisation. H2S removal efficiency was high, and both COD and DO seemed to be important parameters to biomass activity. DGGE analysis retrieved sequences of sulphide-oxidising bacteria (SOB), such as Thioalkalimicrobium sp. Deep sequencing analysis revealed that the microbial community was complex and remained constant throughout the experiment. Most sequences belonged to Firmicutes and Proteobacteria, and, to a lesser extent, Bacteroidetes, Chloroflexi, and Synergistetes. Despite the high sulphide removal efficiency, the abundance of the taxa of SOB was low, and was negatively affected by the high sulphide loading rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.

  10. [Air stripping-UASB process for the treatment of evaporator condensate from a Kraft pulp mill].

    PubMed

    Zhou, Wei-li; Qin, Xiao-peng; Yu, Jun; Imai, Tsuyoshi; Ukita, Masao

    2006-04-01

    Evaporator condensate from a kraft pulp mill is characterized by high temperature, high strength, poor nutrition, and some odor and inhibitive materials. In this study, air stripping-UASB process was developed to treat the wastewater from a kraft pulp mill. The lab scale study demonstrated that air stripping process removed 70%-80% of the volatile organic sulfur compounds. After that, the UASB reactor showed high efficiency, at the organic loading rate (COD) of 30 kg x (m3 x d)(-1), COD removal was retained about 95%. On the other hand, the inoculated granules were broken in the new surroundings and were replaced with the newly formed granules The scanning electronic microscope (SEM) observation showed wide difference of the predominant anaerobic microorganisms in the seed and newly formed granules.

  11. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    PubMed

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparing growth rates of Arctic Cod Boreogadus saida across the Chukchi and Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Frothingham, A. M.; Norcross, B.

    2016-02-01

    Dramatic changes to the Arctic have highlighted the need for a greater understanding of the present ecosystem. Arctic Cod, Boreogadus saida, commonly dominate fish assemblages in the Arctic region and inhabit two geographically unique seas in the U.S. Due to the importance of Arctic Cod in the Arctic food web, establishing current benchmark information such as growth rates, will provide a better understanding as to how the species will adapt to the effects of climate change. To investigate differences in Arctic Cod life history across nearly 1500 km of vital habitat, growth rates were examined using a von Bertalanffy growth equation. Arctic Cod were collected from 2009 to 2014 from the Chukchi and Beaufort seas. Arctic Cod collected from the Chukchi Sea had an overall smaller maximum achievable length (210 mm) compared to the Beaufort Sea (253 mm) despite a larger sample size in the Chukchi Sea (n=1569) than the Beaufort Sea (n=1140). Growth rates indicated faster growth in the Chukchi Sea (K =0.33) than in the Beaufort Sea (K= 0.29). Arctic Cod collected from the Chukchi Sea had similar achievable maximum lengths throughout, but those collected from the southern Chukchi Sea grew at faster rates (K=0.45).Arctic Cod in the eastern Beaufort Sea region had a higher overall maximum achievable length (243 mm) than in the western Beaufort Sea region (186 mm). Knowledge about contemporary growth rates of Arctic Cod in the Chukchi and Beaufort Seas can be used in future comparisons to evaluate potential effects of increasing climate change and anthropogenic influences.

  13. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    PubMed

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  14. Biodegradation of organics in landfill leachate by immobilized white rot fungi, Trametes versicolor BCC 8725.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2012-12-01

    Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.

  15. Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater.

    PubMed

    Watari, Takahiro; Cuong Mai, Trung; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi

    2017-01-01

    Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m -3 day -1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m -3 day -1 . 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.

  16. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    PubMed

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  17. [NH4+-N removal stability of zeolite media packed multistage-biofilm system for coke-plant wastewater treatment].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan

    2009-02-15

    The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading < or = 1.35 kg/(m3 x d), the average effluent NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight < 1 x 10(3), 1 x 10(3) to 1 x 10(4), and > 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight < 1 x 10(3) and 1 x 10(3) to 1 x 10(4) in raw wastewater were removed effectively by ZMBS, but those with relative molecular weight > 1x 10(3) were the main remained substances in the effluent.

  18. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin.

    PubMed

    Chen, Zhiqiang; Wang, Hongcheng; Chen, Zhaobo; Ren, Nanqi; Wang, Aijie; Shi, Yue; Li, Xiaoming

    2011-01-30

    A full-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) pre-treating pharmaceutical wastewater containing 6-aminopenicillanic acid (6-APA) and amoxicillin. The aim of the study is to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 12.57 to 21.02 kgm(-3)d(-1) and a wide pH from 5.57 to 8.26, in order to provide a reference for treating the similar chemical synthetic pharmaceutical wastewater containing 6-APA and amoxicillin. The results demonstrated that the UASB average percentage reduction in COD, 6-APA and amoxicillin were 52.2%, 26.3% and 21.6%, respectively. In addition, three models, built on the back propagation neural network (BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing 6-APA and amoxicillin. The average error of COD, 6-APA and amoxicillin were -0.63%, 2.19% and 5.40%, respectively. The results indicated that these models built on the BPNN theory were well-fitted to the detected data, and were able to simulate and predict the removal of COD, 6-APA and amoxicillin by UASB. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  19. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    PubMed Central

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  20. Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage

    PubMed Central

    Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V

    2018-01-01

    ABSTRACT The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25–1.0 kg chemical oxygen demand (COD) m−3 d−1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20–30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors. PMID:29846574

  1. Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage.

    PubMed

    Keating, C; Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V

    2018-07-01

    The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25-1.0 kg chemical oxygen demand (COD) m-3 d-1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20-30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors.

  2. Biodegradability of organic matter associated with sewer sediments during first flush.

    PubMed

    Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M; Hvitved-Jacobsen, Thorkild

    2009-04-01

    The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs.

  3. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolzonella, David, E-mail: david.bolzonella@univr.it; Cavinato, Cristina, E-mail: cavinato@unive.it; Fatone, Francesco, E-mail: francesco.fatone@univr.it

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 +more » 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.« less

  4. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation.

    PubMed

    Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail

    2017-05-01

    Processed milk waste (MW) presents a serious problem within the dairy industries due to its high polluting load. Its chemical oxygen demand (COD) can reach values as high as 80,000 mg O 2  L -1 . This study proposes to reduce the organic load of those wastes using thermal coagulation and recover residual valuable components via fermentation. Thermal process results showed that the COD removal rates exceeded 40% when samples were treated at temperature above 60 °C to reach 72% at 100 °C. Clarified supernatants resulting from thermal treatment of the samples at the temperatures of 60 (MW 60 ), 80 (MW 80 ), and 100 °C (MW 100 ) were fermented using lactic acid bacteria strains without pH control. Lactic strains recorded important final cell yields (5-7 g L -1 ). Growth mediums prepared using the thermally treated MW produced 73% of the bacterial biomass recorded with a conventional culture medium. At the end of fermentation, mediums were found exhausted from several valuable components. Industrial scale implementation of the proposed process for the recycling of industrial MWs is described and discussed.

  5. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.

    PubMed

    Ye, Zhengfang; Wang, Feng; Bi, Haitao; Wang, Zhongyou; Liu, Guo-hua

    2012-01-01

    A simple anaerobic-activated sludge system, in which microorganisms are immobilized by a novel functional carrier, was used for removing nitrate in groundwater. The operating conditions, including hydraulic retention time (HRT), C/N ratio, temperature and NO(3)(-)-N loading concentration were investigated. The NO(3)(-)-N concentration, residual chemical oxygen demand (COD) and nitrite accumulation were used as indicators to assess the water quality of the effluent. The anaerobic biomass loading capacity in the carrier was 12.8 g/L and the denitrifying Pseudomonas sp. and Rhodocyclaceae bacterium were dominant among the immobilized microorganisms in the anaerobic-activated sludge. Under operating conditions of HRT= 1.5 h, C/N= 2-3 and T= 16.8-20 °C, the removal efficiency of NO(3)(-)-N exceeded 93%, corresponding to a relatively high denitrification rate of 0.73 kg NO(3)(-)-N m(-3) d(-1), when the NO(3)(-)-N loading concentration was 50 mg/L. The NO(3)(-)-N concentration of the effluent always met regulatory criteria for drinking water (<10 mg/L) in the main developed and developing countries. The effluent COD was also below 10 mg/L. Although some nitrite accumulated (0-1.77 mg/L) during the operating period, it can be decreased through adjusting the operating pH and HRT. The immobilized activated sludge system may be useful for the removal of nitrate from groundwater.

  6. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.

    PubMed

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza

    2016-09-01

    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.

    PubMed

    Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A

    2015-06-01

    A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.

  8. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... day, must reflect not less than 74 percent reduction in the long-term average daily COD load of the... required to attain a limitation for COD that is less than the equivalent of 220 mg/L. (d) The long-term... of NPDES permit limitations regulating discharges subject to this subpart, calculation of the long...

  9. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... day, must reflect not less than 74 percent reduction in the long-term average daily COD load of the... required to attain a limitation for COD that is less than the equivalent of 220 mg/L. (d) The long-term... of NPDES permit limitations regulating discharges subject to this subpart, calculation of the long...

  10. Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata.

    PubMed

    Olguín, Eugenia J; Sánchez-Galván, Gloria; González-Portela, Ricardo E; López-Vela, Melissa

    2008-08-01

    Sugarcane molasses stillage contains a very high concentration of organic matter and toxic/recalcitrant compounds. Its improper disposal has become a global problem and there is very scanty information about its treatment using phytotechnologies. This work aimed at evaluating the performance of subsurface flow constructed wetlands (SSF CWs) mesocosms planted with Pontederia sagittata and operating at two hydraulic retention times (HRTs), compared to an unplanted SSF CWs, for the treatment of diluted stillage subjected to no pre-treatment apart from an adjustment to pH 6.0. CWs were fed with very high surface COD loading rates (i.e. 47.26 and 94.83gCOD/m(2)d). The planted CWs were able to remove COD in the range of 80.24-80.62%, BOD(5) in the range of 82.20-87.31%, TKN in the range of 73.42-76.07%, nitrates from 56-58.74% and sulfates from 68.58-69.45%, depending on the HRT. Phosphate and potassium were not removed. It was concluded that this type of CWs is a feasible option for the treatment of diluted stillage.

  11. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas.

    PubMed

    Qiao, Wei; Takayanagi, Kazuyuki; Niu, Qigui; Shofie, Mohammad; Li, Yu You

    2013-12-01

    The performance of thermophilic anaerobic co-digestion of coffee grounds and sludge using membrane reactor was investigated for 148 days, out of a total research duration of 263 days. The OLR was increased from 2.2 to 33.7 kg-COD/m(3)d and HRT was shortened from 70 to 7 days. A significant irreversible drop in pH confirmed the overload of reactor. Under a moderately high OLR of 23.6 kg-COD/m(3)d, and with HRT and influent total solids of 10 days and 150 g/L, respectively, the COD removal efficiency was 44.5%. Hydrogen in biogas was around 100-200 ppm, which resulted in the persistent propionate of 1.0-3.2g/L. The VFA consumed approximately 60% of the total alkalinity. NH4HCO3 was supplemented to maintain alkalinity. The stability of system relied on pH management under steady state. The 16SrDNA results showed that hydrogen-utilizing methanogens dominates the archaeal community. The propionate-oxidizing bacteria in bacterial community was insufficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells

    PubMed Central

    Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan

    2016-01-01

    In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m−3·day−1 to 110 g·m−3·day−1. BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up. PMID:27999421

  13. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells.

    PubMed

    Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan

    2016-12-20

    In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m -3 ·day -1 to 110 g·m -3 ·day -1 . BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up.

  14. Effect of Food Waste Co-Digestion on Digestion, Dewatering, and Cake Quality.

    PubMed

    Higgins, Matthew; Rajagopalan, Ganesh; Miller, Andre; Brown, Jeffrey; Beightol, Steven

    2017-01-01

      The objective of this study was to evaluate the effect of food waste addition on anaerobic digestion performance as well as downstream parameters including dewatering, cake quality, and filtrate quality. Laboratory-scale digesters were fed processed food waste at rates of 25%, 45%, and 65% increased chemical oxygen demand (COD) loading rates compared to a control fed only primary and secondary solids. The specific methane yield increased from 370 L CH4/kg VSadded for the control to 410, 440, and 470 L CH4/kg VSadded for the 25, 45, and 65% food waste addition, respectively. The cake solids after dewatering were all higher for the food waste digesters compared to the control, with the highest cake solids being measured for the 45% food-waste loading. Compared to the control digester, the biosolids odorant concentration increased for the lowest dose of food waste. Odorant concentrations were below detection for the highest food waste loading.

  15. [Performance of Grass Swales for Controlling Pollution of Roadway Runoff in Field Experiments].

    PubMed

    Huang, Jun-jie; Shen, Qing-ran; Li, Tian

    2015-06-01

    Two different styles of grass swales were built in new Binhu region of Hefei city to monitor the flux and quality of the influent and effluent water under actual precipitation conditions, in order to evaluate the performance of water quality purification and pollution load control for roadway runoff. The results showed that both of the grass swales could effectively remove the pollutants such as TSS, COD, Pb, Cu, Cd, Zn in roadway runoff; the median EMC removal efficiencies of TSS and COD were 67.1%, 46.7% respectively,for facility I, and the median EMC removal efficiencies of TSS and COD were 78.6%, 58.6% respectively, for facility II; the concentrations of Pb, Cu, Zn in the effluent of facility II could meet the requirements of the surface water quality class V; release of nitrogen and phosphorus occurred in both facilities I and I[ in several rainfall events, mainly in heavy storms; the removal efficiencies of TP in the two grass swales were improved with the increase of influent concentration; the mean removal efficiencies of TP in facilities I and II were 14.7% and 45.4%, respectively; the load control performance of facility II for pollutants such as TSS, COD, TP, TN, NH4+ -N and NO3- -N was better than that of facility I; in the district with poor soil permeability and low ground slope, application of dry swale could achieve better performance in water quality control and pollution load reduction of roadway runoff.

  16. Continuous hydrogen and methane production from Agave tequilana bagasse hydrolysate by sequential process to maximize energy recovery efficiency.

    PubMed

    Montiel Corona, Virginia; Razo-Flores, Elías

    2018-02-01

    Continuous H 2 and CH 4 production in a two-stage process to increase energy recovery from agave bagasse enzymatic-hydrolysate was studied. In the first stage, the effect of organic loading rate (OLR) and stirring speed on volumetric hydrogen production rate (VHPR) was evaluated in a continuous stirred tank reactor (CSTR); by controlling the homoacetogenesis with the agitation speed and maintaining an OLR of 44 g COD/L-d, it was possible to reach a VHPR of 6 L H 2 /L-d, equivalent to 1.34 kJ/g bagasse. In the second stage, the effluent from CSTR was used as substrate to feed a UASB reactor for CH 4 production. Volumetric methane production rate (VMPR) of 6.4 L CH 4 /L-d was achieved with a high OLR (20 g COD/L-d) and short hydraulic retention time (HRT, 14 h), producing 225 mL CH 4 /g-bagasse equivalent to 7.88 kJ/g bagasse. The two-stage continuous process significantly increased energy conversion efficiency (56%) compared to one-stage hydrogen production (8.2%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pollution profile and biodegradation characteristics of fur-suede processing effluents.

    PubMed

    Yildiz Töre, G; Insel, G; Ubay Cokgör, E; Ferlier, E; Kabdaşli, I; Orhon, D

    2011-07-01

    This study investigated the effect of stream segregation on the biodegradation characteristics of wastewaters generated by fur-suede processing. It was conducted on a plant located in an organized industrial district in Turkey. A detailed in-plant analysis of the process profile and the resulting pollution profile in terms of significant parameters indicated the characteristics of a strong wastewater with a maximum total COD of 4285 mg L(-1), despite the excessive wastewater generation of 205 m3 (ton skin)(-1). Respirometric analysis by model calibration yielded slow biodegradation kinetics and showed that around 50% of the particulate organics were utilized at a rate similar to that of endogenous respiration. A similar analysis on the segregated wastewater streams suggested that biodegradation of the plant effluent is controlled largely by the initial washing/pickling operations. The effect of other effluent streams was not significant due to their relatively low contribution to the overall organic load. The respirometric tests showed that the biodegradation kinetics of the joint treatment plant influent of the district were substantially improved and exhibited typical levels reported for tannery wastewater, so that the inhibitory impact was suppressed to a great extent by dilution and mixing with effluents of the other plants. The chemical treatment step in the joint treatment plant removed the majority of the particulate organics so that 80% of the available COD was utilized in the oxygen uptake rate (OUR) test, a ratio quite compatible with the biodegradable COD fractions of tannery wastewater. Consequently, process kinetics and especially the hydrolysis rate appeared to be significantly improved.

  18. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction.

    PubMed

    Ge, Shijian; Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2015-07-07

    Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch.

  19. Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR).

    PubMed

    Castrillón, L; Marañón, E; Fernández-Nava, Y; Ormaechea, P; Quiroga, G

    2013-05-01

    The aim of the present research work was to boost biogas production from cattle manure (CM) by adding food waste (FW) and crude glycerin (Gly) from the biodiesel industry as co-substrates. For this purpose, different quantities of FW and Gly were added to CM and co-digested in an induced bed reactor (IBR) at 55 °C. Sonication pre-treatment was implemented in the CM+Gly mixture, applying 550 kJ/kg TS to enhance the biodegradability of these co-substrates. The best results were obtained with mixtures of 87/10/3 (CM/FW/Gly) (w/w) operating at an organic loading rate of 7 g COD/L day, obtaining 92% COD removal, a specific methane yield of 640 L CH4/kg VS and a methane production rate of 2.6L CH4/L day. These results doubled those obtained in the co-digestion of CM and FW without the addition of Gly (330 L CH4/kg VS and 1.2L CH4/L day). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor.

    PubMed

    Han, Wei; Wang, Bing; Zhou, Yan; Wang, De-Xin; Wang, Yan; Yue, Li-Ran; Li, Yong-Feng; Ren, Nan-Qi

    2012-04-01

    A novel continuous mixed immobilized sludge reactor (CMISR) containing activated carbon as support carrier was used for fermentative hydrogen production from molasses wastewater. When the CMISR system operated at the conditions of influent COD of 2000-6000mg/L, hydraulic retention time (HRT) of 6h and temperature of 35°C, stable ethanol type fermentation was formed after 40days operation. The H(2) content in biogas and chemical oxygen demand (COD) removal were estimated to be 46.6% and 13%, respectively. The effects of organic loading rates (OLRs) on the CMISR hydrogen production system were also investigated. It was found that the maximum hydrogen production rate of 12.51mmol/hL was obtained at OLR of 32kg/m(3)d and the maximum hydrogen yield by substrate consumed of 130.57mmol/mol happened at OLR of 16kg/m(3)d. Therefore, the continuous mixed immobilized sludge reactor (CMISR) could be a promising immobilized system for fermentative hydrogen production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  2. Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate.

    PubMed

    Peng, Lai; Carvajal-Arroyo, José M; Seuntjens, Dries; Prat, Delphine; Colica, Giovanni; Pintucci, Cristina; Vlaeminck, Siegfried E

    2017-12-15

    The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N 2 O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (COD rem /N rem ). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N 2 O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O 2 /L; COD rem /N rem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O 2 /L) lowered the aerobic N 2 O emission and weakened the dependency on nitrite concentration, suggesting a shift in N 2 O production pathway. The most effective N 2 O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low COD rem /N rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessing dry weather flow contribution in TSS and COD storm events loads in combined sewer systems.

    PubMed

    Métadier, M; Bertrand-Krajewski, J L

    2011-01-01

    Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007-2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.

  4. High-rate activated sludge system for carbon management--Evaluation of crucial process mechanisms and design parameters.

    PubMed

    Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard

    2015-12-15

    The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Predation rates by North Sea cod (Gadus morhua) - Predictions from models on gastric evacuation and bioenergetics

    USGS Publications Warehouse

    Hansson, S.; Rudstam, L. G.; Kitchell, J.F.; Hilden, M.; Johnson, B.L.; Peppard, P.E.

    1996-01-01

    We compared four different methods for estimating predation rates by North Sea cod (Gadus moi hua). Three estimates, based on gastric evacuation rates, came from an ICES multispecies working group and the fourth from a bioenergetics model. The bioenergetics model was developed from a review of literature on cod physiology. The three gastric evacuation rate models produced very different prey consumption estimates for small (2 kg) fish. For most size and age classes, the bioenergetics model predicted food consumption rates intermediate to those predicted by the gastric evacuation models. Using the standard ICES model and the average population abundance and age structure for 1974-1989, annual, prey consumption by the North Sea cod population (age greater than or equal to 1) was 840 kilotons. The other two evacuation rate models produced estimates of 1020 and 1640 kilotons, respectively. The bioenergetics model estimate was 1420 kilotons. The major differences between models were due to consumption rate estimates for younger age groups of cod. (C) 1996 International Council for the Exploration of the Sea

  6. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    PubMed

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P < .05) was noticed after water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  7. Enhancement of ethene removal from waste gas by stimulating nitrification.

    PubMed

    de heyder, B; van Elst, T; van Langenhove, H; Verstraete, W

    1997-01-01

    The treatment of poorly water soluble waste gas compounds, such as ethene, is associated with low substrate concentration levels in the liquid phase. This low concentration level might hamper the optimal development of a microbial population. In this respect, the possible benefit of introducing nitrifying activity in the heterotrophic removal of ethene at moderate concentrations (< 1000 ppm) from a waste gas was investigated. Nitrifying activity is known to be associated with (i) the production of soluble microbial products, which can act as (co-)substrates for heterotrophic micro-organisms and (ii) the co-oxidation of ethene. The used reactor configuration was a packed granular activated carbon biobed inoculated with the heterotrophic strain Mycobacterium E3. The nitrifying activity was introduced by regular submersion in a nitrifying medium prepared from (i) compost or (ii) activated sludge. In both cases a clear enhancement of the volumetric removal rate of ethene could be observed. When combined with a NH3 dosage on a daily basis, a gradual increase of the volumetric removal rate of ethene could be observed. For a volumetric loading rate of 3 kg ethene-COD.m-3.d-1, the volumetric removal rate could thus be increased with a factor 1.8, i.e. from 0.72 to a level of 1.26 kg ethene-COD.m-3.d-1.

  8. Assessment of spill flow emissions on the basis of measured precipitation and waste water data

    NASA Astrophysics Data System (ADS)

    Hochedlinger, Martin; Gruber, Günter; Kainz, Harald

    2005-09-01

    Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.

  9. beta-Glucan production by Botryosphaeria rhodina on undiluted olive-mill wastewaters.

    PubMed

    Crognale, S; Federici, F; Petruccioli, M

    2003-12-01

    Botryosphaeria rhodina produced beta-glucan when grown on undiluted olive-mill wastewaters (OMW). The production of exopolysaccharide increased with the COD up to 17.2 g l(-1) on the most loaded OMW (151 and 66 g l(-1) of COD and total sugar, respectively). The total phenol content of OMW was reduced from 8 to 4.1 g l(-1).

  10. The reasons behind the performance superiority of a high rate algal pond over three facultative ponds in series.

    PubMed

    El Hamouri, B; Rami, A; Vasel, J L

    2003-01-01

    Results from a tracer study were used to determine and to compare actual and standard (k(20 degrees C)) first order reaction rate constants for COD removal in a High Rate Algal Pond (HRAP) and in 3 facultative ponds (FP) in series. An annual average k(20 degreesC) of 0.123 day(-1) was found for the HRAP while the values of 0.097, 0.025 and 0.003 d(-1) were found for facultative ponds 1, 2 and 3 respectively. Also, comparing nominal and tracer study hydraulic retention times showed large differences for the FP but not for the HRAP indicating that the former were suffering from severe short-circuiting. Loading rate within the range of operation exhibited a positive correlation with k(20 degrees C) for the HRAP but did not show such a relationship for any of the FP. Optimal chlorophyll-a concentration was found to be 3 mg/l for the HRAP and only 1.1 mg/l for the FP. Pollutant specific removal rates (SRR), that translate the hydrodynamic efficiency and the rate of COD biodegradation into pond performance per m2 and per day were calculated. They show that the adoption of the HRAP in place of a series of 3 FP reduces the net land area requirement (LAR) by at least 40%.

  11. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment.

    PubMed

    Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa

    2016-01-01

    A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.

  12. Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.

    PubMed

    Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein

    2012-01-01

    Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.

  13. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    PubMed Central

    Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723

  14. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena

    2014-02-01

    This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure-free piggery wastewater.

    PubMed

    Li, Jianzheng; Meng, Jia; Li, Jiuling; Wang, Cheng; Deng, Kaiwen; Sun, Kai; Buelna, Gerardo

    2016-06-01

    A novel upflow microaerobic sludge reactor (UMSR) was constructed to treat manure-free piggery wastewater with high NH4(+)-N concentration and low COD/TN ratio, and the effect and biological mechanism of COD/TN ratio on nitrogen removal were investigated at a constant hydraulic retention time of 8h and 35°C. The results showed that the UMSR could treat the wastewater with a better synchronous removal of COD, NH4(+)-N and TN. The microaerobic UMSR allowed nitrifiers, and heterotrophic and autotrophic denitrifiers to thrive in the flocs, revealing a multiple nitrogen removal mechanism in the reactor. Both the nitrifiers and denitrifiers would be restricted by an influent COD/TN ratio more than 0.82, resulting in a decrease of TN removal in the UMSR. To get a TN removal over 80% with a TN load removal above 0.86kg/(m(3)·d) in the UMSR, the influent COD/TN ratio should be less than 0.70. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Relationship Between Change of Direction, Speed and Power in Male and Female National Olympic Team Handball Athletes.

    PubMed

    Pereira, Lucas A; Nimphius, Sophia; Kobal, Ronaldo; Kitamura, Katia; Turisco, Luiz A L; Orsi, Rita C; Cal Abad, César Cs; Loturco, Irineu

    2018-02-22

    The aims of this study were to (1) assess the relationship between selected speed-power related abilities (determined by 20-m sprint, unloaded countermovement and squat jumps [CMJ and SJ] and loaded jump squat [JS]) and performance in two distinct change of direction (COD) protocols (Zigzag and T-Test), and (2) determine the magnitude of difference between female and male Brazilian National Olympic Team handball athletes. Fifteen male and twenty-three female elite handball athletes volunteered to perform the following assessments: SJ and CMJ; Zigzag and T-Test; 20-m sprint with 5-, 10-, and 20-m splits, and mean propulsive power (MPP) in JS. Pearson product moment correlation (P< 0.05) was performed to determine the relationship between the COD tests (Zigzag and T-test) and speed-power measures (sprint, SJ, CMJ and JS). The differences between male and female performances were determined using the magnitude-based inference. Moderate to very large significant correlations were observed between both COD tests and the speed-power abilities. Further, male athletes demonstrated likely to almost certainly higher performances than female athletes in all assessed variables. The results of the current study suggest that different speed-power qualities are strongly correlated to the performance obtained in various COD assessments (r values varying from 0.38 to 0.84 and from 0.34 to 0.84 for correlations between speed and power tests with Zigzag and T-Test, respectively). However, the level of these associations can vary greatly, according to the mechanical demands of each respective COD task. Whilst COD tests may be difficult to implement during competitive seasons, due to the strong correlations presented herein, the regular use of vertical jump tests with these athletes seems to be an effective and applied alternative. Furthermore, it might be inferred that the proper development of loaded and unloaded jump abilities has potential for improving the physical qualities related to COD performance in handball athletes.

  17. Waste Conversion into n-Caprylate and n-Caproate: Resource Recovery from Wine Lees Using Anaerobic Reactor Microbiomes and In-line Extraction

    PubMed Central

    Kucek, Leo A.; Xu, Jiajie; Nguyen, Mytien; Angenent, Largus T.

    2016-01-01

    To convert wastes into sustainable liquid fuels and chemicals, new resource recovery technologies are required. Chain elongation is a carboxylate-platform bioprocess that converts short-chain carboxylates (SCCs) (e.g., acetate [C2] and n-butyrate [C4]) into medium-chain carboxylates (MCCs) (e.g., n-caprylate [C8] and n-caproate [C6]) with hydrogen gas as a side product. Ethanol or another electron donor (e.g., lactate, carbohydrate) is required. Competitive MCC productivities, yields (product vs. substrate fed), and specificities (product vs. all products) were only achieved previously from an organic waste material when exogenous ethanol had been added. Here, we converted a real organic waste, which inherently contains ethanol, into MCCs with n-caprylate as the target product. We used wine lees, which consisted primarily of settled yeast cells and ethanol from wine fermentation, and produced MCCs with a reactor microbiome. We operated the bioreactor at a pH of 5.2 and with continuous in-line extraction and achieved a MCC productivity of 3.9 g COD/L-d at an organic loading rate of 5.8 g COD/L-d, resulting in a promising MCC yield of 67% and specificities of 36% for each n-caprylate and n-caproate (72% for both). Compared to all other studies that used complex organic substrates, we achieved the highest n-caprylate-to-ncaproate product ratio of 1.0 (COD basis), because we used increased broth-recycle rates through the forward membrane contactor, which improved in-line extraction rates. Increased recycle rates also allowed us to achieve the highest reported MCC production flux per membrane surface area thus far (20.1 g COD/m2-d). Through microbial community analyses, we determined that an operational taxonomic unit (OTU) for Bacteroides spp. was dominant and was positively correlated with increased MCC productivities. Our data also suggested that the microbiome may have been shaped for improved MCC production by the high broth-recycle rates. Comparable abiotic studies suggest that further increases in the broth-recycle rates could improve the overall mass transfer coefficient and its corresponding MCC production flux by almost 30 times beyond the maximum that we achieved. With improved in-line extraction, the chain-elongation biotechnology production platform offers new opportunities for resource recovery and sustainable production of liquid fuels and chemicals. PMID:27933053

  18. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  19. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system.

    PubMed

    Oosterkamp, Margreet J; Méndez-García, Celia; Kim, Chang-H; Bauer, Stefan; Ibáñez, Ana B; Zimmerman, Sabrina; Hong, Pei-Ying; Cann, Isaac K; Mackie, Roderick I

    2016-01-01

    This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40 °C) and thermophilic (55 °C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. Energy and sugar cane stillage have a high chemical oxygen demand (COD of 43 and 30 g/L, respectively) and low pH (pH 4.3). Furthermore, the acetate concentration in sugar cane stillage was high (45 mM) but was not detected in energy cane stillage. There was also a high amount of lactate in both types of stillage (35-37 mM). The amount of sugars was 200 times higher in energy cane stillage compared to sugar cane stillage. Although there was a high concentration of sulfate (18 and 23 mM in sugar and energy cane stillage, respectively), both thin stillages were efficiently digested anaerobically with high COD removal under mesophilic and thermophilic temperature conditions and with an organic loading rate of 15-21 g COD/L/d. The methane production rate was 0.2 L/g COD, with a methane percentage of 60 and 64, and 92 and 94 % soluble COD removed, respectively, by the mesophilic and thermophilic reactors. Although both treatment processes were equally efficient, there were different microbial communities involved possibly arising from the differences in the composition of energy cane and sugar cane stillage. There was more acetic acid in sugar cane stillage which may have promoted the occurrence of aceticlastic methanogens to perform a direct conversion of acetate to methane in reactors treating sugar cane stillage. Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions. Furthermore, we found that optimal conditions for biological treatment of thin stillage were similar for both mesophilic and thermophilic reactors. Bar-coded pyrosequencing of the 16S rRNA gene identified different microbial communities in mesophilic and thermophilic reactors and these differences in the microbial communities could be linked to the composition of the thin stillage.

  20. Growth dynamics of Saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) in the Northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Helser, T.; Anderl, D.

    2016-02-01

    Saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) are two circumpolar gadids that serve as critically important species responsible for energy transfer in Arctic food webs of the northern Bering and Chukchi Seas. To understand the potential effects of sea ice loss and warming temperatures on these species' basic life history, information such as growth is needed. Yet to date, limited effort has been dedicated to the study of their growth dynamics. Based on a large sample of otoliths collected in the first comprehensive ecosystem integrated survey in the northern Bering and Chukchi Seas, procedures were developed to reliably estimate age from otolith microstructure and were used to study the growth dynamics of saffron and Arctic cod. Saffron cod attained larger asymptotic sizes (L∞ = 363 mm) and achieved their maximum size at a faster rate (K = 0.378) than Arctic cod (L∞ = 209 mm; K = 0.312). For both species, regional differences in growth were found (p<0.01). Saffron cod grew to a significantly larger size at age in the northern Bering Sea when compared to the Chukchi Sea, particularly at younger ages. Arctic cod grew to smaller a asymptotic size but at faster rates in the more northerly central (L∞ = 197 mm; K = 0.324) and southern Chukchi Sea (L∞ = 221 mm; K = 0.297) when compared to the northern Bering Sea (L∞ = 266 mm; K = 0.171), suggesting a possible cline in growth rates with more northerly latitudes. A 30 year retrospective comparison of age data indicate that both species exhibited a decline is maximum size accompanied by higher instantaneous rates growth in more recent years.

  1. Growth dynamics of saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) in the Northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Helser, Thomas E.; Colman, Jamie R.; Anderl, Delsa M.; Kastelle, Craig R.

    2017-01-01

    Saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) are two circumpolar gadids that serve as critically important species responsible for energy transfer in Arctic food webs of the northern Bering and Chukchi Seas. To understand the potential effects of sea ice loss and warming temperatures on these species' basic life history, information such as growth is needed. Yet to date, limited effort has been dedicated to the study of their growth dynamics. Based on a large sample of otoliths collected in the first comprehensive ecosystem integrated survey in the northern Bering and Chukchi Seas, procedures were developed to reliably estimate age from otolith growth zones and were used to study the growth dynamics of saffron and Arctic cod. Annual growth zone assignment was validated using oxygen isotope signatures in otoliths and otolith morphology analyzed and compared between species. Saffron cod attained larger asymptotic sizes (L∞=363 mm) and achieved their maximum size at a faster rate (K=0.378) than Arctic cod (L∞=209 mm; K=0.312). For both species, regional differences in growth were found (p<0.01). Saffron cod grew to a significantly larger size at age in the northern Bering Sea when compared to the Chukchi Sea, particularly at younger ages. Arctic cod grew to smaller asymptotic size but at faster rates in the more northerly central (L∞=197 mm;K=0.324) and southern Chukchi Sea (L∞=221 mm;K=0.297) when compared to the northern Bering Sea (L∞=266 mm;K=0.171), suggesting a possible cline in growth rates with more northerly latitudes. Comparison of growth to two periods separated by 30 years indicate that both species exhibited a decline in maximum size accompanied by higher instantaneous growth rates in more recent years.

  2. Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load.

    PubMed

    Papadopoulos, A E; Fatta, D; Loizidou, M

    2007-07-31

    The examination of the effectiveness of the chemical oxidation using Fenton's reagent (H(2)O(2)/Fe(2+)) for the reduction of the organic content of wastewater generated from a textile industry has been studied. The experimental results indicate that the oxidation process leads to a reduction in the chemical oxygen demand (COD) concentration up to 45%. Moreover, the reduction is reasonably fast at the first stages of the process, since the COD concentration is decreased up to 45% within four hours and further treatment time does not add up to the overall decrease in the COD concentration (48% reduction within six hours). The maximum color removal achieved was 71.5%. In addition, the alterations observed in the organic matter during the development of the process, as indicated by the ratios of COD/TOC and BOD/COD and the oxidation state, show that a great part of the organic substances, which are not completely mineralized, are subjected to structural changes to intermediate organic by-products.

  3. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Batista, Karla; Silva, Witan; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-10-01

    In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sustainable nitrogen removal by denitrifying anammox applied for anaerobic pre-treated potato wastewater.

    PubMed

    Mulder, A; Versprille, A I; van Braak, D

    2012-01-01

    The feasibility of sustainable nitrogen removal was investigated in a two stage biofilm configuration consisting of a MBBR (Moving Bed Biofilm Reactor) and a Deamox reactor (Biobed-EGSB). The MBBR is used for nitrification and the denitrifying ammonium oxidation (Deamox) is aimed at a nitrogen removal process in which part of the required nitrite for the typical anammox reaction originated from nitrate. Anaerobic pre-treated potato wastewater was supplied to a MBBR and Deamox reactor operated in series with a bypass flow of 30%. The MBBR showed stable nitrite production at ammonium-loading rates of 0.9-1.0 kg NH₄-N/m³ d with ammonium conversion rates of 0.80-0.85 kg NH₄-N/m³ d. The nitrogen-loading rate and conversion rate of the Deamox reactor were 1.6-1.8 and 1.6 kg N/m³ d. The maximum ammonium removal capacity in the Deamox reactor was 0.6 kg NH₄-N/m³ d. The removal efficiency of soluble total nitrogen reached 90%. The Deamox process performance was found to be negatively affected during decline of the operating temperature from 33 to 22 °C and by organic loading rates with a chemical oxygen demand (COD)/NO₂-N ratio >1.

  5. Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater

    NASA Astrophysics Data System (ADS)

    Patricia, Maria Faustina; Purwono; Budihardjo, Mochamad Arief

    2018-02-01

    Chemical oxygen demand (COD) in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus) in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.

  6. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    PubMed

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  7. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  8. First flush of storm runoff pollution from an urban catchment in China.

    PubMed

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  9. Assessment of annual pollutant loads in combined sewers from continuous turbidity measurements: sensitivity to calibration data.

    PubMed

    Lacour, C; Joannis, C; Chebbo, G

    2009-05-01

    This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.

  10. Low plastic ingestion rate in Atlantic cod (Gadus morhua) from Newfoundland destined for human consumption collected through citizen science methods.

    PubMed

    Liboiron, Max; Liboiron, France; Wells, Emily; Richárd, Natalie; Zahara, Alexander; Mather, Charles; Bradshaw, Hillary; Murichi, Judyannet

    2016-12-15

    Marine microplastics are a contaminant of concern because their small size allows ingestion by a wide range of marine life. Using citizen science during the Newfoundland recreational cod fishery, we sampled 205 Atlantic cod (Gadus morhua) destined for human consumption and found that 5 had eaten plastic, an ingestion prevalence rate of 2.4%. This ingestion rate for Atlantic cod is the second lowest recorded rate in the reviewed published literature (the lowest is 1.4%), and the lowest for any fish in the North Atlantic. This is the first report for plastic ingestion in fish in Newfoundland, Canada, a province dependent on fish for sustenance and livelihoods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Removal of nutrients in denitrification system using coconut coir fibre for the biological treatment of aquaculture wastewater.

    PubMed

    Manoj, Valsa Remony; Vasudevan, Namasivayam

    2012-03-01

    Ideal bacterial support medium for fixed film denitrification processes/bioreactors must be inexpensive, durable and possess large surface area with sufficient porosity. The present study has been focussed on removing nitrate nitrogen at two different nitrate nitrogen loading rates (60 (NLR I) and 120 (NLR II) mg l(-1)) from simulated aquaculture wastewater. Coconut coir fibre and a commercially available synthetic reticulated plastic media (Fujino Spirals) were used as packing medium in two independent upflow anaerobic packed bed column reactors. Removal of nitrate nitrogen was studied in correlation with other nutrients (COD, TKN, dissolved orthophosphate). Maximum removal of 97% at NLR-I and 99% at NLR - II of nitrate nitrogen was observed in with either media. Greater consistency in the case of COD removal of upto 81% was observed at NLR II where coconut coir was used as support medium compared to 72% COD removal by Fujino Spirals. The results observed indicate that the organic support medium is just as efficient in nitrate nitrogen removal as conventionally used synthetic support medium. The study is important as it specifically focuses on denitrification of aquaculture wastewater using cheaper organic support medium in anoxic bioreactors for the removal of nitrate nitrogen; which is seldom addressed as a significant problem.

  12. High speed municipal sewage treatment in microbial fuel cell integrated with anaerobic membrane filtration system.

    PubMed

    Lee, Y; Oa, S W

    2014-01-01

    A cylindrical two chambered microbial fuel cell (MFC) integrated with an anaerobic membrane filter was designed and constructed to evaluate bioelectricity generation and removal efficiency of organic substrate (glucose or domestic wastewater) depending on organic loading rates (OLRs). The MFC was continuously operated with OLRs 3.75, 5.0, 6.25, and 9.38 kg chemical oxygen demand (COD)/(m(3)·d) using glucose as a substrate, and the cathode chamber was maintained at 5-7 mg/L of dissolved oxygen. The optimal OLR was found to be 6.25 kgCOD/(m(3)·d) (hydraulic retention time (HRT) 1.9 h), and the corresponding voltage and power density averaged during the operation were 0.15 V and 13.6 mW/m(3). With OLR 6.25 kgCOD/(m(3)·d) using domestic wastewater as a substrate, the voltage and power reached to 0.13 V and 91 mW/m(3) in the air cathode system. Even though a relatively short HRT of 1.9 h was applied, stable effluent could be obtained by the membrane filtration system and the following air purging. In addition, the short HRT would provide economic benefit in terms of reduction of construction and operating costs compared with a conventional aerobic treatment process.

  13. Anaerobic treatability of high oil and grease rendering wastewater.

    PubMed

    Nakhla, George; Al-Sabawi, Mustafa; Bassi, Amerjeet; Liu, Victor

    2003-08-29

    This study evaluated the use of a new biosurfactant, BOD-Balance, derived from cactus for the treatment of oil-and-grease-laden rendering wastewater anaerobically. Batch laboratory experimental results and preliminary full-scale data are presented. The biosurfactant affected a significant increase in the COD degradation rate for the raw wastewater. However, after reduction of the oil and grease (O&G) by dissolved air flotation, the biosurfactant did not exhibit any advantages. Modeling of the data indicated that various COD fractions, i.e. both soluble and particulate as well as total COD at various testing conditions conformed well to both zero-order and first-order models. The biosurfactant affected a 164-238 and 164-247% increase in COD and particulate COD biodegradation rate for the raw wastewater. The reduction of O&G concentration to <800 mg/l increased total and soluble COD degradation rates by 106%. Results from the full-scale mesophilic anaerobic digestion system indicated that the addition of the biosurfactant at doses of 130-200 mg/l decreased O&G concentrations from 66,300 to 10,200 mg/l over a 2-month-period.

  14. Impact of nitrogen loading rates on treatment performance of domestic wastewater and fouling propensity in submerged membrane bioreactor (MBR).

    PubMed

    Khan, Sher Jamal; Ilyas, Shazia; Zohaib-Ur-Rehman

    2013-08-01

    In this study, performance of laboratory-scale membrane bioreactor (MBR) was evaluated in treating high strength domestic wastewater under two nitrogen loading rates (NLR) i.e., 0.15 and 0.30 kg/m(3)/d in condition 1 and 2, respectively, while organic loading rate (OLR) was constant at 3 kg/m(3)/d in both conditions. Removal efficiencies of COD were above 95.0% under both NLR conditions. Average removal efficiencies of ammonium nitrogen (NH₄(+)-N), total nitrogen (TN) and total phosphorus (TP) were found to be higher in condition 1 (90.5%, 74.0%, and 38.0%, respectively) as compared to that in Condition 2 (89.3%, 35.0%, and 14.0%, respectively). With increasing NLR, particle size distribution shifted from narrow (67-133 μm) towards broader distribution (3-300 μm) inferring lower cake layer porosity over membrane fibers. Soluble extracellular polymer substance (sEPS) concentration increased at higher NLR due to biopolymers released from broken flocs. Higher cake layer resistance (Rc) contributed towards shorter filtration runs during condition 2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Turf soil enhances treatment efficiency and performance of phenolic wastewater in an up-flow anaerobic sludge blanket reactor.

    PubMed

    Chen, Chunmao; Yao, Xianyang; Li, Qing X; Wang, Qinghong; Liang, Jiahao; Zhang, Simin; Ming, Jie; Liu, Zhiyuan; Deng, Jingmin; Yoza, Brandon A

    2018-08-01

    Phenols are industrially generated intermediate chemicals found in wastewaters that are considered a class of environmental priority pollutants. Up-flow anaerobic sludge blanket (UASB) reactors are used for phenolic wastewater treatment and exhibit high volume loading capability, favorable granule settling, and tolerance to impact loads. Use of support materials can promote biological productivity and accelerate start-up period of UASB. In the present study, turf soil was used as a support material in a mesophilic UASB reactor for the removal of phenols in wastewater. During sludge acclimatization (45-96 days), COD and phenols in the treatments were both reduced by 97%, whereas these contents in the controls were decreased by 81% and 75%, respectively. The phenol load threshold for the turf soil UASB reactor was greater (1200 mg/L, the equivalent of COD 3000 mg/L) in comparison with the control UASB reactor (900 mg/L, the equivalent of COD 2250 mg/L) and the turf soil UASB reactor was also more resistant to shock loading. Improved sludge settling, shear resistance, and higher biological activity occurred with the turf soil UASB reactor due to the formation of large granular sludge (0.6 mm or larger) in higher relative percentages. Granular sludge size was further enhanced by the colonization of filamentous bacteria on the irregular surface of the turf soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw process... concentration value reflecting a reduction in the long-term average daily COD load in the raw (untreated...

  17. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw process... concentration value reflecting a reduction in the long-term average daily COD load in the raw (untreated...

  18. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.

  19. Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: mechanism of BPA removal and membrane fouling.

    PubMed

    Seyhi, Brahima; Drogui, Patrick; Buelna, Gerardo; Azaïs, Antonin; Heran, Marc

    2013-09-01

    A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH4-N, PO4-P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m(3)/d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m(3)/d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h(-1). During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of bacterial lipase on anaerobic co-digestion of slaughterhouse wastewater and grease in batch condition and continuous fixed-bed reactor.

    PubMed

    Affes, Maha; Aloui, Fathi; Hadrich, Fatma; Loukil, Slim; Sayadi, Sami

    2017-10-10

    This study aimed to investigate the effects of bacterial lipase on biogas production of anaerobic co-digestion of slaughterhouse wastewater (SHWW) and hydrolyzed grease (HG). A neutrophilic Staphylococcus xylosus strain exhibiting lipolytic activity was used to perform microbial hydrolysis pretreatment of poultry slaughterhouse lipid rich waste. Optimum proportion of hydrolyzed grease was evaluated by determining biochemical methane potential. A high biogas production was observed in batch containing a mixture of slaughterhouse composed of 75% SHWW and 25% hydrolyzed grease leading to a biogas yield of 0.6 L/g COD introduced. Fixed bed reactor (FBR) results confirmed that the proportion of 25% of hydrolyzed grease gives the optimum condition for the digester performance. Biogas production was significantly high until an organic loading rate (OLR) of 2 g COD/L. d. This study indicates that the use of biological pre-treatment and FBR for the co-digestion of SHWW and hydrolyzed grease is feasible and effective.

  1. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  2. Investigation of furfural biodegradation in a continuous inflow cyclic biological reactor.

    PubMed

    Moussavi, Gholamreza; Leili, Mostafa; Nadafi, Kazem

    2016-01-01

    The performance of a continuous inflow cyclic biological reactor (CBR) containing moving media was investigated for the degradation of high concentrations of furfural. The effects of hydraulic retention time (HRT) and furfural initial concentrations (loading rate), as main operating parameters, on the bioreactor performance were studied. The results indicated that the CBR could remove over 98% of furfural and 71% of its chemical oxygen demand (COD) at inlet furfural concentrations up to 1,200 mg L(-1) (2.38 g L(-1) d(-1)), a 6-h cycle time and HRT of 12.1 h. The removal efficiency decreased slightly from 98 to 94% when HRT decreased from 12.1 to 10.5 h. The average removal efficiency of furfural and COD during the 345-day operational period under steady-state conditions were 97.7% and 82.1%, respectively. The efficiency also increased approximately 17.2% after addition of synthetic polyurethane cubes as moving media at a filling ratio of 10%.

  3. Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming.

    PubMed

    García-Gen, Santiago; Rodríguez, Jorge; Lema, Juan M

    2014-12-01

    Anaerobic co-digestion of multiple substrates has the potential to enhance biogas productivity by making use of the complementary characteristics of different substrates. A blending strategy based on a linear programming optimisation method is proposed aiming at maximising COD conversion into methane, but simultaneously maintaining a digestate and biogas quality. The method incorporates experimental and heuristic information to define the objective function and the linear restrictions. The active constraints are continuously adapted (by relaxing the restriction boundaries) such that further optimisations in terms of methane productivity can be achieved. The feasibility of the blends calculated with this methodology was previously tested and accurately predicted with an ADM1-based co-digestion model. This was validated in a continuously operated pilot plant, treating for several months different mixtures of glycerine, gelatine and pig manure at organic loading rates from 1.50 to 4.93 gCOD/Ld and hydraulic retention times between 32 and 40 days at mesophilic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  5. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    PubMed

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  6. Kinetics of Anaerobic Digestion of Palm Oil Mill Effluent (POME) in Double-Stage Batch Bioreactor with Recirculation and Fluidization of Microbial Immobilization Media

    NASA Astrophysics Data System (ADS)

    Ramadhani, L. I.; Damayanti, S. I.; Sudibyo, H.; Budhijanto, W.

    2018-03-01

    Palm Oil Mill Effluent (POME) becomes big problem for palm oil industries, especially for Crude Palm Oil (CPO) industry since it produces 3 tons of POME for every ton of CPO production.The high amount of organic loading in POME makes it potential as a substrate in anaerobic digestion to generate biogas as renewable energy source. The most common but conventional method by using open lagoon is still preferred for most CPO industry in Indonesia to treat POME because of its simplicity and easiness. However, this method creates new major problem for the water bodies since it has no significant chemical oxygen demand (COD) removal and needs wide area. Besides, greenhouse gas (CH4) is also released during the process. An innovation was made in this study by designing vertical column process equipment to run an anaerobic digestion of POME. The vertical column was functioned as anaerobic fluidized bed reactor (AFBR). To enhance the digestion rate in AFBR, natural zeolite was used as the immobilization media and the inoculum was taken from digested biodiesel waste. This research aimed to determine the kinetic constants of double-stage anaerobic POME digestion for COD removal and biogas production. To get close to the real condition, the POME used in this experiment had 8,000 mg/L of sCOD (the real sCOD was ±16,000 mg/L). The experiment was conducted under room temperature with up-flow velocity between 1.75 and 2.3 cm/s for optimum fluidization of immobilization media.

  7. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    NASA Astrophysics Data System (ADS)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  8. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter.

    PubMed

    Kornaros, M; Lyberatos, G

    2006-08-10

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH)(2) and FeSO(4), was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m(3)/m(2)day and up to 80-85% for a hydraulic loading 0.6 m(3)/m(2)day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m(3)/m(2)day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content.

  9. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    PubMed

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  10. COD removal characteristics in air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; He, Weihua; Ren, Lijiao; Stager, Jennifer; Evans, Patrick J; Logan, Bruce E

    2015-01-01

    Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h(-)(1), which was higher than acetate or filtered WW with an open circuit (0.10h(-)(1)), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hydrolysis, acidification and methanogenesis during low-temperature anaerobic digestion of dilute dairy wastewater in an inverted fluidised bioreactor.

    PubMed

    Bialek, Katarzyna; Cysneiros, Denise; O'Flaherty, Vincent

    2014-10-01

    The application of low-temperature (10 °C) anaerobic digestion (LtAD) for the treatment of complex dairy-based wastewater in an inverted fluidised bed (IFB) reactor was investigated. Inadequate mixing intensity provoked poor hydrolysis of the substrate (mostly protein), which resulted in low chemical oxygen demand (COD) removal efficiency throughout the trial, averaging ~69 % at the best operational period. Overgrowth of the attached biomass to the support particles (Extendospheres) induced bed stratification by provoking agglutination of the particles and supporting their washout by sedimentation, which contributed to unstable bioprocess performance at the organic loading rates (OLRs) between 0.5 and 5 kg COD m(-3) day(-1). An applied OLR above 2 kg COD m(-3) day(-1) additionally promoted acidification and strongly influenced the microbial composition and dynamics. Hydrogenotrophic methanogens appeared to be the mostly affected group by the Extendospheres particle washout as a decrease in their abundance was observed by quantitative PCR analysis towards the end of the trial, although the specific methanogenic activity and maximum substrate utilisation rate on H2/CO2 indicated high metabolic activity and preference towards hydrogenotrophic methanogenesis of the reactor biomass at this stage. The bacterial community in the bioreactor monitored via denaturing gradient gel electrophoresis (DGGE) also suggested an influence of OLR stress on bacterial community structure and population dynamics. The data presented in this work can provide useful information in future optimisation of fluidised reactors intended for digestion of complex industrial wastewaters during LtAD.

  12. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.

    PubMed

    Patidar, S K; Tare, Vinod

    2004-01-01

    This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.

  13. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    PubMed Central

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%. PMID:28867948

  14. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.

    PubMed

    Sahinkaya, Erkan

    2009-05-15

    Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.

  15. AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio.

    PubMed

    Friedl, Gregor F; Mockaitis, Gustavo; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio

    2009-10-01

    A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L(-1)), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO(4)(2-)] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L(-1) and sulfate concentrations of 373, 746, and 1,493 mg SO(4)(2-) L(-1) in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30 +/- 1 degrees C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO(4)(2-)] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO(4)(2-)] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO(4)(2-)] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.

  16. Influence of throat configuration and fish density on escapement of channel catfish from hoop nets

    USGS Publications Warehouse

    Porath, Mark T.; Pape, Larry D.; Richters, Lindsey K.

    2011-01-01

    In recent years, several state agencies have adopted the use of baited, tandemset hoop nets to assess lentic channel catfish Ictalurus punctatus populations. Some level of escapement from the net is expected because an opening exists in each throat of the net, although factors influencing rates of escapement from hoop nets have not been quantified. We conducted experiments to quantify rates of escapement and to determine the influence of throat configuration and fish density within the net on escapement rates. An initial experiment to determine the rate of escapement from each net compartment utilized individually tagged channel catfish placed within the entrance (between the two throats) and cod (within the second throat) compartments of a single hoop net for overnight sets. From this experiment, the mean rate (±SE) of channel catfish escaping was 4.2% (±1.5) from the cod (cod throat was additionally restricted from the traditionally manufactured product), and 74% (±4.2) from the entrance compartments. In a subsequent experiment, channel catfish were placed only in the cod compartment with different throat configurations (restricted or unrestricted) and at two densities (low [6 fish per net] and high [60 fish per net]) for overnight sets to determine the influence of fish density and throat configuration on escapement rates. Escapement rates between throat configurations were doubled at low fish density (13.3 ± 5.4% restricted versus 26.7 ± 5.6% unrestricted) and tripled at high fish density (14.3 ± 4.9% restricted versus 51.9 ± 5.0% unrestricted). These results suggest that retention efficiency is high from cod compartments with restricted throat entrances. However, managers and researchers need to be aware that modification to the cod throats (restrictions) is needed for hoop nets ordered from manufacturers. Managers need to be consistent in their use and reporting of cod end throat configurations when using this gear.

  17. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain results and guide the operation with this fast strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis.

    PubMed

    Asadi, Abbas; Arazi, Hamid; Young, Warren B; Sáez de Villarreal, Eduardo

    2016-07-01

    To show a clear picture about the possible variables of enhancements of change-of-direction (COD) ability using longitudinal plyometric-training (PT) studies and determine specific factors that influence the training effects. A computerized search was performed, and 24 articles with a total of 46 effect sizes (ESs) in an experimental group and 25 ESs in a control group were reviewed to analyze the role of various factors on the impact of PT on COD performance. The results showed that participants with good fitness levels obtained greater improvements in COD performance (P < .05), and basketball players gained more benefits of PT than other athletes. Also, men obtained COD results similar to those of women after PT. In relation to the variables of PT design, it appears that 7 wk (with 2 sessions/wk) using moderate intensity and 100 jumps per training session with a 72-h rest interval tends to improve COD ability. Performing PT with a combination of different types of plyometric exercises such as drop jumps + vertical jumps + standing long jumps is better than 1 form of exercise. It is apparent that PT can be effective at improving COD ability. The loading parameters are essential for exercise professionals, coaches, and strength and conditioning professionals with regard to the most appropriate dose-response trends to optimize plyometric-induced COD-ability gains.

  19. Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City.

    PubMed

    Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao

    2013-11-01

    Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.

  20. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    PubMed

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  1. Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.

    PubMed

    Inanc, B; Calli, B; Saatci, A

    2000-01-01

    In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.

  2. Effect of time on dyeing wastewater treatment

    NASA Astrophysics Data System (ADS)

    Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.

  3. Denitrifying bioreactor clogging potential during wastewater treatment.

    PubMed

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m 3 of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P 2 O 5 ) and along the bioreactor floor (0.04 vs. 0.12%P 2 O 5 ) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Study on Treatment of Landfill Leachate by Electrochemical, Flocculation and Photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Jin, Xiuping; Pan, Yunbo; Zuo, Xiaoran

    2018-01-01

    In this study, the landfill leachate of different seasons in Liaoyang City is as the research object, and COD removal rate is as the main indicator. The electrochemical section’s results show that the optimal treatment conditions for the water of 2016 summer are as follows: voltage is 7.0V, current density is 40.21 A/m2, pH is equal to the raw water, electrolysis time is 1h, and the COD removal rate is 80.41%. The optimal treatment conditions for the 2017 fall’s water are: electrolysis voltage is 7.0 V, current density is 45.06 A/m2, electrolysis time is 4 hours, and COD removal rate is 28.03%. The flow rate of continuous electrolysis is 6.4 L/h using the water of 2016 fall, and the COD removal rate is 10.28%. The results of the flocculation process show that the optimal treatment conditions are as follows: pH is equal to the raw water; the optimal flocculant species is Fe-Al composite flocculant, wherein the optimal ratio of Fe-Al is n (Fe):n (Al)=0.5:1; the best dosage of flocculant is 2.0 g/L and COD removal rate is of 21.11%. The results of photocatalytic show that the optimal conditions are: pH is 4.5, Al2(SO4)3 is 1.0 g/L, FeSO4.7H2O is 700mg/L, H2O2(30%) is 4 mL/L, stirring and standing UV lamp light irradiation 3 hours, and adjusting pH to 6.0 or so, COD removal rate is 36.15%. +

  5. Anaerobic treatment of Tequila vinasses in a CSTR-type digester.

    PubMed

    Méndez-Acosta, Hugo Oscar; Snell-Castro, Raúl; Alcaraz-González, Víctor; González-Alvarez, Víctor; Pelayo-Ortiz, Carlos

    2010-06-01

    Tequila industries in general produce great volumes of effluents with high pollutant loads, which are discharged (untreated or partially treated) into natural receivers, thus causing severe environmental problems. In this contribution, we propose an integrated system as a first step to comply with the Mexican ecological norms and stabilize the anaerobic treatment of Tequila vinasses with main design criteria: simple and easy operation, reduce operating time and associated costs (maintenance), integrated and compact design, minimal cost of set-up, start-up, monitoring and control. This system is composed of a fully instrumented and automated lab-scale CSTR-type digester, on-line measuring devices of key variables (pH, temperature, flow rates, etc.), which are used along with off-line readings of chemical oxygen demand (COD), biogas composition, alkalinity and volatile fatty acids to guarantee the operational stability of the anaerobic digestion process. The system performance was evaluated for 200 days and the experimental results show that even under the influence of load disturbances, it is possible to reduce the COD concentration to 85% in the start-up phase and up to 95% during the normal operation phase while producing a biogas with a methane composition greater than 65%. It is also shown that in order to maintain an efficient treatment, the buffering capacity (given by the alkalinity ratio, alpha = intermediate alkalinity/total alkalinity) must be closely monitored.

  6. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency.

    PubMed

    Li, Hui; Zuo, Wei; Tian, Yu; Zhang, Jun; Di, Shijing; Li, Lipin; Su, Xinying

    2017-02-01

    Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m 3 and a current density of 8.5 A/m 3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.

  7. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    PubMed

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.

  8. From mess to mass: a methodology for calculating storm event pollutant loads with their uncertainties, from continuous raw data time series.

    PubMed

    Métadier, M; Bertrand-Krajewski, J-L

    2011-01-01

    With the increasing implementation of continuous monitoring of both discharge and water quality in sewer systems, large data bases are now available. In order to manage large amounts of data and calculate various variables and indicators of interest it is necessary to apply automated methods for data processing. This paper deals with the processing of short time step turbidity time series to estimate TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) event loads in sewer systems during storm events and their associated uncertainties. The following steps are described: (i) sensor calibration, (ii) estimation of data uncertainties, (iii) correction of raw data, (iv) data pre-validation tests, (v) final validation, and (vi) calculation of TSS and COD event loads and estimation of their uncertainties. These steps have been implemented in an integrated software tool. Examples of results are given for a set of 33 storm events monitored in a stormwater separate sewer system.

  9. Biological treatment of winery wastewater: an overview.

    PubMed

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  10. Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater.

    PubMed

    Chen, Han; Li, Ang; Wang, Qiao; Cui, Di; Cui, Chongwei; Ma, Fang

    2018-06-01

    The low-strength domestic wastewater (LSDW) treatment with low chemical oxygen demand (COD) has drawn extensive attention for the poor total nitrogen (TN) removal performance. In the present study, an enhanced multistage anoxic/oxic (A/O) biofilm reactor was designed to improve the TN removal performance of the LSDW treatment. Efficient nitrifying and denitrifying biofilm carriers were cultivated and then filled into the enhanced biofilm reactor as the sole microbial source. Step-feed strategy and internal recycle were adopted to optimize the substrate distribution and the organics utilization. Key operational parameters were optimized to obtain the best nitrogen and organics removal efficiencies. A hydraulic retention time of 8 h, an influent distribution ratio of 2:1 and an internal recycle ratio of 200% were tested as the optimum parameters. The ammonium, TN and COD removal efficiencies under the optimal operational parameters separately achieved 99.75 ± 0.21, 59.51 ± 1.95 and 85.06 ± 0.79% with an organic loading rate at around 0.36 kg COD/m 3  d. The high-throughput sequencing technology confirmed that nitrifying and denitrifying biofilm could maintain functional bacteria in the system during long-period operation. Proteobacteria and Bacteroidetes were the dominant phyla in all the nitrifying and denitrifying biofilm samples. Nitrosomonadaceae_uncultured and Nitrospira sp. stably existed in nitrifying biofilm as the main nitrifiers, while several heterotrophic genera, such as Thauera sp. and Flavobacterium sp., acted as potential genera responsible for TN removal in denitrifying biofilm. These findings suggested that the enhanced biofilm reactor could be a promising route for the treatment of LSDW with a low COD level.

  11. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.

    2017-06-01

    This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .

  12. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    NASA Astrophysics Data System (ADS)

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  13. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery.

    PubMed

    Ferraz Júnior, Antônio Djalma Nunes; Etchebehere, Claudia; Zaiat, Marcelo

    2015-06-01

    This study evaluated the influence of a high organic loading rate (OLR) on thermophilic hydrogen production at an up-flow anaerobic packed-bed reactor (APBR) treating a residual liquid stream of a Brazilian biorefinery. The APBR, filled with low-density polyethylene, was operated at an OLR of 84.2 kg-COD m(-3) d(-1). This value was determined in a previous study. The maximum values of hydrogen production and yield were 5,252.6 mL-H2 d(-1) and 3.7 mol-H2 mol(-1)(total carbohydrates), respectively. However, whereas the OLR remained constant, the specific organic load rate (sOLR) decreased throughout operation from 1.38 to 0.72 g-Total carbohydratesg-VS(-1) h(-1), this decrease negatively affected hydrogen production. A sOLR of 0.98 g-Total carbohydratesg-VS(-1) h(-1) was optimal for hydrogen production. The microbial community was studied using 454-pyrosequencing analysis. Organisms belonging to the genera Caloramator, Clostridium, Megasphaera, Oxobacter, Thermoanaerobacterium, and Thermohydrogenium were detected in samples taken from the reactor at operation days 30 and 60, suggesting that these organisms contribute to hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Landfill leachate management in Istanbul: applications and alternatives.

    PubMed

    Calli, Baris; Mertoglu, Bulent; Inanc, Bulent

    2005-05-01

    Treatment alternatives for Istanbul, Komurcuoda Landfill (KL) leachate that is currently transported to the nearest central wastewater treatment plant were comprehensively investigated with laboratory scale experiments. As flow rate of leachate increases parallel to increment in landfilled solid waste, an individual treatment will be needed to reduce the transportation cost and pollution load on central treatment. However, if the leachate is separately treated and discharged to a brook, in that case more stringent discharge standards will be valid and therefore advanced processes in addition to conventional ones should be included. In laboratory scale experiments, the young landfill leachate having BOD5/COD ratio above 0.6 was successfully treated with efficiencies above 90% in upflow anaerobic reactors if pH is kept below free ammonia inhibition level. Subsequently, nitrification of anaerobically treated leachate was performed with rates of about 8.5 mg NH4+-Ng-1 VSS h-1 and efficiencies above 99% were provided with automated pH regulation by using sodium bicarbonate. Furthermore, denitrification rates as high as 8.1 mg NOx-N g-1VSS h-1 was obtained when carbon source was externally supplied. In addition to nitrification and denitrification, air stripping and struvite precipitation were also applied to remove ammonia in leachate and in average 94% and 98% efficiencies were achieved, respectively. Finally, in average 85% of biologically inert COD was successfully removed by using either ozone or Fenton's oxidation.

  15. Rotating belt sieves for primary treatment, chemically enhanced primary treatment and secondary solids separation.

    PubMed

    Rusten, B; Rathnaweera, S S; Rismyhr, E; Sahu, A K; Ntiako, J

    2017-06-01

    Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40-50% without polymer to 60-70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.

  16. Rainwater utilization and storm pollution control based on urban runoff characterization.

    PubMed

    Zhang, Mulan; Chen, Hao; Wang, Jizhen; Pan, Gang

    2010-01-01

    The characteristics of urban runoffs and their impact on rainwater utilization and storm pollution control were investigated in three different functional areas of Zhengzhou City, China. The results showed that in the same rain event the pollutant loads (chemical oxygen demand (COD) and total suspended solids (TSS)) in the sampling areas were in the order of industrial area > commercial area > residential area, and within the same area the COD and TSS concentrations of road runoffs were higher than those of roof runoffs. The first flush effects in roof and road runoffs were observed, hence the initial rainwater should be treated separately to reduce rainwater utilization cost and control storm pollution. The initial roof rainfall of 2 mm in residential area, 5 mm in commercial area and 10 mm in industrial area, and the initial road rainfall of 4 mm in residential area and all the road rainfall in commercial and industrial areas should be collected and treated accordingly before direct discharge or utilization. Based on the strong correlation between COD and TSS (R2, 0.87-0.95) and the low biodegradation capacity (biochemical oxygen demand BOD5/COD < 0.3), a sedimentation process and an effective filtration system composed of soil and slag were designed to treat the initial rainwater, which could remove over 90% of the pollutant loads. The above results may help to develop better rainwater utilization and pollution control strategies for cities with water shortages.

  17. Effect of sparging rate on permeate quality in a submerged anaerobic membrane bioreactor (SAMBR) treating leachate from the organic fraction of municipal solid waste (OFMSW).

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2016-03-01

    This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Performance of slow rate systems for treatment of domestic wastewater.

    PubMed

    Tzanakakis, V E; Paranychianakis, N V; Angelakis, A N

    2007-01-01

    The performance of slow rate (SR) systems in terms of treatment efficiency, environmental and health risks, and land sustainability was investigated over a three-year period in a rural community close to Iraklio, Greece. Four plant species (Acacia cyanophylla, Eucalyptus camandulensis, Populus nigra and Arundo donax) were used in order to investigate the role of vegetation in the treatment of wastewater and in biomass production. Wastewater effluent was pre-treated in a septic tank before its application to land. Applied hydraulic loading rates were based on crop water requirements which were determined separately for each plant species. The evaluation of treatment performance was accomplished by measuring COD, TKN, NH3-N, NO3-N, total and reactive P, TC and FC in soil solution samples taken at different depths (15, 30 and 60 cm). SR systems showed great potential for COD, TKN and NH4-N removal which reached 89, 90 and 94%, respectively at a depth of 15 cm. An outstanding removal was also observed for TC and FC which reached 99.99%. The concentration of both P and NO3-N in soil solution increased with the passage of time, but it was lower in winter. Despite the differences in the application rates among the SR systems planted with different plant species, the treatment efficiency was not affected. Moreover, increasing the soil depth from 15 to 60 cm had no effect on the treatment efficiency of the SR systems.

  19. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  20. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  1. Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield.

    PubMed

    López González, Lisbet Mailin; Pereda Reyes, Ileana; Romero Romero, Osvaldo

    2017-10-01

    The conversion efficiency of high solids waste digestion as sugarcane press mud (P) may be limited due to hydrolysis step. The option of co-digestion with vinasse, main liquid waste generated from ethanol production, was investigated under batch regime at mesophilic conditions (37.5±1°C) and the best mixture was evaluated under semicontinuous regime in stirred-tank reactors. The maximum values for methane yield in batch tests were for V 75 /P 25 and V 50 /P 50 mixtures (on basis of the chemical oxygen demand (COD) percentage added in the mixture), with an average value of 246NmL CH 4 g -1 COD fed , which was 13% higher than that of press mud alone. A highest methane production rate of 69.6NmL CH 4 g -1 COD fed -1 d -1 was obtained for the mixtureV 75 /P 25 . During the experiment carried out in CSTR reactors, the organic loading rate (OLR) was increased from 0.5 up to 2.2gVSL -1 d -1 . Methane yields of 365L CH 4 kg -1 VS and biogas productivities of 1.6LL -1 were obtained in co-digestion, which was 64% higher in comparison to mono-digestion. The performance of the process in mono-digestion was less stable than in co-digestion, with a significant fall of methane yield to 1.8kgVSm -3 d -1 , and a partial inhibition of the methanogenic archaeas when the OLR was increased up to 2.2kgVSm -3 d -1 . The co-digestion of vinasse with press mud is a good option for the treatment of streams at the alcohol-sugar industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Treatment of synthetic wastewater and hog waste with reduced sludge generation by the multi-environment BioCAST technology.

    PubMed

    Yerushalmi, L; Alimahmoodi, M; Mulligan, C N

    2013-01-01

    Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300-4,000 mg chemical oxygen demand (COD)/L, 42-115 mg total nitrogen (TN)/L, and 19-40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m(3) d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960-2,400, 143-235 and 25-57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.

  3. Oily wastewater treatment using a novel hybrid PBR-UASB system.

    PubMed

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-04-01

    In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.

  4. Options and limits of quantitative and qualitative online-monitoring of industrial discharges into municipal sewage systems.

    PubMed

    Hoppe, H; Messmann, S; Giga, A; Grüning, H

    2009-01-01

    In some cities, industrial enterprises' discharges into municipal sewage systems have a major impact on the quantity and quality of inflows to the municipal treatment plants. In many cases, industrial discharges stand out on account of the great fluctuations in their volumetric rates of flow, pollution loads and temperatures. As a result, these discharges put a great strain on the sewage system, the treatment plant, and ultimately the receiving waters. The enterprises concerned have to pay the treatment plant operators fees based on the load and/or volume discharged. In most cases, qualitative monitoring operations merely consist of spot checks. This means that continuously surveillance is not possible and infringements of the permissible limit values are only discovered by accident. If impermissible discharges are carried out that may be susceptible to causing a treatment plant failure, the rapid initiation of countermeasures is not possible. Hence, spectrometer probes and mobile flowmeters were used in order to determine volumetric rates of flow, COD concentrations, and ultimately the loads discharged. The possibilities for, and limits to, online monitoring as well as shortcomings of spot-checks are discussed in the course of this paper, which also includes an uncertainty analysis.

  5. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    PubMed

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.

  6. Eukaryotic Community Shift in Response to Organic Loading Rate of an Aerobic Trickling Filter (Down-Flow Hanging Sponge Reactor) Treating Domestic Sewage.

    PubMed

    Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2017-05-01

    In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m -3  day -1 , COD and NH 4 + -N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2-8 % to 51-65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m -3  day -1 ), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15-46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29-56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.

  7. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature.

    PubMed

    Jiang, Yu; Shang, Yu; Wang, Hongyu; Yang, Kai

    2016-12-01

    The start-up of an aerobic granular sludge (AGS) reactor at low temperature was more difficult than at ambient temperature.The rapid formation and characteristics of AGS in a sequencing batch airlift reactor at low temperature were investigated. The nutrient removal ability of the system was also evaluated. It was found that compact granules with clear boundary were formed within 10 days and steady state was achieved within 25 days. The settling properties of sludge were improved with the increasing secretion of extracellular polymeric substances and removal performances of pollutants were enhanced along with granulation. The average removal efficiencies of COD, NH4(+)-N, total nitrogen (TN), total phosphorus (TP) after aerobic granules maturing were over 90.9%, 94.7%, 75.4%, 80.2%, respectively. The rise of temperature had little impact on pollutant biodegradation while the variation of dissolved oxygen caused obvious changes in TN and TP removal rates. COD concentrations of effluents were below 30 mg l(-1) in most cycles of operation with a wide range of organic loading rates (0.6-3.0 kg COD m(-3) d(-1)). The rapid granulation and good performance of pollutant reduction by the system might provide an alternate for wastewater treatment in cold regions.

  8. Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater.

    PubMed

    del Agua, Isabel; Usack, Joseph G; Angenent, Largus T

    2015-01-01

    The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor.

  9. Treatment of real coal gasification wastewater using a novel integrated system of anoxic hybrid two stage aerobic processes: performance and the role of pure oxygen microbubble.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Shan, Shengdao

    2016-06-01

    A novel integrated system of anoxic-pure oxygen microbubble-activated sludge reactor-moving bed biofilm reactor was employed in treatment of real coal gasification wastewater. The results showed the integrated system had efficient performance of pollutants removal in short hydraulic retention time. While pure oxygen microbubble with the flow rate of 1.5 L/h and NaHCO3 dosage ratio of 2:1 (amount NaHCO3 to NH4 (+)-N ratio, mol: mol) were used, the removal efficiencies of COD, total phenols (TPh) and NH4 (+)-N reached 90, 95, and 95 %, respectively, with the influent loading rates of 3.4 kg COD/(m(3) d), 0.81 kg TPh/(m(3) d), and 0.28 kg NH4 (+)-N/(m(3) d). With the recycle ratio of 300 %, the concentrations of NO2 (-)-N and NO3 (-)-N in effluent decreased to 12 and 59 mg/L, respectively. Meanwhile, pure oxygen microbubble significantly improved the enzymatic activities and affected the effluent organic compositions and reduced the foam expansion. Thus, the novel integrated system with efficient, stable, and economical advantages was suitable for engineering application.

  10. [Characteristics of novel wastewater treatment technology by swimming bed combined with aerobic granular sludge].

    PubMed

    Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie

    2007-10-01

    Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.

  11. Temperature-Dependent Lipid Storage of Juvenile Arctic cod (Boreogadus saida) and Co-Occurring North Pacific Gadids

    NASA Astrophysics Data System (ADS)

    Copeman, L.; Laurel, B.; Spencer, M. L.; Iseri, P.; Sremba, A. L.

    2016-02-01

    Climate change impacts on Arctic ecosystems will largely be determined by temperature-dependent bioenergetics of resident and invading forage fish species. In this study, we experimentally measured total lipids and lipid class storage in the liver and muscle of juvenile Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus). Experiments were conducted over a 6-wk period across five temperatures (0, 5, 9, 16 and 20 °C) at the Hatfield Marine Science Center in Newport, OR, USA. Results indicated clear physiological differences among species in terms of temperature-dependent growth and lipid storage. Arctic cod exhibited highest growth and lipid storage (27 mg/g WW) at the coldest temperature (0 °C) compared to the other gadids, with near maximum growth at 5 °C and onset of mortality above 9 °C. In contrast, saffron cod growth rates steadily increased at temperatures beyond 16 °C, but lipid storage was low overall with only slightly higher lipid storage at warm temperatures (10 to 17 mg/g WW). Both walleye pollock and Pacific cod showed a domed response with increased lipid storage and growth at intermediate temperatures (9 - 12°C) and reduced growth and lipid storage at cold and warm maxima. We did not observe a trade-off between growth rate and lipid accumulation in any species. These results suggest that saffron cod can thrive in a warming Arctic but will be energetically inferior as a prey item to the more temperature-sensitive Arctic cod. Alternatively, North Pacific gadids can energetically resemble Arctic cod at warmer temperatures and could theoretically be an important prey item if their range extends northward with continued climate change.

  12. Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Parkhurst, David L.; Stollenwerk, Kenneth G.; Colman, John A.

    2003-01-01

    The subsurface transport of phosphorus introduced by the disposal of treated sewage effluent to ground-infiltration disposal beds at the Massachusetts Military Reservation on western Cape Cod was simulated with a three-dimensional reactive-transport model. The simulations were used to estimate the load of phosphorus transported to Ashumet Pond during operation of the sewage-treatment plant?from 1936 to 1995?and for 60 years following cessation of sewage disposal. The model accounted for spatial and temporal changes in water discharge from the sewage-treatment plant, ground-water flow, transport of associated chemical constituents, and a set of chemical reactions, including phosphorus sorption on aquifer materials, dissolution and precipitation of iron- and manganese-oxyhydroxide and iron phosphate minerals, organic carbon sorption and decomposition, cation sorption, and irreversible denitrification. The flow and transport in the aquifer were simulated by using parameters consistent with those used in previous flow models of this area of Cape Cod, except that numerical dispersion was much larger than the physical dispersion estimated in previous studies. Sorption parameters were fit to data derived from phosphorus sorption and desorption laboratory column experiments. Rates of organic carbon decomposition were adjusted to match the location of iron concentrations in an anoxic iron zone within the sewage plume. The sensitivity of the simulated load of phosphorus transported to Ashumet Pond was calculated for a variety of processes and input parameters. Model limitations included large uncertainties associated with the loading of the sewage beds, the flow system, and the chemistry and sorption characteristics in the aquifer. The results of current model simulations indicate a small load of phosphorus transported to Ashumet Pond during 1965?85, but this small load was particularly sensitive to model parameters that specify flow conditions and the chemical process by which non-desorbable phosphorus is incorporated in the sediments. The uncertainties were large enough to make it difficult to determine whether loads of phosphorus transported to Ashumet Pond in the 1990s were greater or less than loads during the previous two decades. The model simulations indicate substantial discharge of phosphorus to Ashumet Pond after about 1965. After the period 2000?10 the simulations indicate that the load of phosphorus transported to Ashumet Pond decreases continuously, but the load of phosphorus remains substantial for many decades. The current simulations indicate a peak in phosphorus discharge to Ashumet Pond of about 1,000 kilograms per year during the 1990s; however, comparisons of simulated phosphorus concentrations with measured concentrations in 1993 indicate that the peak in phosphorus load transported to Ashumet Pond may be larger and moving more quickly in the model simulations than in the aquifer. The results of the three-dimensional reactive-transport simulations are consistent with the loading history, experimental laboratory data, and field measurements. The results of the simulations adequately reproduce the spatial distribution of phosphorus concentrations measured in 1993, the magnitude of changes in phosphorus concentration with time in a profile near the disposal beds following cessation of sewage disposal, the observed iron zone in the sewage plume, the approximate flow of treated sewage effluent into Ashumet Valley, and laboratory-column data for phosphorus sorption and desorption.

  13. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    NASA Astrophysics Data System (ADS)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.

  14. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    PubMed

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  15. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal.

    PubMed

    Liu, Ye; Zhang, Baogang; Tian, Caixing; Feng, Chuanping; Wang, Zhijun; Cheng, Ming; Hu, Weiwu

    2016-01-01

    Factors influencing the performance of a continual-flow bioelectrical reactor (BER) intensified by microbial fuel cells for groundwater nitrate removal, including nitrate load, carbon source and hydraulic retention time (HRT), were investigated and optimized by response surface methodology (RSM). With the target of maximum nitrate removal and minimum intermediates accumulation, nitrate load (for nitrogen) of 60.70 mg/L, chemical oxygen demand (COD) of 849.55 mg/L and HRT of 3.92 h for the BER were performed. COD was the dominant factor influencing performance of the system. Experimental results indicated the undistorted simulation and reliable optimized values. These demonstrate that RSM is an effective method to evaluate and optimize the nitrate-reducing performance of the present system and can guide mathematical models development to further promote its practical applications.

  16. [Characteristics and loads of key sources of pollutions discharged into Beishi River, Changzhou City].

    PubMed

    Li, Chun-Ping; Jiang, Jian-Guo; Chen, Ai-Mei; Wu, Jia-Ling; Fan, Xiu-Juan; Ye, Bin

    2010-11-01

    Choosing the Beishi river, Changzhou City as the study area, the sewage generation, pollutants characteristics and sewage discharge in catchment area of Beishi river were conducted, detailed investigated and monitored. After using pollution coefficients, the yearly loads of all sources of pollutions were calculated to determine the highest sewage. The results showed that: except pH, the high concentration of SS, COD, BOD5, ammonia nitrogen, TN and TP discharged from MSW collecting houses, MSW transfer stations, public toilets and dining in Changzhou city far exceeded the "Integrated Wastewater Discharge Standard" (GB 8978-1996) and "Effluent Discharged into the City Sewer Water Quality Standards" (CJ 3082-1999). Among which: the highest concentration of COD discharged from MSW transfer stations was up to 51 700 mg/L, while the ammonia nitrogen and TN were as high as 1 616 mg/L and 2 044 mg/L in the toilet wastewater. In addition to this, the ratio of wastewater discharged directly into the river through storm water pipe network was higher from MSW houses, MSW transfer stations, public toilets, dining and other waste in Changzhou city. The 125.2 t/a of COD and 40.53 t/a of BOD5 were the two highest concentrations of various sources of pollution. The highest annual polluting loads discharged into Beishi river is dining, followed by the sanitation facilities. Therefore, cutting pollution control of food and sanitation facilities along the river is particularly urgent.

  17. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass.

    PubMed

    Steinberg, Lisa M; Kronyak, Rachel E; House, Christopher H

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d -1  m -3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design, and proposes recycling of nutrients back into foodstuffs via heterotrophic (including methanotrophic, acetotrophic, and thermophilic) microbial growth. Copyright © 2017. Published by Elsevier Ltd.

  18. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass

    NASA Astrophysics Data System (ADS)

    Steinberg, Lisa M.; Kronyak, Rachel E.; House, Christopher H.

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design, and proposes recycling of nutrients back into foodstuffs via heterotrophic (including methanotrophic, acetotrophic, and thermophilic) microbial growth.

  19. Application of grey system theory on the influencing parameters of aerobic granulation in SBR.

    PubMed

    Bindhu, B K; Madhu, G

    2017-09-01

    Aerobic granulation is a promising technology for wastewater treatment. Four operational parameters were selected as influencing factors for this study. Aerobic granulation was experimented with three different values of organic loading rate (3, 6 and 9 kg COD m -3  d -1 ), superficial upflow air velocity (SUAV) (2, 3 and 4 cm s -1 ), settling time (3, 5 and 10 min) and volume exchange ratio (25%, 50% and 75%) in sequencing batch reactor in nine trials for the optimal performance of aerobic granulation. The influence of compared parameters on five reference parameters (sludge volume index (SVI), time taken for the appearance of granules, size and specific gravity of granules and chemical oxygen demand (COD) removal) was analyzed using grey system theory. The grey relational coefficients and grey entropy relational grade of each parameter were calculated. Hydrodynamic shear force in terms of SUAV was found to have the greatest influence on granule appearance, specific gravity of granules and COD removal efficiency. SVI is greatly affected by settling time. The optimal scopes of all the compared parameters were found.

  20. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor.

    PubMed

    Balapure, Kshama; Bhatt, Nikhil; Madamwar, Datta

    2015-01-01

    The present research emphasizes on degradation of azo dyes from simulated textile wastewater using down flow microaerophilic fixed film reactor. Degradation of simulated textile wastewater (COD 7200mg/L and dye concentration 300mg/L) was studied in a microaerophilic fixed film reactor using pumice stone as a support material under varying hydraulic retention time (HRT) and organic loading rate (OLR). The intense metabolic activity of the inoculated bacterial consortium in the reactor led to 97.5% COD reduction and 99.5% decolorization of simulated wastewater operated under OLR of 7.2kgCODm(3)/d and 24h of HRT. FTIR, (1)H NMR and GC-MS studies revealed the formation of lower molecular weight aliphatic compounds under 24h of HRT, leading to complete mineralization of simulated wastewater. The detection of oxido-reductive enzyme activities suggested the enzymatic reduction of azo bonds prior to mineralization. Toxicity studies indicated that microbial treatment favors detoxification of simulated wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    PubMed

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Rea, Brigid A.; Stollenwerk, Kenneth G.; Savoie, Jennifer G.

    1996-01-01

    Currently (1993), about 170 kg/yr of phosphorus discharges into Ashumet Pond on Cape Cod from a plume of sewage-contaminated ground water. Phosphorus in the plume is mobile in two distinct geochemical environments--an anoxic zone containing dissolved iron and a suboxic zone containing dissolved oxygen. Phosphorus mobility in the suboxic zone is due to saturation of available sorption sites. Phosphorus loading to Ashumet Pond may increase significantly after sewage disposal is stopped due to phosphorus desorption from sediment surfaces.

  4. Demographic and clinical characteristics of treatment seeking women with full and subthreshold PTSD and concurrent cannabis and cocaine use disorders.

    PubMed

    Ruglass, Lesia M; Shevorykin, Alina; Brezing, Christina; Hu, Mei-Chen; Hien, Denise A

    2017-09-01

    While the detrimental effects of concurrent substance use disorders (SUDs) are now being well documented, very few studies have examined this comorbidity among women with posttraumatic stress disorder (PTSD). Data for these analyses were derived from the "Women and Trauma" study conducted within the National Drug Abuse Treatment Clinical Trials Network. Women with full or subthreshold PTSD and co-occurring cannabis use disorder (CUD) and cocaine use disorder (COD; N=99) were compared to their counterparts with co-occurring CUD only (N=26) and co-occurring COD only (N=161) on rates of trauma exposure, psychiatric disorders, psychosocial problems, and other substance use utilizing a set of multivariate logistic regressions. In models adjusted for age and race/ethnicity, women with PTSD and COD only were significantly older than their counterparts with CUD only and concurrent CUD+COD. Relative to those with CUD only, women with concurrent CUD+COD had higher odds of adult sexual assault. Relative to those with COD only, women with concurrent CUD+COD had higher odds of alcohol use disorder in the past 12months. Finally, relative to those with CUD only, women with COD only had higher odds of ever being arrested/convicted and adult sexual assault. The higher rates of adult sexual assault and alcohol use disorder among those with concurrent CUD+COD suggest the need for trauma-informed approaches that can respond to the needs of this dually-diagnosed population. Moreover, the causal link between repeated traumatic stress exposure and polysubstance use requires further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Quantitative and qualitative characteristics of grey water for reuse requirements and treatment alternatives: the case of Jordan.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; van Lier, Jules; Fayyed, Manar

    2008-01-01

    The objective of this work is to assess the potentials and requirements for grey water reuse in Jordan. The results revealed that urban, rural and dormitory grey water production rate and concentration of TS, BOD(5), COD and pathogens varied between 18-66 L cap(-1)d(-1), 848-1,919, 200-1,056, and 560-2,568 mg L(-1) and 6.9E2-2.7E5 CFU mL(-1), respectively. The grey water compromises 64 to 85% of the total water flow in the rural and urban areas. Storing grey water is inevitable to meet reuse requirements in terms of volume and timing. All the studied grey waters need treatment, in terms of solids, BOD(5), COD and pathogens, before storage and reuse. Storage and physical treatment, as a pretreatment step should be avoided, since it produces unstable effluents and non-stabilized sludge. However, extensive biological treatment can combine storage and physical treatments. Furthermore, a batch-fed biological treatment system combining anaerobic and aerobic processes copes with the fluctuations in the hydrographs and pollutographs as well as the present nutrients. The inorganic content of grey water in Jordan is about drinking water quality and does not need treatment. Moreover, the grey water SAR values were 3-7, revealing that the concentrations of monovalent and divalent cations comply with agricultural demand in Jordan. The observed patterns in the hydrographs and pollutographs showed that the hydraulic load could be used for the design of both physical and biological treatment units for dormitories and hotels. For family houses the hydraulic load was identified as the key design parameter for physical treatment units and the organic load is the key design parameter for biological treatment units. Copyright IWA Publishing 2008.

  6. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  7. Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment.

    PubMed

    Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei

    2016-09-15

    In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Kinetic analysis of Legionella inactivation using ozone in wastewater.

    PubMed

    Li, Jun; Li, Kunquan; Zhou, Yan; Li, Xuebin; Tao, Tao

    2017-02-01

    Legionella inactivation using ozone was studied in wastewater using kinetic analysis and modeling. The experimental results indicate that the relationship between the ozone concentration, germ concentration, and chemical oxygen demand (COD) can be used to predict variations in germ and COD concentrations. The ozone reaction with COD and inactivation of Legionella occurred simultaneously, but the reaction with COD likely occurred at a higher rate than the inactivation, as COD is more easily oxidized by ozone than Legionella. Higher initial COD concentrations resulted in a lower inactivation rate and higher lnN/N 0 . Higher temperature led to a higher inactivation efficiency. The relationship of the initial O 3 concentration and Legionella inactivation rate was not linear, and thus, the Ct value required for a 99.99% reduction was not constant. The initial O 3 concentration was more important than the contact time, and a reduction of the initial O 3 concentration could not be compensated by increasing the contact time. The Ct values were compared over a narrow range of initial concentrations; the Ct values could only be contrasted when the initial O 3 concentrations were very similar. A higher initial O 3 concentration led to a higher inflection point value for the lnN/N 0 vs C 0 t curve. Energy consumption using a plasma corona was lower than when using boron-doped diamond electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst.

    PubMed

    Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S

    2016-09-01

    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.

  10. Fracture behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  11. Microbial endogenous response to acute inhibitory impact of antibiotics.

    PubMed

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  12. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods.

    PubMed

    Fox, C J; Taylor, M I; Pereyra, R; Villasana, M I; Rico, C

    2005-03-01

    Recent substantial declines in northeastern Atlantic cod stocks necessitate improved biological knowledge and the development of techniques to complement standard stock assessment methods (which largely depend on accurate commercial catch data). In 2003, an ichthyoplankton survey was undertaken in the Irish Sea and subsamples of 'cod-like' eggs were analysed using a TaqMan multiplex, PCR (polymerase chain reaction) assay (with specific probes for cod, haddock and whiting). The TaqMan method was readily applied to the large number of samples (n = 2770) generated during the survey and when combined with a manual DNA extraction protocol had a low failure rate of 6%. Of the early stage 'cod-like' eggs (1.2-1.75 mm diameter) positively identified: 34% were cod, 8% haddock and 58% whiting. As previous stock estimates based on egg surveys for Irish Sea cod assumed that the majority of 'cod-like' eggs were from cod, the TaqMan results confirm that there was probably substantial contamination by eggs of whiting and haddock that would have inflated estimates of the stock biomass.

  13. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    PubMed Central

    2012-01-01

    Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. Two expanded granular sludge bed (EGSB) reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE) results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars uptake, hydrogen production and yield were higher than at pH 5.5, with both arabinose and glucose as substrates. PMID:22330180

  14. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be no discharge of waste water streams in which both the COD/BOD7 ratio exceeds 10.0 and the COD... when a high rate of wet scrubbing is in operation which produces more waste water than can be recycled... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround...

  15. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).

  16. Activated carbon fiber felt and polymer fiber as biofilm carrier in a modified University of Cape Town process for sewage treatment.

    PubMed

    Zhou, Dongkai

    2013-01-01

    Biofilms on fiber-based carriers have attracted much concern in wastewater treatment processes recently. In this study: (1) a novel sandwich structure fiber-based biofilm carrier was produced, which consisted of an inner core composed of polyacrylonitrile-based activated carbon fiber felt (PAN-ACFF) and an outer coat made of polyester reticular cloth with polypropylene fiber loops; (2) the novel carrier was filled in a step-feeding pilot-scale modified University of Cape Town process (MUCT) for sewage treatment; the MUCT contained a series of pre-anoxic/anaerobic/anoxic-1/anoxic-2/oxic tanks, wherein nitrification liquor was recycled to the anoxic-2 tank and an extra liquor return from the anoxic-1 to the pre-anoxic tank was set up; and (3) the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were continuously tested for two periods as operational parameters alternated. The optimum values were collected in Period II, when the influent loads were 2,100.6 ± 120.3 gCOD/(d m(3)), 205.5 ± 20.4 gTN/(d m(3)), 39.9 ± 3.9 gTP/(d m(3)), the removal percentages were 93.1 ± 1.1% of COD, 39.4 ± 3.5% of TN, and 84.6 ± 3.4% of TP. For COD, NH4(+)-N, and TP, the specific removal loads of filler were 291.5 ± 18.2, 22.9 ± 3.1, 4.8 ± 0.5 (g d)/kg.

  17. Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process.

    PubMed

    Barwal, Anjali; Chaudhary, Rubina

    2016-07-15

    A moving bed biofilm reactor (MBBR) coupled with solar parabolic structured system has been designed and developed to get the maximum organic load removal and microbial disinfection from the wastewater. The effluent was first subjected to organic degradation in MBBR (with optimized carrier filling rate of 30%) followed by the bacterial degradation using solar energy in parabolic trough and the changes in values of parameters like pH, turbidity, chemical oxygen demand (COD), bio-chemical oxygen demand (BOD) and microbial count were monitored. The titanium dioxide (TiO2) was used as a photocatalyst for the removal of organic load from the wastewater but in optimized conditions. At optimum dose of 1.0 g/L of TiO2 and pH value of 7.6, maximum COD removal of 69% and 13% was achieved at sunny days (solar irradiation 400-700 W m(-2)) and cloudy days (solar irradiation 170-250 W m(-2)) respectively within 5-6 h solar irradiation time. The results obtained showed that it is possible to decrease in six logarithms (log) the concentration of TC and FC within only 240 min of solar exposure. Moreover, this process can offer economically reasonable, chemical free and practical solution to the processing of municipal wastewater where solar intensity is readily available and can be used for making zero liquid discharge (ZLD) an effective reality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pilot-scale experiment on anaerobic bioreactor landfills in China.

    PubMed

    Jiang, Jianguo; Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-01-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  19. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    PubMed

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    PubMed

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  1. Metabolic Power Requirement of Change of Direction Speed in Young Soccer Players: Not All Is What It Seems

    PubMed Central

    Mendez-Villanueva, Alberto; Palazzi, Dino; Ahmaidi, Saïd

    2016-01-01

    Purpose The aims of this study were to 1) compare the metabolic power demand of straight-line and change of direction (COD) sprints including 45° or 90°-turns, and 2) examine the relation between estimated metabolic demands and muscular activity throughout the 3 phases of COD-sprints. Methods Twelve highly-trained soccer players performed one 25-m and three 20-m sprints, either in straight-line or with one 45°- or 90°-COD. Sprints were monitored with 2 synchronized 100-Hz laser guns to assess players’ velocities before, during and after the COD. Acceleration and deceleration were derived from changes in speed over time. Metabolic power was estimated based on di Prampero’s approach (2005). Electromyography amplitude (RMS) of 2 lower limb muscles was measured. The expected energy expenditure during time-adjusted straight-line sprints (matching COD sprints time) was also calculated. Results Locomotor-dependant metabolic demand was largely lower with COD (90°, 142.1±13.5 J.kg-1) compared with time-adjusted (effect size, ES = -3.0; 193.2±18.6 J.kg-1) and non-adjusted straight-line sprints (ES = -1.7; 168.4±15.3 J.kg-1). Metabolic power requirement was angle-dependent, moderately lower for 90°-COD vs. 45°-COD sprint (ES = -1.0; 149.5±10.4 J.kg-1). Conversely, the RMS was slightly- (45°, ES = +0.5; +2.1%, 90% confidence limits (±3.6) for vastus lateralis muscle (VL)) to-largely (90°, ES = +1.6; +6.1 (3.3%) for VL) greater for COD-sprints. Metabolic power/RMS ratio was 2 to 4 times lower during deceleration than acceleration phases. Conclusion Present results show that COD-sprints are largely less metabolically demanding than linear sprints. This may be related to the very low metabolic demand associated with the deceleration phase during COD-sprints that may not be compensated by the increased requirement of the reacceleration phase. These results also highlight the dissociation between metabolic and muscle activity demands during COD-sprints, which questions the use of metabolic power as a single measure of running load in soccer. PMID:26930649

  2. Work-in-Progress Presented at the Army Symposium on Solid Mechanics, 1980 - Designing for Extremes: Environment, Loading, and Structural Behavior Held at Cape Cod, Massachusetts, 29 September-2 October 1980

    DTIC Science & Technology

    1980-09-01

    relating x’and y’ Figure 2: Basic Laboratory Simulation Model 73 COMPARISON OF COMPUTED AND MEASURED ACCELERATIONS IN A DYNAMICALLY LOADED TACTICAL...Survival (General) Displacements Mines (Ordnance) Telemeter Systems Dynamic Response Models Temperatures Dynamics Moisture Thermal Stresses Energy...probabilistic reliability model for the XM 753 projectile rocket motor to bulkhead joint under extreme loading conditions is constructed. The reliability

  3. Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.

    PubMed

    Zitomer, D; Ferguson, N; McGrady, K; Schilling, J

    2001-01-01

    At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.

  4. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    PubMed

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of high loading on substrate utilization kinetics and microbial community structure in super fast submerged membrane bioreactor.

    PubMed

    Sözen, S; Çokgör, E U; Başaran, S Teksoy; Aysel, M; Akarsubaşı, A; Ergal, I; Kurt, H; Pala-Ozkok, I; Orhon, D

    2014-05-01

    The study investigated the effect of high substrate loading on substrate utilization kinetics, and changes inflicted on the composition of the microbial community in a superfast submerged membrane bioreactor. Submerged MBR was sequentially fed with a substrate mixture and acetate; its performance was monitored at steady-state, at extremely low sludge age values of 2.0, 1.0 and 0.5d, all adjusted to a single hydraulic retention time of 8.0 h. Each MBR run was repeated when substrate feeding was increased from 200 mg COD/L to 1000 mg COD/L. Substrate utilization kinetics was altered to significantly lower levels when the MBR was adjusted to higher substrate loadings. Molecular analysis of the biomass revealed that variable process kinetics could be correlated with parallel changes in the composition of the microbial community, mainly by a replacement mechanism, where newer species, better adapted to the new growth conditions, substituted others that are washed out from the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst.

    PubMed

    Chakrabarti, Sampa; Dutta, Binay K

    2004-08-30

    Semiconductor photocatalysis often leads to partial or complete mineralization of organic pollutants. Upon irradiation with UV/visible light, semiconductors catalyze redox reactions in presence of air/O2 and water. Here, the potential of a common semiconductor, ZnO, has been explored as an effective catalyst for the photodegradation of two model dyes: Methylene Blue and Eosin Y. A 16 W lamp was the source of UV-radiation in a batch reactor. The effects of process parameters like, catalyst loading, initial dye concentration, airflow rate, UV-radiation intensity, and pH on the extent of photo degradation have been investigated. Substantial reduction of COD, besides removal of colour, was also achieved. A rate equation for the degradation based on Langmuir-Hinshelwood model has been proposed.

  7. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    NASA Astrophysics Data System (ADS)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  8. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    PubMed Central

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-01-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of OMW. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials. PMID:24790964

  9. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    PubMed

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Quality of stormwater runoff from paved surfaces of two production sites.

    PubMed

    Gnecco, I; Berretta, C; Lanza, L G; La Barbera, P

    2006-01-01

    In order to investigate stormwater pollutant loads associated with different anthropic activities and the related pollutant build-up and wash-off processes, two pilot sites have been equipped in the Liguria Region (Italy) for monitoring first flush water quality in a gas station and an auto dismantler facility. TSS, COD, HCtot and heavy metals in dissolved form (Zn, Pb, Cu, Ni, Cd, Cr) have been analyzed during the monitoring campaign (started in February 2004). Stormwater flow and quality data collected in both production sites confirm that EMC values are significantly higher than those observed in an urban site. In the auto dismantler site, the EMC values for TSS, COD and HC largely exceed the standard values (EC 91/271). Contrary to urban surface runoff, scarce correlation between TSS and COD concentrations is observed in runoff from both production sites. The occurrence and nature of the pollutant load connected to first flush flows is discussed by inspection of the M(V)-curves that are provided for all monitored water quality parameters. Significant first flush phenomenon is evidenced for TSS and HC, while such clear behavior doesn't emerge for heavy metals. Hydrologic and climatic characteristics (ADWP, rainfall intensity/depth) appear to scarcely affect the build-up and wash-off processes.

  11. Experimental results and mathematical modelling of an autotrophic and heterotrophic biofilm in a sand filter treating landfill leachate and municipal wastewater.

    PubMed

    Wichern, Marc; Lindenblatt, Claus; Lübken, Manfred; Horn, Harald

    2008-08-01

    A better understanding of wastewater treatment with soil filters is important to optimise plant operation and reduce the risk of clogging. The article presents results of a treatment concept which uses a combination of SBR and vertical-flow sand filter technology. The SBR was mainly used for denitrification and sedimentation of substances in particulate form. Efficient nitrification was achieved by the planted sand filter. Degradation rates of 10gNH(4)-N/(m(2)xd) were measured for periods with peak loadings. The two-dimensional dynamic model reproduces the biofilm growth and decay of heterotrophic and autotrophic biomass. It is capable of describing the clogging of the sand filter by combining a biochemical and a geometric model. After calibration, the model was used for the calculation of maximum nitrogen degradation performances. Maximum degradation rates of 12gNH(4)-N/(m(2)xd) can be achieved if the COD/TKN ratio is reduced before to a level lower than that of municipal wastewater. The COD was further degraded in the filter than we expected comparing it with activated sludge plants. Within the soil filter a biofilm thickness of up to 110microm is simulated depending on the embankment of gravel and grains of sand. Sensitivity analysis of model parameters showed the high impact of the maximum autotrophic growth rate, the autotrophic yield, the diffusion coefficient for oxygen and the number of contact points of the single grains of sand.

  12. Comparison of grey water treatment performance by a cascading sand filter and a constructed wetland.

    PubMed

    Kadewa, W W; Le Corre, K; Pidou, M; Jeffrey, P J; Jefferson, B

    2010-01-01

    A novel unplanted vertical flow subsurface constructed wetland technology comprising three shallow beds (0.6 m length, 0.45 m width and 0.2 m depth) arranged in a cascading series and a standard single-pass Vertical Flow Planted Constructed Wetland (VFPCW, 6 m² and 0.7 m depth) were tested for grey water treatment. Particular focus was on meeting consent for published wastewater reuse parameters and removal of anionic surfactants. Treatment performance at two hydraulic loading rates (HLR) of 0.08, and 0.17 m³ m⁻² d⁻¹ were compared. Both technologies effectively removed more than 90% turbidity and more than 96% for organics with the prototype meeting the most stringent reuse standard of < 2 NTU and <10 mg/L. However, surfactant removal in the VFPCW was higher (76-85%) than in the prototype which only achieved more than 50% removal at higher loading rate. Generally, the prototype performed consistently better than the VFPCW except for surfactant removal. However, at higher loading rates, both systems did not meet the reuse standard of <1 mg L⁻¹ for anionic surfactants. This observation confirms that shallow beds provide a more oxidised environment leading to higher BOD₅ and COD removals. Presence of plants in the VFPCW led to higher anionic surfactant removal, through increased microbial and sorption processes.

  13. Treatment of high salinity organic wastewater by membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Dongfang, Shen; Jinghuan, Ma; Ying, Liu; Chenguang, Zhao

    2018-03-01

    The effects of different operating conditions on the treatment of electrolytic wastewater were investigated by analyzing the removal rate of ammonia and COD before and after wastewater treatment by cation exchange membrane. Experiment shows that as the running time increases the electrolysis effect first increases after the smooth. The removal rate of ammonia will increase with the increase of current density, and the removal rate of COD will increase first and then decrease with the increase of current density. The increase of the temperature of the electrolytic solution will slowly increase the COD removal rate to saturation, but does not affect the removal of ammonia nitrogen. When the flow rate is less than 60L / h, the change of influent flow rate will not affect the removal of ammonia nitrogen, but the effect on COD is small, which will increase and decrease slightly. After the experiment, the surface of the cation exchange membrane was analyzed by cold field scanning electron microscopy and X-ray energy dispersive spectrometer. The surface contamination and the pollutant were determined. The experimental results showed that the aggregates were mainly chlorinated Sodium, calcium and magnesium inorganic salts, which will change the morphology of the film to reduce porosity, reduce the mass transfer efficiency, affecting the electrolysis effect.

  14. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    PubMed

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Causes of death among commercially insured multiple sclerosis patients in the United States.

    PubMed

    Goodin, Douglas S; Corwin, Michael; Kaufman, David; Golub, Howard; Reshef, Shoshana; Rametta, Mark J; Knappertz, Volker; Cutter, Gary; Pleimes, Dirk

    2014-01-01

    Information on causes of death (CODs) for patients with multiple sclerosis (MS) in the United States is sparse and limited by standard categorizations of underlying and immediate CODs on death certificates. Prior research indicated that excess mortality among MS patients was largely due to greater mortality from infectious, cardiovascular, or pulmonary causes. To analyze disease categories in order to gain insight to pathways, which lead directly to death in MS patients. Commercially insured MS patients enrolled in the OptumInsight Research database between 1996 and 2009 were matched to non-MS comparators on age/residence at index year and sex. The cause most-directly leading to death from the death certificate, referred to as the "principal" COD, was determined using an algorithm to minimize the selection of either MS or cardiac/pulmonary arrest as the COD. Principal CODs were categorized into MS, cancer, cardiovascular, infectious, suicide, accidental, pulmonary, other, or unknown. Infectious, cardiovascular, and pulmonary CODs were further subcategorized. 30,402 MS patients were matched to 89,818 controls, with mortality rates of 899 and 446 deaths/100,000 person-years, respectively. Excluding MS, differences in mortality rate between MS patients and non-MS comparators were largely attributable to infections, cardiovascular causes, and pulmonary problems. Of the 95 excessive deaths (per 100,000 person-years) related to infectious causes, 41 (43.2%) were due to pulmonary infections and 45 (47.4%) were attributed to sepsis. Of the 46 excessive deaths (per 100,000 person-years) related to pulmonary causes, 27 (58.7%) were due to aspiration. No single diagnostic entity predominated for the 60 excessive deaths (per 100,000 person-years) attributable to cardiac CODs. The principal COD algorithm improved on other methods of determining COD in MS patients from death certificates. A greater awareness of the common CODs in MS patients will allow physicians to anticipate potential problems and, thereby, improve the care that they provide.

  16. Characterization of domestic graywater and graywater solids.

    PubMed

    Sievers, Jan Christian; Londong, Jörg

    2018-03-01

    The knowledge of loads and concentrations is fundamental for the design of graywater treatment units, but the data on the characteristics of graywater and in particular graywater solids are weak. As general design values regarding graywater treatment facilities are not available for Germany, the objective of this article is to elaborate the characteristics of graywater and graywater solids. This paper describes the results of six sampling campaigns carried out on graywater systems in the German cities Berlin, Lübeck and Kiel. All graywater samples were collected proportional to the flow and the graywater solids were gathered separately. The collected data include graywater volumes and characteristics regarding the organic pollution (chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD 5 )) and nutrients (total nitrogen (TN), total phosphorus (TP)). The graywater volume fluctuated depending on the location. The specific average flow was 68 litre per inhabitant per day (L/inh.d). Inhabitant-specific loads of 49.3 gCOD t /inh·d, 28 gBOD 5 /inh.d, 1 gTN t /inh.d and 0.38 gTP t /inh.d (subscript 't' = total) were found. Information about the composition of graywater solids in terms of quantity and quality is seriously lacking. Therefore, graywater solids were examined with respect to organic matter (COD) and nutrients (TN, TP). The contribution of graywater solids with particle sizes over 200 microns in relation to the total inhabitant-specific load was approximately 3-8% depending on the parameter. The qualitative and quantitative characteristics of the investigated graywater fractions may serve as a base for the estimation of design values.

  17. Anaerobic treatment of rice winery wastewater in an upflow filter packed with steel slag under different hydraulic loading conditions.

    PubMed

    Jo, Yeadam; Kim, Jaai; Hwang, Seokhwan; Lee, Changsoo

    2015-10-01

    Rice-washing drainage (RWD), a strong organic wastewater, was anaerobically treated using an upflow filter filled with blast-furnace slag. The continuous performance of the reactor was examined at varying hydraulic retention times (HRTs). The reactor achieved 91.7% chemical oxygen demand removal (CODr) for a 10-day HRT (0.6 g COD/Ld organic loading rate) and maintained fairly stable performance until the HRT was shortened to 2.2 days (CODr > 84%). Further decreases in HRT caused process deterioration (CODr < 50% and pH < 5.5 for a 0.7-day HRT). The methane production rate increased with decreasing HRT to reach the peak level for a 1.3-day HRT, whereas the yield was significantly greater for 3.4-day or longer HRTs. The substrate removal and methane production kinetics were successfully evaluated, and the generated kinetic models produced good performance predictions. The methanogenic activity of the reactor likely relies on the filter biofilm, with Methanosaeta being the main driver. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    PubMed

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  19. Biodegradation of textile wastewater: enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent.

    PubMed

    Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra

    2018-05-01

    This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.

  20. From well-defined Pt(II) surface species to the controlled growth of silica supported Pt nanoparticles.

    PubMed

    Laurent, Pierre; Veyre, Laurent; Thieuleux, Chloé; Donet, Sébastien; Copéret, Christophe

    2013-01-07

    Silica-supported Pt nanoparticles were prepared from well-defined surface platinum(II) surface species, obtained by grafting of well-defined Pt(II) molecular precursors with specific ligands (Cl, Me, N(SiMe(3))(2), OSi(OtBu)(3)) onto silica partially dehydroxylated at 200 and 700 °C yielding well-defined platinum(II) surface species. This approach allowed for testing the effect of Pt density and ligands on nanoparticle size. Higher grafting densities are achieved on silica partially dehydroxylated at 200 °C due to its initially higher surface silanol density. Surface species have been synthesized from symmetrical and dissymmetrical complexes, namely (COD)Pt(Me)(2), (COD)Pt(OSi(OtBu)(3))(2), (COD)Pt(Me)(OSi(OtBu)(3)), (COD)Pt(Me)(N(SiMe(3))(2)), (COD)Pt(Cl)(N(SiMe(3))(2)) and (COD)Pt(N(SiMe(3))(2))(OSi(OtBu)(3)) yielding mono-grafted complexes of general formula (COD)Pt(R)(OSi≡) according to elemental analyses, diffuse reflectance infrared fourier transform (DRIFT) and carbon-13 solid-state nuclear magnetic resonance (NMR) spectroscopies. While the dimethyl-complex shows low reactivity towards grafting, bis-siloxy and dissymmetric complexes demonstrate better reactivity yielding platinum loadings up to 7.4 wt%. Upon grafting amido complexes, the surface passivation yielding Me(3)SiOSi≡ surface species is demonstrated. Nanoparticles have been synthesized from these well-defined surface species by reduction under H(2) at 300 °C, under static or flow conditions. This process yields nanoparticles with sizes ranging from 2 to 3.3 nm and narrow size dispersion from 0.5 to 1.2 nm. Interestingly, the chloride complex yields large nanoparticles from 5 to 40 nm demonstrating the strong influence of chloride over the nanoparticles growth.

  1. Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uke, Matthew N., E-mail: cnmnu@leeds.ac.uk; Stentiford, Edward

    2013-06-15

    Highlights: ► Combined downflow and upflow water addition improved hydraulic conductivity. ► Upflow water addition unclogged perforated screen leading to more leachate flow. ► The volume of water added and transmitted positively correlated with hydrolysis process. ► Combined downflow and upflow water addition increased COD production and yield. ► Combined downflow and upflow leachate recycle improved leachate and COD production. - Abstract: Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D andmore » U at 22 ± 3 °C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D.« less

  2. Antibiotic Fermentation Broth Treatment by a pilot upflow anaerobic sludge bed reactor and kinetic modeling.

    PubMed

    Coskun, T; Kabuk, H A; Varinca, K B; Debik, E; Durak, I; Kavurt, C

    2012-10-01

    In this study, an upflow anaerobic sludge blanket (UASB) mesophilic reactor was used to remove antibiotic fermentation broth wastewater. The hydraulic retention time was held constant at 13.3 days. The volumetric organic loading value increased from 0.33 to 7.43 kg(COD)m(-3)d(-1) using antibiotic fermentation broth wastewater gradually diluted with various ratios of domestic wastewater. A COD removal efficiency of 95.7% was obtained with a maximum yield of 3,700 L d(-1) methane gas production. The results of the study were interpreted using the modified Stover-Kincannon, first-order, substrate mass balance and Van der Meer and Heertjes kinetic models. The obtained kinetic coefficients showed that antibiotic fermentation broth wastewater can be successfully treated using a UASB reactor while taking COD removal and methane production into account. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Using full-scale duckweed ponds as the finish stage for swine waste treatment with a focus on organic matter degradation.

    PubMed

    Mohedano, R A; Costa, R H R; Hofmann, S M; Belli Filho, P

    2014-01-01

    The rapid increase in the number of swine has caused pronounced environmental impacts worldwide, especially on water resources. As an aggregate, smallholdings have an important role in South American pork production, contributing to the net diffusion of pollution. Thus, duckweed ponds have been successfully used for swine waste polishing, mainly for nutrient removal. Few studies have been carried out to assess organic matter degradation in duckweed ponds. Hence, the present study evaluated the efficiency of two full-scale duckweed ponds for organic matter reduction of swine waste on small pig farms. Duckweed ponds, in series, received the effluent after an anaerobic biodigester and storage pond, with a flow rate of 1 m(3) day(-1). After 1 year of monitoring, an improvement in effluent quality was observed, with a reduction in biochemical oxygen demand (BOD) and total chemical oxygen demand (tCOD), respectively, of 94.8 and 96.7%, operating at a loading rate of approximately 27 kgBOD ha(-1) day(-1) and 131 kgCOD ha(-1) day(-1). Algae inhibition due to duckweed coverage was strongly observed in the pond effluent, where chlorophyll a and turbidity remained below 25 μg L(-1) and 10 NTU. Using the study conditions described herein, duckweed ponds were shown to be a suitable technology for swine waste treatment, contributing to the environmental sustainability of rural areas.

  4. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters.

    PubMed

    Fernandes, Annabel; Labiadh, Lazhar; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2017-10-01

    The electro-Fenton oxidation of a concentrate from reverse osmosis of a sanitary landfill leachate, with an initial chemical oxygen demand (COD) of 42 g L -1 , was carried out using a carbon-felt cathode and a boron doped diamond anode. The influence of the applied current intensity, initial pH and dissolved iron initial concentration on the electro-Fenton process was assessed. For the experimental conditions used, results showed that the initial pH is the parameter that more strongly influences the current efficiency of the electro-Fenton process, being this influence more pronounced on the oxidation rate than on the mineralization rate of the organic matter. The increase in iron initial concentration was found to be detrimental, since the natural amount of iron present in the effluent, 73 mg L -1 of total iron and 61 mg L -1 of dissolved iron, was sufficient to ensure the electro-Fenton process at the applied intensities - 0.2-1.4 A. For the more favourable conditions studied, initial pH of 3 and natural iron concentration, it was found an increase in the organic load and nitrogen removals with the applied current intensity. For the highest current intensity applied, a COD removal of 16.7 g L -1 was achieved after 8-h experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Performance of a pilot-scale constructed wetland for stormwater runoff and domestic sewage treatment on the banks of a polluted urban river.

    PubMed

    Guo, Weijie; Li, Zhu; Cheng, Shuiping; Liang, Wei; He, Feng; Wu, Zhenbin

    2014-01-01

    To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4(+)-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m(-2) yr(-1), respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4(+)-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.

  6. Optimisation potential for a SBR plant based upon integrated modelling for dry and wet weather conditions.

    PubMed

    Rönner-Holm, S G E; Kaufmann Alves, I; Steinmetz, H; Holm, N C

    2009-01-01

    Integrated dynamic simulation analysis of a full-scale municipal sequential batch reactor (SBR) wastewater treatment plant (WWTP) was performed using the KOSMO pollution load simulation model for the combined sewer system (CSS) and the ASM3 + EAWAG-BioP model for the WWTP. Various optimising strategies for dry and storm weather conditions were developed to raise the purification and hydraulic performance and to reduce operation costs based on simulation studies with the calibrated WWTP model. The implementation of some strategies on the plant led to lower effluent values and an average annual saving of 49,000 euro including sewage tax, which is 22% of the total running costs. Dynamic simulation analysis of CSS for an increased WWTP influent over a period of one year showed high potentials for reducing combined sewer overflow (CSO) volume by 18-27% and CSO loads for COD by 22%, NH(4)-N and P(total) by 33%. In addition, the SBR WWTP could easily handle much higher influents without exceeding the monitoring values. During the integrated simulation of representative storm events, the total emission load for COD dropped to 90%, the sewer system emitted 47% less, whereas the pollution load in the WWTP effluent increased to only 14% with 2% higher running costs.

  7. Natural attenuation, biostimulation and bioaugmentation of landfill leachate management

    NASA Astrophysics Data System (ADS)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.

    2018-04-01

    Landfills used for solid waste management will lead to leachate production. Proper leachate management is highly essential to be paid attention to protect the environment and living organisms’ health and safety. In this study, the remedial strategies used for leachate management were natural attenuation, biostimulation and bioaugmentation. All treatment samples were treated via 42-days combined anaerobic-aerobic treatment and the treatment efficiency was studied by measuring the removal rate of COD and ammonia nitrogen. In this study, all remedial strategies showed different degrees of contaminants removal. Lowest contaminants removal rate was achieved via bioaugmentation of B. panacihumi strain ZB1, which were 39.4% of COD and 37.6% of ammonia nitrogen removed from the leachate sample. Higher contaminants removal rate was achieved via natural attenuation and biostimulation. Native microbial population was able to remove 41% of COD and 59% of ammonia nitrogen from the leachate sample. The removal efficiency could be further improved via biostimulation to trigger microbial growth and decontamination rate. Through biostimulation, 58% of COD and 51.8% of ammonia nitrogen were removed from the leachate sample. In conclusion, natural attenuation and biostimulation should be the main choice for leachate management to avoid any unexpected impacts due to introduction of exogenous species.

  8. Highway-runoff quality, and treatment efficiencies of a hydrodynamic-settling device and a stormwater-filtration device in Milwaukee, Wisconsin

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert

    2011-01-01

    The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and PAH—are not included in the lists of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Similar to the HSD, the average efficiency ratios and SOLs for TDS and Cl were negative. Flow rates, high concentrations of SS, and particle-size distributions (PSD) can affect the treatment efficacies of the two devices. Flow rates equal to or greater than the design flow rate of the HSD had minimal or negative removal efficiencies for TSS and SS loads. Similar TSS removal efficiencies were observed at the SFD, but SS was consistently removed throughout the flow regime. Removal efficiencies were high for both devices when concentrations of SS and TSS approached 200 mg/L. A small number of runoff events were analyzed for PSD; the average sand content at the HSD was 33 percent and at the SFD was 71 percent. The 71-percent sand content may reflect the 90-percent removal efficiency of SS at the SFD. Particles retained at the bottom of both devices were largely sand-size or greater.

  9. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake.

    PubMed

    Guo, Wei; Yang, Feng; Li, Yanping; Wang, Shengrui

    2017-12-15

    Dissolved organic carbon (DOC) can be used an alternative index of water quality instead of chemical oxygen demand (COD) to reflect the organic pollution in water. The monitoring data of water quality in a long-term (1990-2013) from Dianchi Lake confirmed the increase trend of COD concentration in the lake since 2007. The similarities and differences in the DOC components between the lake and its sources and the contribution from allochthonous and autochthonous DOC to the total DOC in this lake were determined to elucidate the reason of COD increase based on C/N atomic ratios, stable isotope abundance of carbon and nitrogen, UV-visible spectroscopy, three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. The terrigenous organic matter showed humic-like fluorescence, and the autochthonous organic matter showed tryptophan-like components. Agricultural runoff (9.5%), leaf litter (7.5%) and urban runoff (13.2%) were the main sources of DOC in the lake. Sewage tail was a major source of organic materials, 3DEEM for the indicates that sewage tail DOC composition did not change markedly over the biodegradation period, indicating that sewage tail contains a high load of DOC that is resistant to further biodegradation and subsequently accumulates in the lake. The change of land use in the catchment and the increase of sewage tail load into the lake are the key factors for the increase in COD concentration in Dianchi Lake. Thus, the lake should be protected by controlling the pollution from the urban nonpoint sources and refractory composition in point sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Benchmarking of municipal waste water treatment plants (an Austrian project).

    PubMed

    Lindtner, S; Kroiss, H; Nowak, O

    2004-01-01

    An Austrian research project focused on the development of process indicators for treatment plants with different process and operation modes. The whole treatment scheme was subdivided into four processes, i.e. mechanical pretreatment (Process 1), mechanical-biological waste water treatment (Process 2), sludge thickening and stabilisation (Process 3) and further sludge treatment and disposal (Process 4). In order to get comparable process indicators it was necessary to subdivide the sample of 76 individual treatment plants all over Austria into five groups according to their mean organic load (COD) in the influent. The specific total yearly costs, the yearly operating costs and the yearly capital costs of the four processes have been related to the yearly average of the measured organic load expressed in COD (110 g COD/pe/d). The specific investment costs for the whole treatment plant and for Process 2 have been related to a calculated standard design capacity of the mechanical-biological part of the treatment plant expressed in COD. The capital costs of processes 1, 3 and 4 have been related to the design capacity of the treatment plant. For each group (related to the size of the plant) a benchmark band has been defined for the total yearly costs, the total yearly operational costs and the total yearly capital costs. For the operational costs of the Processes 1 to 4 one benchmark ([see symbol in text] per pe/year) has been defined for each group. In addition a theoretical cost reduction potential has been calculated. The cost efficiency in regard to water protection and some special sub-processes such as aeration and sludge dewatering has been analysed.

  11. Who’s your mama? Riverine hybridisation of threatened freshwater Trout Cod and Murray Cod

    PubMed Central

    Unmack, Peter J.; Dyer, Fiona J.; Lintermans, Mark

    2016-01-01

    Rates of hybridization and introgression are increasing dramatically worldwide because of translocations, restocking of organisms and habitat modifications; thus, determining whether hybridization is occuring after reintroducing extirpated congeneric species is commensurately important for conservation. Restocking programs are sometimes criticized because of the genetic consequences of hatchery-bred fish breeding with wild populations. These concerns are important to conservation restocking programs, including those from the Australian freshwater fish family, Percichthyidae. Two of the better known Australian Percichthyidae are the Murray Cod, Maccullochella peelii and Trout Cod, Maccullochella macquariensis which were formerly widespread over the Murray Darling Basin. In much of the Murrumbidgee River, Trout Cod and Murray Cod were sympatric until the late 1970s when Trout Cod were extirpated. Here we use genetic single nucleotide polymorphism (SNP) data together with mitochondrial sequences to examine hybridization and introgression between Murray Cod and Trout Cod in the upper Murrumbidgee River and consider implications for restocking programs. We have confirmed restocked riverine Trout Cod reproducing, but only as inter-specific matings, in the wild. We detected hybrid Trout Cod–Murray Cod in the Upper Murrumbidgee, recording the first hybrid larvae in the wild. Although hybrid larvae, juveniles and adults have been recorded in hatcheries and impoundments, and hybrid adults have been recorded in rivers previously, this is the first time fertile F1 have been recorded in a wild riverine population. The F1 backcrosses with Murray cod have also been found to be fertile. All backcrosses noted were with pure Murray Cod. Such introgression has not been recorded previously in these two species, and the imbalance in hybridization direction may have important implications for restocking programs. PMID:27812407

  12. Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.

    PubMed

    Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma

    2018-05-01

    A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth

    PubMed Central

    Costa-Bauzá, A; Perelló, J; Isern, B; Sanchis, P; Grases, F

    2006-01-01

    Background The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. Methods Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. Results Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. Conclusion The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three conditions. This observation suggests COD calculi residual fragments in the kidneys together with hypercalciuria and high urinary pH values may be a risk factor for stone growth. The study also showed the effectiveness of specific crystallization inhibitors in slowing calculi fragment growth. PMID:16822299

  14. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation.

    PubMed

    Yuan, Ye; Chen, Chuan; Liang, Bin; Huang, Cong; Zhao, Youkang; Xu, Xijun; Tan, Wenbo; Zhou, Xu; Gao, Shuang; Sun, Dezhi; Lee, Duujong; Zhou, Jizhong; Wang, Aijie

    2014-03-30

    In this paper, we proposed an integrated reactor system for simultaneous removal of COD, sulfate and ammonium (integrated C-S-N removal system) and investigated the key parameters of the system for a high level of elemental sulfur (S(0)) production. The system consisted of 4 main units: sulfate reduction and organic carbon removal (SR-CR), autotrophic and heterotrophic denitrifying sulfide removal (A&H-DSR), sulfur reclamation (SR), and aerated filter for aerobic nitrification (AN). In the system, the effects of key operational parameters on production of elemental sulfur were investigated, including hydraulic retention time (HRT) of each unit, sulfide/nitrate (S(2-)-S/NO3(-)-N) ratios, reflux ratios between the A&H-DSR and AN units, and loading rates of chemical oxygen demand (COD), sulfate and ammonium. Physico-chemical characteristics of biosulfur were studied for acquiring efficient S(0) recovery. The experiments successfully explored the optimum parameters for each unit and demonstrated 98% COD, 98% sulfate and 78% nitrogen removal efficiency. The optimum HRTs for SR-CR, A&H-DSR and AN were 12h, 3h and 3h, respectively. The reflux ratio of 3 could provide adequate S(2-)-S/NO3(-)-N ratio (approximately 1:1) to the A&H-DSR unit for obtaining maximum sulfur production. In this system, the maximum production of S(0) reached 90%, but only 60% S(0) was reclaimed from effluent. The S(0) that adhered to the outer layer of granules was deposited in the bottom of the A&H-DSR unit. Finally, the microbial community structure of the corresponding unit at different operational stage were analyzed by 16S rRNA gene based high throughput Illumina MiSeq sequencing and the potential function of dominant species were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*

    PubMed Central

    Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang

    2010-01-01

    A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304

  16. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    PubMed

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    PubMed

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  18. Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste.

    PubMed

    Tuyet, Nguyen Thi; Dan, Nguyen Phuoc; Vu, Nguyen Cong; Trung, Nguyen Le Hoang; Thanh, Bui Xuan; De Wever, Heleen; Goemans, Marcel; Diels, Ludo

    2016-01-01

    This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m(3).d. The volumetric biogas production of the digester was 1.94 ± 0.34 m(3)/m(3).d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.

  19. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    PubMed

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.

    PubMed

    Alimahmoodi, Mahmood; Mulligan, Catherine N

    2011-01-01

    The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The use of Fenton's system in the yeast industry wastewater treatment.

    PubMed

    Zak, S

    2005-01-01

    The paper presents the results of the research conducted with the use of hydrogen peroxide and iron (II) sulfate or chloride in the chemical pretreatment of Saccharomyces cerevisae yeast industry wastewater. It was found that the use of Fenton's system permitted a high reduction of sugar-like substances and total decolorizing of non-sugar compounds. The level of COD reduction depended on the amount and mutual proportions of COD:Fe(II):H2O2, as well as a type of the applied salt Fe(II). For iron concentrations: 1000-4000 mg l(-1) with molar excess [H2O2]:[Fe(II)] - 2-14:1 and reaction pH - 3.1-3.4, very high reproducibility of results and the COD reduction exceeding 75% were obtained. For this range of the reagent concentrations, the distribution of COD reduction values correlated with the equation: COD = - Ax4 + Bx3 - Cx2 + Dx - E (where: x = [H2O2]:[Fe(II)]). Additional neutralization with the use of lime milk made the secondary reduction of CODr(CaO) value possible, which resulted in the reduction of the total CODT above 90%. The method enabled us to consider the possibility of the preliminary chemical elimination of the wastewater load, which might increase the effectiveness of working wastewater treatment plants, especially in cases of continuous and occasional overloads above the level assumed by the project.

  2. Sources and mass fluxes of the main contaminants in a heavily polluted and modified river of the North China Plain.

    PubMed

    Li, Wenzan; Li, Xuyong; Su, Jingjun; Zhao, Hongtao

    2014-04-01

    Many rivers in China and other newly industrialized countries have suffered from severe degradation of water quality in the context of rapid economic growth. An accounting method was developed to investigate the source and mass fluxes of the main contaminants in the Ziya River, a severely polluted and heavily modified river in a semiarid area of the North China Plain, where chemical oxygen demand (COD) and ammonia nitrogen (NH4-N) were the most important indicators of pollution. The results showed that the urban sewage with high concentration of COD and NH4-N dominated the streams, contributing to 80.7 % of the streamflow, 92.2 % of COD, and 94.5 % of NH4-N. The concentrations of COD and NH4-N in streams varied from 24.0-195.0 to 5.8-43.8 mg/L, respectively. Mass fluxes of COD and NH4-N of all pathways were quantified. Much of the polluted water was diverted to irrigation, and some eventually flowed into the Bohai Sea. Installation of adequate wastewater treatment facilities and making strict discharge standards can help improve the water quality. Our findings imply that a simple accounting method provides an extremely well-documented example for load estimation and can be useful for intervention strategies in heavily polluted and modified rivers in newly industrialized countries.

  3. Fracture toughness of the nickel-alumina laminates by digital image-correlation technique

    NASA Astrophysics Data System (ADS)

    Mekky, Waleed

    The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.

  4. Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle.

    PubMed

    Uke, Matthew N; Stentiford, Edward

    2013-06-01

    Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D and U at 22 ± 3°C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Manual or automated measuring of antipsychotics' chemical oxygen demand.

    PubMed

    Pereira, Sarah A P; Costa, Susana P F; Cunha, Edite; Passos, Marieta L C; Araújo, André R S T; Saraiva, M Lúcia M F S

    2018-05-15

    Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    PubMed

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  7. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    PubMed Central

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  8. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.

    PubMed

    Hermon, S; Grange, D; Pellet, Y; Lloret, G; Oyonarte, S; Bosch, F; Coste, M

    2008-01-01

    Degreasing waste effluents issued from a surface treatment plant were treated by electrochemical techniques in an attempt to reduce COD so that clean water can be returned to the rinse bath. Electrocoagulation, both with iron and aluminium anodes, and anodic oxidation with boron doped diamond (BDD) anodes were tested. In the electrocoagulation tests, the nature of the anodes did not impact significantly the reduction of COD. Electrocoagulation showed good COD removal rates, superior to 80%, but it was not able to reduce COD down to low levels. Anodic oxidation was able to reduce COD down to discharge limits; the oxidation efficiency was superior to 50%. Economical calculations show that anodic oxidation is best used as a polishing step after electrocoagulation. The bulk of the COD would be reduced by electrocoagulation and, then, anodic oxidation would reduce COD below discharge limits. The maximum treatable flow is somewhat hindered by the small sizes of current BDD installation but it would reach 600 m(3)/year if anodic oxidation is coupled with electrocoagulation, the operational cost being 2.90 Euros /m(3). (c) IWA Publishing 2008.

  9. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater.

    PubMed

    Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang

    2016-06-01

    Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.

  10. Biological Pilot Plant Study at Radford Army Ammunition Plant

    DTIC Science & Technology

    1976-10-01

    amount of organics applied to the rotating bio- logical disc system was substantially incre sed when the hy- draulic loading was increased from 2 GPD/ft... organic loading, therefore, the effluent organic con- centrations increased significantly. The increase in effluent BOD and COD after May 13th are...provided some additional organic removal while the third and fourth stages began providing an increased amount of organic removal. The first stage soluble

  11. Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2016-10-01

    Anaerobic digestion (AD) is efficient in organic load removal and bioenergy recovery when applied in treating distillery effluent; however, it is ineffective in colour reduction. In contrast, ultraviolet (UV) photodegradation post-treatment for the AD-treated distillery effluent is effective in colour reduction but has high energy requirement. The effects of operating parameters on bioenergy production and energy demand of photodegradation were modelled using response surface methodology (RSM) with a view of developing a sustainable process in which the biological step could supply energy to the energy-intensive photodegradation step. The organic loading rate (OLRAD) and hydraulic retention time (HRTAD) of the initial biological step were the variables investigated. It was found that the initial biological step removed about 90% of COD and only about 50% colour while photodegradation post-treatment removed 98% of the remaining colour. Maximum bioenergy production of 180.5 kWh/m(3) was achieved. Energy demand of the UV lamp was lowest at low OLRAD irrespective of HRTAD, with values ranging between 87 and 496 kWh/m(3). The bioenergy produced formed 93% of the UV lamp energy demand when the system was operated at OLRAD of 3 kg COD/m(3) d and HRT of 20 days. The presumed carbon dioxide emission reduction when electricity from bioenergy was used to power the UV lamp was 28.8 kg CO2 e/m(3), which could reduce carbon emission by 31% compared to when electricity from the grid was used, leading to environmental conservation.

  12. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  13. Process control, energy recovery and cost savings in acetic acid wastewater treatment.

    PubMed

    Vaiopoulou, E; Melidis, P; Aivasidis, A

    2011-02-28

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m(3) d) and high space time yield (30-35 kg COD/m(3) d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO(2) contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO(2) content during biogas combustion is minimized and usage of other acidifying agents is omitted. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A novel technique of semi-aerobic aged refuse biofilter for leachate treatment.

    PubMed

    Han, Zhi-Yong; Liu, Dan; Li, Qi-Bin; Li, Gui-Zhi; Yin, Zhao-Yang; Chen, Xin; Chen, Jian-Nan

    2011-08-01

    We developed a semi-aerobic aged refuse biofilter (SAARB) for leachate treatment and examined its advantages and disadvantages compared to previous aged refuse biofilters (ARBs). To assess its treatment capability, decontamination mechanisms and optimal performance parameters, a single-period experiment and L(9)(3(4)) orthogonal array design experiments were conducted on artificial leachate. The SAARB markedly enhanced the treatment capability and removal efficiency of organic matter and nitrogen pollutants due to the alternating aerobic-anoxic-anaerobic zones in situ. The reduction in chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N) and total nitrogen (TN) exceeded 98%, 94%, and 80%, respectively. After the leachate was distributed onto the SAARB surface, the effluent velocity decreased as a logarithmic function, and there was a concomitant reduction in leachate effluent volume. Based on the capacity for removal of COD, NH(4)(+)-N, and TN, the effective height of aged refuse in a SAARB was enough to be 900mm. An excellent treatment efficiency could be achieved at 20-35°C, with a leachate distribution time of 1h once every period of 2-3 days, hydraulic loading of 11-30L/(m(3)day), and COD loading of 550-1200g/(m(3)day). This new SAARB system demonstrates superior efficacy for biofilter compared to other ARB systems, especially for nitrogen removal from leachate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    PubMed

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day(-1) in the Grau reaction kinetic model. The maximum 2,4 DCP removal rate constant (U(max)) and saturation value (K(B)) were calculated as 0.01 mg COD l(-1) day(-1) and 9.8 x 10(-3) mg l(-1) day(-1) in the Modified Stover-Kincannon model.

  16. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    PubMed

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Pacific halibut bycatch in Pacific cod fisheries in the Bering Sea: an analysis to evaluate area-time management

    NASA Astrophysics Data System (ADS)

    Adlerstein, Sara A.; Trumble, Robert J.

    1998-03-01

    Mortality of discarded Pacific halibut bycatch from Pacific cod fisheries in the Bering Sea leads to significant losses in the halibut setline and in the Pacific cod fisheries. The commercial halibut fishery loses yield because of catch limit reductions to compensate the resource for lost spawning potential and because halibut killed as bycatch will not be available for subsequent harvest, and the cod fisheries may lose harvest if they reach a bycatch mortality limit before reaching allowed catch. In this study, significant differences in Pacific halibut bycatch rates and associated yield losses were found among months and areas of the Bering Sea in the longline and trawl fisheries for Pacific cod in 1990-1992. Bycatch rates were usually highest in late spring and early summer and in areas close to the Unimak Pass. With the exception of 1992, yield loss in the longline fishery was around 1 kg per kg of bycatch mortality, irrespective of where or when bycatch occurred. In the trawl fishery, loss of halibut yield varied from 1 to 4 kg per kg of bycatch mortality. Highest halibut net yield losses per tonne of groundfish harvest usually coincided with highest bycatch rates. When both fisheries operated in one area, trawl bycatch often imposed higher yield losses than longline bycatch, despite lower bycatch rates. Bycatch was affected by the strong 1987 halibut year class. Highest bycatch and yield loss rates occurred in the trawl fishery in 1990 and 1991 when the population was dominated by halibut age-3 and -4, and in the longline fishery in 1992 as fish reached age-5.

  18. Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water.

    PubMed

    Zamalloa, Carlos; Arends, Jan B A; Boon, Nico; Verstraete, Willy

    2013-06-25

    Septic tanks are used for the removal of organic particulates in wastewaters by physical accumulation instead of through the biological production of biogas. Improved biogas production in septic tanks is crucial to increase the potential of this system for both energy generation and organic matter removal. In this study, the effect on the biogas production and biogas quality of coupling a 20 L lab-scale septic tank with a microbial electrolysis cell (MEC) was investigated and compared with a standard septic tank. Both reactors were operated at a volumetric organic loading rate of 0.5gCOD/Ld and a hydraulic retention time between 20 and 40 days using black water as an input under mesophilic conditions for a period of 3 months. The MEC-septic tank was operated at an applied voltage of 2.0±0.1V and the current experienced ranged from 40 mA (0.9A/m(2) projected electrode area) to 180 mA (5A/m(2) projected electrode area). The COD removal was of the order of 85% and the concentration of residual COD was not different between both reactors. Yet, the total phosphorous in the output was on average 39% lower in the MEC-septic tank. Moreover, the biogas production rate in the MEC-septic tank was a factor of 5 higher than in the control reactor and the H2S concentration in the biogas was a factor of 2.5 lower. The extra electricity supplied to the MEC-septic tank was recovered as extra biogas produced. Overall, it appears that the combination of MEC and a septic tank offers perspectives in terms of lower discharge of phosphorus and H2S, nutrient recuperation and a more reliable supply of biogas. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. More value from food waste: Lactic acid and biogas recovery.

    PubMed

    Kim, Mi-Sun; Na, Jeong-Geol; Lee, Mo-Kwon; Ryu, Hoyoung; Chang, Yong-Keun; Triolo, Jin M; Yun, Yeo-Myeong; Kim, Dong-Hoon

    2016-06-01

    Anaerobic digestion (AD) is one of the traditional technologies for treating organic solid wastes, but its economic benefit is sometimes questioned. To increase the economic feasibility of the treatment process, the aim of this study was to recover not only biogas from food waste but lactic acid (LA) as well. At first, LA fermentation of food waste (FW) was conducted using an indigenous mixed culture. During the operation, temperature was gradually increased from 35 °C to 55 °C, with the highest performance attained at 50 °C. At 50 °C and hydraulic retention time (HRT) of 1.0 d, LA concentration in the broth was 40 kg LA/m(3), corresponding to a yield of 1.6 mol LA/mol hexoseadded. Pyrosequencing results showed that Lactobacillus (97.6% of the total number of sequences) was the predominant species performing LA fermentation of FW. The fermented broth was then centrifuged and LA was extracted from the supernatant by the combined process of nanofiltration and water-splitting electrodialysis. The process could recover highly purified LA by removing 85% of mineral ions such as Na(+), K(+), Mg(2+), and Ca(2+) and 90% of residual carbohydrates. Meanwhile, the solid residue remained after centrifugation was further fermented to biogas by AD. At HRT 40 d (organic loading rate of 7 kg COD/m(3)/d), the highest volumetric biogas production rate of 3.5 m(3)/m(3)/d was achieved with a CH4 yield of 0.25 m(3) CH4/kg COD. The mass flow showed that 47 kg of LA and 54 m(3) of biogas could be recovered by the developed process from 1 ton of FW with COD removal efficiency of 70%. These products have a higher economic value 60 USD/ton FW compared to that of conventional AD (27 USD/ton FW). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Photodegradation of organic matter in fresh garbage leachate using immobilized nano-sized TiO2 as catalysts.

    PubMed

    Chen, C; Xie, Q; Hu, B Q; Zhao, X L

    2014-01-01

    Two immobilized nano-sized TiO2 catalysts, TiO2/activated carbon (TiO2/AC) and TiO2/silica gel (SG) (TiO2/SG), were prepared by the sol-gel method, and their use in the photocatalytic degradation of organic matter in fresh garbage leachate under UV irradiation was investigated. The influences of the catalyst dosage, the initial solution pH, H2O2 addition and the reuse of the catalysts were evaluated. The degradation of organic matter was assessed based on the decrease of the chemical oxygen demand (COD) in the leachate. The results indicated that the degradation of the COD obeyed first-order kinetics in the presence of both photocatalysts. The degradation rate of COD was found to increase with increasing catalyst dosage up to 9 g/L for TiO2/AC and 6 g/L for TiO2/SG, above which the degradation began to attenuate. Furthermore, the degradation rate first increased and then decreased as the solution pH increased from 2 to 14, and the degradation rate increased as the amount of H2O2 increased to 2.93 mM, after which it remained constant. No obvious decrease in the rate of COD degradation was observed during the first four repeated uses of the photocatalysts, indicating that the catalysts could be recovered and reused. Compared with TiO2/AC, TiO2/SG exhibited higher efficiency in photocatalyzing the degradation of COD in garbage leachate.

  1. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    NASA Astrophysics Data System (ADS)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  2. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.

    PubMed

    Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A

    2016-08-01

    This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Spatial ecology of coastal Atlantic cod Gadus morhua associated with parasite load.

    PubMed

    Aalvik, I M; Moland, E; Olsen, E M; Stenseth, N C

    2015-08-01

    Acoustic tags and receivers were used to investigate the spatial ecology of coastal Atlantic cod Gadus morhua (n = 32, mean fork length: 50 cm, range: 33-80 cm) on the Norwegian Skagerrak coast in 2012. Monthly home ranges (HR), swimming activity and depth use varied considerably among individuals and through the months of June, July and August. HR sizes for the period ranged from 0.25 to 5.20 km2 (mean = 2.30 km2. Two thirds of the tagged G. morhua were infected with black spot disease Cryptocotyle lingua parasites; these fish had larger HRs and occupied deeper water compared with non-infected fish. The infected fish also tended to be more active in terms of horizontal swimming. From an ecological and evolutionary perspective, any environmental change that modifies G. morhua behaviour may therefore also alter the parasite load of the population, and its conservation and fishery status. © 2015 The Fisheries Society of the British Isles.

  4. High-efficiency treatment of PTA wastewater using a biogas jet assisted anaerobic fluidized bed reactor.

    PubMed

    Zhang, Wei; Feng, Yangyang; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2018-02-05

    In this paper, a new type of biogas jet assisted anaerobic fluidized bed reactor loaded with a polypropylene carrier has been proposed. There was a clear improvement in the fluidized state due to the biogas assisted input when the gas/water ratio was set at 1:3 with a suitable carrier loading of 60%. When the circulating water flow is 30 L/min assisted with biogas 10 L/min, the mixing time shortens from 26 to 18 s. The performance of anaerobic biodegradation on wastewater treatment was improved largely. The chemical oxygen demand (COD) and terepthallic acid removal efficiencies were at 85.4% and 84%, respectively, at hydraulic retention time of 20 h, even when the influent COD concentration was as high as 4224 mg/L. In addition, plenty of microorganisms, attached to the carriers and assumed to be the reason behind the organic biodegradation efficiency of the proposed system, were observed using scanning electron microscopy.

  5. Biodegradability enhancement and detoxification of cork processing wastewater molecular size fractions by ozone.

    PubMed

    Santos, Diana C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Gomes, Arlindo C

    2013-11-01

    Cork boiling wastewater pollutants were fractionated by sequential use of four ultrafiltration membranes and five fractions were obtained: four retentates (>100, 50-100, 20-50 and 10-20 kDa) and one permeate (<10 kDa); which were used to study the correlation of molecular size with biodegradability and toxicity before and after ozonation. The results show that molecular size is correlated with organic load and restrains biodegradability. The fraction with >100 kDa corresponds to 56% of the organic load and the one with <10 kDa only 8%. The biodegradability of fractions increased 182% with fractions molecular size reduction from >100 to <10 kDa and the chemical oxygen demand (COD) was from 3436 to 386 mg L(-1). For biodegradability enhancement the best outcome of ozonation was obtained with compounds having molecular size >20 kDa and range from 5% up to 175% for applied ozone doses to COD ratios between 0.15 and 0.38. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Enhanced methane generation during theromophilic co-digestion of confectionary waste and grease-trap fats and oils with municipal wastewater sludge.

    PubMed

    Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John

    2013-02-01

    Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.

  7. Spatial and seasonal variation of pollution sources in proximity of the Jaranman-Saryangdo area in Korea.

    PubMed

    Jung, Yeoun Joong; Park, Young Cheol; Lee, Ka Jeong; Kim, Min Seon; Go, Kyeong Ri; Park, Sang Gi; Kwon, Soon Jae; Yang, Ji Hye; Mok, Jong Soo

    2017-02-15

    We aimed to compare the spatial and seasonal distributions of fecal coliforms (FCs) and other physiochemical factors in the drainage basin of the Jaranman-Saryangdo area. Among the pollution sources, the mean daily loads and half-circle radii of FCs were the highest in June. However, the pollutants did not reach the boundary line of the designated area due to an existing buffer zone. The value of the FC geometric mean at station 1 was highest in August during periods of heavy rainfall; however, this value was lower than the regulation limit. The highest daily loads of chemical oxygen demand (COD) and chlorophyll-a (Chl-a) in seawater were in the surface layer in August; however, dissolved oxygen (DO) in the bottom water layer was at its lowest in August. This study demonstrated that season and rainfall have significant effects on the FC, COD, DO, and Chl-a concentrations in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive.

    PubMed

    Wiszniowski, J; Surmacz-Górska, J; Robert, D; Weber, J-V

    2007-10-01

    A pre-denitrification activated sludge system (AS) without internal recycle was used in lab-scale studies of landfill leachate treatment. A bentonite supplement at a ratio of 1:4 (mineral : biomass) was used to ensure high sludge settling levels and to serve as a micro-organisms carrier. The system was operated within different parameters such as hydraulic retention time (HRT), ammonia loading rate (ALR) or external recycle ratio, which was adapted to treat varying leachate concentrations of COD and ammonia, ranging from 1020 to 2680 mgO(2)l(-1) and 400-890 mgNH(4)-Nl(-1) respectively. The nitrification was complete and ammonia oxidation reached 99%; this was obtained while the ALR did not exceed 0.09 g NH(4)(+)-Ng(-1)MLVSS d(-1) and HRT was not lower than 1 day (in the aeration reactor). The performance of denitrification was successfully improved by controlling the external recycle rate, when the BOD(5)/N ratio in the raw leachate was 4.1. Consequently, N-removal of up to 80% was achieved. A 10-fold decrease in the denitrification rate was obtained at a BOD(5)/N ratio of 0.5. The efficiency of COD removal varied significantly from 36% to 84%. The positive effect of bentonite addition was determined and is discussed based on preliminary studies. The experiments were carried out in fill-and-draw activated sludge with bentonite; the biomass ratio was 1:2. The activated sludge with bentonite was fed with a synthetic high ammonia and organic-free medium.

  9. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors.

    PubMed

    Aangelidaki, I; Ahrin, B K; Deng, H; Schmidt, J E

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates. Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds such as mequinol, phenyl ethyl alcohol and ethyl methyl phenol. After anaerobic treatment the concentration of these compounds was reduced between 75 and 100%. However, the concentration of some degradation products such as methyl phenol and ethyl phenol were detected in significantly higher concentrations after treatment, indicating that the process has to be further optimised to achieve satisfactory removal of all xenobiotic compounds.

  10. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    PubMed

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme hydrolysates. This approach offers a sustainable technology for the treatment of carbohydrate rich wastes and highlights the potential of these wastes as substrates for the generation of second-generation biofuels.

  11. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    PubMed

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  12. Ultrasound assisted biogas production from landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions formore » solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.« less

  13. Model-supported estimation of mortality rates in Baltic cod (Gadus morhua callarias L.) larvae: the varying impact of 'critical periods'

    PubMed Central

    Voss, Rüdiger; Hinrichsen, Hans-Harald; Wieland, Kai

    2001-01-01

    Background Changes in the survival-rate during the larval phase may strongly influence the recruitment level in marine fish species. During the larval phase different 'critical periods' are discussed, e.g. the hatching period and the first-feeding period. No such information was available for the Baltic cod stock, a commercially important stock showing reproduction failure during the last years. We calculated field-based mortality rates for larval Baltic cod during these phases using basin-wide abundance estimates from two consecutive surveys. Survey information was corrected by three dimensional hydrodynamic model runs. Results The corrections applied for transport were of variable impact, depending on the prevailing circulation patterns. Especially at high wind forcing scenarios, abundance estimates have the potential to be biased without accounting for transport processes. In May 1988 mortality between hatch and first feeding amounted to approximately 20% per day. Mortality rates during the onset of feeding were considerably lower with only 7% per day. In August 1991 the situation was vice versa: Extremely low mortality rates of 0.08% per day were calculated between hatch and first feeding, while the period between the onset of feeding to the state of an established feeder was more critical with mortality rates of 22% per day. Conclusions Mortality rates during the different proposed 'critical periods' were found to be highly variable. Survival rates of Baltic cod are not only influenced by a single 'critical period', but can be limited at different points during the larval phase, depending on several biotic and abiotic factors. PMID:11737879

  14. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  15. A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum.

    PubMed

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-01-15

    Decentralised grey water treatment in urban slums using low-cost and robust technologies offers opportunities to minimise public health risks and to reduce environmental pollution caused by the highly polluted grey water i.e. with a COD and N concentration of 3000-6000 mg L(-1) and 30-40 mg L(-1), respectively. However, there has been very limited action research to reduce the pollution load from uncontrolled grey water discharge by households in urban slums. This study was therefore carried out to investigate the potential of a two-step filtration process to reduce the grey water pollution load in an urban slum using a crushed lava rock filter, to determine the main filter design and operation parameters and the effect of intermittent flow on the grey water effluent quality. A two-step crushed lava rock filter unit was designed and implemented for use by a household in the Bwaise III slum in Kampala city (Uganda). It was monitored at a varying hydraulic loading rate (HLR) of 0.5-1.1 m d(-1) as well as at a constant HLR of 0.39 m d(-1). The removal efficiencies of COD, TP and TKN were, respectively, 85.9%, 58% and 65.5% under a varying HLR and 90.5%, 59.5% and 69%, when operating at a constant HLR regime. In addition, the log removal of Escherichia coli, Salmonella spp. and total coliforms was, respectively, 3.8, 3.2 and 3.9 under the varying HLR and 3.9, 3.5 and 3.9 at a constant HLR. The results show that the use of a two-step filtration process as well as a lower constant HLR increased the pollutant removal efficiencies. Further research is needed to investigate the feasibility of adding a tertiary treatment step to increase the nutrients and microorganisms removal from grey water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, Rangaraj; Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr; Sousbie, Philippe

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatilemore » solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.« less

  17. Sequential hydrogen and methane coproduction from sugary wastewater treatment by "CSTRHyd-UASBMet" system

    NASA Astrophysics Data System (ADS)

    Hao, Ping

    2017-10-01

    Potentiality of sequential hydrogen bioproduction from sugary wastewater treatment was investigated using continuous stirred tank reactor (CSTR) for various substrate COD concentrations and HRTs. At optimum substrate concentration of 6 g COD/L, hydrogen could be efficiently produced from CSTR with the highest production rate of 3.00 (±0.04) L/L reactor d at HRT of 6 h. The up flow anaerobic sludge bed (UASB) reactor was used for continuous methane bioproduction from the effluents of hydrogen bioproduction. At optimal HRT 12 h, methane could be produced with a production rate of 2.27 (±0.08) L/L reactor d and the COD removal efficiency reached up to the maximum 82.3%.

  18. Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater.

    PubMed

    Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Zieliński, Marcin; Dębowski, Marcin

    2013-02-01

    This study analyzed dairy wastewater fermentation in convection- and microwave-heated hybrid reactors at loadings of 1 and 2 kg COD/(m3 d) and temperatures of 35 and 55 °C. The biomass was investigated at a molecular level to determine the links between the operational parameters of anaerobic digestion and methanogenic Archaea structure. The highest production of biogas with methane content of ca. 67% was noted in the mesophilic microwave-heated reactors. The production of methane-rich biogas and the overall diversity of Archaea was determined by Methanosarcinaceae presence. The temperature and the application of microwaves were the main factors explaining the variations in the methanogen community. At 35 °C, the microwave heating stimulated the growth of highly diverse methanogen assemblages, promoting Methanosarcina barkeri presence and excluding Methanosarcina harudinacea from the biomass. A temperature increase to 55 °C lowered Methanosarcinaceae abundance and induced a replacement of Methanoculleus palmolei by Methanosarcina thermophila. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Diet of Norwegian coastal cod (Gadus morhua) studied by using citizen science

    NASA Astrophysics Data System (ADS)

    Enoksen, Siri Elise; Reiss, Henning

    2018-04-01

    The Norwegian coastal cod (Gadus morhua) is a keystone species in the food web of northern Norwegian fjords. Their relatively stationary populations might specifically depend on local food resources, but the diet of cod has rarely been studied in fjord systems. Using a citizen science approach, where recreational anglers and tourists participated in the sampling, we studied small-scale differences in the diet composition of cod in a fjord system in northern Norway. We compared the cod diet from the MPA Saltstraumen, characterised by strong tidal currents and a highly diverse and abundant fauna, with the inner fjord area of Skjerstadfjord. The diet composition of cod significantly differed between both areas within the fjord. Although fish was the dominant prey in both areas, cod consumed > 40% invertebrates in terms of weight, even in the cod size class of 70-99 cm. The invertebrate prey also caused the observed spatial differences. In Saltstraumen, brittle stars (Ophiuroidea), crabs (Brachyura) and sea cucumbers (Holothuroidea) were important food sources for cod, while sea urchins (Echinoidea), clams (Bivalvia), shrimps (Caridea) and krill (Euphausiacea) dominated the diet in the inner Skjerstadfjord. The high densities of sessile fauna in the dynamic environment of Saltstraumen, was only partly reflected in the diet of cod, with only Holothuroidea found in 17% of the stomachs. High rates of empty stomachs (24%), cannibalism as well as a higher proportion of low-energy prey in the diet of large cod, may indicate a shortage of high quality food in Skjerstadfjord. The samples for this study were collected through a citizen science campaign. This approach might provide opportunities to be used for coastal ecological monitoring with potential applications in local ecosystem management strategies through public involvement.

  20. Performance of Multilevel Contact Oxidation in the Treatment of Wastewater from Automobile Painting Industry

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang

    2017-01-01

    A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.

  1. Use of Bio-Amp, a commercial bio-additive for the treatment of grease trap wastewater containing fat, oil, and grease.

    PubMed

    Tang, Hao L; Xie, Yuefeng F; Chen, Yen-Chih

    2012-11-01

    This research investigated the application of Bio-Amp, a commercial bio-additive for the treatment of fat, oil, and grease (FOG) in a grease trap, and evaluated potential impacts of treated effluent on downstream collection system and treatment processes. Results show that after Bio-Amp treatment, FOG deposit formation was reduced by 40%, implicating a potential reduction of sewer line blockages. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and total fatty acids were reduced by 39%, 33%, 56%, and 59%, respectively, which represents an overall loading reduction of 9% COD, 5% TN and 40% TP received by the treatment plant from all the dining halls. On the other hand, readily biodegradable COD fractions significantly increased, which implies a potential improvement on Bio-P removal. Overall, the results showed that application of Bio-Amp in grease trap provides potential reduction of sewer line blockages, and can also alleviate downstream treatment burden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of high pressure processing on the preservation of frozen and re-thawed sliced cod (Gadus morhua) and salmon (Salmo salar) fillets

    NASA Astrophysics Data System (ADS)

    Arnaud, Cécilia; de Lamballerie, Marie; Pottier, Laurence

    2018-01-01

    Cod and salmon are both widely found in the seafood market, but those products are easily spoiled. This work reports on the investigation of the effects of three moderate pressure values (150, 300 and 450 MPa) applied for 5 min at 20°C on crude sliced cod and salmon fillets. It was found that high pressure processing (HPP) significantly reduced the microbial load during refrigerated storage for up to 14 days. As expected, the most effective treatment was 450 MPa because it inhibited microbial growth. This process affected the hardness, lightness, lipid oxidation, protein denaturation and oxidation. The fish muscle composition (lipid amount and protein profile) played a main role in the changes promoted by pressure. HPP permits the shelf life of the raw product at 4°C to be increased with minimal changes in the organoleptic characteristics and to enable crude consumption.

  3. International Conference on Indium Phosphide and Related Materials, Held in Cape Cod, Massachusetts, on 11 - 15 May 1997.

    DTIC Science & Technology

    1998-01-14

    runaway cells are very uniform across the wafer. On-wafer active load- causing the so-called current collapse. Using a Au air- pull measurement was...Input Power [ dBm] support and encouragement. References Fig. 4: On-wafer load- pull measurement at 9 GHz. [1] P. M. Asbeck, M. C. F. Chang, J. A...Measured Load Pull Characteristics of the 0.15gm x 300gm GaInAs/InP HEMT at 7GHz. 160 exceeded 830 mS/mm for > 0.5V. The 140 small-signal output

  4. Experimental Observations of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C.

    1998-01-01

    A series of tests was conducted to support development of an analytical model for predicting the failure strains of stitched warp-knit carbon/epoxy composite materials with through-thicknesss damage in the form of a crack-like notch. Measurements of strain near notch tips, crack opening displacement (COD), and applied load were monitored in all tests. The out-of-plane displacement at the center of the notch was also measured when the specimen was subjected to bending. Three types of loading were applied: pure bending, pure tension, and combined bending and tension.

  5. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.

  6. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process.

    PubMed

    Guo, Jin-Song; Abbas, Abdulhussain A; Chen, You-Peng; Liu, Zhi-Ping; Fang, Fang; Chen, Peng

    2010-06-15

    The leachate from Changshengqiao landfill (Chongqing, China) was characterized and submitted to a combined process of air stripping, Fenton, sequencing batch reactor (SBR), and coagulation. Optimum operating conditions for each process were identified. The performance of the treatment was assessed by monitoring the removal of organic matter (COD and BOD(5)) and ammonia nitrogen (NH(3)-N). It has been confirmed that air stripping (at pH 11.0 and aeration time 18h) effectively removed 96.6% of the ammonia. The Fenton process was investigated under optimum conditions (pH 3.0, FeSO(4).7H(2)O of 20 g l(-1) and H(2)O(2) of 20 ml l(-1)), COD removal of up to 60.8% was achieved. Biodegradability (BOD(5)/COD ratio) increased from 0.18 to 0.38. Thereafter the Fenton effluent was mixed with sewage at dilutions to a ratio of 1:3 before it was subjected to the SBR reactor; under the optimum aeration time of 20 h, up to 82.8% BOD(5) removal and 83.1% COD removal were achieved. The optimum coagulant (Fe(2)(SO(4))(3)) was a dosage of 800 mg l(-1) at pH of 5.0, which reduced COD to an amount of 280 mg l(-1). These combined processes were successfully employed and very effectively decreased pollutant loading. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  7. An Experimental Study of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C., Jr.

    1999-01-01

    A series of tests was conducted to measure the strength of stitched carbon/epoxy composites containing through-thickness damage in the form of a crack-like notch. The specimens were subjected to three types of loading: pure bending, pure tension, and combined bending and tension loads. Measurements of applied loads, strains near crack tips, and crack opening displacements (COD) were monitored in all tests. The transverse displacement at the center of the specimen was measured using a Linear Variable Differential Transformer (LVDT). The experimental data showed that the outer surface of the pure tension specimen failed at approximately 6,000 microstrain, while in combined bending and tension loads the measured tensile strains reached 10,000 microstrain.

  8. Dynamics of polyhydroxyalkanoate accumulation in aerobic granules during the growth-disintegration cycle.

    PubMed

    Gobi, K; Vadivelu, V M

    2015-11-01

    The polyhydroxyalkanoate (PHA) accumulation dynamics in aerobic granules that undergo the growth-disintegration cycle were investigated. Four sequencing batch reactors (SBR) were inoculated with aerobic granules at different stages of development (different sizes). Different sizes of aerobic granules showed varying PHA contents. Thus, further study was conducted to investigate the diffusion of substrate and oxygen on PHA accumulation using various organic loading rates (OLR) and aeration rates (AR). An increase in OLR from 0.91 to 3.64kg COD/m(3)day increased the PHA content from 0.66 to 0.87g PHA/g CDW. Meanwhile, an AR increase from 1 to 4L/min only accelerated the maximum PHA accumulation without affecting the PHA content. However, the PHA composition only changes with AR, while the hydroxyvalerate (HV) content increased at a higher AR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhancing biomethanogenic treatment of fresh incineration leachate using single chambered microbial electrolysis cells.

    PubMed

    Gao, Yan; Sun, Dezhi; Dang, Yan; Lei, Yuqing; Ji, Jiayang; Lv, Tingwei; Bian, Rui; Xiao, Zhihui; Yan, Liangming; Holmes, Dawn E

    2017-05-01

    Methanogenic treatment of municipal solid waste (MSW) incineration leachate can be hindered by high concentrations of refractory organic matter and humification of compounds in the leachate. In an attempt to overcome some of these impediments, microbial electrolysis cells (MECs) were incorporated into anaerobic digesters (ADMECs). COD removal efficiencies and methane production were 8.7% and 44.3% higher in ADMECs than in controls, and ADMEC reactors recovered more readily from souring caused by high organic loading rates. The degradation rate of large macromolecules was substantially higher (96% vs 81%) in ADMEC than control effluent, suggesting that MECs stimulated degradation of refractory organic matter and reduced humification. Exoelectrogenic bacteria and microorganisms known to form syntrophic partnerships were enriched in ADMECs. These results show that ADMECs were more effective at treatment of MSW incineration leachate, and should be taken into consideration when designing future treatment facilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    PubMed

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  11. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.

  12. Biomass characterization by dielectric monitoring of viability and oxygen uptake rate measurements in a novel membrane bioreactor.

    PubMed

    Shariati, Farshid Pajoum; Heran, Marc; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza; Sarzana, Gabriele; Ghommidh, Charles; Grasmick, Alain

    2013-07-01

    The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Specific inhibition of Photobacterium phosphoreum extends the shelf life of modified-atmosphere-packed cod fillets.

    PubMed

    Dalgaard, P; Garcia Munoz, L; Mejlholm, O

    1998-09-01

    Inhibition of the specific spoilage organism, Photobacterium phosphoreum, was studied in model substrates and in modified-atmosphere-packed cod fillets. The objective was to determine how inhibition of this organism influenced spoilage. The spoilage reactions limiting shelf life were studied rather than the development of a new product. In naturally contaminated modified-atmosphere-packed cod fillets, 500 ppm Na2CaEDTA reduced the growth rate of P. phosphoreum by 40% and shelf life was increased proportionally by 40%, from 15 to 17 days to 21 to 23 days at 0 degree C. In aerobically stored cod fillets other microorganisms were responsible for spoilage and Na2CaEDTA had no effect on shelf life. The extension of the shelf life of modified-atmosphere-packed cod therefore was a result of the reduced growth of P. phosphoreum and no other microbial or nonmicrobial spoilage reactions limited shelf life. These results confirmed P. phosphoreum as the specific spoilage organism in modified-atmosphere-packed cod and showed the organism to have an extensive spoilage domain. Consequently, any preservation procedure able to reduce growth of P. phosphoreum is likely to extend shelf life of packed cod. However, the effect of different inhibitory compounds in model systems as well as results from packed cod indicated the need to include product studies in the screening of antimicrobials and in the development of preservation procedures.

  14. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.

  15. Long-term observation of aerosol-cloud relationships in the Mid-Atlantic of the United States

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.; Yin, B.

    2014-07-01

    Long-term ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplets effective radius (Re) and cloud droplets number concentration (Nd). A higher frequency of clouds with large COD (> 20) and small Re (< 7 m) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading. The five-year data are screened for summer months only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter ≤ 2.5 m (PM2.5) value. Evidence of aerosol indirect effect is found where for polluted cases the mean and median values of COD and Nd distributions were elevated while the mean and median values of Re were decreased. Further reinforcing this conclusion is the result that the mean and median values of LWP distributions did not show prominent difference between clean and polluted cases, this implies that differences between the two cases of influential factors on cloud properties were relatively controlled. Moreover aerosol indirect effects were found insignificant when LWP was small but significant when LWP was large through the analysis of sensitivity of Nd to LWP under different aerosol loading and the measurements of aerosol size distribution.

  16. Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, E.; Vergara, M.; Moreno, Y.

    2007-07-01

    This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varyingmore » organic concentrations of the influent leachate (2500-9000 mg L{sup -1}). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24 h and a rotational speed of 6 rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273 g-COD m{sup -3} day{sup -1} at an HRT of 54, 44, 39, 24 and 17 h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.« less

  17. Renewable Energy Production from DoD Installation Solid Wastes By Anaerobic Digestion

    DTIC Science & Technology

    2016-08-06

    favorable environmental conditions including a mesophilic (37 oC) or thermophilic (55 oC) temperature , the absence of oxygen , and a pH between 6.5...a high temperature process that uses oxygen -starved combustion to convert dry organic matter to a syngas. Syngas is a low BTU fuel that can be used...production rates are at the 36.7 °C digester temperature . Parameter Units 7gCOD/L-d 12gCOD/L-d Effective SRT days 18.5 10.8 COD Conversion Efficiency % 67

  18. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-01

    favorable environmental conditions including a mesophilic (37 oC) or thermophilic (55 oC) temperature , the absence of oxygen , and a pH between 6.5...a high temperature process that uses oxygen -starved combustion to convert dry organic matter to a syngas. Syngas is a low BTU fuel that can be used...production rates are at the 36.7 °C digester temperature . Parameter Units 7gCOD/L-d 12gCOD/L-d Effective SRT days 18.5 10.8 COD Conversion Efficiency % 67

  19. Anaerobic-aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process.

    PubMed

    Pophali, G R; Khan, R; Dhodapkar, R S; Nandy, T; Devotta, S

    2007-12-01

    This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.

  20. Potential Application of Shallow Bed Wetland Roof systems for green urban cities

    NASA Astrophysics Data System (ADS)

    Bui, X. T.

    2016-12-01

    This study aims to investigate the growth, nutrient uptake, domestic wastewater treatment, green (leaf) area and heat reduction of four shallow subsurface flow wetland roof (WR) systems with four different new local plants. Selected species included Cyperus Javanicus Hot (WR1), Eleusine Indica (L.) Gaertn (WR2), Struchium Sparganophorum (L.) Kuntze (WR3) and Kyllinga Brevifolia Rottb (WR4). These systems were operated during 61 days at hydraulic loading rates of 353 - 403 m3/ha.day. The biomass growth of 4.9-73.7g fresh weight/day, and 0.8-11.4 g dry weight/day were observed. The nutrient accumulation according to dry biomass achieved 0.25-2.14% of total nitrogen (TN) and 0.13-1.07% of total phosphorus (TP). The average COD, TN and TP removal was 61-79%; 54-81% and 62-83%, which corresponding to 27-33 kg COD/ha.day, 10-14 kg TN/ha.day and 0.4-0.5 kg TP/ha.day, respectively. The WR4 system achieved the highest COD and TN removal among the WRs. The TP removal efficiency showed an insignificant difference for the systems. Consequently, the treated water quality complied with the Vietnam standard limits (QCVN 14:2008, level B). The green area of the four plants varied between 63-92 m2 green leaf/m2 WR. The WR4 was the highest green area. Moreover, the results also showed the temperature under the flat roof was 1-3°C lower than that of the ambient air. In summary, wetland roof is a promising technology, which not only owns the effective domestic wastewater treatment capacity, but also contributes to green urban with several above benefits.

Top