Sample records for code huc boundaries

  1. EPA Office of Water (OW): SDWIS - HUC12 Densities for Public Surface Water and Groundwater Sources

    EPA Pesticide Factsheets

    Public Water System location points, based on information from the Safe Drinking Water Act Information System (SDWIS/Federal) for a 2010 third quarter (SDWIS_2010Q3) baseline period, were applied to relate system latitude and longitude coordinates (LatLongs) to Watershed Boundary Dataset subwatershed polygons (HUC12s). This HUC12 table can be mapped through setting up appropriate table relationships on the attribute HUC_12 with the HUC12 GIS layer that is part of EPA's Reach Address Database (RAD) Version 3. At the present time, the RAD Version 3 contains HUC12 polygons for the conterminous United States (CONUS), Hawaii, Puerto Rico, and the U.S. Virgin Islands (materials for Alaska or for other territories and dependencies are not available as of February, 2010). The records in this table are based on a special QUERY created by the EPA Office of Ground Water and Drinking Water (OGWDW) from the primary SDWIS/FED information to provide a robust point representation for a PWS system. PWS points are selected based on the following prioritization: 1. If the system has a treatment plant with LatLongs and MAD codes; 2. If the system has a treatment plant with LatLongs but without MAD codes; 3. If the system has a well with LatLongs and MAD codes; 4. If the system has a well with LatLongs but without MAD codes; 5. If the system has an intake with LatLongs and MAD codes; 6. If the system has an intake with LatLongs but without MAD codes; 7. If the system has any source

  2. Merrimack River Watershed Communities

    EPA Pesticide Factsheets

    Listing of all communities included in each of the hydrologic unit code (HUC) 8, 10, and 12 boundaries for the Merrimack River Watershed and city locations for the EPA water quality monitoring stations.

  3. ASSESSING THE IMPACT OF LANDUSE/LANDCOVER ON STREAM CHEMISTRY IN MARYLAND

    EPA Science Inventory

    Spatial and statistical analyses were conducted to investigate the relationships between stream chemistry (nitrate, sulfate, dissolved organic carbon, etc.), habitat and satellite-derived landuse maps for the state of Maryland. Hydrologic Unit Code (HUC) watershed boundaries (8-...

  4. Riparian Zone Analysis for Forest Land Cover for the Conterminous US

    EPA Science Inventory

    One data layer describing the amount of forest land cover contained within a buffer area extending 30 meters to each side of all streams contained within the basin (Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit Code (HUC)) and from the edge of water bodies such as la...

  5. NYC Reservoirs Watershed Areas (HUC 12)

    EPA Pesticide Factsheets

    This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and Surrounding States. HUC 12 polygons were selected from the source based on interactively comparing these HUC 12s in our GIS with images of the New York City's Water Supply System Map found at http://www.nyc.gov/html/dep/html/drinking_water/wsmaps_wide.shtml. The 12 digit Hydrologic Units (HUCs) for EPA Region 2 and surrounding states (Northeastern states, parts of the Great Lakes, Puerto Rico and the USVI) are a subset of the National Watershed Boundary Database (WBD), downloaded from the Natural Resources Conservation Service (NRCS) Geospatial Gateway and imported into the EPA Region 2 Oracle/SDE database. This layer reflects 2009 updates to the WBD that included new boundary data for New York and New Jersey.

  6. EnviroAtlas - Number of Water Markets per HUC8 Watershed, U.S., 2015, Forest Trends' Ecosystem Marketplace

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Addi

  7. 12-Digit Watershed Boundary Data 1:24,000 for EPA Region 2 and Surrounding States (NAT_HYDROLOGY.HUC12_NRCS_REG2)

    EPA Pesticide Factsheets

    12 digit Hydrologic Units (HUCs) for EPA Region 2 and surrounding states (Northeastern states, parts of the Great Lakes, Puerto Rico and the USVI) downloaded from the Natural Resources Conservation Service (NRCS) Geospatial Gateway and imported into the EPA Region 2 Oracle/SDE database. This layer reflects 2009 updates to the national Watershed Boundary Database (WBD) that included new boundary data for New York and New Jersey.

  8. EnviroAtlas - NHDPlus V2 Hydrologic Unit Boundaries Web Service - Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas web service contains layers depicting hydrologic unit boundary layers and labels for the Subregion level (4-digit HUCs), Subbasin level (8-digit HUCs), and Subwatershed level (12-digit HUCs) for the conterminous United States. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  10. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  11. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  12. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  13. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... WEST COAST STATES West Coast Salmon Fisheries Pt. 660, Subpt. H, Table 1 Table 1 to Subpart H of Part...

  14. Agricultural production and nutrient runoff in the Corn Belt ...

    EPA Pesticide Factsheets

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in response to ethanol policy incentives in recent years is well documented and may worsen this effect. We develop a spatially distributed dynamic environmental performance index (EPI), accounting for both desirable agricultural outputs and undesirable nonpoint source emissions from farm production, to examine the corresponding changes in environmental performance within the UMRB between 2002 and 2007, which is characterized by increasing policy incentives for ethanol production. County-level production data from the USDA agricultural census are aggregated to hydrologic unit code (HUC8) boundaries using a geographic information system (GIS), and a previously developed statistical model, which includes net anthropogenic nitrogen inputs (NANI) as well as precipitation and land use characteristics as inputs, is used to estimate annual nitrogen loadings delivered to streams from HUC8 watersheds. The EPI allows us to decompose performance of each HUC8 region over time into changes in productive efficiency and emissions efficiency. To our knowledge, this is the first study to examine the corresponding changes in environmental performance for producers in this region at the watershed scale. The resu

  15. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006. Biological N fixation (BNF) in natural/semi-natural ecosystems was estimated using a correlation with actual evapotranspiration (AET). This correlation is based on a global meta-analysis of BNF in natural/semi-natural ecosystems (Cleveland et al. 1999). AET estimates for 2006 were calculated using a regression equation describing the correlation of AET with climate (average annual daily temperature, average annual minimum daily temperature, average annual maximum daily temperature, and annual precipitation) and land use/land cover variables in the conterminous US (Sanford and Selnick 2013). Data describing annual average minimum and maximum daily temperatures and total precipitation for 2006 were acquired from the PRISM climate dataset (http://prism.oregonstate.edu). Average annual climate data were then calculated for individual 12-digit USGS Hydrologic Unit Codes (HUC12s; http://water.usgs.gov/GIS/huc.html; 22 March 2011 release) using the Zonal Statistics tool in ArcMap 10.0. AET for individual HUC12s was estimated using equations described in Sanford and Selnick (2013). BNF in natural/semi-natural ecosystems within individual HUC12s was modeled with an equation describing the statistical relationship between BNF (kg N ha-1 yr-1) and actual evapotranspiration (AET; cm yr-1) and scaled to the proportion

  16. Testing the generalized complementary relationship of evaporation with continental-scale long-term water-balance data

    NASA Astrophysics Data System (ADS)

    Szilagyi, Jozsef; Crago, Richard; Qualls, Russell J.

    2016-09-01

    The original and revised versions of the generalized complementary relationship (GCR) of evaporation (ET) were tested with six-digit Hydrologic Unit Code (HUC6) level long-term (1981-2010) water-balance data (sample size of 334). The two versions of the GCR were calibrated with Parameter-Elevation Regressions on Independent Slopes Model (PRISM) mean annual precipitation (P) data and validated against water-balance ET (ETwb) as the difference of mean annual HUC6-averaged P and United States Geological Survey HUC6 runoff (Q) rates. The original GCR overestimates P in about 18% of the PRISM grid points covering the contiguous United States in contrast with 12% of the revised version. With HUC6-averaged data the original version has a bias of -25 mm yr-1 vs the revised version's -17 mm yr-1, and it tends to more significantly underestimate ETwb at high values than the revised one (slope of the best fit line is 0.78 vs 0.91). At the same time it slightly outperforms the revised version in terms of the linear correlation coefficient (0.94 vs 0.93) and the root-mean-square error (90 vs 92 mm yr-1).

  17. Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Samayoa, S. D.

    2017-12-01

    Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions Susana Samayoa , Muhammed A. G. Chowdhury, Tushar Sinha Department of Environmental Engineering, Texas A & M University - Kingsville Freshwater sustainability in arid and semi-arid regions is highly uncertain under increasing demands due to population growth and urban development as well as limited water supply. In particular, six largest cities by population among the top twenty U.S. cities are located in Texas (TX), which also experience high variability in water availability due to frequent droughts and floods. Similarly, several regions in Arizona (AZ) are rapidly growing (e.g. Phoenix and Tucson) despite receiving scanty rainfall. Thus, the goal of this study is to analyze water use and water scarcity in watersheds within TX and AZ between 1985 and 2010. The water use data from U.S. Geological Survey (USGS) is analyzed by Hydrological Unit Code (HUC) - 8 within TX and AZ. Total freshwater use by county during 1985 and 2010 were converted into water use by HUC-8 using geospatial analysis. Water availability will be estimated by using a large scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC model will be calibrated and validated for multiple basins located in Texas and Arizona. The VIC model simulated total streamflow will be aggregated across the 1/8 degree grids that are within each HUC-8 to estimate water supply. The excess water for upstream HUC-8s (= local supply minus demands) will be routed, in addition to locally generated streamflow, to estimate water availability in downstream HUC-8s. Water Scarcity Index, defined as the ratio of total freshwater demand to supply, will be estimated during 1985 and 2010 to evaluate the effects of water availability and demands on scarcity. Finally, water scarcity and use will be analyzed by HUC-8s within TX and AZ. Such information could be useful in water resources management and planning. Keywords: Water scarcity, water use, water supply, VIC

  18. Climate Change Impacts on Freshwater Recreational Fishing in the United States

    EPA Science Inventory

    Using a geographic information system, a spatially explicit modeling framework was developed consisting grid cells organized into 2,099 eight-digit hydrologic unit code (HUC-8) polygons for the coterminous United States. Projected temperature and precipitation changes associated...

  19. Stream ecological condition modeling at the reach and the hydrologic unit (HUC) scale: A look at model performance and mapping

    EPA Science Inventory

    The National Hydrography and updated Watershed Boundary Datasets provide a ready-made framework for hydrographic modeling. Determining particular stream reaches or watersheds in poor ecological condition across large regions is an essential goal for monitoring and management. T...

  20. Infusion of Trx-1-Overexpressing hucMSC Prolongs the Survival of Acutely Irradiated NOD/SCID Mice by Decreasing Excessive Inflammatory Injury

    PubMed Central

    Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy 60Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin−CD117+: hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore, hucMSC-Trx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI. PMID:24223778

  1. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury.

    PubMed

    Hu, JiangWei; Yang, ZaiLiang; Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy (60)Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin(-)CD117(+): hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore, hucMSC-Trx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI.

  2. Characteristic and Outcome of Psoriatic Arthritis Patients with Hyperuricemia.

    PubMed

    AlJohani, Roa'A; Polachek, Ari; Ye, Justine Yang; Chandran, Vinod; Gladman, Dafna D

    2018-02-01

    To determine the characteristics of patients with psoriatic arthritis (PsA) who have hyperuricemia (HUC) and their outcomes, especially cardiovascular (CVD) and kidney diseases. Patients have been followed prospectively at the PsA clinic according to a standard protocol at 6- to 12-month intervals. We defined HUC in men > 450 µ mol/l or women > 360 µ mol/l. We matched patients with HUC based on sex and age ± 5 years with normal uric acid patients. Demographics information and disease characteristics were reviewed. Outcomes of patients with HUC, especially CVD and kidney diseases, were recorded. Conditional logistic regression was performed to determine factors independently associated with HUC in patients with PsA. There were 325 (31.9%) out of 1019 patients with PsA who had HUC. Of these, 318 cases were matched to 318 controls. There were 11 (3.4%) out of 325 patients with HUC who had gout. Patients with HUC had longer disease duration and a higher Psoriasis Area and Severity Index. They had more concurrent comorbidities, including CVD and metabolic diseases, as well as higher prevalence of kidney stones and higher creatinine. Only 1 patient with HUC was treated with allopurinol at first evaluation visit and 7 patients during followup. Over the followup, 163 of the 318 patients had persistent HUC (pHUC) for more than 2 visits. Patients with pHUC developed more myocardial infarction, heart failure, and renal impairment. Multivariate analysis showed an association between pHUC, PsA disease duration, and obesity. HUC is common in patients with PsA, especially in those with longer disease duration and obesity. Proper control of HUC and metabolic diseases may play a preventive role in improving PsA outcomes.

  3. THE MISUSE OF HYDROLOGIC UNIT MAPS FOR EXTRAPOLATION, REPORTING, AND ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    The use of watersheds to conduct research on land-water relationships has expanded recently to include both extrapolation and reporting of water resource information and ecosystem management. More often than not, hydrologic units, and hydrologic unit codes (HUCs) in particular, a...

  4. 3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing

    PubMed Central

    Shi, Hui; Xu, Xiao; Zhang, Bin; Xu, Jiahao; Pan, Zhaoji; Gong, Aihua; Zhang, Xu; Li, Rong; Sun, Yaoxiang; Yan, Yongmin; Mao, Fei; Qian, Hui; Xu, Wenrong

    2017-01-01

    Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are suggested as a promising therapeutic tool in regenerative medicine, however, their efficacy requires improvement. Small molecules and drugs come up to be a convenient strategy in regulating stem cells fate and function. Here, we evaluated 3,3′-diindolylmethane (DIM), a natural small-molecule compound involved in the repairing effects of hucMSCs on a deep second-degree burn injury rat model. HucMSCs primed with 50 μM of DIM exhibited desirable repairing effects compared with untreated hucMSCs. DIM enhanced the stemness of hucMSCs, which was related to the activation of Wnt/β-catenin signaling. β-catenin inhibition impaired the healing effects of DIM-primed hucMSCs (DIM-hucMSCs) in vivo. Moreover, we demonstrated that DIM upregulated Wnt11 expression in hucMSC-derived exosomes. Wnt11 knockdown inhibited β-catenin activation and stemness induction in DIM-hucMSCs and abrogated their therapeutic effects in vivo. Thus, our findings indicate that DIM promotes the stemness of hucMSCs through increased exosomal Wnt11 autocrine signaling, which provides a novel strategy for improving the therapeutic effects of hucMSCs on wound healing. PMID:28529644

  5. Quantitative Microbial Risk Assessment Tutorial - Navigate the SDMPB and Identify an 8-digit HUC of Interest - Updated 2017

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) that allow a user to identify an 8-digit HUC (HUC-8) of interest from which a pour point or 12-digit HUC (HUC-12) can be chosen for a microbial assessment. It demonstrates how t...

  6. Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β-Catenin Pathway

    PubMed Central

    Zhang, Bin; Wu, Xiaodan; Zhang, Xu; Sun, Yaoxiang; Yan, Yongmin; Shi, Hui; Zhu, Yanhua; Wu, Lijun; Pan, Zhaoji; Zhu, Wei

    2015-01-01

    Human umbilical cord mesenchymal stem cells (hucMSCs) and their exosomes have been considered as potential therapeutic tools for tissue regeneration; however, the underlying mechanisms are still not well understood. In this study, we isolated and characterized the exosomes from hucMSCs (hucMSC-Ex) and demonstrated that hucMSC-Ex promoted the proliferation, migration, and tube formation of endothelial cells in a dose-dependent manner. Furthermore, we demonstrated that hucMSC-Ex promoted wound healing and angiogenesis in vivo by using a rat skin burn model. We discovered that hucMSC-Ex promoted β-catenin nuclear translocation and induced the increased expression of proliferating cell nuclear antigen, cyclin D3, N-cadherin, and β-catenin and the decreased expression of E-cadherin. The activation of Wnt/β-catenin is critical in the induction of angiogenesis by hucMSC-Ex, which could be reversed by β-catenin inhibitor ICG-001. Wnt4 was delivered by hucMSC-Ex, and the knockdown of Wnt4 in hucMSC-Ex abrogated β-catenin nuclear translocation in endothelial cells. The in vivo proangiogenic effects were also inhibited by interference of Wnt4 expression in hucMSC-Ex. Taken together, these results suggest that hucMSC-Ex-mediated Wnt4 induces β-catenin activation in endothelial cells and exerts proangiogenic effects, which could be an important mechanism for cutaneous wound healing. PMID:25824139

  7. Viral hemorrhagic septicemia IVb status in the United States: inferences from surveillance activities and regional context.

    PubMed

    Gustafson, L L; Remmenga, M D; Gardner, I A; Hartman, K H; Creekmore, L H; Goodwin, A E; Whaley, J E; Warg, J V; Gardner, S L; Scott, A E

    2014-06-01

    The United States (U.S.) response to viral hemorrhagic septicemia virus (VHSV) IVb emergence in the Laurentian Great Lakes (GL) included risk-based surveillance for cost-effective decision support regarding the health of fish populations in open systems. All U.S. VHSV IVb isolations to date derive from free-ranging fish from GL States. Most originate in the region designated by US Geological Survey hydrologic unit code (HUC) 04, with the exception of two detections in neighboring Upper Mississippi (HUC 05) and Ohio (HUC 07) regions. For States outside the GL system, disease probability was assessed using multiple evidence sources. None substantiated VHSV IVb absence using surveillance alone, in part due to the limited temporal relevance of data in open systems. However, Bayesian odds risk-based analysis of surveillance and population context, coupled with exclusions where water temperatures likely preclude viral replication, achieved VHSV IVb freedom assurance for 14 non-GL States by the end of 2012, with partial evidence obtained for another 17 States. The non-GL region (defined as the aggregate of 4-digit HUCs located outside of GL States) met disease freedom targets for 2012 and is projected to maintain this status through 2016 without additional active surveillance. Projections hinge on continued basic biosecurity conditions such as movement restrictions and passive surveillance. Areas with navigable waterway connections to VHSV IVb-affected HUCs (and conducive water temperatures) should receive priority for resources in future surveillance or capacity building efforts. However, 6 years of absence of detections in non-GL States suggests that existing controls limit pathogen spread, and that even spread via natural pathways (e.g., water movement or migratory fish) appears contained to the Great Lakes system. This report exemplifies the cost-effective use of risk-based surveillance in decision support to assess and manage aquatic animal population health in open systems. Published by Elsevier B.V.

  8. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010 eras. Results will provide insight into how storm surge has evolved in coastal Louisiana from 1930 to 2010 and assist to inform policy makers of regions with temporally accelerating storm surge.

  9. The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts.

    PubMed

    Lisse, Thomas S; Vadivel, Kanagasabai; Bajaj, S Paul; Chun, Rene F; Hewison, Martin; Adams, John S

    2014-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing. More recently hnRNP C has also been shown to function as a DNA binding protein exerting a dominant-negative effect on transcriptional responses to the vitamin D hormone,1,25-dihydroxyvitamin D (1,25(OH) 2 D), via interaction in cis with vitamin D response elements (VDREs). The physiologically active form of human hnRNPC is a tetramer of hnRNPC1 (huC1) and C2 (huC2) subunits known to be critical for specific RNA binding activity in vivo , yet the requirement for heterodimerization of huC1 and C2 in DNA binding and downstream action is not well understood. While over-expression of either huC1 or huC2 alone in mouse osteoblastic cells did not suppress 1,25(OH) 2 D-induced transcription, over-expression of huC1 and huC2 in combination using a bone-specific polycistronic vector successfully suppressed 1,25(OH) 2 D-mediated induction of osteoblast target gene expression. Over-expression of either huC1 or huC2 in human osteoblasts was sufficient to confer suppression of 1,25(OH) 2 D-mediated transcription, indicating the ability of transfected huC1 and huC2 to successfully engage as heterodimerization partners with endogenously expressed huC1 and huC2. The failure of the chimeric combination of mouse and human hnRNPCs to impair 1,25(OH) 2 D-driven gene expression in mouse cells was structurally predicted, owing to the absence of the last helix in the leucine zipper (LZ) heterodimerization domain of hnRNPC gene product in lower species, including the mouse. These results confirm that species-specific heterodimerization of hnRNPC1 and hnRNPC2 is a necessary prerequisite for DNA binding and down-regulation of 1,25(OH) 2 D-VDR-VDRE-directed gene transactivation in osteoblasts.

  10. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl4-Induced Liver Injury through Antioxidant Effect.

    PubMed

    Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin

    2018-01-01

    Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.

  11. EnviroAtlas - NHDPlus V2 WBD Snapshot, EnviroAtlas version - Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset is a digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level for the conterminous United States, based on the January 6, 2015 NHDPlus V2 WBD (Watershed Boundary Dataset) Snapshot (NHDPlusV21_NationalData_WBDSnapshot_FileGDB_05). The feature class has been edited for use in for EPA ORD's EnviroAtlas. Features in Canada and Mexico have been removed, the boundaries of three 12-digit HUCs have been edited to eliminate gaps and overlaps, the dataset has been dissolved on HUC_12 to create multipart polygons, and information on the percent land area has been added. Hawaii, Puerto Rico, and the U.S. Virgin Islands have been removed, and can be downloaded separately. Other than these modifications, the dataset is the same as the WBD Snapshot included in NHDPlus V2.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. Neoplastic transformation of SV40-immortalized human urinary tract epithelial cells by in vitro exposure to 3-methylcholanthrene.

    PubMed

    Reznikoff, C A; Loretz, L J; Christian, B J; Wu, S Q; Meisner, L F

    1988-08-01

    Normal human urinary tract epithelial cells (HUC) were neoplastically transformed in vitro using a step-wise strategy. First, a partially transformed non-virus-producing cell line was obtained after infection of HUC with simian virus 40 (SV40). This cell line (SV-HUC-1) was demonstrated to be clonal in origin, as 100% of cells contained at least five of seven marker chromosomes. Marker chromosomes were formed by balanced translocations resulting in a 'pseudodiploid' cell line. SV-HUC-1 showed altered growth properties in vitro (e.g. anchorage independent growth) but failed to form tumors in athymic nude mice, even after 3 years in culture (80 passages). In the studies reported here, SV-HUC-1 at early passages (P15-P19) were exposed to 3-methylcholanthrene (MCA) in three separate experiments. After a six-week post-treatment period of cell culture, cells were inoculated s.c. into athymic nude mice. In all experiments, MCA-treated SV-HUC-1 formed carcinomas in mice usually with a latent period of 5-8 weeks. These carcinomas showed heterogeneity with respect to histopathologies and growth properties in the mice and karyotypes. All the tumors retained SV-HUC-1 chromosome markers, but each independent transformant was aneuploid and contained unique new marker chromosomes. Chromosomes usually altered in tumor cells included numbers 3, 5, 6, 9, 11 and 13. Mutations in the ras family of cellular proto-oncogenes resulting in altered mobility of the p21 protein product were not detected in six cell lines established from independently derived tumors. It is not yet known whether other cellular proto-oncogenes are activated in these tumorigenic transformants. Neither control SV-HUC-1 (which were not exposed to MCA), nor early passage HUC exposed to MCA formed tumors when inoculated into mice. Thus, the tumorigenic transformation of HUC resulted from the combined actions of SV40 and MCA.

  13. A Compilation of Provisional Karst Geospatial Data for the Interior Low Plateaus Physiographic Region, Central United States

    USGS Publications Warehouse

    Taylor, Charles J.; Nelson, Hugh L.

    2008-01-01

    Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.

  14. Quantitative Microbial Risk Assessment Tutorial: Navigate the SDMPB and Identify an 8-digit HUC of Interest

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) that allow a user to identify a watershed of interest that can be used to choose a pour point or 12-digit HUC (HUC-12) for a microbial assessment. It demonstrates how to identif...

  15. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  16. Spatial variability in nutrient transport by HUC8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW models

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.; Schwarz, Gregory E.

    2014-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. With geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and monitored loads throughout the MARB, SPAtially Referenced Regression On Watershed attributes (SPARROW) watershed models were constructed specifically for the MARB, which reduced simulation errors from previous models. Based on these models, N loads/yields were highest from the central part (centered over Iowa and Indiana) of the MARB (Corn Belt), and the highest P yields were scattered throughout the MARB. Spatial differences in yields from previous studies resulted from different descriptions of the dominant sources (N yields are highest with crop-oriented agriculture and P yields are highest with crop and animal agriculture and major WWTPs) and different descriptions of downstream transport. Delivered loads/yields from the MARB SPARROW models are used to rank subbasins, states, and eight-digit Hydrologic Unit Code basins (HUC8s) by N and P contributions and then rankings are compared with those from other studies. Changes in delivered yields result in an average absolute change of 1.3 (N) and 1.9 (P) places in state ranking and 41 (N) and 69 (P) places in HUC8 ranking from those made with previous national-scale SPARROW models. This information may help managers decide where efforts could have the largest effects (highest ranked areas) and thus reduce hypoxia in the Gulf of Mexico.

  17. EnviroAtlas - Industrial Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes industrial water demand attributes which provide insight into the amount of water currently used for manufacturing and production of commodities in the contiguous United States. The values are based on 2005 water demand and Dun and Bradstreet's 2009/2010 source data, and have been summarized by watershed or 12-digit hydrologic unit code (HUC). For the purposes of this metric, industrial water use includes chemical, food, paper, wood, and metal production. The industrial water is for self-supplied only such as by private wells or reservoirs. Sources include either surface water or groundwater. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Big Game Hunting Recreation Demand by 12-Digit HUC in the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes the total number of recreational days per year demanded by people ages 18 and over for big game hunting by location in the contiguous United States. Big game includes deer, elk, bear, and wild turkey. These values are based on 2010 population distribution, 2011 U.S. Fish and Wildlife Service (FWS) Fish, Hunting, and Wildlife-Associated Recreation (FHWAR) survey data, and 2011 U.S. Department of Agriculture (USDA) Forest Service National Visitor Use Monitoring program data, and have been summarized by 12-digit hydrologic unit code (HUC). This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. Evaluation of the streamgage network for estimating streamflow statistics at ungaged sites in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York

    USGS Publications Warehouse

    Sloto, Ronald A.; Stuckey, Marla H.; Hoffman, Scott A.

    2017-05-10

    The current (2015) streamgage network in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York was evaluated in order to design a network that would meet the hydrologic needs of many partners and serve a variety of purposes and interests, including estimation of streamflow statistics at ungaged sites. This study was done by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection and the Susquehanna River Basin Commission. The study area includes the Commonwealth of Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York. For this study, 229 streamgages were identified as reference streamgages that could be used to represent ungaged watersheds. Criteria for a reference streamgage are a minimum of 10 years of continuous record, minimally altered streamflow, and a drainage area less than 1,500 square miles. Some of the reference streamgages have been discontinued but provide historical hydrologic information valuable in the determination of streamflow characteristics of ungaged watersheds. Watersheds in the study area not adequately represented by a reference streamgage were identified by examining a range of basin characteristics, the extent of geographic coverage, and the strength of estimated streamflow correlations between gaged and ungaged sites.Basin characteristics were determined for the reference streamgage watersheds and the 1,662 12-digit hydrologic unit code (HUC12) subwatersheds in Pennsylvania and the Susquehanna River Basin using a geographic information system (GIS) spatial analysis and nationally available GIS datasets. Basin characteristics selected for this study include drainage area, mean basin elevation, mean basin slope, percentage of urbanized area, percentage of forested area, percentage of carbonate bedrock, mean annual precipitation, and soil thickness. A GIS spatial analysis was used to identify HUC12 subwatersheds outside the range of basin characteristics of the reference streamgages. There were 320 HUC12 subwatersheds, or 19 percent of the study area, with basin characteristics outside the range represented by the reference streamgage watersheds.A GIS spatial analysis was used to identify geographic gaps in the streamgage network. For each streamgage, a watershed area, called the gage statistical area (GSA), was delineated. The GSA shows the drainage area within a specific drainage-area ratio of the streamgage for transfer of streamflow statistics from that streamgage to ungaged sites on the valid statistical reach of the GSA for a streamgage. In Pennsylvania, a drainage-area ratio of 0.33–3 times the drainage area of the ungaged site was found to perform as well as, if not better than, more traditional ratios such as 0.5–1.5 (or 2) for transfer of selected streamflow statistics. A total of 1,102 HUC12 subwatersheds, or 66 percent of the study area, are outside the GSA for a reference streamgage.The USGS Baseline Streamflow Estimator (BaSE) program was used to determine how well HUC12 subwatersheds outside the streamgage GSAs are represented by the reference streamgage network in Pennsylvania, based on estimated streamflow correlation. The centroid of each HUC12 subwatershed was run through the BaSE program to determine the reference streamgage with the highest estimated streamflow correlation. There were 929 HUC12 subwatersheds in Pennsylvania, or 56 percent of the State, with an estimated correlation coefficient less than 0.96.The results from the basin characteristic, geographic, and streamflow correlation analyses were combined to identify 1,405 HUC12 subwatersheds in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York that lack a representative reference, based on at least one identified gap. Of the 1,405 HUC12 subwatersheds, 139 exhibited all three gaps, indicating a 8-percent gap in the reference streamgage network.Streamgages in areas with similar hydrologic characteristics and in close proximity to one another can potentially provide similar information (termed streamgages with high substitution potential). Streamgages were considered to have a high substitution potential with a nearby streamgage(s) if (1) the streamflow correlation coefficient was equal to or greater than 0.96, (2) the streamgages had 10 years of concurrent record, and (3) the streamgages are in the same watershed within the GSA of the streamgage. Seventy-four current (2015) streamgages with high substitution potential with at least one other streamgage were identified in the study area. Although these identified streamgages have a high substitution potential, they provide valuable streamflow information to a stakeholder. Selected primary uses of these streamgages were identified to determine the overall need for an individual streamgage.

  20. Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models

    NASA Astrophysics Data System (ADS)

    Starn, J. J.; Belitz, K.

    2014-12-01

    National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions. Convolution with age distributions can be used to quickly ascertain likely future water-quality conditions. Although these models are admittedly very general and are still being tested, the hope is that they will be useful for answering questions related to water quality at the regional scale.

  1. How Misapplication of the Hydrologic Unit Framework ...

    EPA Pesticide Factsheets

    Hydrologic units provide a convenient nationwide set of geographic polygons based on an arbitrary subdivision of the drainage of land surface areas at several hierarchical levels. Half or more of these units, however, are not true watersheds as the official name of the framework, Watershed Boundary Dataset (WBD), implies. Hydrologic units and watersheds are commonly treated as synonymous, and this misuse and misunderstanding can have some serious consequences. We discuss some of the strengths and limitations of watersheds and hydrologic units as spatial frameworks. Using examples from the Northwest and Southeast U.S., we explain how the misuse of the hydrologic unit framework has affected the meaning of watersheds and can impair the understanding of the associations of spatial geographic phenomena relative to a potentially infinite number of points on streams due to their linear nature. Watersheds are a fundamental geographic unit used to study the effects of natural and anthropogenic characteristics on the quality and quantity of water. Most scientists and resource managers historically have been in agreement on the spatial meaning of the term ‘watershed’ – that is, the topographic area within which water drains to a specific point on a stream, river, or particular waterbody. The Hydrologic Unit Code (HUC) framework, however, has changed this understanding. Hydrologic units provide a convenient nationwide set of geographic polygons based on an arbitra

  2. Atlas of Ohio Aquatic Insects: Volume II, Plecoptera.

    PubMed

    DeWalt, R Edward; Grubbs, Scott A; Armitage, Brian J; Baumann, Richard W; Clark, Shawn M; Bolton, Michael J

    2016-01-01

    We provide volume II of a distributional atlas of aquatic insects for the eastern USA state of Ohio. This treatment of stoneflies (Plecoptera) is companion to Armitage et al. (2011) on caddisflies (Trichoptera). We build on a recent analysis of Ohio stonefly diversity patterns based on large drainages (DeWalt et al. 2012), but add 3717 new records to the data set. We base most analyses on the United States Geological Survey Hierarchical Unit Code eight (HUC8) drainage scale. In addition to distributional maps for each species, we provide analyses of species richness versus HUC8 drainage area and the number of unique locations in a HUC8 drainage, species richness versus Ohio counties, analyze adult presence phenology throughout the year, and demonstrate stream size range affiliation for each species. This work is based on a total of 7797 specimen records gathered from 21 regional museums, agency data, personal collections, and from the literature Table 1. To our knowledge this is the largest stonefly data set available for a similarly sized geopolitical area anywhere in the world. These data are made available as a Darwin Core Archive supported by the Pensoft Integrated Publishing Toolkit (DeWalt et al. 2016b). All known published papers reporting stoneflies from Ohio are detailed in Suppl. material 1. We recovered 102 species from Ohio, including all nine Nearctic families Table 2​. Two species were removed from the DeWalt et al. (2012) list and two new state records added. Perlidae (32 spp.) was most speciose, compared to the low diversity Pteronarcyidae (2 spp.) and Peltoperlidae (1 sp.). The richest HUC8 drainages occurred in northeastern, south-central, and southern regions of the state where drainages were heavily forested, had the highest slopes, and were contained within or adjacent to the unglaciated Allegheny and Appalachian Plateaus. Species poor drainages occurred mainly in the northwestern region where Wisconsinan aged lake plains climaxed to an expansive wooded wetland, the Black Swamp. The unglaciated Lower Scioto drainage (72 spp.) in south-central Ohio supported the greatest species richness. There was no relationship between species richness and HUC8 drainage size, but the number of unique locations in a drainage strongly related to species richness. All Ohio counties were represented in the data set with Hocking County (59 spp.) of the Lower Scioto drainage being the richest and most heavily sampled. Adult presence phenology was influenced by phylogenetic relationships such that the superfamily Nemouroidea (Capniidae, Leuctridae, Nemouridae, and Taeniopterygidae) generally emerged in winter and spring while the superfamilies Pteronarcyoidea (Pteronarcyidae, Peltoperlidae) and Perloidea (Chloroperlidae, Perlidae, Perlodidae) emerged later, some species continuing emergence through summer months. Species often occupied specific stream size ranges, while others were generalists. Two species once histrorically abundant in the western Lake Erie Bass Islands no longer reside there. Each of the 102 species is discussed in detail, including several that require additional collecting efforts to confirm their identities, presence, and distribution in Ohio.

  3. HUC--A User Designed System for All Recorded Knowledge and Information.

    ERIC Educational Resources Information Center

    Hilton, Howard J.

    This paper proposes a user designed system, HUC, intended to provide a single index and retrieval system covering all recorded knowledge and information capable of being retrieved from all modes of storage, from manual to the most sophisticated retrieval system. The concept integrates terminal hardware, software, and database structure to allow…

  4. Characteristics of polyomavirus BK (BKPyV) infection in primary human urothelial cells.

    PubMed

    Li, Ruomei; Sharma, Biswa Nath; Linder, Stig; Gutteberg, Tore Jarl; Hirsch, Hans H; Rinaldo, Christine Hanssen

    2013-05-25

    High-level polyomavirus BK (BKPyV) replication in urothelial cells is a hallmark of polyomavirus-associated hemorrhagic cystitis (PyVHC), a painful condition affecting bone marrow transplant recipients. In kidney transplant recipients, replication in tubular epithelial cells is associated with overt disease whereas high-level urothelial replication is clinically silent. We characterized BKPyV replication in primary human urothelial cells (HUCs) and compared it to replication in renal tubular epithelial cells (RPTECs). HUCs were easily infected, as shown by expression of T-antigens, VP1-3, and agnoprotein, and intranuclear virion production. Compared to RPTECs, progeny release was delayed by ≥24h and reduced. BKPyV-infected HUCs rounded up like "decoy cells" and detached without necrosis as shown by delayed cytokeratin-18 release, real-time viability monitoring and imaging. The data show that BKV infection of HUCs and RPTECs is significantly different and support the notion that PyVHC pathogenesis is not solely due to BKPyV replication, but likely requires urotoxic and immunological cofactors. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  6. Levee Presence and Wetland Areas within the 100-Year Floodplain of the Wabash Basin

    NASA Astrophysics Data System (ADS)

    Morrison, R. R.; Dong, Q.; Nardi, F.; Grantham, T.; Annis, A.

    2016-12-01

    Wetlands have declined over the past century due to land use changes and water management activities in the United States. Levees have been extensively built to provide protection against flooding events, and can fundamentally alter the water distribution and hydrologic dynamics within floodplains. Although levees can reduce wetlands in many places, it is unclear how much wetland areas are impacted at a basin-scale. This study explores the relationship between wetlands, levee presence, and other important hydrologic metrics within a 100-year floodplain. We estimated total wetland area, levee length, floodplain area and other variables, in discrete 12-digit hydrologic units (HUC-12) of the Wabash Basin (n=854) and examined the relationship between these variables using non-parametric statistical tests. We found greater areas of wetland habitat in HUC12 units that contain levees compared to those without levees when we aggregated the results across the entire basin. Factors such as stream order, mean annual flow, and HUC12 area are not correlated with the wetland area in HUC-12 units that contain levees. In addition, median wetland area in HUC12 units with levees is surprisingly consistent regardless of maximum stream order. Visual observations of wetland distributions indicate that wetland presence may be dependent on its location relative to levees. These results indicate that refined geospatial analyses may be necessary to explore the complex influence of levees on wetland habitat, and that additional basins should be explored to develop more generalized trends. This information is preliminary and subject to revision.

  7. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples.

    PubMed

    Canetta, Elisabetta; Mazilu, Michael; De Luca, Anna Chiara; Carruthers, Antonia E; Dholakia, Kishan; Neilson, Sam; Sargeant, Harry; Briscoe, Tina; Herrington, C Simon; Riches, Andrew C

    2011-03-01

    Standard Raman spectroscopy (SRS) is a noninvasive technique that is used in the biomedical field to discriminate between normal and cancer cells. However, the presence of a strong fluorescence background detracts from the use of SRS in real-time clinical applications. Recently, we have reported a novel modulated Raman spectroscopy (MRS) technique to extract the Raman spectra from the background. In this paper, we present the first application of MRS to the identification of human urothelial cells (SV-HUC-1) and bladder cancer cells (MGH) in urine samples. These results are compared to those obtained by SRS. Classification using the principal component analysis clearly shows that MRS allows discrimination between Raman spectra of SV-HUC-1 and MGH cells with high sensitivity (98%) and specificity (95%). MRS is also used to distinguish between SV-HUC-1 and MGH cells after exposure to urine for up to 6 h. We observe a marked change in the MRS of SV-HUC-1 and MGH cells with time in urine, indicating that the conditions of sample collection will be important for the application of this methodology to clinical urine samples.

  8. Atlas of Ohio Aquatic Insects: Volume II, Plecoptera

    PubMed Central

    Grubbs, Scott A.; Armitage, Brian J.; Baumann, Richard W.; Clark, Shawn M.; Bolton, Michael J.

    2016-01-01

    Abstract Background We provide volume II of a distributional atlas of aquatic insects for the eastern USA state of Ohio. This treatment of stoneflies (Plecoptera) is companion to Armitage et al. (2011) on caddisflies (Trichoptera). We build on a recent analysis of Ohio stonefly diversity patterns based on large drainages (DeWalt et al. 2012), but add 3717 new records to the data set. We base most analyses on the United States Geological Survey Hierarchical Unit Code eight (HUC8) drainage scale. In addition to distributional maps for each species, we provide analyses of species richness versus HUC8 drainage area and the number of unique locations in a HUC8 drainage, species richness versus Ohio counties, analyze adult presence phenology throughout the year, and demonstrate stream size range affiliation for each species. New information This work is based on a total of 7797 specimen records gathered from 21 regional museums, agency data, personal collections, and from the literature Table 1. To our knowledge this is the largest stonefly data set available for a similarly sized geopolitical area anywhere in the world. These data are made available as a Darwin Core Archive supported by the Pensoft Integrated Publishing Toolkit (DeWalt et al. 2016b). All known published papers reporting stoneflies from Ohio are detailed in Suppl. material 1. We recovered 102 species from Ohio, including all nine Nearctic families Table 2​. Two species were removed from the DeWalt et al. (2012) list and two new state records added. Perlidae (32 spp.) was most speciose, compared to the low diversity Pteronarcyidae (2 spp.) and Peltoperlidae (1 sp.). The richest HUC8 drainages occurred in northeastern, south-central, and southern regions of the state where drainages were heavily forested, had the highest slopes, and were contained within or adjacent to the unglaciated Allegheny and Appalachian Plateaus. Species poor drainages occurred mainly in the northwestern region where Wisconsinan aged lake plains climaxed to an expansive wooded wetland, the Black Swamp. The unglaciated Lower Scioto drainage (72 spp.) in south-central Ohio supported the greatest species richness. There was no relationship between species richness and HUC8 drainage size, but the number of unique locations in a drainage strongly related to species richness. All Ohio counties were represented in the data set with Hocking County (59 spp.) of the Lower Scioto drainage being the richest and most heavily sampled. Adult presence phenology was influenced by phylogenetic relationships such that the superfamily Nemouroidea (Capniidae, Leuctridae, Nemouridae, and Taeniopterygidae) generally emerged in winter and spring while the superfamilies Pteronarcyoidea (Pteronarcyidae, Peltoperlidae) and Perloidea (Chloroperlidae, Perlidae, Perlodidae) emerged later, some species continuing emergence through summer months. Species often occupied specific stream size ranges, while others were generalists. Two species once histrorically abundant in the western Lake Erie Bass Islands no longer reside there. Each of the 102 species is discussed in detail, including several that require additional collecting efforts to confirm their identities, presence, and distribution in Ohio. PMID:27932932

  9. Nasopharyngeal Pneumococcal Colonization and Impact of a Single Dose of 13-Valent Pneumococcal Conjugate Vaccine in Indian Children With HIV and Their Unvaccinated Parents.

    PubMed

    Arya, Bikas K; Bhattacharya, Sangeeta Das; Sutcliffe, Catherine G; Ganaie, Feroze; Bhaskar, Arun; Bhattacharyya, Subhasish; Niyogi, Swapan Kumar; Moss, William J; Panda, Samiran; Ravikumar, Kadahalli Lingegowda; Das, Ranjan Saurav; Mandal, Sutapa

    2018-05-01

    Human immunodeficiency virus (HIV) infection increases risk of invasive disease from Streptococcus pneumoniae. Pneumococcal conjugate vaccines (PCV) prevent invasive disease and acquisition of vaccine type (VT) pneumococcus in the nasopharynx. To look at the safety and impact of one dose of PCV13 on acquisition of VT pneumococcal carriage in Indian children with HIV. We conducted a cohort study in families of HIV-infected children (CLH) and families of HIV-uninfected children (HUC) in West Bengal. All children received one dose of PCV13. Nasopharyngeal swabs were collected from children and parents at baseline and 2 months after vaccination. One hundred and fifteen CLH and 47 HUC received one dose of PCV13. Fifty-eight percent of CLH were on antiretroviral therapy (ART), and the median nadir CD4 count was 287. There were no significant adverse events in either group. HUC had more VT colonization than CLH-55% versus 23% of all pneumococcal isolates. HIV infection doubled the risk of nonvaccine serotype colonization (P = 0.03). There was no difference in acquisition of VT isolates in CLH (4.4%) and HUC (4.5%) post-PCV13; however, older CLH (>5 years) had decreased clearance of VT strains. ART made no difference in pneumococcal colonization at baseline or after PCV13; however, CLH with higher nadir CD4 counts before starting ART were less likely to have VT colonization post-PCV13 (prevalence ratio, 0.2; 95% confidence interval: 0.1-0.5). While there was no difference in acquisition of VT nasopharyngeal carriage of pneumococcus in CLH and HUC after one dose of PCV13, earlier access to ART may impact response to PCV13 in CLH.

  10. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.

    PubMed

    Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K

    2014-05-01

    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. GIS-based identification of areas with mineral resource potential for six selected deposit groups, Bureau of Land Management Central Yukon Planning Area, Alaska

    USGS Publications Warehouse

    Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.

    2015-01-01

    This study has used a data-driven, geographic information system (GIS)-based method for evaluating the mineral resource potential across the large region of the CYPA. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic unit codes or HUCs) as the spatial unit of classification. The final map output indicates an estimated potential (high, medium, low) for a given mineral deposit group and indicates the certainty (high, medium, low) of that estimate for any given subwatershed (HUC). Accompanying tables describe the data layers used in each analysis, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to the estimated potential and certainty determinations. Core datasets used include the U.S. Geological Survey (USGS) Alaska Geochemical Database (AGDB2), the Alaska Division of Geologic and Geophysical Surveys Web-based geochemical database, data from an anticipated USGS geologic map of Alaska, and the USGS Alaska Resource Data File. Map plates accompanying this report illustrate the mineral prospectivity for the six deposit groups across the CYPA and estimates of mineral resource potential. There are numerous areas, some of them large, rated with high potential for one or more of the selected deposit groups within the CYPA.

  12. EnviroAtlas - Agricultural Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    The national agricultural water demand metric provides insight into the amount of water currently used for agricultural irrigation in the contiguous United States. The values are based on 2005 irrigation water use; combined 2010 crop, 2006 land use, and 2001 remotely sensed irrigation location estimates; and have been summarized by watershed or 12-digit hydrologic unit code (HUC). Agricultural irrigation water use, as defined in this case, meets a variety of needs before, during, and after growing seasons (e.g., dust suppression, field preparation, chemical application, weed control, salt removal from root zones, frost protection, crop cooling, and harvesting). Estimates include self-supplied surface and groundwater, as well as supplies from irrigation-specific organizations (e.g., companies, districts, cooperatives, government). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Domestic Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes domestic water demand attributes which provide insight into the amount of water currently used for indoor and outdoor residential purposes in the contiguous United States. The values are based on 2010 water demand and 2010 population distribution, and have been summarized by subwatershed, or 12-digit hydrologic unit code (HUC12). For the purposes of this metric, domestic water use includes residential uses, such as for drinking, bathing, cleaning, landscaping, and pools. Depending on the location, domestic water can be self-supplied, such as by private wells, or publicly-supplied, such as by municipalities. Sources include surface water and groundwater. Estimates are for primary residences only (i.e., excluding second homes and tourism rentals). This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: using point and gridded FLUXNET and water balance ET

    USGS Publications Warehouse

    Velpuri, Naga M.; Senay, Gabriel B.; Singh, Ramesh K.; Bohms, Stefanie; Verdin, James P.

    2013-01-01

    Remote sensing datasets are increasingly being used to provide spatially explicit large scale evapotranspiration (ET) estimates. Extensive evaluation of such large scale estimates is necessary before they can be used in various applications. In this study, two monthly MODIS 1 km ET products, MODIS global ET (MOD16) and Operational Simplified Surface Energy Balance (SSEBop) ET, are validated over the conterminous United States at both point and basin scales. Point scale validation was performed using eddy covariance FLUXNET ET (FLET) data (2001–2007) aggregated by year, land cover, elevation and climate zone. Basin scale validation was performed using annual gridded FLUXNET ET (GFET) and annual basin water balance ET (WBET) data aggregated by various hydrologic unit code (HUC) levels. Point scale validation using monthly data aggregated by years revealed that the MOD16 ET and SSEBop ET products showed overall comparable annual accuracies. For most land cover types, both ET products showed comparable results. However, SSEBop showed higher performance for Grassland and Forest classes; MOD16 showed improved performance in the Woody Savanna class. Accuracy of both the ET products was also found to be comparable over different climate zones. However, SSEBop data showed higher skill score across the climate zones covering the western United States. Validation results at different HUC levels over 2000–2011 using GFET as a reference indicate higher accuracies for MOD16 ET data. MOD16, SSEBop and GFET data were validated against WBET (2000–2009), and results indicate that both MOD16 and SSEBop ET matched the accuracies of the global GFET dataset at different HUC levels. Our results indicate that both MODIS ET products effectively reproduced basin scale ET response (up to 25% uncertainty) compared to CONUS-wide point-based ET response (up to 50–60% uncertainty) illustrating the reliability of MODIS ET products for basin-scale ET estimation. Results from this research would guide the additional parameter refinement required for the MOD16 and SSEBop algorithms in order to further improve their accuracy and performance for agro-hydrologic applications.

  15. Local and Cumulative Impervious Cover of Massachusetts Stream Basins

    USGS Publications Warehouse

    Brandt, Sara L.; Steeves, Peter A.

    2009-01-01

    Impervious surfaces such as paved roads, parking lots, and building roofs can affect the natural streamflow patterns and ecosystems of nearby streams. This dataset summarizes the percentage of impervious area for watersheds across Massachusetts by using a newly available statewide 1-m binary raster dataset of impervious surface for 2005. In order to accurately capture the wide spatial variability of impervious surface, it was necessary to delineate a new set of finely discretized basin boundaries for Massachusetts. This new set of basins was delineated at a scale finer than that of the existing 12-digit Hydrologic Unit Code basins (HUC-12s) of the national Watershed Boundary Dataset. The dataset consists of three GIS shapefiles. The Massachusetts nested subbasins and the hydrologic units data layers consist of topographically delineated boundaries and their associated percentage of impervious cover for all of Massachusetts except Cape Cod, the Islands, and the Plymouth-Carver region. The Massachusetts groundwater-contributing areas data layer consists of groundwater contributing-area boundaries for streams and coastal areas of Cape Cod and the Plymouth-Carver region. These boundaries were delineated by using groundwater-flow models previously published by the U.S. Geological Survey. Subbasin and hydrologic unit boundaries were delineated statewide with the exception of Cape Cod and the Plymouth-Carver Region. For the purpose of this study, a subbasin is defined as the entire drainage area upstream of an outlet point. Subbasins draining to multiple outlet points on the same stream are nested. That is, a large downstream subbasin polygon comprises all of the smaller upstream subbasin polygons. A hydrologic unit is the intervening drainage area between a given outlet point and the outlet point of the next upstream unit (Fig. 1). Hydrologic units divide subbasins into discrete, nonoverlapping areas. Each hydrologic unit corresponds to a subbasin delineated from the same outlet point; the hydrologic unit and the subbasin share the same unique identifier attribute. Because the same set of outlet points was used for the delineation of subbasins and hydrologic units, the linework for both data layers is identical; however, polygon attributes differ because for a given outlet point, the subbasin polygon area is the sum of all the upstream hydrologic units. Impervious surface summarized for a subbasin represents the percentage of impervious surface area of the entire upstream watershed, whereas the impervious surface for a hydrologic unit represents the percentage of impervious surface area for the intervening drainage area between two outlet points.

  16. EnviroAtlas - Synthetic N fertilizer application to agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean synthetic nitrogen (N) fertilizer application to cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Synthetic N fertilizer inputs in 2006 were estimated using county-level estimates of farm N fertilizer inputs. We acquired county-level data describing total farm-level inputs (kg N/yr) of synthetic N fertilizer to individual counties in 2006 from the United States Geological Survey (USGS) (http://pubs.usgs.gov/sir/2012/5207/). These data were converted to per area rates (kg N/ha/yr) of synthetic N fertilizer application by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture lands within a county as determined from county-level (http://cta.ornl.gov/transnet/Boundaries.html) summarization of the 2006 National Land Cover Database (NLCD; http://www.mrlc.gov/nlcd06_data.php). We distributed county-specific, annual per area N inputs rates (kg N/ha/yr) to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county using the raster calculator tool in ArcMap 10.0 (ESRI, Inc., Redlands, CA). Fertilizer data described here represent an average input to a typical agricultural land type within a county, i.e., they are not specific to individual crop types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the us

  17. Concentrations, loads, and yields of total nitrogen and total phosphorus in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 1989-2011, at multiple spatial scales

    USGS Publications Warehouse

    Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.

    2014-01-01

    Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.

  18. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  19. Involvement of epigenetics and EMT related miRNA in arsenic induced neoplastic transformation and their potential clinical use

    PubMed Central

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.

    2015-01-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject’s risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. PMID:25586904

  20. Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    PubMed Central

    DeWalt, R. Edward; Cao, Yong; Tweddale, Tari; Grubbs, Scott A.; Hinz, Leon; Pessino, Massimo; Robinson, Jason L.

    2012-01-01

    Abstract Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6) were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainages having richer assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp.) and Kentucky (108 spp.), two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection. PMID:22539876

  1. EnviroAtlas - Average Annual Precipitation 1981-2010 by HUC12 for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset provides the average annual precipitation by 12-digit Hydrologic Unit (HUC). The values were estimated from maps produced by the PRISM Climate Group, Oregon State University. The original data was at the scale of 800 m grid cells representing average precipitation from 1981-2010 in mm. The data was converted to inches of precipitation and then zonal statistics were estimated for a final value of average annual precipitation for each 12 digit HUC. For more information about the original dataset please refer to the PRISM website at http://www.prism.oregonstate.edu/. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. Characterizing and optimizing poly-l-lactide-co-ε-caprolactone membranes for urothelial tissue engineering

    PubMed Central

    Sartoneva, Reetta; Haaparanta, Anne-Marie; Lahdes-Vasama, Tuija; Mannerström, Bettina; Kellomäki, Minna; Salomäki, Minna; Sándor, George; Seppänen, Riitta; Miettinen, Susanna; Haimi, Suvi

    2012-01-01

    Different synthetic biomaterials such as polylactide (PLA), polycaprolactone and poly-l-lactide-co-ε-caprolactone (PLCL) have been studied for urothelial tissue engineering, with favourable results. The aim of this research was to further optimize the growth surface for human urothelial cells (hUCs) by comparing different PLCL-based membranes: smooth (s) and textured (t) PLCL and knitted PLA mesh with compression-moulded PLCL (cPLCL). The effects of topographical texturing on urothelial cell response and mechanical properties under hydrolysis were studied. The main finding was that both sPLCL and tPLCL supported hUC growth significantly better than cPLCL. Interestingly, tPLCL gave no significant advantage to hUC attachment or proliferation compared with sPLCL. However, during the 14 day assessment period, the majority of cells were viable and maintained phenotype on all the membranes studied. The material characterization exhibited potential mechanical characteristics of sPLCL and tPLCL for urothelial applications. Furthermore, the highest elongation of tPLCL supports the use of this kind of texturing. In conclusion, in light of our cell culture results and mechanical characterization, both sPLCL and tPLCL should be further studied for urothelial tissue engineering. PMID:22896571

  3. WaterWatch - Maps, graphs, and tables of current, recent, and past streamflow conditions

    USGS Publications Warehouse

    Jian, Xiaodong; Wolock, David; Lins, Harry F.

    2008-01-01

    WaterWatch (http://water.usgs.gov/waterwatch/) is a U.S. Geological Survey (USGS) World Wide Web site that dis­plays maps, graphs, and tables describing real-time, recent, and past streamflow conditions for the United States. The real-time information generally is updated on an hourly basis. WaterWatch provides streamgage-based maps that show the location of more than 3,000 long-term (30 years or more) USGS streamgages; use colors to represent streamflow conditions compared to historical streamflow; feature a point-and-click interface allowing users to retrieve graphs of stream stage (water elevation) and flow; and highlight locations where extreme hydrologic events, such as floods and droughts, are occurring.The streamgage-based maps show streamflow conditions for real-time, average daily, and 7-day average streamflow. The real-time streamflow maps highlight flood and high flow conditions. The 7-day average streamflow maps highlight below-normal and drought conditions.WaterWatch also provides hydrologic unit code (HUC) maps. HUC-based maps are derived from the streamgage-based maps and illustrate streamflow conditions in hydrologic regions. These maps show average streamflow conditions for 1-, 7-, 14-, and 28-day periods, and for monthly average streamflow; highlight regions of low flow or hydrologic drought; and provide historical runoff and streamflow conditions beginning in 1901.WaterWatch summarizes streamflow conditions in a region (state or hydrologic unit) in terms of the long-term typical condition at streamgages in the region. Summary tables are provided along with time-series plots that depict variations through time. WaterWatch also includes tables of current streamflow information and locations of flooding.

  4. Inland area contingency plan and maps for Pennsylvania (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  5. Inland area contingency plan and maps for Virginia (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  6. Synthesis and characterization of a stable humic-urease complex: application to barley seed encapsulation for improving N uptake.

    PubMed

    Mvila, Beaufray G; Pilar-Izquierdo, María C; Busto, María D; Perez-Mateos, Manuel; Ortega, Natividad

    2016-07-01

    Most N fertilizers added to soil are not efficiently used by plants and are lost to the atmosphere or leached from the soil, causing environmental pollution and increasing cost. Barley seed encapsulation in calcium alginate gels containing free or immobilized urease to enhance plant utilization of soil N was investigated. Urease was immobilized with soil humic acids (HA). A central composite face-centered design was applied to optimize the immobilization process, reaching an immobilization yield of 127%. Soil stability of urease was enhanced after the immobilization. Seed encapsulation with free urease (FU) and humic-urease complex (HUC) resulted in a urease activity retention in the coating layer of 46% and 24%, and in germination rates of 87% and 92%, respectively. Under pot culture conditions, the pots planted with seeds encapsulated with FU and HUC showed higher ammonium N (NH4 (+) -N) (26% and 64%, respectively) than the control soil at 28 days after planting (DAP). Moreover, the seed encapsulation with FU and HUC increased the N uptake 83% and 97%, respectively, at 35 DAP. Seed encapsulation with urease could substantially contribute to enhancing plant N nutrition in the early stages of seedling establishment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Antidepressant-like actions by silencing of neuronal ELAV-like RNA-binding proteins HuB and HuC in a model of depression in male mice.

    PubMed

    Sanna, Maria Domenica; Quattrone, Alessandro; Galeotti, Nicoletta

    2018-06-01

    Currently available antidepressant drugs often fail to achieve full remission and patients might evolve to treatment resistance, showing the need to achieve a better therapy of depressive disorders. Increasing evidence supports that post-transcriptional regulation of gene expression is important in neuronal development and survival and a relevant role is played by RNA binding proteins (RBP). To explore new therapeutic strategies, we investigated the role of the neuron-specific ELAV-like RBP (HuB, HuC, HuD) in a mouse model of depression. In this study, a 4-week unpredictable chronic mild stress (UCMS) protocol was applied to mice to induce a depressive-like phenotype. In the last 2 weeks of the UCMS regimen, silencing of HuB, HuC or HuD was performed by using specific antisense oligonucleotides (aODN). Treatment of UCMS-exposed mice with anti-HuB and anti-HuC aODN improved both anhedonia and behavioural despair, used as measures of depressive-like behaviour, without modifying the response of stressed mice to an anxiety-inducing environment. On the contrary, HuD silencing promoted an anxiolytic-like behaviour in UCMS-exposed mice without improving depressive-like behaviours. The antidepressant-like phenotype of anti-HuB and anti-HuC mice was not shown concurrently with the promotion of adult hippocampal neurogenesis in the dentate gyrus, and no increase in the BDNF and CREB content was detected. Conversely, in the CA3 hippocampal region, projection area of newly born neurons, HuB and HuC silencing increased the number of BrdU/NeuN positive cells. These results give the first indication of a role of nELAV in the modulation of emotional states in a mouse model of depression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. DREAM-3D and the importance of model inputs and boundary conditions

    NASA Astrophysics Data System (ADS)

    Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue

    2015-04-01

    Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.

  9. A biohybrid hydrogel for the urate-responsive release of urate oxidase.

    PubMed

    Geraths, Christian; Daoud-El Baba, Marie; Charpin-El Hamri, Ghislaine; Weber, Wilfried

    2013-10-10

    Functional biomaterials that detect and correct pathological parameters hold high promises for biomedical application. In this study we describe a biohybrid hydrogel that detects elevated concentrations of uric acid and responds by dissolution and the release of uric acid-degrading urate oxidase. This material was synthesized by incorporating PEG-stabilized urate oxidase into a polyacrylamide hydrogel that was crosslinked by the uric acid-sensitive interaction between the uric acid transcription factor HucR and its operator hucO. We characterize the uric acid responsiveness of the material and demonstrate that it can effectively be applied to counteract flares of uric acid in a mouse model. This approach might be a first step towards a biomedical device autonomously managing uric acid burst associated to gouty arthritis and the tumor lysis syndrome. © 2013.

  10. Cytogenetic damage, oncogenic transformation and p53 induction in human epithelial cells in response to irradiation

    NASA Astrophysics Data System (ADS)

    Armitage, Mark

    Ionizing radiation can have several different effects on cells, some are almost instantaneous such as the generation of DNA damage, other cellular responses take a matter of minutes or hours - DNA repair protein induction/activation, and others may take months or even years to be manifested - carcinogenesis. Human epithelial cell lines derived from both normal, non-neoplastic tissues and from a malignant source were cultured in order to examine several effects of ionizing radiation on such cell types. Cells not from a malignant source were previously immortalized by viral infection or by transfection with viral sequences. Simian virus 40 immortalised uroepithelial cells (SV-HUC) were found to be approximately a factor of two fold more radioresistant than cells of malignant origin (T24) in terms of unrepaired clastogenic damage i.e. assessment of micronuclei levels following irradiation. SV-HUC lines unlike T24 cells are non-tumourigenic when inoculated into nude athymic mice. SV-HUC lines proved very resistant to full oncogenic transformation using radiation and chemical carcinogens. However, morphological alterations and decreased anchorage dependant growth was observed in post carcinogen treated cells after appropriate cell culture conditions were utilized. The progression from this phenotype to a fully tumourigenic one was not recorded in this study. The ability of ionizing radiation to induce increased levels of the nuclear phosphoprotein p53 was also assessed using several different cell lines. SV- HUC and T24 cell lines failed to exhibit any increased p53 stabilization following irradiation. One cell line, a human papilloma virus transformed line (HPV) did show an approximate two fold increase of the wild type p53 protein after treatment with radiation. Only the cell line HPV showed any cell cycle delay, resulting in accumulation of cells in the G2/M compartment in post irradiation cell cycle analysis. The status of p53 was also assessed i.e. wild type or mutant conformation in all the above cells lines and two other control lines HOS (a human osteosarcoma cell line) and H Tori-3 (SV40 immortalised thyroid epithelial cells).

  11. The analysis of a nonsimilar laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Stalmach, D. D.; Bertin, J. J.

    1978-01-01

    A computer code is described which yields accurate solutions for a broad range of laminar, nonsimilar boundary layers, providing the inviscid flow field is known. The boundary layer may be subject to mass injection for perfect-gas, nonreacting flows. If no mass injection is present, the code can be used with either perfect-gas or real-gas thermodynamic models. Solutions, ranging from two-dimensional similarity solutions to solutions for the boundary layer on the Space Shuttle Orbiter during reentry conditions, have been obtained with the code. Comparisons of these solutions, and others, with solutions presented in the literature; and with solutions obtained from other codes, demonstrate the accuracy of the present code.

  12. Inland area contingency plan and maps for Delaware, Maryland, West Virginia, District of Columbia (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  13. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    PubMed Central

    Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun

    2016-01-01

    Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490

  14. EnviroAtlas - NatureServe Analysis of Imperiled or Federally Listed Species by HUC-12 for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes analysis by NatureServe of species that are Imperiled (G1/G2) or Listed under the U.S. Endangered Species Act (ESA) by 12-digit Hydrologic Units (HUCs). The analysis results are for use and publication by both the LandScope America website and by the EnviroAtlas. Results are provided for the total number of Aquatic Associated G1-G2/ESA species, the total number of Wetland Associated G1-G2/ESA species, the total number of Terrestrial Associated G1-G2/ESA species, and the total number of Unknown Habitat Association G1-G2/ESA species in each HUC12. NatureServe is a non-profit organization dedicated to developing and providing information about the world's plants, animals, and ecological communities. NatureServe works in partnership with 82 independent Natural Heritage programs and Conservation Data Centers that gather scientific information on rare species and ecosystems in the United States, Latin America, and Canada (the Natural Heritage Network). NatureServe is a leading source for biodiversity information that is essential for effective conservation action. This dataset was produced by NatureServe to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  15. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less

  16. Agricultural conservation planning framework: 1. Developing multipractice watershed planning scenarios and assessing nutrient reduction potential.

    PubMed

    Tomer, M D; Porter, S A; Boomer, K M B; James, D E; Kostel, J A; Helmers, M J; Isenhart, T M; McLellan, E

    2015-05-01

    Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging-derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa's Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO-N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO-N reduction as Iowa's target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO-N reduction but remove <5% of cropland from production were identified. Cover crops and nutrient removal wetlands were common to these scenarios. This approach provides an interim technology to assist local watershed planning and could provide planning scenarios to evaluate using watershed simulation models. A set of ArcGIS tools is being released to enable transfer of this mapping technology. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

    NASA Astrophysics Data System (ADS)

    Sun, Shanlei; Sun, Ge; Cohen, Erika; McNulty, Steven G.; Caldwell, Peter V.; Duan, Kai; Zhang, Yang

    2016-03-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, and ecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled climate data of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12-digit Hydrologic Unit Code level) in the coterminous US (CONUS). Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8° C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 gC m-2 yr-1 (9 %) increase in GPP. We found a large spatial variability in response to climate change across the CONUS 12-digit HUC watersheds, but in general, the majority would see consistent increases all variables evaluated. Over half of the watersheds, mostly found in the northeast and the southern part of the southwest, would see an increase in annual Q (> 100 mm yr-1 or 20 %). In addition, we also evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or two-digit HUCs. The study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results may be useful for policy-makers and land managers to formulate appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.

  18. Towards industrial-strength Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.

    1992-01-01

    In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less

  20. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  1. Solving free-plasma-boundary problems with the SIESTA MHD code

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  2. Sensitivity Analysis and Uncertainty Quantification for the LAMMPS Molecular Dynamics Simulation Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Richard Roy; Bhat, Kabekode Ghanasham

    2017-07-18

    We examine sensitivity analysis and uncertainty quantification for molecular dynamics simulation. Extreme (large or small) output values for the LAMMPS code often occur at the boundaries of input regions, and uncertainties in those boundary values are overlooked by common SA methods. Similarly, input values for which code outputs are consistent with calibration data can also occur near boundaries. Upon applying approaches in the literature for imprecise probabilities (IPs), much more realistic results are obtained than for the complacent application of standard SA and code calibration.

  3. Interactive boundary-layer calculations of a transonic wing flow

    NASA Technical Reports Server (NTRS)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  4. Improve load balancing and coding efficiency of tiles in high efficiency video coding by adaptive tile boundary

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin

    2017-01-01

    High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.

  5. Identification of N-(deoxyguanosin-8-yl)-4-azobiphenyl by (32)P-postlabeling analyses of DNA in human uroepithelial cells exposed to proximate metabolites of the environmental carcinogen 4-aminobiphenyl.

    PubMed

    Hatcher, James F; Swaminathan, Santhanam

    2002-01-01

    DNA adducts formed in human uroepithelial cells (HUC) following exposure to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP), were analyzed by the (32)P-postlabeling method. Two adducts detected by (32)P-postlabeling were previously identified as the 3',5'-bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (dA-C8-ABP) (Frederickson S et al. [1992] Carcinogenesis 13: 955-961; Hatcher and Swaminathan [1995b] Carcinogenesis 16: 295-301). In contrast to the dG-C8-ABP adduct, which was 3'-dephosphorylated by nuclease P1, dA-C8-ABP was resistant to nuclease P1, thus providing an enrichment step before postlabeling. Autoradiography of the two-dimensional thin-layer chromatogram of the postlabeled products obtained following nuclease P1 digestion revealed several minor adducts, one of which has been identified in the present study. Postlabeling analyses following nuclease P1 digestion of the products obtained from the reaction of N-acetoxy-4-aminobiphenyl with deoxyguanosine-3'-monophosphate (dGp) demonstrated the presence of this minor adduct. The 3'-monophosphate derivative of the adduct was subsequently chromatographically purified and subjected to spectroscopic analyses. Based on proton NMR and mass spectroscopic analyses of the synthetic product, the chemical structure of the adduct has been identified as N-(deoxyguanosin-N(2)-yl)-4-azobiphenyl (dG-N==N-ABP). (32)P-Postlabeling analysis of the nuclease P1-enriched DNA hydrolysate of HUCs treated with N-OH-ABP or N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) showed the presence of the dG-N==N-ABP adduct. It was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl-CoA, or incubated with HUC microsomes and N-OH-AABP. These results demonstrate that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP and N-OH-AABP are bioactivated by acyltransferases to reactive arylnitrenium ions that covalently interact at the N2 position of deoxyguanosine in DNA. Copyright 2002 Wiley-Liss, Inc.

  6. EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  8. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  9. BODYFIT-1FE: a computer code for three-dimensional steady-state/transient single-phase rod-bundle thermal-hydraulic analysis. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.C.J.; Sha, W.T.; Doria, M.L.

    1980-11-01

    The governing equations, i.e., conservation equations for mass, momentum, and energy, are solved as a boundary-value problem in space and an initial-value problem in time. BODYFIT-1FE code uses the technique of boundary-fitted coordinate systems where all the physical boundaries are transformed to be coincident with constant coordinate lines in the transformed space. By using this technique, one can prescribe boundary conditions accurately without interpolation. The transformed governing equations in terms of the boundary-fitted coordinates are then solved by using implicit cell-by-cell procedure with a choice of either central or upwind convective derivatives. It is a true benchmark rod-bundle code withoutmore » invoking any assumptions in the case of laminar flow. However, for turbulent flow, some empiricism must be employed due to the closure problem of turbulence modeling. The detailed velocity and temperature distributions calculated from the code can be used to benchmark and calibrate empirical coefficients employed in subchannel codes and porous-medium analyses.« less

  10. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling

    PubMed Central

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology. PMID:26356082

  11. Differentiation of human adipose-derived stem cells co-cultured with urothelium cell line toward a urothelium-like phenotype in a nude murine model.

    PubMed

    Zhang, Ming; Peng, Yubing; Zhou, Zhe; Zhou, Juan; Wang, Zhong; Lu, Mujun

    2013-02-01

    To investigated the urothelium differentiation potential of adipose-derived stem cells (ASCs) that were coimplanted with the immortalized human bladder urothelium cell line (SV-HUC-1) into the subcutaneous tissue of athymic mice. The ASCs were isolated from the human adipose tissue of patients undergoing liposuction procedures and were expanded in vitro. After labeling with CM-DiI, the ASCs were mixed with SV-HUC-1 and implanted into the subcutaneous tissue of athymic mice for 2 and 4 weeks. The urothelium-specific markers uroplakin-Ia and uroplakin-II were detected by immunofluorescence. The transformation rate of ASCs into the urothelium phenotype was evaluated at each measurement point. We found that 25.87% ± 1.38% of ASCs expressed the urothelium-specific marker uroplakin-Ia and 23.60% ± 2.57% of ASCs expressed uroplakin-II 2 weeks after coimplantation with SV-HUC-1 in vivo. After 4 weeks, 70.07% ± 3.84% of ASCs expressed uroplakin-Ia and 65.56% ± 2.94% expressed uroplakin-II. However, no obvious organizational multilayered urothelium structure, such as that of the native bladder mucosa, was found in the subcutaneous tissues of the athymic mice. The results of our study have demonstrated that ASCs could be differentiated toward the urothelium-like phenotype when they were coimplanted in direct contact with cells of a mature urothelium cell line, and the proportion of differentiated cells increased from 2 to 4 weeks. The differentiation potential of ASCs toward the urothelial cell type suggests that ASCs might have potential to be used in urinary tract repair with a tissue engineering approach in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Evaluation of Lactic Acid Bacteria Isolated from Fermented Plant Products for Antagonistic Activity Against Urinary Tract Pathogen Staphylococcus saprophyticus.

    PubMed

    Tsai, Cheng-Chih; Lai, Tzu-Min; Lin, Pei-Pei; Hsieh, You-Miin

    2018-06-01

    Urinary tract infections (UTIs) are the most common infectious diseases in infants and the elderly; they are also the most common among nosocomial infections. The treatment of UTIs usually involves a short-term course of antibiotics. The purpose of this study was to identify the strains of lactic acid bacteria (LAB) that can inhibit the urinary tract pathogen Staphylococcus saprophyticus, as alternatives to antibiotics. In this study, we collected 370 LAB strains from fermented plant products and reference strains from the Bioresources Collection and Research Center (BCRC). Using spent culture supernatants (SCS), we then screened these LAB strains with for antimicrobial effects on urinary tract pathogens by the well-diffusion assay. Seven LAB strains-PM2, PM68, PM78, PM201, PM206, PM229, and RY2-exhibited inhibitory activity and were evaluated for anti-growth activity against urinary tract pathogens by the co-culture inhibition assay. Anti-adhesion and anti-invasion activities against urinary tract pathogens were evaluated using the SV-HUC-1 urothelial cell cultures. The results revealed that the survival rate of S. saprophyticus ranged from 0.9-2.96%, with the pH continuously decreasing after co-culture with LAB strains for 4 h. In the competitive adhesion assay, the exclusion and competition groups performed better than the displacement group. In the SV-HUC-1 cell invasion assay, PM201, PM206, PM229, and RY2 were found to inhibit the invasion of SV-HUC-1 cells by S. saprophyticus BCRC 10786. To conclude, RY2, PM229, and PM68 strains exhibited inhibitory activity against the urinary tract pathogen S. saprophyticus.

  13. Description of Existing Data for Integrated Landscape Monitoring in the Puget Sound Basin, Washington

    USGS Publications Warehouse

    Aiello, Danielle P.; Torregrosa, Alicia; Jason, Allyson L.; Fuentes, Tracy L.; Josberger, Edward G.

    2008-01-01

    This report summarizes existing geospatial data and monitoring programs for the Puget Sound Basin in northwestern Washington. This information was assembled as a preliminary data-development task for the U.S. Geological Survey (USGS) Puget Sound Integrated Landscape Monitoring (PSILM) pilot project. The PSILM project seeks to support natural resource decision-making by developing a 'whole system' approach that links ecological processes at the landscape level to the local level (Benjamin and others, 2008). Part of this effort will include building the capacity to provide cumulative information about impacts that cross jurisdictional and regulatory boundaries, such as cumulative effects of land-cover change and shoreline modification, or region-wide responses to climate change. The PSILM project study area is defined as the 23 HUC-8 (hydrologic unit code) catchments that comprise the watersheds that drain into Puget Sound and their near-shore environments. The study area includes 13 counties and more than four million people. One goal of the PSILM geospatial database is to integrate spatial data collected at multiple scales across the Puget Sound Basin marine and terrestrial landscape. The PSILM work plan specifies an iterative process that alternates between tasks associated with data development and tasks associated with research or strategy development. For example, an initial work-plan goal was to delineate the study area boundary. Geospatial data required to address this task included data from ecological regions, watersheds, jurisdictions, and other boundaries. This assemblage of data provided the basis for identifying larger research issues and delineating the study-area boundary based on these research needs. Once the study-area boundary was agreed upon, the next iteration between data development and research activities was guided by questions about data availability, data extent, data abundance, and data types. This report is not intended as an exhaustive compilation of all available geospatial data, rather, it is a collection of information about geospatial data that can be used to help answer the suite of questions posed after the study-area boundary was defined. This information will also be useful to the PSILM team for future project tasks, such as assessing monitoring gaps, exploring monitoring-design strategies, identifying and deriving landscape indicators and metrics, and visual geographic communication. The two main geospatial data types referenced in this report - base-reference layers and monitoring data - originated from numerous and varied sources. In addition to collecting information and metadata about the base-reference layers, the data also were collected for project needs, such as developing maps for visual communication among team members and with outside groups. In contrast, only information about the data was typically required for the monitoring data. The information on base-reference layers and monitoring data included in this report is only as detailed as what was readily available from the sources themselves. Although this report may appear to lack consistency between data records, the varying degree of details contained in this report are merely a reflection of varying source detail. This compilation is just a beginning. All data listed also are being catalogued in spreadsheets and knowledge-management systems. Our efforts are continual as we develop a geospatial catalog for the PSILM pilot project.

  14. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1990-01-01

    Details on the progress made during the first three years of a five-year program towards the development of a boundary element code are presented. This code was designed for the micromechanical studies of advance ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry. The ceramic composite formulations developed were implemented in the three-dimensional boundary element computer code BEST3D. BEST3D was adopted as the base for the ceramic composite program, so that many of the enhanced features of this general purpose boundary element code could by utilized. Some of these facilities include sophisticated numerical integration, the capability of local definition of boundary conditions, and the use of quadratic shape functions for modeling geometry and field variables on the boundary. The multi-region implementation permits a body to be modeled in substructural parts; thus dramatically reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of different ceramic matrices and inserts to be studied.

  15. Method for transition prediction in high-speed boundary layers, phase 2

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Stuckert, G. K.; Lin, N.

    1993-09-01

    The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.

  16. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  17. EnviroAtlas - Historic Places by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset portrays the total number of historic places located within each 12-digit Hydrologic Unit (HUC). The historic places data were compiled from the National Park Service's National Register of Historic Places (NRHP), which provides official federal lists of districts, sites, buildings, structures and objects significant to American history, architecture, archeology, engineering, and culture. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  19. Sources and Loading of Nitrogen to U.S. Estuaries

    EPA Science Inventory

    Previous assessments of land-based nitrogen loading and sources to U.S. estuaries have been limited to estimates for larger systems with watersheds at the scale of 8-digit HUCs and larger, in part due to the coarse resolution of available data, including estuarine watershed bound...

  20. PisCES: Pis(cine) Community Estimation Software

    EPA Science Inventory

    PisCES predicts a fish community for any NHD-Plus stream reach in the conterminous United States. PisCES utilizes HUC-based distributional information for over 1,000 nature and non-native species obtained from NatureServe, the USGS, and Peterson Field Guide to Freshwater Fishes o...

  1. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

    PubMed

    Taillefumier, Thibaud; Magnasco, Marcelo O

    2013-04-16

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H < 1/2, the probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

  2. User's Manual for FEM-BEM Method. 1.0

    NASA Technical Reports Server (NTRS)

    Butler, Theresa; Deshpande, M. D. (Technical Monitor)

    2002-01-01

    A user's manual for using FORTRAN code to perform electromagnetic analysis of arbitrarily shaped material cylinders using a hybrid method that combines the finite element method (FEM) and the boundary element method (BEM). In this method, the material cylinder is enclosed by a fictitious boundary and the Maxwell's equations are solved by FEM inside the boundary and by BEM outside the boundary. The electromagnetic scattering on several arbitrarily shaped material cylinders using this FORTRAN code is computed to as examples.

  3. Flow analysis for the nacelle of an advanced ducted propeller at high angle-of-attack and at cruise with boundary layer control

    NASA Technical Reports Server (NTRS)

    Hwang, D. P.; Boldman, D. R.; Hughes, C. E.

    1994-01-01

    An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.

  4. Increased baseflow in Iowa over the second half of the 20th Century

    USGS Publications Warehouse

    Schilling, K.E.; Libra, R.D.

    2003-01-01

    Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight-digit hydrologic unit code (HUC-8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual baseflow, annual minimum flow, and the annual baseflow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as baseflow than as stormflow in the second half of the 20th Century. Reasons for the observed streamflow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.

  5. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    USDA-ARS?s Scientific Manuscript database

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  6. Evaluating the Effect of Green Infrastructure Stormwater Best Management Practices on New England Stream Habitat

    EPA Science Inventory

    The U.S. EPA is evaluating the effectiveness of green infrastructure (GI) stormwater best management practices (BMPs) on stream habitat at the small watershed (< HUC12) scale in New England. Predictive models for thermal regime and substrate characteristics (substrate size, % em...

  7. Implementation of a Blowing Boundary Condition in the LAURA Code

    NASA Technical Reports Server (NTRS)

    Thompson, Richard a.; Gnoffo, Peter A.

    2008-01-01

    Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies.

  8. Extraction and development of inset models in support of groundwater age calculations for glacial aquifers

    USGS Publications Warehouse

    Feinstein, Daniel T.; Kauffman, Leon J.; Haserodt, Megan J.; Clark, Brian R.; Juckem, Paul F.

    2018-06-22

    The U.S. Geological Survey developed a regional model of Lake Michigan Basin (LMB). This report describes the construction of five MODFLOW inset models extracted from the LMB regional model and their application using the particle-tracking code MODPATH to simulate the groundwater age distribution of discharge to wells pumping from glacial deposits. The five study areas of the inset model correspond to 8-digit hydrologic unit code (HUC8) basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is just west of the western boundary of the Lake Michigan topographic basin. The inset models inherited many of the inputs to the parent LMB model, including the hydrostratigraphy and layering scheme, the hydraulic conductivity assigned to bedrock layers, recharge distribution, and water use in the form of pumping rates from glacial and bedrock wells. The construction of the inset models entailed modifying some inputs, most notably the grid spacing (reduced from cells 5,000 feet on a side in the parent LMB model to 500 feet on a side in the inset models). The refined grid spacing allowed for more precise location of pumped wells and more detailed simulation of groundwater/surface-water interactions. The glacial hydraulic conductivity values, the top bedrock surface elevation, and the surface-water network input to the inset models also were modified. The inset models are solved using the MODFLOW–NWT code, which allows for more robust handling of conditions in unconfined aquifers than previous versions of MODFLOW. Comparison of the MODFLOW inset models reveals that they incorporate a range of hydrogeologic conditions relative to the glacial part of the flow system, demonstrated by visualization and analysis of model inputs and outputs and reflected in the range of ages generated by MODPATH for existing and hypothetical glacial wells. Certain inputs and outputs are judged to be candidate predictors that, if treated statistically, may be capable of explaining much of the variance in the simulated age metrics. One example of a predictor that model results indicate strongly affects simulated age is the depth of the well open interval below the simulated water table. The strength of this example variable as an overall predictor of groundwater age and its relation to other predictors can be statistically tested through the metamodeling process. In this way the inset models are designed to serve as a training area for metamodels that estimate groundwater age in glacial wells, which in turn will contribute to ongoing studies, under the direction of the U.S. Geological Survey National Water Quality Assessment, of contaminant susceptibility of shallow groundwater across the glacial aquifer system.

  9. Finite-difference simulation of transonic separated flow using a full potential boundary layer interaction approach

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1983-01-01

    A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.

  10. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  11. Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.

    1983-01-01

    Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.

  12. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.

    1983-05-01

    Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.

  13. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  14. Agricultural conservation planning framework: 2. Classification of riparian buffer design-types with application to assess and map stream corridors

    USDA-ARS?s Scientific Manuscript database

    A watershed’s riparian corridor presents opportunities to stabilize streambanks, intercept runoff, and influence shallow groundwater with riparian buffers. This paper presents a system to classify these riparian opportunities and apply it towards riparian management planning in HUC12 watersheds. Hig...

  15. Evaluating Effectiveness of Green Infrastructure Application of Stormwater Best Management Practices in Protecting Stream Habitat and Biotic Condition in New England

    EPA Science Inventory

    The US EPA is developing assessment tools to evaluate the effectiveness of green infrastructure (GI) applied in stormwater best management practices (BMPs) at the small watershed (HUC12 or finer) scale. Based on analysis of historical monitoring data using boosted regression tre...

  16. Improved design of special boundary elements for T-shaped reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  17. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  18. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  19. Exogenous C3 protein enhances the adaptive immune response to polymicrobial sepsis through down-regulation of regulatory T cells.

    PubMed

    Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou

    2012-01-01

    The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The NYU inverse swept wing code

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Garabedian, P.; Mcfadden, G.

    1983-01-01

    An inverse swept wing code is described that is based on the widely used transonic flow program FLO22. The new code incorporates a free boundary algorithm permitting the pressure distribution to be prescribed over a portion of the wing surface. A special routine is included to calculate the wave drag, which can be minimized in its dependence on the pressure distribution. An alternate formulation of the boundary condition at infinity was introduced to enhance the speed and accuracy of the code. A FORTRAN listing of the code and a listing of a sample run are presented. There is also a user's manual as well as glossaries of input and output parameters.

  1. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  2. Finite-difference solution for laminar or turbulent boundary layer flow over axisymmetric bodies with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-12-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  3. Description of Panel Method Code ANTARES

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; George, Mike (Technical Monitor)

    2000-01-01

    Panel method code ANTARES was developed to compute wall interference corrections in a rectangular wind tunnel. The code uses point doublets to represent blockage effects and line doublets to represent lifting effects of a wind tunnel model. Subsonic compressibility effects are modeled by applying the Prandtl-Glauert transformation. The closed wall, open jet, or perforated wall boundary condition may be assigned to a wall panel centroid. The tunnel walls can be represented by using up to 8000 panels. The accuracy of panel method code ANTARES was successfully investigated by comparing solutions for the closed wall and open jet boundary condition with corresponding Method of Images solutions. Fourier transform solutions of a two-dimensional wind tunnel flow field were used to check the application of the perforated wall boundary condition. Studies showed that the accuracy of panel method code ANTARES can be improved by increasing the total number of wall panels in the circumferential direction. It was also shown that the accuracy decreases with increasing free-stream Mach number of the wind tunnel flow field.

  4. National Unity and Ethnic Identity in a Vietnamese University

    ERIC Educational Resources Information Center

    Tran, Linh T.; Walter, Pierre G.

    2010-01-01

    In this article, the authors discuss the ways in which Vietnam's educational policies for ethnic minorities are enacted in the bachelor of arts (BA) program in ethnic minority cultures (EMC) at the Hanoi University of Culture (HUC). Hanoi University of Culture is one of only two universities in Vietnam that offer this program. Although the BA is…

  5. BRYNTRN: A baryon transport model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.

    1989-01-01

    The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.

  6. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  7. 47 CFR 52.19 - Area code relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... new area codes within their states. Such matters may include, but are not limited to: Directing... realignment; establishing new area code boundaries; establishing necessary dates for the implementation of... code relief planning encompasses all functions related to the implementation of new area codes that...

  8. 47 CFR 52.19 - Area code relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... new area codes within their states. Such matters may include, but are not limited to: Directing... realignment; establishing new area code boundaries; establishing necessary dates for the implementation of... code relief planning encompasses all functions related to the implementation of new area codes that...

  9. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.

  10. PIES free boundary stellarator equilibria with improved initial conditions

    NASA Astrophysics Data System (ADS)

    Drevlak, M.; Monticello, D.; Reiman, A.

    2005-07-01

    The MFBE procedure developed by Strumberger (1997 Nucl. Fusion 37 19) is used to provide an improved starting point for free boundary equilibrium computations in the case of W7-X (Nührenberg and Zille 1986 Phys. Lett. A 114 129) using the Princeton iterative equilibrium solver (PIES) code (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157). Transferring the consistent field found by the variational moments equilibrium code (VMEC) (Hirshmann and Whitson 1983 Phys. Fluids 26 3553) to an extended coordinate system using the VMORPH code, a safe margin between plasma boundary and PIES domain is established. The new EXTENDER_P code implements a generalization of the virtual casing principle, which allows field extension both for VMEC and PIES equilibria. This facilitates analysis of the 5/5 islands of the W7-X standard case without including them in the original PIES computation.

  11. Calculation of three-dimensional compressible laminar and turbulent boundary flows. Three-dimensional compressible boundary layers of reacting gases over realistic configurations

    NASA Technical Reports Server (NTRS)

    Kendall, R. M.; Bonnett, W. S.; Nardo, C. T.; Abbett, M. J.

    1975-01-01

    A three-dimensional boundary-layer code was developed for particular application to realistic hypersonic aircraft. It is very general and can be applied to a wide variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows of compressible, reacting gases are efficiently calculated by use of the code. A body-oriented orthogonal coordinate system is used for the calculation and the user has complete freedom in specifying the coordinate system within the restrictions that one coordinate must be normal to the surface and the three coordinates must be mutually orthogonal.

  12. Optimal boundary conditions for ORCA-2 model

    NASA Astrophysics Data System (ADS)

    Kazantsev, Eugene

    2013-08-01

    A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.

  13. Application of Aeroelastic Solvers Based on Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    1998-01-01

    A pre-release version of the Navier-Stokes solver (TURBO) was obtained from MSU. Along with Dr. Milind Bakhle of the University of Toledo, subroutines for aeroelastic analysis were developed and added to the TURBO code to develop versions 1 and 2 of the TURBO-AE code. For specified mode shape, frequency and inter-blade phase angle the code calculates the work done by the fluid on the rotor for a prescribed sinusoidal motion. Positive work on the rotor indicates instability of the rotor. The version 1 of the code calculates the work for in-phase blade motions only. In version 2 of the code, the capability for analyzing all possible inter-blade phase angles, was added. The version 2 of TURBO-AE code was validated and delivered to NASA and the industry partners of the AST project. The capabilities and the features of the code are summarized in Refs. [1] & [2]. To release the version 2 of TURBO-AE, a workshop was organized at NASA Lewis, by Dr. Srivastava and Dr. M. A. Bakhle, both of the University of Toledo, in October of 1996 for the industry partners of NASA Lewis. The workshop provided the potential users of TURBO-AE, all the relevant information required in preparing the input data, executing the code, interpreting the results and bench marking the code on their computer systems. After the code was delivered to the industry partners, user support was also provided. A new version of the Navier-Stokes solver (TURBO) was later released by MSU. This version had significant changes and upgrades over the previous version. This new version was merged with the TURBO-AE code. Also, new boundary conditions for 3-D unsteady non-reflecting boundaries, were developed by researchers from UTRC, Ref. [3]. Time was spent on understanding, familiarizing, executing and implementing the new boundary conditions into the TURBO-AE code. Work was started on the phase lagged (time-shifted) boundary condition version (version 4) of the code. This will allow the users to calculate non-zero interblade phase angles using, only one blade passage for analysis.

  14. Phonological Codes Are Assembled before Word Fixation: Evidence from Boundary Paradigm in Sentence Reading

    ERIC Educational Resources Information Center

    Miellet, Sebastien; Sparrow, Laurent

    2004-01-01

    This experiment employed the boundary paradigm during sentence reading to explore the nature of early phonological coding in reading. Fixation durations were shorter when the parafoveal preview was the correct word than when it was a spelling control pseudoword. In contrast, there was no significant difference between correct word and…

  15. Development of a Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Van Wilson, K.; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System, developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and drainage areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (hydrologic unit codes) were further subdivided into 10-digit watersheds and 12-digit subwatersheds - the exceptions are the Lower Mississippi River Alluvial Plain (known locally as the Delta) and the Mississippi River inside levees, which were only subdivided into 10-digit watersheds. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, hydrologic unit codes and names, and drainage-area data - are stored in a Geographic Information System database.

  16. Application of a three-tier framework to assess ecological condition of Gulf of Mexico coastal wetlands.

    PubMed

    Nestlerode, Janet A; Hansen, Virginia D; Teague, Aarin; Harwell, Matthew C

    2014-06-01

    A multi-level coastal wetland assessment strategy was applied to wetlands in the northern Gulf of Mexico (GOM) to evaluate the feasibility of this approach for a broad national scale wetland condition assessment (US Environmental Protection Agency's National Wetlands Condition Assessment). Landscape-scale assessment indicators (tier 1) were developed and applied at the sub-watershed (12-digit hydrologic unit code (HUC)) level within the GOM coastal wetland sample frame with scores calculated using land-use maps and geographic information system. Rapid assessment protocols (tier 2), using a combination of data analysis and field work, evaluated metrics associated with landscape context, hydrology, physical structure, and biological structure. Intensive site monitoring (tier 3) included measures of soil chemistry and composition, water column and pore-water chemistry, and dominant macrophyte community composition and tissue chemistry. Relationships within and among assessment levels were evaluated using multivariate analyses with few significant correlations found. More detailed measures of hydrology, soils, and macrophyte species composition from sites across a known condition gradient, in conjunction with validation of standardized rapid assessment method, may be necessary to fully characterize coastal wetlands across the region.

  17. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  18. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  19. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  20. Program Helps Generate Boundary-Element Mathematical Models

    NASA Technical Reports Server (NTRS)

    Goldberg, R. K.

    1995-01-01

    Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).

  1. Turbulence modeling for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1992-01-01

    The objective of the present work is to develop, verify, and incorporate two equation turbulence models which account for the effect of compressibility at high speeds into a three dimensional Reynolds averaged Navier-Stokes code and to provide documented model descriptions and numerical procedures so that they can be implemented into the National Aerospace Plane (NASP) codes. A summary of accomplishments is listed: (1) Four codes have been tested and evaluated against a flat plate boundary layer flow and an external supersonic flow; (2) a code named RANS was chosen because of its speed, accuracy, and versatility; (3) the code was extended from thin boundary layer to full Navier-Stokes; (4) the K-omega two equation turbulence model has been implemented into the base code; (5) a 24 degree laminar compression corner flow has been simulated and compared to other numerical simulations; and (6) work is in progress in writing the numerical method of the base code including the turbulence model.

  2. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 8: Cooling Flow/heat Transfer Analysis User's Manual

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Topp, David A.; Heidegger, Nathan J.; Delaney, Robert A.

    1994-01-01

    The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to handle spanwise periodicity and transpiration boundaries. This user's manual describes how to use the ADPAC code as developed in Task 5, NAS3-25270, including the modifications made to date in Tasks 7 and 8, NAS3-25270.

  3. Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.

    2012-01-01

    Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.

  4. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less

  5. A review of high-speed, convective, heat-transfer computation methods

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.

    1989-01-01

    The objective of this report is to provide useful engineering formulations and to instill a modest degree of physical understanding of the phenomena governing convective aerodynamic heating at high flight speeds. Some physical insight is not only essential to the application of the information presented here, but also to the effective use of computer codes which may be available to the reader. A discussion is given of cold-wall, laminar boundary layer heating. A brief presentation of the complex boundary layer transition phenomenon follows. Next, cold-wall turbulent boundary layer heating is discussed. This topic is followed by a brief coverage of separated flow-region and shock-interaction heating. A review of heat protection methods follows, including the influence of mass addition on laminar and turbulent boundary layers. Also discussed are a discussion of finite-difference computer codes and a comparison of some results from these codes. An extensive list of references is also provided from sources such as the various AIAA journals and NASA reports which are available in the open literature.

  6. A review of high-speed, convective, heat-transfer computation methods

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.

    1989-01-01

    The objective is to provide useful engineering formulations and to instill a modest degree of physical understanding of the phenomena governing convective aerodynamic heating at high flight speeds. Some physical insight is not only essential to the application of the information presented here, but also to the effective use of computer codes which may be available to the reader. Given first is a discussion of cold-wall, laminar boundary layer heating. A brief presentation of the complex boundary layer transition phenomenon follows. Next, cold-wall turbulent boundary layer heating is discussed. This topic is followed by a brief coverage of separated flow-region and shock-interaction heating. A review of heat protection methods follows, including the influence of mass addition on laminar and turbulent boundary layers. Next is a discussion of finite-difference computer codes and a comparison of some results from these codes. An extensive list of references is also provided from sources such as the various AIAA journals and NASA reports which are available in the open literature.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, John Bohdan

    The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-tube,” narrowband, DSD2D solver,more » and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-set function code, using a totally local DSD boundary condition algorithm for the level-­set function, phi, which did not rely on the gradient of the level-­set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-­resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.The full level-­set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-­supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-­tube,” narrowband, DSD2D solver, and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-­set function code, using a totally local DSD boundary condition algorithm for the level-­set function, phi, which did not rely on the gradient of the level-­set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.« less

  8. The measurement of boundary layers on a compressor blade in cascade. Volume 1: Experimental technique, analysis and results

    NASA Technical Reports Server (NTRS)

    Zierke, William C.; Deutsch, Steven

    1989-01-01

    Measurements were made of the boundary layers and wakes about a highly loaded, double-circular-arc compressor blade in cascade. These laser Doppler velocimetry measurements have yielded a very detailed and precise data base with which to test the application of viscous computational codes to turbomachinery. In order to test the computational codes at off-design conditions, the data were acquired at a chord Reynolds number of 500,000 and at three incidence angles. Moreover, these measurements have supplied some physical insight into these very complex flows. Although some natural transition is evident, laminar boundary layers usually detach and subsequently reattach as either fully or intermittently turbulent boundary layers. These transitional separation bubbles play an important role in the development of most of the boundary layers and wakes measured in this cascade and the modeling or computing of these bubbles should prove to be the key aspect in computing the entire cascade flow field. In addition, the nonequilibrium turbulent boundary layers on these highly loaded blades always have some region of separation near the trailing edge of the suction surface. These separated flows, as well as the subsequent near wakes, show no similarity and should prove to be a challenging test for the viscous computational codes.

  9. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Gould, R. K.; Srivastava, R.

    1979-01-01

    Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.

  10. An evaluation of four single element airfoil analytic methods

    NASA Technical Reports Server (NTRS)

    Freuler, R. J.; Gregorek, G. M.

    1979-01-01

    A comparison of four computer codes for the analysis of two-dimensional single element airfoil sections is presented for three classes of section geometries. Two of the computer codes utilize vortex singularities methods to obtain the potential flow solution. The other two codes solve the full inviscid potential flow equation using finite differencing techniques, allowing results to be obtained for transonic flow about an airfoil including weak shocks. Each program incorporates boundary layer routines for computing the boundary layer displacement thickness and boundary layer effects on aerodynamic coefficients. Computational results are given for a symmetrical section represented by an NACA 0012 profile, a conventional section illustrated by an NACA 65A413 profile, and a supercritical type section for general aviation applications typified by a NASA LS(1)-0413 section. The four codes are compared and contrasted in the areas of method of approach, range of applicability, agreement among each other and with experiment, individual advantages and disadvantages, computer run times and memory requirements, and operational idiosyncrasies.

  11. Characteristic Evolution and Matching

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2012-01-01

    I review the development of numerical evolution codes for general relativity based upon the characteristic initial-value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D-axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black-hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black-hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.

  12. Special Area Coding Community College District Boundaries on the Los Angeles County DIME File.

    ERIC Educational Resources Information Center

    Kinney, Paul W.; And Others

    This report documents the development of three major products: (1) a Los Angeles County Dual Independent Map Encoding (DIME) File to which community college district boundaries have been special area coded; (2) a book-like listing of all house number ranges and street names and the college district and census tract they are found in; and (3) a…

  13. SAC: Sheffield Advanced Code

    NASA Astrophysics Data System (ADS)

    Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick

    2013-06-01

    The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

  14. A transonic wind tunnel wall interference prediction code

    NASA Technical Reports Server (NTRS)

    Phillips, Pamela S.; Waggoner, Edgar G.

    1988-01-01

    A small disturbance transonic wall interference prediction code has been developed that is capable of modeling solid, open, perforated, and slotted walls as well as slotted and solid walls with viscous effects. This code was developed by modifying the outer boundary conditions of an existing aerodynamic wing-body-pod-pylon-winglet analysis code. The boundary conditions are presented in the form of equations which simulate the flow at the wall, as well as finite difference approximations to the equations. Comparisons are presented at transonic flow conditions between computational results and experimental data for a wing alone in a solid wall wind tunnel and wing-body configurations in both slotted and solid wind tunnels.

  15. Introduced Terrestrial Species Richness

    EPA Pesticide Factsheets

    These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP hexagons. The data are species counts for each spatial unit. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  16. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    EPA Science Inventory

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  17. Increasingly, Data Availability Limits Model Predictive Capacity: the Western Lake Erie Basin, a Case Study

    NASA Astrophysics Data System (ADS)

    Behrman, K. D.; Johnson, M. V. V.; Atwood, J. D.; Norfleet, M. L.

    2016-12-01

    Recent algal blooms in Western Lake Erie Basin (WLEB) have renewed scientific community's interest in developing process based models to better understand and predict the drivers of eutrophic conditions in the lake. At the same time, in order to prevent future blooms, farmers, local communities and policy makers are interested in developing spatially explicit nutrient and sediment management plans at various scales, from field to watershed. These interests have fueled several modeling exercises intended to locate "hotspots" in the basin where targeted adoption of additional agricultural conservation practices could provide the most benefit to water quality. The models have also been used to simulate various scenarios representing potential agricultural solutions. The Soil and Water Assessment Tool (SWAT) and its sister model, the Agricultural Policy Environmental eXtender (APEX), have been used to simulate hydrology of interacting land uses in thousands of scientific studies around the world. High performance computing allows SWAT and APEX users to continue to improve and refine the model specificity to make predictions at small-spatial scales. Consequently, data inputs and calibration/validation data are now becoming the limiting factor to model performance. Water quality data for the tributaries and rivers that flow through WLEB is spatially and temporally limited. Land management data, including conservation practice and nutrient management data, are not publicly available at fine spatial and temporal scales. Here we show the data uncertainties associated with modeling WLEB croplands at a relatively large spatial scale (HUC-4) using site management data from over 1,000 farms collected by the Conservation Effects Assessment Project (CEAP). The error associated with downscaling this data to the HUC-8 and HUC-12 scale is shown. Simulations of spatially explicit dynamics can be very informative, but care must be taken when policy decisions are made based on models with unstated, but implicit assumptions. As we interpret modeling results, we must communicate the spatial and temporal scale for which the model was developed and at which the data is valid. When there is little to no data to enable appropriate validation and calibration, the results must be interpreted with appropriate skepticism.

  18. Simulations of QCD and QED with C* boundary conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  19. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  20. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  1. Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Kleb, William L.; Alter, Steven J.

    1998-01-01

    Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.

  2. A Boundary Condition for Simulation of Flow Over Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.

    2001-01-01

    A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.

  3. COSAL: A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.

  4. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less

  5. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  6. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Bardhan, Jaydeep P.; Barba, L. A.

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the APBS solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is on the order of 1-2% error, when running on one GPU card (NVIDIA Tesla C2075), compared with APBS running on six Intel Xeon CPU cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using GPUs via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  7. The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1992-01-01

    A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.

  8. openQ*D simulation code for QCD+QED

    NASA Astrophysics Data System (ADS)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  9. Computational Modeling and Validation for Hypersonic Inlets

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1996-01-01

    Hypersonic inlet research activity at NASA is reviewed. The basis for the paper is the experimental tests performed with three inlets: the NASA Lewis Research Center Mach 5, the McDonnell Douglas Mach 12, and the NASA Langley Mach 18. Both three-dimensional PNS and NS codes have been used to compute the flow within the three inlets. Modeling assumptions in the codes involve the turbulence model, the nature of the boundary layer, shock wave-boundary layer interaction, and the flow spilled to the outside of the inlet. Use of the codes and the experimental data are helping to develop a clearer understanding of the inlet flow physics and to focus on the modeling improvements required in order to arrive at validated codes.

  10. Bidirectional holographic codes and sub-AdS locality

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Hayden, Patrick; Qi, Xiaoliang

    Tensor networks implementing quantum error correcting codes have recently been used as toy models of the holographic duality which explicitly realize some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this talk. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a ''code'' subspace, (2) a set of bulk states playing the role of ''classical geometries'' which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and the ability to describe geometry at sub-AdS resolutions or even flat space. David and Lucile Packard Foundation.

  11. Bidirectional holographic codes and sub-AdS locality

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Hayden, Patrick; Qi, Xiao-Liang

    2016-01-01

    Tensor networks implementing quantum error correcting codes have recently been used to construct toy models of holographic duality explicitly realizing some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this article. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a "code" subspace, (2) a set of bulk states playing the role of "classical geometries" which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and (5) the ability to describe geometry at sub-AdS resolutions or even flat space.

  12. A Project for Developing an Original Methodology Intended for Determination of the River Basin/Sub-Basin Boundaries and Codes in Western Mediterranean Basin in Turkey with Perspective of European Union Directives

    NASA Astrophysics Data System (ADS)

    Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal

    2016-04-01

    From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task must be accomplished by the end of the negotiation process with the EU. For these reasons this subject is chosen as primary and important goal in this project issue and it is aimed to develop an original methodology for determining the boundaries and codes of the drainage basins/sub-basins at required accuracy and precision for the fulfilment of obligations described in the WFD. In Turkey, existing highest accuracy and reliable elevation and hydrography data will be used for the first time, in this project. Along with the widely known and used flow accumulation threshold approaches, the approach developed by Gökgöz et al. (2006) will be used as well. The practicability and suitability of the encoding method developed by the General Directorate of State Hydraulic Works and the Infrastructure for Spatial Information in Europe will be verified respectively. The resulting drainage network, basin/sub-basin boundaries and codes will be compared to CCM2 (Catchment Characterisation and Modelling), ECRINS1.5 (European Catchments and Rivers Network System) and Catchments and Rivers Network System of General Directorates of State Hydraulic Works. This project is being supported by The Scientific and Technological Research Council of Turkey, under the project number TUBITAK-115Y411.

  13. Native Terrestrial Animal Species Richness

    EPA Pesticide Factsheets

    These data represent predicted current distributions of all native mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  14. "Like a Distant Cousin": Bi-Cultural Negotiation as Key Perspective in Understanding the Evolving Relationship of Future Reform Rabbis with Israel and the Jewish People

    ERIC Educational Resources Information Center

    Muszkat-Barkan, Michal; Grant, Lisa D.

    2015-01-01

    This research explores the impact of a year studying in Israel on Hebrew Union College-Jewish Institute of Religion (HUC-JIR) rabbinical students' emotional connection toward and knowledge about the State of Israel and the Jewish People. We want to better understand the students' beliefs, ideas, and behaviors that emerge from their experience…

  15. Application of Chimera Navier-Stokes Code for High Speed Flows

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    1997-01-01

    The primary task for this year was performed in support of the "Trailblazer" project. The purpose of the task was to perform an extensive CFD study of the shock boundary-layer interaction between the engine-diverters and the primary body surfaces of the Trailblazer vehicle. Information gathered from this study would be used to determine the effectiveness of the diverters in preventing the boundary-layer coming off of the vehicle forebody from entering the main engines. The PEGSUS code was used to define the "holes" and "boundaries" for each grid. Two sets of CFD calculations were performed.Extensive post-processing of the results was performed.

  16. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1992-01-01

    In this paper we describe an approach for dealing with arbitrary complex, two dimensional geometries, the so-called cartesian boundary method. Conceptually, the cartesian boundary method is quite simple. Solid bodies blank out areas of a background, cartesian mesh, and the resultant cut cells are singled out for special attention. However, there are several obstacles that must be overcome in order to achieve a practical scheme. We present a general strategy that overcomes these obstacles, together with some details of our successful conversion of an adaptive mesh algorithm from a body-fitted code to a cartesian boundary code.

  17. BRYNTRN: A baryon transport computer code, computation procedures and data base

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank

    1988-01-01

    The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).

  18. EnviroAtlas - Percentage of stream and water body shoreline lengths within 30 meters of >= 5% or >= 15% impervious cover by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.

  20. Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.

  1. On the effective implementation of a boundary element code on graphics processing units unsing an out-of-core LU algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Azevedo, Ed F; Nintcheu Fata, Sylvain

    2012-01-01

    A collocation boundary element code for solving the three-dimensional Laplace equation, publicly available from \\url{http://www.intetec.org}, has been adapted to run on an Nvidia Tesla general purpose graphics processing unit (GPU). Global matrix assembly and LU factorization of the resulting dense matrix were performed on the GPU. Out-of-core techniques were used to solve problems larger than available GPU memory. The code achieved over eight times speedup in matrix assembly and about 56~Gflops/sec in the LU factorization using only 512~Mbytes of GPU memory. Details of the GPU implementation and comparisons with the standard sequential algorithm are included to illustrate the performance ofmore » the GPU code.« less

  2. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  3. Integrating Phosphorus Movement with Soil and Water Loss in the Daily Erosion Project

    NASA Astrophysics Data System (ADS)

    Sklenar, Tim; Perez-Bidegain, Mario; Cruse, Richard; Gelder, Brian; Herzmann, Daryl

    2016-04-01

    The Daily Erosion Project (DEP) is an ongoing modelling effort which is now in its second generation. DEP provides comprehensive and dynamic estimates of sediment delivery, soil erosion, and hill slope runoff for agricultural land areas across the Midwestern United States every day for Hydrologic Unit Code 12 (HUC 12) size watersheds. Results are posted every morning on the Internet at dailyerosion.org. Currently DEP covers all of Iowa and portions of Kansas and Minnesota, but expansion of coverage is ongoing. The integration of highly resolute spatial and temporal climate data, soil properties, crop rotation and residue management data affords the opportunity to test the effects of using multiple conservation practices on the transport and fate of water borne nutrients, especially phosphorus, on the Midwestern United States agricultural landscapes. Understanding the interaction of different environmental and land management practices on phosphorus movement will allow data from the DEP to guide conservation efforts as expansion continues into surrounding Midwestern states. The presentation will provide an overview of the DEP technology, including how input data are derived and used to make daily erosion estimates on over 200,000 flowpaths in the modelling area, as well as a discussion of the ongoing phosphorus transport modelling efforts and plans for future expansion (both land area and model functionality).

  4. Statistical classification of hydrogeologic regions in the fractured rock area of Maryland and parts of the District of Columbia, Virginia, West Virginia, Pennsylvania, and Delaware

    USGS Publications Warehouse

    Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.

    2013-01-01

    Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.

  5. A method for the modelling of porous and solid wind tunnel walls in computational fluid dynamics codes

    NASA Technical Reports Server (NTRS)

    Beutner, Thomas John

    1993-01-01

    Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally inexpensive, and did not require extensive or intrusive measurements of the boundary conditions during the wind tunnel test. It may be applied to both solid and porous wall wind tunnel tests.

  6. Beyond the Boundary: Science, Industry, and Managing Symbiosis

    ERIC Educational Resources Information Center

    Hansen, Birgitte Gorm

    2011-01-01

    Whether celebratory or critical, STS research on science-industry relations has focused on the blurring of boundaries and hybridization of codes and practices. However, the vocabulary of boundary and hybrid tends to reify science and industry as separate in the attempt to map their relation. Drawing on interviews with the head of a research center…

  7. Threatened and Endangered Terrestrial Animal Species Richness

    EPA Pesticide Factsheets

    These data represent predicted current distributions of all U.S. listed threatened and endangered mammals, birds, reptiles, and amphibians in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  8. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  9. Semi-discrete Galerkin solution of the compressible boundary-layer equations with viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Day, Brad A.; Meade, Andrew J., Jr.

    1993-01-01

    A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.

  10. A boundary-Fitted Coordinate Code for General Two-Dimensional Regions with Obstacles and Boundary Intrusions.

    DTIC Science & Technology

    1983-03-01

    values of these functions on the two sides of the slits. The acceleration parameters for the iteration at each point are in the field array WACC (I,J...code will calculate a locally optimum value at each point in the field, these values being placed in the field array WACC . This calculation is...changes in x and y, are calculated by calling subroutine ERROR.) The acceleration parameter is placed in the field 65 array WACC . The addition to the

  11. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  12. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1991-01-01

    The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.

  13. NASA Ames three-dimensional potential flow analyses system (POTFAN) boundary condition code (BCDN), version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Medan, R. T.

    1977-01-01

    This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.

  14. Green's function methods in heavy ion shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.

    1993-01-01

    An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  15. A Global Interpolation Function (GIF) boundary element code for viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Lafe, O.; Cheng, A. H-D.

    1995-01-01

    Using global interpolation functions (GIF's), boundary element solutions are obtained for two- and three-dimensional viscous flows. The solution is obtained in the form of a boundary integral plus a series of global basis functions. The unknown coefficients of the GIF's are determined to ensure the satisfaction of the governing equations at selected collocation points. The values of the coefficients involved in the boundary integral equations are determined by enforcing the boundary conditions. Both primitive variable and vorticity-velocity formulations are examined.

  16. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.

  17. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  18. Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas

    2017-04-01

    We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.

  19. Improved Boundary Layer Module (BLM) for the Solid Performance Program (SPP)

    NASA Astrophysics Data System (ADS)

    Coats, D. E.; Cebeci, T.

    1982-03-01

    The requirements for a replacement to the Bartz boundary layer code, the standard method of computing the performance loss due to viscous effects by the solid performance program, were discussed by the propulsion community along with four nationally recognized boundary layer experts. A consensus was reached regarding the preferred features for the analysis of the replacement code. The major points that were agreed upon are: (1) finite difference methods are preferred over integral methods; (2) a single equation eddy viscosity model was considered to be adequate for the purpose of computing performance loss; (3) a variable grid capability in both coordinate directions would be required; (4) a proven finite difference algorithm which is not stability restricted should be used, that is, an implicit numerical scheme would be required; and (5) the replacement code should be able to compute both turbulent and laminar flows. The program should treat mass addition at the wall as well as being able to calculate a stagnation point starting line.

  20. Parallelization of an Object-Oriented Unstructured Aeroacoustics Solver

    NASA Technical Reports Server (NTRS)

    Baggag, Abdelkader; Atkins, Harold; Oezturan, Can; Keyes, David

    1999-01-01

    A computational aeroacoustics code based on the discontinuous Galerkin method is ported to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the discontinuous Galerkin method can be combined with explicit time marching methods making it well suited to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it well suited for distributed memory parallel platforms. The original serial code was written using an object-oriented approach and was previously optimized for cache-based machines. The port to parallel platforms was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications were minimal because boundary conditions were abstractions in the original program. Scalability results are presented for the SCI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear speedup is achieved on a fixed-size problem on the Origin, due to cache effects.

  1. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  2. Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.

    1991-01-01

    A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.

  3. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE PAGES

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...

    2017-08-28

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  4. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  5. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  6. Instruction at the Hopkins Marine Station

    DTIC Science & Technology

    1992-07-29

    foI homtadcodnaio.. caronavirus nucleocapsid protein. wheat germ bial ~ ~ %~H2A (5), mussel sperm nuclear protein 03 [6), and man chromofsome...wvpi,~Tninev PM"p Johne HiWA~aa Unuw~rsaty &Dio of Medicine, Balw,,.vv, Manh land 21205 The two germ -line- specific Sp histione classes Treatment of...composit conical morphology of the male pronucleus- Mal, pro- serine-proline adjacent to two basic amino acids (lyo hucl*I inhibite’d with I nsMGDMAP

  7. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis.

    PubMed

    Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-05-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.

  8. The measurement of boundary layers on a compressor blade in cascade. Volume 2: Data tables

    NASA Technical Reports Server (NTRS)

    Zierke, William C.; Deutsch, Steven

    1989-01-01

    Measurements were made of the boundary layers and wakes about a highly loaded, double-circular-arc compressor blade in cascade. These laser Doppler velocimetry measurements have yielded a very detailed and precise data base with which to test the application of viscous computational codes to turbomachinery. In order to test the computational codes at off-design conditions, the data have been acquired at a chord Reynolds number of 500,000 and at three incidence angles. Average values and 95 percent confidence bands were tabularized for the velocity, local turbulence intensity, skewness, kurtosis, and percent backflow. Tables also exist for the blade static-pressure distributions and boundary layer velocity profiles reconstructed to account for the normal pressure gradient.

  9. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  10. Self-correcting quantum memory with a boundary

    NASA Astrophysics Data System (ADS)

    Hutter, Adrian; Wootton, James R.; Röthlisberger, Beat; Loss, Daniel

    2012-11-01

    We study the two-dimensional toric-code Hamiltonian with effective long-range interactions between its anyonic excitations induced by coupling the toric code to external fields. It has been shown that such interactions allow an arbitrary increase in the lifetime of the stored quantum information by making L, the linear size of the memory, larger [Chesi , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.022305 82, 022305 (2010)]. We show that for these systems the choice of boundary conditions (open boundaries as opposed to periodic boundary conditions) is not a mere technicality; the influence of anyons produced at the boundaries becomes in fact dominant for large enough L. This influence can be either beneficial or detrimental. In particular, we study an effective Hamiltonian proposed by Pedrocchi [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.115415 83, 115415 (2011)] that describes repulsion between anyons and anyon holes. For this system, we find a lifetime of the stored quantum information that grows exponentially in L2 for both periodic and open boundary conditions, although the exponent in the latter case is found to be less favorable. However, L is upper bounded through the breakdown of the perturbative treatment of the underlying Hamiltonian.

  11. EPA Office of Water (OW): 12-digit Hydrologic Unit Boundaries of the United States

    EPA Pesticide Factsheets

    The Watershed Boundary Dataset (WBD) is a complete digital hydrologic unit national boundary layer that is at the Subwatershed (12-digit) level. It is composed of the watershed boundaries delineated by state agencies at the 1:24,000 scale. Please refer to the individual state metadata as the primary reference source. To access state specific metadata, go to the following link to view documentation created by agencies that performed the watershed delineation. This data set is a complete digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level. This data set consists of geo-referenced digital data and associated attributes created in accordance with the FGDC Proposal, Version 1.0 - Federal Standards For Delineation of Hydrologic Unit Boundaries 3/01/02. Polygons are attributed with hydrologic unit codes for 4th level sub-basins, 5th level watersheds, 6th level subwatersheds, name, size, downstream hydrologic unit, type of watershed, non-contributing areas and flow modification. Arcs are attributed with the highest hydrologic unit code for each watershed, linesource and a metadata reference file.Please refer to the Metadata contact if you want access to the WBD national data set.

  12. A spectrally accurate boundary-layer code for infinite swept wings

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1994-01-01

    This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.

  13. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  14. A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.

    1993-01-01

    Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).

  15. Validation of a three-dimensional viscous analysis of axisymmetric supersonic inlet flow fields

    NASA Technical Reports Server (NTRS)

    Benson, T. J.; Anderson, B. H.

    1983-01-01

    A three-dimensional viscous marching analysis for supersonic inlets was developed. To verify this analysis several benchmark axisymmetric test configurations were studied and are compared to experimental data. Detailed two-dimensional results for shock-boundary layer interactions are presented for flows with and without boundary layer bleed. Three dimensional calculations of a cone at angle of attack and a full inlet at attack are also discussed and evaluated. Results of the calculations demonstrate the code's ability to predict complex flow fields and establish guidelines for future calculations using similar codes.

  16. Computation of airfoil buffet boundaries

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  17. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  18. Development of 3D electromagnetic modeling tools for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region between the target and the outer mesh termination boundary (ATB). This boundary is placed in conformity with the target's outer surface, thus resulting in additional reduction of the unknown count.

  19. Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1998-01-01

    A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.

  20. User Manual for Beta Version of TURBO-GRD: A Software System for Interactive Two-Dimensional Boundary/ Field Grid Generation, Modification, and Refinement

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee

    1998-01-01

    TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.

  1. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  2. A New Method for Coronal Magnetic Field Reconstruction

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung

    2017-08-01

    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between two entwining flux tubes and later appears in the coronagraph as the major constituent of the observed CME.

  3. Damping Proceedings Held in Las Vegas, Nevada on 5-7 March 1986. Volume 1

    DTIC Science & Technology

    1986-05-01

    Parin AE-1 -_ Design Oriented Measuring Techniques for Determining the Mechanical Properties of Rubber ;! Dr.lr. B. Devis, Dr.Ir. C. DeMeetsman, and...Prof,.Ir.., J. Peters AF-1 ’Selected Complex Modulus Data;JW C. Chesneau and B. Ouperray AG -I - On The Fractional Calculus Model of Viscoelastic...HUC Rubber i 0 composite material ci an elamtomeric astrf.x and iller partx Ccarbon b, ctk fibrea textiles, ... ). Although it *eem to ill

  4. Numerical Predictions of Mode Reflections in an Open Circular Duct: Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray

    2015-01-01

    The NASA Broadband Aeroacoustic Stator Simulation code was used to compute the acoustic field for higher-order modes in a circular duct geometry. To test the accuracy of the results computed by the code, the duct was terminated by an open end with an infinite flange or no flange. Both open end conditions have a theoretical solution that was used to compare with the computed results. Excellent comparison for reflection matrix values was achieved after suitable refinement of the grid at the open end. The study also revealed issues with the level of the mode amplitude introduced into the acoustic held from the source boundary and the amount of reflection that occurred at the source boundary when a general nonreflecting boundary condition was applied.

  5. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  6. Characterization of the Boundary Layers on Full-Scale Bluefin Tuna

    DTIC Science & Technology

    2014-09-30

    NUWC-NPT Technical Report 12,163 30 September 2014 Characterization of the Boundary Layers on Full-Scale Bluefin Tuna Kimberly M. Cipolla...Center Division Newport, under Section 219 Research Project, “Characterization of the Boundary Layers on Full-Scale Bluefin Tuna ,” principal...K. Amaral (Code 1522). The author thanks Barbara Block (Stanford University), head of the Tuna Research and Conservation Center (TRCC) at the

  7. Atomistic Simulations of Grain Boundary Pinning in CuFe Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Gilmer, G H; Sadigh, B

    2005-05-22

    The authors apply a hybrid Monte Carlo-molecular dynamics code to the study of grain boundary motion upon annealing of pure Cu and Cu with low concentrations of Fe. The hybrid simulations account for segregation and precipitation of the low solubility Fe, together with curvature driven grain boundary motion. Grain boundaries in two different systems, a {Sigma}7+U-shaped half-loop grain and a nanocrystalline sample, were found to be pinned in the presence of Fe concentrations exceeding 3%.

  8. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  9. Correlation of transonic-cone Preston-tube data and skin friction. [characterizing the flow quality of a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Reed, T. D.

    1981-01-01

    The distribution of Preston tube pressures within turbulent boundary layers along the surface of a sharp-nosed, ten degree cone was correlated with theoretical values of turbulent skin friction for freestream Mach numbers less than one. The mini-basic computer code, the Wu and Lock computer code, and the STAN-5 computer code were used to analyze the data and to solve the boundary layer conservation equations. The skin friction which results from using Preston tube pressures in the correlation equation, has a rms error of 1.125 percent. It was found that the effective center of the probe is not a constant but increases as the surface distance increases. For a specified unit Reynolds number, the effective center of the probe decreases as the Mach number increases. The variation of the fluid (air) properties across the face of the probe may be neglected for subsonic flows. The possible transverse errors caused by the use of the concept of a virtual origin for the turbulent boundary layer were investigated and found to be negligible.

  10. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  11. Study of flow control by localized volume heating in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  12. Boundary modelling of the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Renner, H.; Strumberger, E.; Kisslinger, J.; Nührenberg, J.; Wobig, H.

    1997-02-01

    To justify the design of the divertor plates in W7-X the magnetic fields of finite-β HELIAS equilibria for the so-called high-mirror case have been computed for various average β-values up to < β > = 0.04 with the NEMEC free-boundary equilibrium code [S.P. Hirshman, W.I. van Rij and W.I. Merkel, Comput. Phys. Commun. 43 (1986) 143] in combination with the newly developed MFBE (magnetic field solver for finite-beta equilibria) code. In a second study the unloading of the target plates by radiation was investigated. The B2 code [B.J. Braams, Ph.D. Thesis, Rijksuniversiteit Utrecht (1986)] was applied for the first time to stellarators to provide of a self-consistent modelling of the SOL including effects of neutrals and impurities.

  13. Seasonal hydrologic responses to climate change in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Vano, Julie A.; Nijssen, Bart; Lettenmaier, Dennis P.

    2015-04-01

    Increased temperatures and changes in precipitation will result in fundamental changes in the seasonal distribution of streamflow in the Pacific Northwest and will have serious implications for water resources management. To better understand local impacts of regional climate change, we conducted model experiments to determine hydrologic sensitivities of annual, seasonal, and monthly runoff to imposed annual and seasonal changes in precipitation and temperature. We used the Variable Infiltration Capacity (VIC) land-surface hydrology model applied at 1/16° latitude-longitude spatial resolution over the Pacific Northwest (PNW), a scale sufficient to support analyses at the hydrologic unit code eight (HUC-8) basin level. These experiments resolve the spatial character of the sensitivity of future water supply to precipitation and temperature changes by identifying the seasons and locations where climate change will have the biggest impact on runoff. The PNW exhibited a diversity of responses, where transitional (intermediate elevation) watersheds experience the greatest seasonal shifts in runoff in response to cool season warming. We also developed a methodology that uses these hydrologic sensitivities as basin-specific transfer functions to estimate future changes in long-term mean monthly hydrographs directly from climate model output of precipitation and temperature. When principles of linearity and superposition apply, these transfer functions can provide feasible first-order estimates of the likely nature of future seasonal streamflow change without performing downscaling and detailed model simulations.

  14. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  15. Implications of Water Use and Hydroclimatic Anomalies on the Freshwater Sustainability across the US Sunbelt

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Sabo, J. L.; Ruhí, A.; Sinha, T.; Kominoski, J. S.; Hagler, M.; Kunkel, K.; Berglund, E.; Larson, K.; Mahinthakumar, K.

    2014-12-01

    A synthesis on freshwater sustainability is investigated across the US Sunbelt. Spatio-temporal variability of potential drivers - hydroclimate and water use - influencing the freshwater sustainability are examined both individually as well as collectively by considering the eco-region and 4-digit Hydrologic Unit Code (HUC-4)as the spatial reference for the analysis. A detailed analysis on national water use also indicates a north-south gradient with Frostbelt being more efficient in water use as opposed to the Sunbelt. This basically stems from the understanding of regional cross-differences in public supply consumption per capita which is significantly low in high-income urban counties. National analyses on agricultural water use efficiency (i.e., per-acreage application) also shows sprinkler irrigation and micro-irrigation being the primary drivers of differences in agricultural consumption. Given the well-known hydroclimatic west (arid)-east (humid) gradient across the Sunbelt, the study also evaluates the role of flow anomalies - represented by the changes in magnitude, frequency and timing of extremes (high flows and low flows) and by the changes in seasonality - in influencing native fish diversity patterns, as a proxy for freshwater biodiversity, in virgin basins and in basins influenced by significant storage and pumping. Cross-regional differences in water consumption during and after droughts are also presented in the context of adaptations and policy relevance.

  16. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  17. Analysis of film cooling in rocket nozzles

    NASA Technical Reports Server (NTRS)

    Woodbury, Keith A.; Karr, Gerald R.

    1992-01-01

    Progress during the reporting period is summarized. Analysis of film cooling in rocket nozzles by computational fluid dynamics (CFD) computer codes is desirable for two reasons. First, it allows prediction of resulting flow fields within the rocket nozzle, in particular the interaction of the coolant boundary layer with the main flow. This facilitates evaluation of potential cooling configurations with regard to total thrust, etc., before construction and testing of any prototype. Secondly, CFD simulation of film cooling allows for assessment of the effectiveness of the proposed cooling in limiting nozzle wall temperature rises. This latter objective is the focus of the current work. The desired objective is to use the Finite Difference Navier Stokes (FDNS) code to predict wall heat fluxes or wall temperatures in rocket nozzles. As prior work has revealed that the FDNS code is deficient in the thermal modeling of boundary conditions, the first step is to correct these deficiencies in the FDNS code. Next, these changes must be tested against available data. Finally, the code will be used to model film cooling of a particular rocket nozzle. The third task of this research, using the modified code to compute the flow of hot gases through a nozzle, is described.

  18. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  19. Code Properties from Holographic Geometries

    NASA Astrophysics Data System (ADS)

    Pastawski, Fernando; Preskill, John

    2017-04-01

    Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.

  20. Full-f version of GENE for turbulence in open-field-line systems

    NASA Astrophysics Data System (ADS)

    Pan, Q.; Told, D.; Shi, E. L.; Hammett, G. W.; Jenko, F.

    2018-06-01

    Unique properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma-wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard-Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.

  1. Design of a Double Anode Magnetron Injection Gun for Q-band Gyro-TWT Using Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Li, Zhiliang; Feng, Jinjun; Liu, Bentian

    2018-04-01

    This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG's calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥ 150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.

  2. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 8: Cooling Flow/heat Transfer Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Topp, David A.; Heidegger, Nathan J.; Delaney, Robert A.

    1994-01-01

    The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to handle spanwise periodicity and transpiration boundaries. The primary validation case was the film cooled C3X vane. The cooling hole modeling included both a porous region and grid in each discrete hold. Predictions for these models as well as smooth wall compared well with the experimental data.

  3. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  4. Artificial Boundary Conditions for Finite Element Model Update and Damage Detection

    DTIC Science & Technology

    2017-03-01

    BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often

  5. EnviroAtlas - Manure application to agricultural lands from confined animal feeding operations by 12-digit HUC for the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean livestock manure application to cultivated crop and hay/pasture lands by 12-digit Hydrologic Unit (HUC) in 2006. Livestock manure inputs to cultivated crop and hay/pasture lands were estimated using county-level estimates of recoverable animal manure from confined feeding operations compiled for 2007. Recoverable manure is defined as manure that is collected, stored, and available for land application from confined feeding operations. County-scale data on livestock populations -- needed to calculate manure inputs -- were only available for the year 2007 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We acquired county-level data describing total farm-level inputs (kg N/yr) of recoverable manure to individual counties in 2007 from the International Plant Nutrition Institute (IPNI) Nutrient Geographic Information System (NuGIS; http://www.ipni.net/nugis). These data were converted to per area rates (kg N/ha/yr) of manure N inputs by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture (agricultural) lands within a county as determined from county-level summarization of the 2006 NLCD. We distributed county-specific, per area N inputs rates to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county. Manure data described here represent an average input to a typical agricultural land type within a county, i.e., the

  6. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2002)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab

  7. EnviroAtlas - Atmospheric Nitrogen and Sulfur Deposition by 12-digit HUC for the Conterminous United States (2011)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  8. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2006)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat

  9. Dress Codes. Legal Brief.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    As illustrated by two recent decisions, the courts in the past decade have demarcated wide boundaries for school officials considering dress codes, whether in the form of selective prohibitions or required uniforms. Administrators must warn the community, provide legitimate justification and reasonable clarity, and comply with state law. (MLH)

  10. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  11. BBC users manual. [In LRLTRAN for CDC 7600 and STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ltterst, R. F.; Sutcliffe, W. G.; Warshaw, S. I.

    1977-11-01

    BBC is a two-dimensional, multifluid Eulerian hydro-radiation code based on KRAKEN and some subsequent ideas. It was developed in the explosion group in T-Division as a basic two-dimensional code to which various types of physics can be added. For this reason BBC is a FORTRAN (LRLTRAN) code. In order to gain the 2-to-1 to 4-to-1 speed advantage of the STACKLIB software on the 7600's and to be able to execute at high speed on the STAR, the vector extensions of LRLTRAN (STARTRAN) are used throughout the code. Either cylindrical- or slab-type problems can be run on BBC. The grid ismore » bounded by a rectangular band of boundary zones. The interfaces between the regular and boundary zones can be selected to be either rigid or nonrigid. The setup for BBC problems is described in the KEG Manual and LEG Manual. The difference equations are described in BBC Hydrodynamics. Basic input and output for BBC are described.« less

  12. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1995-01-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  13. Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.

    2007-01-01

    The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.

  14. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; Shephard, M. S.; Zhang, F.

    2016-05-01

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  15. CFL3D User's Manual (Version 5.0)

    NASA Technical Reports Server (NTRS)

    Krist, Sherrie L.; Biedron, Robert T.; Rumsey, Christopher L.

    1998-01-01

    This document is the User's Manual for the CFL3D computer code, a thin-layer Reynolds-averaged Navier-Stokes flow solver for structured multiple-zone grids. Descriptions of the code's input parameters, non-dimensionalizations, file formats, boundary conditions, and equations are included. Sample 2-D and 3-D test cases are also described, and many helpful hints for using the code are provided.

  16. Structural Integrity of Water Reactor Pressure Boundary Components.

    DTIC Science & Technology

    1980-08-01

    Boiler and Pressure Vessel Code , Sec. Ill). Estimates of the upper shelf K level from small-specimen...from Appendix A of Section XI of the ASME Boiler and Pressure Vessel Code [11. Figure 9 shows this same data set, together with earlier data for...0969, NRL Memo- randum Report 4063, Sep. 1979. 11. Section XI - ASME Boiler and Pressure Vessel Code , Rules for Inservice Inspection of Nuclear

  17. A Simulation Model of the Planetary Boundary Layer at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Hwang, B.

    1978-01-01

    A simulation model which predicts the behavior of the Atmospheric Boundary Layer has been developed and coded. The model is partially evaluated by comparing it with laboratory measurements and the sounding measurements at Kennedy Space Center. The applicability of such an approach should prove quite widespread.

  18. Defining Neighborhood Boundaries for Social Measurement: Advancing Social Work Research

    ERIC Educational Resources Information Center

    Foster, Kirk A.; Hipp, J. Aaron

    2011-01-01

    Much of the current neighborhood-based research uses variables aggregated on administrative boundaries such as zip codes, census tracts, and block groups. However, other methods using current technological advances in geographic sciences may broaden our ability to explore the spatial concentration of neighborhood factors affecting individuals and…

  19. Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.

  20. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  1. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  2. Benchmark problems in computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Porter-Locklear, Freda

    1994-01-01

    A recent directive at NASA Langley is aimed at numerically predicting principal noise sources. During my summer stay, I worked with high-order ENO code, developed by Dr. Harold Atkins, for solving the unsteady compressible Navier-Stokes equations, as it applies to computational aeroacoustics (CAA). A CAA workshop, composed of six categories of benchmark problems, has been organized to test various numerical properties of code. My task was to determine the robustness of Atkins' code for these test problems. In one category, we tested the nonlinear wave propagation of the code for the one-dimensional Euler equations, with initial pressure, density, and velocity conditions. Using freestream boundary conditions, our results were plausible. In another category, we solved the linearized two-dimensional Euler equations to test the effectiveness of radiation boundary conditions. Here we utilized MAPLE to compute eigenvalues and eigenvectors of the Jacobian given variable and flux vectors. We experienced a minor problem with inflow and outflow boundary conditions. Next, we solved the quasi one dimensional unsteady flow equations with an incoming acoustic wave of amplitude 10(exp -6). The small amplitude sound wave was incident on a convergent-divergent nozzle. After finding a steady-state solution and then marching forward, our solution indicated that after 30 periods the acoustic wave had dissipated (a period is time required for sound wave to traverse one end of nozzle to other end).

  3. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  4. Effects of the oceans on polar motion: Extended investigations

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1987-01-01

    Matrix formulation of the tide equations (pole tide in nonglobal oceans); matrix formulation of the associated boundary conditions (constraints on the tide velocity at coastlines); and FORTRAN encoding of the tide equations excluding boundary conditions were completed. The need for supercomputer facilities was evident. Large versions of the programs were successfully run on the CYBER, submitting the jobs from SUNY through the BITNET network. The code was also restructured to include boundary constraints.

  5. Stagnation-point heat-transfer rate predictions at aeroassist flight conditions

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Jones, Jim J.; Rochelle, William C.

    1992-01-01

    The results are presented for the stagnation-point heat-transfer rates used in the design process of the Aeroassist Flight Experiment (AFE) vehicle over its entire aeropass trajectory. The prediction methods used in this investigation demonstrate the application of computational fluid dynamics (CFD) techniques to a wide range of flight conditions and their usefulness in a design process. The heating rates were computed by a viscous-shock-layer (VSL) code at the lower altitudes and by a Navier-Stokes (N-S) code for the higher altitude cases. For both methods, finite-rate chemically reacting gas was considered, and a temperature-dependent wall-catalysis model was used. The wall temperature for each case was assumed to be radiative equilibrium temperature, based on total heating. The radiative heating was estimated by using a correlation equation. Wall slip was included in the N-S calculation method, and this method implicitly accounts for shock slip. The N-S/VSL combination of projection methods was established by comparison with the published benchmark flow-field code LAURA results at lower altitudes, and the direct simulation Monte Carlo results at higher altitude cases. To obtain the design heating rate over the entire forward face of the vehicle, a boundary-layer method (BLIMP code) that employs reacting chemistry and surface catalysis was used. The ratio of the VSL or N-S method prediction to that obtained from the boundary-layer method code at the stagnation point is used to define an adjustment factor, which accounts for the errors involved in using the boundary-layer method.

  6. Locality-preserving logical operators in topological stabilizer codes

    NASA Astrophysics Data System (ADS)

    Webster, Paul; Bartlett, Stephen D.

    2018-01-01

    Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.

  7. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  8. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.

  9. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flow.

  10. Amplified crossflow disturbances in the laminar boundary layer on swept wings with suction

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. R.

    1981-01-01

    Solution charts of the Orr-Sommerfeld equation for stationary crossflow disturbances are presented for 10 typical velocity profiles on a swept laminar flow control wing. The critical crossflow Reynolds number is shown to be a function of a boundary layer shape factor. Amplification rates for crossflow disturbances are shown to be proportional to the maximum crossflow velocity. A computer stability program called MARIA, employing the amplification rate data for the 10 crossflow velocity profiles, is constructed. This code is shown to adequately approximate more involved computer stability codes using less than two percent as much computer time while retaining the essential physical disturbance growth model.

  11. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  12. Validation of a multi-layer Green's function code for ion beam transport

    NASA Astrophysics Data System (ADS)

    Walker, Steven; Tweed, John; Tripathi, Ram; Badavi, Francis F.; Miller, Jack; Zeitlin, Cary; Heilbronn, Lawrence

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. In consequence, a new version of the HZETRN code capable of simulating high charge and energy (HZE) ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. The computational model consists of the lowest order asymptotic approximation followed by a Neumann series expansion with non-perturbative corrections. The physical description includes energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shift. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments with multi-layer targets. In order to validate the code with space boundary conditions, measured particle fluences are propagated through several thicknesses of shielding using both GRNTRN and the current version of HZETRN. The excellent agreement obtained indicates that GRNTRN accurately models the propagation of HZE ions in the space environment as well as in laboratory settings and also provides verification of the HZETRN propagator.

  13. A post-processing method to simulate the generalized RF sheath boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, James R.; Kohno, Haruhiko

    For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less

  14. A post-processing method to simulate the generalized RF sheath boundary condition

    DOE PAGES

    Myra, James R.; Kohno, Haruhiko

    2017-10-23

    For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less

  15. Evaluation of Spanwise Variable Impedance Liners with Three-Dimensional Aeroacoustics Propagation Codes

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.

    2017-01-01

    Three perforate-over-honeycomb liner configurations, one uniform and two with spanwise variable impedance, are evaluated based on tests conducted in the NASA Grazing Flow Impedance Tube (GFIT) with a plane-wave source. Although the GFIT is only 2" wide, spanwise impedance variability clearly affects the measured acoustic pressure field, such that three-dimensional (3D) propagation codes are required to properly predict this acoustic pressure field. Three 3D propagation codes (CHE3D, COMSOL, and CDL) are used to predict the sound pressure level and phase at eighty-seven microphones flush-mounted in the GFIT (distributed along all four walls). The CHE3D and COMSOL codes compare favorably with the measured data, regardless of whether an exit acoustic pressure or anechoic boundary condition is employed. Except for those frequencies where the attenuation is large, the CDL code also provides acceptable estimates of the measured acoustic pressure profile. The CHE3D and COMSOL predictions diverge slightly from the measured data for frequencies away from resonance, where the attenuation is noticeably reduced, particularly when an exit acoustic pressure boundary condition is used. For these conditions, the CDL code actually provides slightly more favorable comparison with the measured data. Overall, the comparisons of predicted and measured data suggest that any of these codes can be used to understand data trends associated with spanwise variable-impedance liners.

  16. Introducing the Boundary Element Method with MATLAB

    ERIC Educational Resources Information Center

    Ang, Keng-Cheng

    2008-01-01

    The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…

  17. Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    1999-01-01

    Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.

  18. Modeling Plasma Turbulence and Flows in LAPD using BOUT++

    NASA Astrophysics Data System (ADS)

    Friedman, B.; Carter, T. A.; Schaffner, D.; Popovich, P.; Umansky, M. V.; Dudson, B.

    2010-11-01

    A Braginskii fluid model of plasma turbulence in the BOUT code has recently been applied to LAPD at UCLA [1]. While these initial simulations with a reduced model and periodic axial boundary conditions have shown good agreement with measurements (e.g. power spectrum, correlation lengths), these simulations have lacked physics essential for modeling self-consistent, quantitatively correct flows. In particular, the model did not contain parallel plasma flow induced by sheath boundary conditions, and the axisymmetric radial electric field was not consistent with experiment. This work addresses these issues by extending the simulation model in the BOUT++ code [2], a more advanced version of BOUT. Specifically, end-plate sheath boundary conditions are added, as well as equations to evolve electron temperature and parallel ion velocity. Finally, various techniques are used to attempt to match the experimental electric potential profile, including fixing an equilibrium profile, fixing the radial boundaries, and adding an angular momentum source. [4pt] [1] Popovich et al., http://arxiv.org/abs/1005.2418 (2010).[0pt] [2] Dudson et al., Computer Physics Communications 180 (2009).

  19. Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT

    NASA Technical Reports Server (NTRS)

    Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.

    2015-01-01

    This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.

  20. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  1. The application of a shift theorem analysis technique to multipoint measurements

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Chapman, S. C.

    1999-03-01

    A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure's velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, which we will refer to as a stationarity test, by applying it to two point measurements of a simulated boundary layer. The boundary layer was evolved using a PIC (particle in cell) electromagnetic code. Initial and boundary conditions were chosen such, that two cases could be considered, i.e. a spacecraft pair moving through (1) a time stationary boundary structure and (2) a boundary structure which is evolving (expanding) in time. The code also introduces noise in the simulated data time series which is uncorrelated between the two spacecraft. We demonstrate that, provided that the time series is Hanning windowed, the test is effective in determining the relative velocity between the boundary layer and spacecraft and in determining the range of frequencies over which the data can be treated as time stationary or time evolving. This work presents a first step towards understanding the effectiveness of this technique, as required in order for it to be applied to multispacecraft data.

  2. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  3. Coupled thermo-chemical boundary conditions in double-diffusive geodynamo models at arbitrary Lewis numbers.

    NASA Astrophysics Data System (ADS)

    Bouffard, M.

    2016-12-01

    Convection in the Earth's outer core is driven by the combination of two buoyancy sources: a thermal source directly related to the Earth's secular cooling, the release of latent heat and possibly the heat generated by radioactive decay, and a compositional source due to the crystallization of the growing inner core which releases light elements into the liquid outer core. The dynamics of fusion/crystallization being dependent on the heat flux distribution, the thermochemical boundary conditions are coupled at the inner core boundary which may affect the dynamo in various ways, particularly if heterogeneous conditions are imposed at one boundary. In addition, the thermal and compositional molecular diffusivities differ by three orders of magnitude. This can produce significant differences in the convective dynamics compared to pure thermal or compositional convection due to the potential occurence of double-diffusive phenomena. Traditionally, temperature and composition have been combined into one single variable called codensity under the assumption that turbulence mixes all physical properties at an "eddy-diffusion" rate. This description does not allow for a proper treatment of the thermochemical coupling and is certainly incorrect within stratified layers in which double-diffusive phenomena can be expected. For a more general and rigorous approach, two distinct transport equations should therefore be solved for temperature and composition. However, the weak compositional diffusivity is technically difficult to handle in current geodynamo codes and requires the use of a semi-Lagrangian description to minimize numerical diffusion. We implemented a "particle-in-cell" method into a geodynamo code to properly describe the compositional field. The code is suitable for High Parallel Computing architectures and was successfully tested on two benchmarks. Following the work by Aubert et al. (2008) we use this new tool to perform dynamo simulations including thermochemical coupling at the inner core boundary as well as exploration of the infinite Lewis number limit to study the effect of a heterogeneous core mantle boundary heat flow on the inner core growth.

  4. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  5. Study of shock-induced combustion using an implicit TVD scheme

    NASA Technical Reports Server (NTRS)

    Yungster, Shayne

    1992-01-01

    The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.

  6. The TORSED method for construction of TORT boundary sources from external DORT flux files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoades, W.A.

    1993-08-01

    The TORSED method provides a means of coupling cylindrical two-dimensional DORT fluxes or fluences to a three-dimensional TORT calculation in Cartesian geometry through construction of external boundary sources for TORT. This can be important for several reasons. The two-dimensional environment may be too large for TORT simulation. The two-dimensional environment may be truly cylindrical in nature, and thus, better treated in that geometry. It may be desired to use a single environment calculation to study numerous local perturbations. In Section I the TORSED code is described in detail and the diverse demonstration problems that accompany the code distribution are discussed.more » In Section II, an updated discussion of the VISA code is given. VISA is required to preprocess the DORT files for use in TORSED. In Section III, the references are listed.« less

  7. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  8. VizieR Online Data Catalog: Habitable zone code (Valle+, 2014)

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2014-06-01

    A C computation code that provide in output the distance dm (i for which the duration of habitability is longest, the corresponding duration tm (in Gyr), the width W (in AU) of the zone for which the habitability lasts tm/2, the inner (Ri) and outer (Ro) boundaries of the 4Gyr continuously habitable zone. The code read the input file HZ-input.dat, containing in each row the mass of the host star (range: 0.70-1.10M⊙), its metallicity (either Z (range: 0.005-0.004) or [Fe/H]), the helium-to-metal enrichment ratio (range: 1-3, standard value = 2), the equilibrium temperature for habitable zone outer boundary computation (range: 169-203K) and the planet Bond Albedo (range: 0.0-1.0, Earth = 0.3). The output is printed on-screen. Compilation: just use your favorite C compiler: gcc hz.c -lm -o HZ (2 data files).

  9. Development and Testing of DAVID: A Close-in EMP Coupling Code for Arbitrarily Shaped Objects

    DTIC Science & Technology

    1975-11-07

    5.OE-9 sec. (Ambient boundary condition, 0 = 0, Y - YAMAX ). 65 13 b. Approximate contours of constant Ex at T -5.8E-9 sec. (Ambient boundary...condition, 0 =0 Y -YMAX). 65 13 c. Appro<imate contours of constant Ex at T = 9.8E-9 sec. (Ambient boundary condition, 0 = 0 °, Y = YAMAX ). 66 13 d...Approximate contours of constant Ex at T 2.9E-8 sec. (Ambient boundary condition, 0% Y = YAMAX ). 66 - 14 a. Approximate contours of constant Ex at T = 9.8E-9

  10. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  11. NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Geng, Steven M.

    2016-01-01

    A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

  12. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround- ing vacuum region are included within the computational domain. Our implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. We use this new capability to simulate perturbed, free-boundary non- axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear andmore » nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real- istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  13. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, N. M., E-mail: nferraro@pppl.gov; Lao, L. L.; Jardin, S. C.

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolutionmore » of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  14. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE PAGES

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; ...

    2016-05-20

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround- ing vacuum region are included within the computational domain. Our implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. We use this new capability to simulate perturbed, free-boundary non- axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear andmore » nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real- istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  15. Transmission line based thermoacoustic imaging of small animals

    NASA Astrophysics Data System (ADS)

    Omar, Murad; Kellnberger, Stephan; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2013-06-01

    We have generated high resolution images of RF-Contrast in small animals using nearfield thermoacoustic system. This enables us to see some anatomical features of a mouse such as the heart, the spine and the boundary. OCIS codes: (000.0000) General; (000.0000) General [8-pt. type. For codes, see www.opticsinfobase.org/submit/ocis.

  16. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    PubMed

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  17. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Nitrogen (N) inputs from the cultivation of legumes, which possess a symbiotic relationship with N-fixing bacteria, were calculated with a recently developed model relating county-level yields of various leguminous crops with BNF rates. We accessed county-level data on annual crop yields for soybeans (Glycine max L.), alfalfa (Medicago sativa L.), peanuts (Arachis hypogaea L.), various dry beans (Phaseolus, Cicer, and Lens spp.), and dry peas (Pisum spp.) for 2006 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We estimated the yield of the non-alfalfa leguminous component of hay as 32% of the yield of total non-alfalfa hay (http://www.agcensus.usda.gov/index.php). Annual rates of C-BNF by crop type were calculated using a model that relates yield to C-BNF. We assume yield data reflect differences in soil properties, water availability, temperature, and other local and regional factors that can influence root nodulation and rate of N fixation. We distributed county-specific, C-BNF rates to cultivated crop and hay/pasture lands delineated in the 2006 National Land Cover Database (30 x 30 m pixels) within the corresponding county. C-BNF data described here represent an average input to a typical agricultural land type within a county, i.e., they are not

  18. Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells.

    PubMed

    Wang, Linli; Chen, Yuehua; Guan, Chunyan; Zhao, Zhiju; Li, Qiang; Yang, Jianguo; Mo, Jian; Wang, Bin; Wu, Wei; Yang, Xiaohui; Song, Libing; Li, Jun

    2017-11-02

    Because the lack of an induced pluripotent stem cell (iPSC) induction system with optimal safety and efficiency limits the application of these cells, development of such a system is important. To create such an induction system, we screened a variety of reprogrammed plasmid combinations and multiple compounds and then verified the system's feasibility using urine cells from different individuals. We also compared large-scale iPSC chromosomal variations and expression of genes associated with genomic stability between this system and the traditional episomal system using karyotype and quantitative reverse transcription polymerase chain reaction analyses. We developed a high-efficiency episomal system, the 6F/BM1-4C system, lacking tumorigenic factors for human urine-derived cell (hUC) reprogramming. This system includes six low-risk factors (6F), Oct4, Glis1, Klf4, Sox2, L-Myc, and the miR-302 cluster. Transfected hUCs were treated with four compounds (4C), inhibitor of lysine-demethylase1, methyl ethyl ketone, glycogen synthase kinase 3 beta, and histone deacetylase, within a short time period. Comparative analysis revealed significantly decreased chromosomal variation in iPSCs and significantly increased Sirt1 expression compared with iPSCs induced using the traditional episomal system. The 6F/BM1-4C system effectively induces reprogramming of urine cells in samples obtained from different individuals. iPSCs induced using the 6F/BM1-4C system are more stable at the cytogenetic level and have potential value for clinical application.

  19. Three polypeptides screened from phage display random peptide library may be the receptor polypeptide of Mycoplasma genitalium adhesion protein.

    PubMed

    Deng, Xiangying; Zhu, Youcong; Dai, Pei; Yu, Minjun; Chen, Liesong; Zhu, Cuiming; You, Xiaoxing; Li, Lingling; Zeng, Yanhua

    2018-04-28

    Mycoplasma genitalium adhesion protein (MgPa) is a major adhesin of M. genitalium, a human pathogen associated with a series of genitourinary tract diseases. MgPa plays a very important role in M. genitalium adhering to the host cells. However, the exact receptor peptides or proteins of MgPa are still poorly understood so far. Three polypeptides (V-H-W-D-F-R-Q-W-W-Q-P-S), (D-W-S-S-W-V -Y-R-D-P-Q-T) and (H-Y-I-D-F-R-W) were previously screened from a phage display random peptide library using recombinant MgPa (rMgPa) as a target molecule. In this study, three polypeptides were artificially synthesized and investigated as to whether they are potential receptors of MgPa. We found that rMgPa specifically bound to three synthesized polypeptides as determined via an indirect enzyme-linked immunosorbent assay (ELISA). Moreover, three polypeptides were further identified by indirect immunofluorescence microscopy (IFM). We confirmed that rMgPa and M. genitalium can adhere to SV-HUC-1 cells in vitro and that anti-rMgPa antibody and three synthesized polypeptides can partially inhibit the adherence of rMgPa and M. genitalium to SV-HUC-1 cells. In summary, these three polypeptides may be the essential receptor peptides of MgPa, and may aid in enhancing the understanding of biological function of MgPa and the possible pathogenic mechanism of M. genitalium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Long-Term Grazing Exclusion Improves the Composition and Stability of Soil Organic Matter in Inner Mongolian Grasslands

    PubMed Central

    Wang, Chunyan; He, Nianpeng; Zhang, Jinjing; Lv, Yuliang; Wang, Li

    2015-01-01

    Alteration of the composition of soil organic matter (SOM) in Inner Mongolian grassland soils associated with the duration of grazing exclusion (GE) has been considered an important index for evaluating the restoring effects of GE practice. By using five plots from a grassland succession series from free grazing to 31-year GE, we measured the content of soil organic carbon (SOC), humic acid carbon (HAC), fulvic acid carbon (FAC), humin carbon (HUC), and humic acid structure to evaluate the changes in SOM composition. The results showed that SOC, HUC, and the ratios of HAC/FAC and HAC/extractable humus carbon (C) increased significantly with prolonged GE duration, and their relationships can be well fitted by positive exponential equations, except for FAC. In contrast, the HAC content increased logarithmically with prolonged GE duration. Long-term GE enhanced the content of SOC and soil humification, which was obvious after more than 10 years of GE. Solid-state 13C nuclear magnetic resonance spectroscopy showed that the ratios of alkyl C/O-alkyl C first decreased, and then remained stable with prolonged GE. Alternately, the ratios of aromaticity and hydrophobicity first increased, and then were maintained at relatively stable levels. Thus, a decade of GE improved the composition and structure of SOM in semiarid grassland soil and made it more stable. These findings provide new evidence to support the positive effects of long-term GE on soil SOC sequestration in the Inner Mongolian grasslands, in view of the improvement of SOM structure and stability. PMID:26057249

  1. Long-Term Grazing Exclusion Improves the Composition and Stability of Soil Organic Matter in Inner Mongolian Grasslands.

    PubMed

    Wang, Chunyan; He, Nianpeng; Zhang, Jinjing; Lv, Yuliang; Wang, Li

    2015-01-01

    Alteration of the composition of soil organic matter (SOM) in Inner Mongolian grassland soils associated with the duration of grazing exclusion (GE) has been considered an important index for evaluating the restoring effects of GE practice. By using five plots from a grassland succession series from free grazing to 31-year GE, we measured the content of soil organic carbon (SOC), humic acid carbon (HAC), fulvic acid carbon (FAC), humin carbon (HUC), and humic acid structure to evaluate the changes in SOM composition. The results showed that SOC, HUC, and the ratios of HAC/FAC and HAC/extractable humus carbon (C) increased significantly with prolonged GE duration, and their relationships can be well fitted by positive exponential equations, except for FAC. In contrast, the HAC content increased logarithmically with prolonged GE duration. Long-term GE enhanced the content of SOC and soil humification, which was obvious after more than 10 years of GE. Solid-state 13C nuclear magnetic resonance spectroscopy showed that the ratios of alkyl C/O-alkyl C first decreased, and then remained stable with prolonged GE. Alternately, the ratios of aromaticity and hydrophobicity first increased, and then were maintained at relatively stable levels. Thus, a decade of GE improved the composition and structure of SOM in semiarid grassland soil and made it more stable. These findings provide new evidence to support the positive effects of long-term GE on soil SOC sequestration in the Inner Mongolian grasslands, in view of the improvement of SOM structure and stability.

  2. Performance and Application of Parallel OVERFLOW Codes on Distributed and Shared Memory Platforms

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Rizk, Yehia M.

    1999-01-01

    The presentation discusses recent studies on the performance of the two parallel versions of the aerodynamics CFD code, OVERFLOW_MPI and _MLP. Developed at NASA Ames, the serial version, OVERFLOW, is a multidimensional Navier-Stokes flow solver based on overset (Chimera) grid technology. The code has recently been parallelized in two ways. One is based on the explicit message-passing interface (MPI) across processors and uses the _MPI communication package. This approach is primarily suited for distributed memory systems and workstation clusters. The second, termed the multi-level parallel (MLP) method, is simple and uses shared memory for all communications. The _MLP code is suitable on distributed-shared memory systems. For both methods, the message passing takes place across the processors or processes at the advancement of each time step. This procedure is, in effect, the Chimera boundary conditions update, which is done in an explicit "Jacobi" style. In contrast, the update in the serial code is done in more of the "Gauss-Sidel" fashion. The programming efforts for the _MPI code is more complicated than for the _MLP code; the former requires modification of the outer and some inner shells of the serial code, whereas the latter focuses only on the outer shell of the code. The _MPI version offers a great deal of flexibility in distributing grid zones across a specified number of processors in order to achieve load balancing. The approach is capable of partitioning zones across multiple processors or sending each zone and/or cluster of several zones into a single processor. The message passing across the processors consists of Chimera boundary and/or an overlap of "halo" boundary points for each partitioned zone. The MLP version is a new coarse-grain parallel concept at the zonal and intra-zonal levels. A grouping strategy is used to distribute zones into several groups forming sub-processes which will run in parallel. The total volume of grid points in each group are approximately balanced. A proper number of threads are initially allocated to each group, and in subsequent iterations during the run-time, the number of threads are adjusted to achieve load balancing across the processes. Each process exploits the multitasking directives already established in Overflow.

  3. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  4. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media

    USGS Publications Warehouse

    Lappala, E.G.; Healy, R.W.; Weeks, E.P.

    1987-01-01

    This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)

  5. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  6. Coastal Benthic Boundary Layer Special Research Program: A Review of the First Year. Volume 1.

    DTIC Science & Technology

    1994-04-06

    also Indebted to Dr. LeBlanc for his supervision of the relaxation time numerical analyses, and Lachlan Munro, a3 graduate ONR AASERT student, for coding...R. Smith and E. Besancon Code 7174 Naval Research Laboratory Stennis Space Center, MS 39529-5004 I INTRODUCTION: This brief report outlines the

  7. BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2011-04-01

    The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.

  8. A Continuum Mechanical Approach to Geodesics in Shape Space

    DTIC Science & Technology

    2010-01-01

    the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a ...investigate the close link between abstract geometry on the infinite -dimen- sional space of shapes and the continuum mechanical view of shapes as boundary...are texture-coded in the bottom row. of multiple components of volumetric objects. The

  9. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  10. Image Processing Language. Phase 1

    DTIC Science & Technology

    1988-05-01

    their entirety. Nonetheless, they can serve as guidelines to which the construction of a useful and comprehensive imaging algebra might aspire. 3. TIH... guidelines to which the construction of a useful and comprehensive imaging algebra might aspire. * It was recognized that any structure which encompasses...Bernstein Polynomial Approximation Best Plane Fit ( BPF , Sobel, Roberts, Prewitt, Gradient) Boundary Finder Boundary Segmenter Chain Code Angle

  11. GRUMFOIL: A computer code for the viscous transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Mead, H. R.; Melnik, R. E.

    1985-01-01

    A user's manual which describes the operation of the computer program, GRUMFOIL is presented. The program computes the viscous transonic flow over two dimensional airfoils using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by a multigrid method for the full potential equation. The boundary layer solution is based on integral entrainment methods.

  12. A Research Code to Study Solutions of the Boundary Layer Equations in Body Conformal Coordinates

    DTIC Science & Technology

    1991-05-01

    1991. Denis Bergeron 91-07405 May 1991 Approved ko pubhic reeae; l’ LsesFu Un.hii- ted DEFENCE RESEARCH ESTABLISHMENT SUFFIELD, RALSTON, ALBERTA PEP...his results in boundary layer coordinates u and n’ which are defined as + [ , ur = (6-4) U U’t UNCLASSIFIED UNCLASSIFIED 46 -5.0 . . . All cases wun

  13. A supercritical airfoil experiment

    NASA Technical Reports Server (NTRS)

    Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.

    1994-01-01

    The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.

  14. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  15. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  16. A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Lyu, L. H.; Chao, J. K.; Chen, M. Q.; Tsai, W. H.

    2009-12-01

    Contact discontinuity (CD) is the simplest solution that can be obtained from the magnetohydrodynamics (MHD) Rankine-Hugoniot jump conditions. Due to the limitations of the previous kinetic simulation models, the stability of the CD has become a controversial issue in the past 10 years. The stability of the CD is reexamined analytically and numerically. Our theoretical analysis shows that the electron temperature profile and the ion temperature profile must be out of phase across the CD if the CD structure is to be stable in the electron time scale and with zero electron heat flux on either side of the CD. Both a newly developed fourth-order implicit electrostatic Vlasov simulation code and an electromagnetic finite-size particle code are used to examine the stability and the electrostatic nature of the CD structure. Our theoretical prediction is verified by both simulations. Our results of Vlasov simulation also indicate that a simulation with initial electron temperature profile and ion temperature profile varying in phase across the CD will undergo very transient changes in the electron time scale but will relax into a quasi-steady CD structure within a few ion plasma oscillation periods if a real ion-electron mass ratio is used in the simulation and if the boundary conditions allow nonzero heat flux to be presented at the boundaries of the simulation box. The simulation results of this study indicate that the Vlasov simulation is a powerful tool to study nonlinear phenomena with nonperiodic boundary conditions and with nonzero heat flux at the boundaries of the simulation box.

  17. The Association of Combined GSTM1 and CYP2C9 Genotype Status with the Occurrence of Hemorrhagic Cystitis in Pediatric Patients Receiving Myeloablative Conditioning Regimen Prior to Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Uppugunduri, Chakradhara Rao S.; Storelli, Flavia; Mlakar, Vid; Huezo-Diaz Curtis, Patricia; Rezgui, Aziz; Théorêt, Yves; Marino, Denis; Doffey-Lazeyras, Fabienne; Chalandon, Yves; Bader, Peter; Daali, Youssef; Bittencourt, Henrique; Krajinovic, Maja; Ansari, Marc

    2017-01-01

    Hemorrhagic cystitis (HC) is one of the complications of busulfan-cyclophosphamide (BU-CY) conditioning regimen during allogeneic hematopoietic stem cell transplantation (HSCT) in children. Identifying children at high risk of developing HC in a HSCT setting could facilitate the evaluation and implementation of effective prophylactic measures. In this retrospective analysis genotyping of selected candidate gene variants was performed in 72 children and plasma Sulfolane (Su, water soluble metabolite of BU) levels were measured in 39 children following treatment with BU-CY regimen. The cytotoxic effects of Su and acrolein (Ac, water soluble metabolite of CY) were tested on human urothelial cells (HUCs). The effect of Su was also tested on cytochrome P 450 (CYP) function in HepaRG hepatic cells. Cumulative incidences of HC before day 30 post HSCT were estimated using Kaplan–Meier curves and log-rank test was used to compare the difference between groups in a univariate analysis. Multivariate Cox regression was used to estimate hazard ratios with 95% confidence intervals (CIs). Multivariate analysis included co-variables that were significantly associated with HC in a univariate analysis. Cumulative incidence of HC was 15.3%. In the univariate analysis, HC incidence was significantly (p < 0.05) higher in children older than 10 years (28.6 vs. 6.8%) or in children with higher Su levels (>40 vs. <11%) or in carriers of both functional GSTM1 and CYP2C9 (33.3 vs. 6.3%) compared to the other group. In a multivariate analysis, combined GSTM1 and CYP2C9 genotype status was associated with HC occurrence with a hazards ratio of 4.8 (95% CI: 1.3–18.4; p = 0.02). Ac was found to be toxic to HUC cells at lower concentrations (33 μM), Su was not toxic to HUC cells at concentrations below 1 mM and did not affect CYP function in HepaRG cells. Our observations suggest that pre-emptive genotyping of CYP2C9 and GSTM1 may aid in selection of more effective prophylaxis to reduce HC development in pediatric patients undergoing allogeneic HSCT. Article summary: (1) Children carrying functional alleles in GSTM1 and CYP2C9 are at high risk for developing hemorrhagic cystitis following treatment with busulfan and cyclophosphamide based conditioning regimen. (2) Identification of children at high risk for developing hemorrhagic cystitis in an allogeneic HSCT setting will enable us to evaluate and implement optimal strategies for its prevention. Trial registration: This study is a part of the trail “clinicaltrials.gov identifier: NCT01257854.” PMID:28744217

  18. The Association of Combined GSTM1 and CYP2C9 Genotype Status with the Occurrence of Hemorrhagic Cystitis in Pediatric Patients Receiving Myeloablative Conditioning Regimen Prior to Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Uppugunduri, Chakradhara Rao S; Storelli, Flavia; Mlakar, Vid; Huezo-Diaz Curtis, Patricia; Rezgui, Aziz; Théorêt, Yves; Marino, Denis; Doffey-Lazeyras, Fabienne; Chalandon, Yves; Bader, Peter; Daali, Youssef; Bittencourt, Henrique; Krajinovic, Maja; Ansari, Marc

    2017-01-01

    Hemorrhagic cystitis (HC) is one of the complications of busulfan-cyclophosphamide (BU-CY) conditioning regimen during allogeneic hematopoietic stem cell transplantation (HSCT) in children. Identifying children at high risk of developing HC in a HSCT setting could facilitate the evaluation and implementation of effective prophylactic measures. In this retrospective analysis genotyping of selected candidate gene variants was performed in 72 children and plasma Sulfolane (Su, water soluble metabolite of BU) levels were measured in 39 children following treatment with BU-CY regimen. The cytotoxic effects of Su and acrolein (Ac, water soluble metabolite of CY) were tested on human urothelial cells (HUCs). The effect of Su was also tested on cytochrome P 450 (CYP) function in HepaRG hepatic cells. Cumulative incidences of HC before day 30 post HSCT were estimated using Kaplan-Meier curves and log-rank test was used to compare the difference between groups in a univariate analysis. Multivariate Cox regression was used to estimate hazard ratios with 95% confidence intervals (CIs). Multivariate analysis included co-variables that were significantly associated with HC in a univariate analysis. Cumulative incidence of HC was 15.3%. In the univariate analysis, HC incidence was significantly ( p < 0.05) higher in children older than 10 years (28.6 vs. 6.8%) or in children with higher Su levels (>40 vs. <11%) or in carriers of both functional GSTM1 and CYP2C9 (33.3 vs. 6.3%) compared to the other group. In a multivariate analysis, combined GSTM1 and CYP2C9 genotype status was associated with HC occurrence with a hazards ratio of 4.8 (95% CI: 1.3-18.4; p = 0.02). Ac was found to be toxic to HUC cells at lower concentrations (33 μM), Su was not toxic to HUC cells at concentrations below 1 mM and did not affect CYP function in HepaRG cells. Our observations suggest that pre-emptive genotyping of CYP2C9 and GSTM1 may aid in selection of more effective prophylaxis to reduce HC development in pediatric patients undergoing allogeneic HSCT. Article summary : (1) Children carrying functional alleles in GSTM1 and CYP2C9 are at high risk for developing hemorrhagic cystitis following treatment with busulfan and cyclophosphamide based conditioning regimen. (2) Identification of children at high risk for developing hemorrhagic cystitis in an allogeneic HSCT setting will enable us to evaluate and implement optimal strategies for its prevention. Trial registration : This study is a part of the trail "clinicaltrials.gov identifier: NCT01257854."

  19. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  20. A transonic interactive boundary-layer theory for laminar and turbulent flow over swept wings

    NASA Technical Reports Server (NTRS)

    Woodson, Shawn H.; Dejarnette, Fred R.

    1988-01-01

    A 3-D laminar and turbulent boundary-layer method is developed for compressible flow over swept wings. The governing equations and curvature terms are derived in detail for a nonorthogonal, curvilinear coordinate system. Reynolds shear-stress terms are modeled by the Cebeci-Smith eddy-viscosity formulation. The governing equations are descretized using the second-order accurate, predictor-corrector finite-difference technique of Matsuno, which has the advantage that the crossflow difference formulas are formed independent of the sign of the crossflow velocity component. The method is coupled with a full potential wing/body inviscid code (FLO-30) and the inviscid-viscous interaction is performed by updating the original wing surface with the viscous displacement surface calculated by the boundary-layer code. The number of these global iterations ranged from five to twelve depending on Mach number, sweep angle, and angle of attack. Several test cases are computed by this method and the results are compared with another inviscid-viscous interaction method (TAWFIVE) and with experimental data.

  1. IB2d: a Python and MATLAB implementation of the immersed boundary method.

    PubMed

    Battista, Nicholas A; Strickland, W Christopher; Miller, Laura A

    2017-03-29

    The development of fluid-structure interaction (FSI) software involves trade-offs between ease of use, generality, performance, and cost. Typically there are large learning curves when using low-level software to model the interaction of an elastic structure immersed in a uniform density fluid. Many existing codes are not publicly available, and the commercial software that exists usually requires expensive licenses and may not be as robust or allow the necessary flexibility that in house codes can provide. We present an open source immersed boundary software package, IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast range of biomechanics models and is accessible to scientists who have experience in high-level programming environments. IB2d contains multiple options for constructing material properties of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics models, and artificial forcing to drive boundaries with a preferred motion.

  2. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  3. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Cluggish, B.; Kim, J. S.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recentmore » charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.« less

  4. Viscous diffusion of vorticity in unsteady wall layers using the diffusion velocity concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, J.H.; Kempka, S.N.; Wolfe, W.P.

    1995-03-01

    The primary purpose of this paper is to provide a careful evaluation of the diffusion velocity concept with regard to its ability to predict the diffusion of vorticity near a moving wall. A computer code BDIF has been written which simulates the evolution of the vorticity field near a wall of infinite length which is moving in an arbitrary fashion. The simulations generated by this code are found to give excellent results when compared to several exact solutions. We also outline a two-dimensional unsteady viscous boundary layer model which utilizes the diffusion velocity concept and is compatible with vortex methods.more » A primary goal of this boundary layer model is to minimize the number of vortices generated on the surface at each time step while achieving good resolution of the vorticity field near the wall. Preliminary results have been obtained for simulating a simple two-dimensional laminar boundary layer.« less

  5. Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows

    NASA Technical Reports Server (NTRS)

    Conley, Julianne M.; Zeman, Patrick L.

    1991-01-01

    The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.

  6. Study regarding the density evolution of messages and the characteristic functions associated of a LDPC code

    NASA Astrophysics Data System (ADS)

    Drăghici, S.; Proştean, O.; Răduca, E.; Haţiegan, C.; Hălălae, I.; Pădureanu, I.; Nedeloni, M.; (Barboni Haţiegan, L.

    2017-01-01

    In this paper a method with which a set of characteristic functions are associated to a LDPC code is shown and also functions that represent the evolution density of messages that go along the edges of a Tanner graph. Graphic representations of the density evolution are shown respectively the study and simulation of likelihood threshold that render asymptotic boundaries between which there are decodable codes were made using MathCad V14 software.

  7. A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method

    DOE PAGES

    Scherzinger, William M.

    2016-05-01

    The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.

  8. Establishing Baseline Subsurface Light Fields for the Flower Garden Banks National Marine Sancturay

    DTIC Science & Technology

    2011-04-12

    Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only). Code 7030 4...deRada et al., 2009), which receives boundary information from the operational Global NCOM system (Kara et al., 2006; http://www7320.nrlssc.navy.mil...Gulf of Mexico. OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, ISBN: 978-1-4244-4960-6, pp. 1-7, 26-29

  9. Combustion: Structural interaction in a viscoelastic material

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Chang, J. P.; Kumar, M.; Kuo, K. K.

    1980-01-01

    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code.

  10. Numerical Study of Boundary-Layer in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Shih, Tom I-P.

    1997-01-01

    The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.

  11. Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM

    NASA Technical Reports Server (NTRS)

    Martin, Thomas J.; Dulikravich, George S.

    1993-01-01

    A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.

  12. Comparison of theoretical and flight-measured local flow aerodynamics for a low-aspect-ratio fin

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.; Sandlin, D. R.

    1984-01-01

    Flight test and theoretical aerodynamic data were obtained for a flight test fixture mounted on the underside of an F-104G aircraft. The theoretical data were generated using two codes, a two dimensional transonic code called Code H, and a three dimensional subsonic and supersonic code call wing-body. Pressure distributions generated by the codes for the flight test fixture as well as boundary layer displacement thickness generated by the two dimensional code were compared to the flight test data. The two dimensional code pressure distributions compared well except at the minimum pressure point and trailing edge. Shock locations compared well except at high transonic speeds. The three dimensional code pressure distributions compared well except at the trailing edge of the flight test fixture. The two dimensional code does not predict displacement thickness of the flight test fixture well.

  13. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  14. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  15. radEq Add-On Module for CFD Solver Loci-CHEM

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    Loci-CHEM to be applied to flow velocities where surface radiation due to heating from compression and friction becomes significant. The module adds a radiation equilibrium boundary condition to the computational fluid dynamics (CFD) code to produce accurate results. The module expanded the upper limit for accurate CFD solutions of Loci-CHEM from Mach 4 to Mach 10 based on Space Shuttle Orbiter Re-Entry trajectories. Loci-CHEM already has a very promising architecture and performance, but absence of radiation equilibrium boundary condition limited the application of Loci-CHEM to below Mach 4. The immediate advantage of the add-on module is that it allows Loci-CHEM to work with supersonic flows up to Mach 10. This transformed Loci-CHEM from a rocket engine- heritage CFD code with general subsonic and low-supersonic applications, to an aeroheating code with hypersonic applications. The follow-on advantage of the module is that it is a building block for additional add-on modules that will solve for the heating generated at Mach numbers higher than 10.

  16. Improved design of subcritical and supercritical cascades using complex characteristics and boundary layer correction

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1983-01-01

    The method of complex characteristics and hodograph transformation for the design of shockless airfoils was extended to design supercritical cascades with high solidities and large inlet angles. This capability was achieved by introducing a conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Tchebycheff polynomials. A computer code was developd based on this idea. A number of airfoils designed with the code are presented. Various supercritical and subcritical compressor, turbine and propeller sections are shown. The lag-entrainment method for the calculation of a turbulent boundary layer was incorporated to the inviscid design code. The results of this calculation are shown for the airfoils described. The elliptic conformal transformation developed to map the hodograph domain onto an ellipse can be used to generate a conformal grid in the physical domain of a cascade of airfoils with open trailing edges with a single transformation. A grid generated with this transformation is shown for the Korn airfoil.

  17. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  18. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2017-11-01

    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  19. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin

    PubMed Central

    Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T

    2016-01-01

    RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI: http://dx.doi.org/10.7554/eLife.19092.001 PMID:27779094

  20. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  1. Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    NASA Astrophysics Data System (ADS)

    Castiglioni, Giacomo

    Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.

  2. A supersonic, three-dimensional code for flow over blunt bodies: User's manual

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Mcmillan, O. J.

    1980-01-01

    A computer code is described which may be used to calculate the steady, supersonic, three-dimensional, inviscid flow over blunt bodies. The theoretical and numerical formulation of the problem is given (shock-capturing, downstream marching), including exposition of the boundary and initial conditions. The overall flow logic of the program, its usage, accuracy, and limitations are discussed.

  3. Code-Switching and Code-Mixing in Welsh Bilinguals' Talk: Confirming or Refuting the Maintenance of Language Boundaries?

    ERIC Educational Resources Information Center

    Musk, Nigel

    2010-01-01

    This article closely examines the bilingual talk emerging from informal discussions among young people attending a bilingual school in Wales. In contrast to the common focus on issues of bilinguals' linguistic competence in the literature, this paper advocates a speaker's perspective and considers bilingualism to be the sedimentation of social and…

  4. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  5. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  6. ICAN/PART: Particulate composite analyzer, user's manual and verification studies

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Murthy, Pappu L. N.; Mital, Subodh K.

    1996-01-01

    A methodology for predicting the equivalent properties and constituent microstresses for particulate matrix composites, based on the micromechanics approach, is developed. These equations are integrated into a computer code developed to predict the equivalent properties and microstresses of fiber reinforced polymer matrix composites to form a new computer code, ICAN/PART. Details of the flowchart, input and output for ICAN/PART are described, along with examples of the input and output. Only the differences between ICAN/PART and the original ICAN code are described in detail, and the user is assumed to be familiar with the structure and usage of the original ICAN code. Detailed verification studies, utilizing dim dimensional finite element and boundary element analyses, are conducted in order to verify that the micromechanics methodology accurately models the mechanics of particulate matrix composites. ne equivalent properties computed by ICAN/PART fall within bounds established by the finite element and boundary element results. Furthermore, constituent microstresses computed by ICAN/PART agree in average sense with results computed using the finite element method. The verification studies indicate that the micromechanics programmed into ICAN/PART do indeed accurately model the mechanics of particulate matrix composites.

  7. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  8. MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

    NASA Astrophysics Data System (ADS)

    van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro

    2017-08-01

    This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.

  9. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  10. An Improved Treatment of External Boundary for Three-Dimensional Flow Computations

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.; Vatsa, Veer N.

    1997-01-01

    We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.

  11. Three-dimensional elliptic grid generation technique with application to turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Schwab, J. R.

    1988-01-01

    Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.

  12. Effects of Climate Change on Flood Frequency in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Stumbaugh, M. R.; Lee, S. Y.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    A key concern about climate change as related to water resources is the potential for changes in hydrologic extremes, including flooding. We explore changes in flood frequency in the Pacific Northwest using downscaled output from ten Global Climate Models (GCMs) from the Coupled Model Inter-Comparison Project 5 (CMIP5) for historical forcings (1950-2005) and future Representative Concentration Pathways (RCPs) 4.5 and 8.5 (2006-2100). We use archived output from the Integrated Scenarios Project (ISP) (http://maca.northwestknowledge.net/), which uses the Multivariate Adaptive Constructed Analogs (MACA) method for statistical downscaling. The MACA-downscaled GCM output was then used to force the Variable Infiltration Capacity (VIC) hydrology model with a 1/16th degree spatial resolution and a daily time step. For each of the 238 HUC-08 areas within the Pacific Northwest (USGS Hydrologic Region 15), we computed, from the ISP archive, the series of maximum daily runoff values (surrogate for the annual maximum flood), and then the mean annual flood. Finally, we computed the ratios of the RCP4.5 and RCP8.5 mean annual floods to their corresponding values for the historical period. We evaluate spatial patterns in the results. For snow-dominated watersheds, the changes are dominated by reductions in flood frequency in basins that currently have spring-dominant floods, and increases in snow affected basins with fall-dominant floods. In low elevation basins west of the Cascades, changes in flooding are more directly related to changes in precipitation extremes. We further explore the nature of these effects by evaluating the mean Julian day of the annual maximum flood for each HUC-08 and how this changes between the historical and RCP4.5 and RCP8.5 scenarios.

  13. Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-β1.

    PubMed

    Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng

    2017-10-01

    Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.

  14. Vasculogenic mimicry in bladder cancer and its association with the aberrant expression of ZEB1

    PubMed Central

    Li, Baimou; Mao, Xiaopeng; Wang, Hua; Su, Guanyu; Mo, Chengqiang; Cao, Kaiyuan; Qiu, Shaopeng

    2018-01-01

    The aim of the present study was to investigate the associations between vasculogenic mimicry (VM) and zinc finger E-box binding homeobox 1 (ZEB1) in bladder cancer. VM structure and ZEB1 expression were analyzed by cluster of differentiation 34/periodic acid Schiff (PAS) double staining and immunohistochemical staining in 135 specimens from patients with bladder cancer, and a further 12 specimens from normal bladder tissues. Three-dimensional (3-D) culture was used to detect VM formation in the bladder transitional cancer cell lines UM-UC-3 and J82, and the immortalized human bladder epithelium cell line SV-HUC-1 in vitro. ZEB1 expression in these cell lines was compared by reverse transcription-quantitative polymerase chain reaction and western blot assays. In addition, small interfering RNA was used to inhibit ZEB1 in UM-UC-3 and J82 cells, followed by 3-D culturing of treated cell lines. As a result, VM was observed in 31.1% of specimens from bladder cancer tissues, and cases with high ZEB1 expression accounted for 60.0% of patients with bladder cancer. In addition, ZEB1 expression was closely associated with VM (r=0.189; P<0.05), and also increased as the grade and stage of the tumor developed. In an in vitro assay, UM-UC-3 and J82 cells exhibited VM formation, however, SV-HUC-1 did not. Furthermore, VM-forming cancer cell lines UM-UC-3 and J82 exhibited higher ZEB1 expression. Notably, VM formation was inhibited following knockdown of ZEB1. In conclusion, ZEB1 may be associated with VM in bladder cancer and serve an important role in the process of VM formation. However, its detailed mechanism requires further study. PMID:29552157

  15. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  16. PARAVT: Parallel Voronoi tessellation code

    NASA Astrophysics Data System (ADS)

    González, R. E.

    2016-10-01

    In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.

  17. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  18. Developpement et implementation d'une methode pour resoudre les equations de la couche limite laminaire et turbulente

    NASA Astrophysics Data System (ADS)

    Leuca, Maxim

    CFD (Computational Fluid Dynamics) is a computational tool for studying flow in science and technology. The Aerospace Industry uses increasingly the CFD modeling and design phase of the aircraft, so the precision with which phenomena are simulated boundary layer is very important. The research efforts are focused on optimizing the aerodynamic performance of airfoils to predict the drag and delay the laminar-turbulent transition. CFD codes must be fast and efficient to model complex geometries for aerodynamic flows. The resolution of the boundary layer equations requires a large amount of computing resources for viscous flows. CFD codes are commonly used to simulate aerodynamic flows, require normal meshes to the wall, extremely fine, and, by consequence, the calculations are very expensive. . This thesis proposes a new approach to solve the equations of boundary layer for laminar and turbulent flows using an approach based on the finite difference method. Integrated into a code of panels, this concept allows to solve airfoils avoiding the use of iterative algorithms, usually computing time and often involving convergence problems. The main advantages of panels methods are their simplicity and ability to obtain, with minimal computational effort, solutions in complex flow conditions for relatively complicated configurations. To verify and validate the developed program, experimental data are used as references when available. Xfoil code is used to obtain data as a pseudo references. Pseudo-reference, as in the absence of experimental data, we cannot really compare two software together. Xfoil is a program that has proven to be accurate and inexpensive computing resources. Developed by Drela (1985), this program uses the method with two integral to design and analyze profiles of wings at low speed (Drela et Youngren, 2014), (Drela, 2003). NACA 0012, NACA 4412, and ATR-42 airfoils have been used for this study. For the airfoils NACA 0012 and NACA 4412 the calculations are made using the Mach number M =0.17 and Reynolds number Re = 6x10 6 conditions for which we have experimental results. For the airfoil ATR-42 the calculations are made using the Mach number M =0.1 and Reynolds number Re=536450 as it was analysed in LARCASE's Price-Paidoussis wind tunnel. Keywords: boundary layer, direct method, displacement thickness, finite differences, Xfoil code.

  19. Common Errors in the Calculation of Aircrew Doses from Cosmic Rays

    NASA Astrophysics Data System (ADS)

    O'Brien, Keran; Felsberger, Ernst; Kindl, Peter

    2010-05-01

    Radiation doses to air crew are calculated using flight codes. Flight codes integrate dose rates over the aircraft flight path, which were calculated by transport codes or obtained by measurements from take off at a specific airport to landing at another. The dose rates are stored in various ways, such as by latitude and longitude, or in terms of the geomagnetic vertical cutoff. The transport codes are generally quite satisfactory, but the treatment of the boundary conditions is frequently incorrect. Both the treatment of solar modulation and of the effect of the geomagnetic field are often defective, leading to the systematic overestimate of the crew doses.

  20. Pacific Northwest (PNW) Hydrologic Landscape (HL) polygons and HL code

    EPA Pesticide Factsheets

    A five-letter hydrologic landscape code representing five indices of hydrologic form that are related to hydrologic function: climate, seasonality, aquifer permeability, terrain, and soil permeability. Each hydrologic assessment unit is classified by one of the 81 different five-letter codes representing these indices. Polygon features in this dataset were created by aggregating (dissolving boundaries between) adjacent, similarly-coded hydrologic assessment units. Climate Classes: V-Very wet, W-Wet, M-Moist, D-Dry, S-Semiarid, A-Arid. Seasonality Sub-Classes: w-Fall or winter, s-Spring. Aquifer Permeability Classes: H-High, L-Low. Terrain Classes: M-Mountain, T-Transitional, F-Flat. Soil Permeability Classes: H-High, L-Low.

  1. Navier-Stokes and Euler solutions for lee-side flows over supersonic delta wings. A correlation with experiment

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.

    1990-01-01

    An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.

  2. Free boundary resistive modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W.

    1993-05-01

    There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma--vacuum boundary conditions have been implemented in the fully toroidal resistive spectral code CASTOR (Complex Alfven Spectrum in Toroidal Geometry) [[ital Proceedings] [ital of] [ital the] 18[ital th] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics], Berlin, edited by P. Bachmann and D. C. Robinson (European Physical Society, Petit-Lancy, Switzerland, 1991), p. 89].more » The influence of a free boundary, as compared to a fixed boundary on the stability of low-[ital m] tearing modes, is studied. It is found that the stabilizing (toroidal) effect of a finite pressure due the plasma compression is lost in the free boundary case for modes localized near the boundary. Since the stabilization due to the favorable average curvature in combination with a pressure gradient near the boundary is small, the influence of the pressure on the stability is much less important for free boundary modes than for fixed boundary modes.« less

  3. Asynchronous Communication of TLNS3DMB Boundary Exchange

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.

    1997-01-01

    This paper describes the recognition of implicit serialization due to coarse-grain, synchronous communication and demonstrates the conversion to asynchronous communication for the exchange of boundary condition information in the Thin-Layer Navier Stokes 3-Dimensional Multi Block (TLNS3DMB) code. The implementation details of using asynchronous communication is provided including buffer allocation, message identification, and barrier control. The IBM SP2 was used for the tests presented.

  4. AAPG-CSD geologic provinces code map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.F.; Wallace, L.G.; Wagner, F.J. Jr.

    1991-10-01

    This article provides the history of a revised geologic map which was drawn based on both surface geology and petroleum occurrence. The map includes offshore maps for California and the Gulf Coast of Texas and Louisiana. For onshore sites it provides geologic province boundaries which were drawn along county boundaries to approximate their position relative to oil and gas production. The offshore sites are drawn based on the universal transverse Mercator system.

  5. Wall touching kink mode calculations with the M3D code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.

    2014-10-01

    In recent years there have been a number of results published concerning the transient vessel currents and forces occurring during a tokamak VDE, as predicted by simulations with the nonlinear MHD code M3D. The nature of the simulations is such that these currents and forces occur at the boundary of the computational domain, making the proper choice of boundary conditions critical to the reliability of the results. The M3D boundary condition includes the prescription that the normal component of the velocity vanish at the wall. It has been argued that this prescription invalidates the calculations because it would seem to rule out the possibility of advection of plasma surface currents into the wall. This claim has been tested by applying M3D to an idealized case - a kink-unstable plasma column - in order to abstract the essential physics from the complications involved in the attempt to model real devices. While comparison of the results is complicated by effects arising from the higher dimensionality and complexity of M3D, we have verified that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the ``Hiro'' currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  6. Aeroelastic modeling of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.

    1991-01-01

    The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.

  7. Anomalous Upwelling in Nan Wan: July 2008

    DTIC Science & Technology

    2009-12-01

    Head Ruth H. Preller 7300 Security, Code 1226 Office of Couns sl.Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified...State University (OSU) tidal forcing drives the tidal currents. A global weather forecast model (Navy Operational Global Atmospheric Prediction...system derives its open ocean boundary conditions from NRL global NCOM (Navy Co- astal Ocean Model) (Rhodes et al. 2002) that operates daily

  8. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    DTIC Science & Technology

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  9. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    NASA Technical Reports Server (NTRS)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  10. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  11. The effect of the wind tunnel wall boundary layer on the acoustic testing of propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1989-01-01

    An approximation based on the representation of the boundary layer by lamina of uniform flow with suitable interlayer boundary conditions is shown to be accurate, efficient, and compatible with finite element formulations. The approximation has been implemented using existing codes to produce a model for assessing the suitability of the acoustic environment in a wind tunnel for the acoustic testing of propellers. It is found that, with suitable acoustic treatment and with measurements made near the propeller and well removed from the walls, the free field directivity and level can be reproduced with good fidelity.

  12. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  13. Meshless method for solving fixed boundary problem of plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2015-07-01

    This study solves the Grad-Shafranov equation with a fixed plasma boundary by utilizing a meshless method for the first time. Previous studies have utilized a finite element method (FEM) to solve an equilibrium inside the fixed separatrix. In order to avoid difficulties of FEM (such as mesh problem, difficulty of coding, expensive calculation cost), this study focuses on the meshless methods, especially RBF-MFS and KANSA's method to solve the fixed boundary problem. The results showed that CPU time of the meshless methods was ten to one hundred times shorter than that of FEM to obtain the same accuracy.

  14. Hydrologic unit maps

    USGS Publications Warehouse

    Seaber, Paul R.; Kapinos, F. Paul; Knapp, George L.

    1987-01-01

    A set of maps depicting approved boundaries of, and numerical codes for, river-basin units of the United States has been developed by the U.S . Geological Survey. These 'Hydrologic Unit Maps' are four-color maps that present information on drainage, culture, hydrography, and hydrologic boundaries and codes of (1) the 21 major water-resources regions and the 222 subregions designated by the U.S . Water Resources Council, (2) the 352 accounting units of the U.S. Geological Survey's National Water Data Network, and (3) the 2,149 cataloging units of the U.S . Geological Survey's 'Catalog of information on Water Data:' The maps are plotted on the Geological Survey State base-map series at a scale of 1 :500,000 and, except for Alaska, depict hydrologic unit boundaries for all drainage basins greater than 700 square miles (1,813 square kilometers). A complete list of all the hydrologic units, along with their drainage areas, their names, and the names of the States or outlying areas in which they reside, is contained in the report. These maps and associated codes provide a standardized base for use by water-resources organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications. Because the maps have undergone extensive review by all principal Federal, regional, and State water-resource agencies, they are widely accepted for use in planning and describing water-use and related land-use activities, and in geographically organizing hydrologic data . Examples of these uses are given in the report . The hydrologic unit codes shown on the maps have been approved as a Federal Information Processing Standard for use by the Federal establishment.

  15. Image compression using quad-tree coding with morphological dilation

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Jiang, Weiwei; Jiao, Licheng; Wang, Lei

    2007-11-01

    In this paper, we propose a new algorithm which integrates morphological dilation operation to quad-tree coding, the purpose of doing this is to compensate each other's drawback by using quad-tree coding and morphological dilation operation respectively. New algorithm can not only quickly find the seed significant coefficient of dilation but also break the limit of block boundary of quad-tree coding. We also make a full use of both within-subband and cross-subband correlation to avoid the expensive cost of representing insignificant coefficients. Experimental results show that our algorithm outperforms SPECK and SPIHT. Without using any arithmetic coding, our algorithm can achieve good performance with low computational cost and it's more suitable to mobile devices or scenarios with a strict real-time requirement.

  16. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  17. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  18. Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, Douglas L.

    1994-01-01

    In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.

  19. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  20. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.

    2016-03-15

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreementmore » between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.« less

  1. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    DOE PAGES

    Koliner, J. J.; Boguski, J.; Anderson, J. K.; ...

    2016-03-25

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch(RFP)plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFPplasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B measurement loops around the plasma minor diameter with qualitative agreement between each other andmore » the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.« less

  2. Analysis of film cooling in rocket nozzles

    NASA Technical Reports Server (NTRS)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  3. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  4. The Sign Rule and Beyond: Boundary Effects, Flexibility, and Noise Correlations in Neural Population Codes

    PubMed Central

    Hu, Yu; Zylberberg, Joel; Shea-Brown, Eric

    2014-01-01

    Over repeat presentations of the same stimulus, sensory neurons show variable responses. This “noise” is typically correlated between pairs of cells, and a question with rich history in neuroscience is how these noise correlations impact the population's ability to encode the stimulus. Here, we consider a very general setting for population coding, investigating how information varies as a function of noise correlations, with all other aspects of the problem – neural tuning curves, etc. – held fixed. This work yields unifying insights into the role of noise correlations. These are summarized in the form of theorems, and illustrated with numerical examples involving neurons with diverse tuning curves. Our main contributions are as follows. (1) We generalize previous results to prove a sign rule (SR) — if noise correlations between pairs of neurons have opposite signs vs. their signal correlations, then coding performance will improve compared to the independent case. This holds for three different metrics of coding performance, and for arbitrary tuning curves and levels of heterogeneity. This generality is true for our other results as well. (2) As also pointed out in the literature, the SR does not provide a necessary condition for good coding. We show that a diverse set of correlation structures can improve coding. Many of these violate the SR, as do experimentally observed correlations. There is structure to this diversity: we prove that the optimal correlation structures must lie on boundaries of the possible set of noise correlations. (3) We provide a novel set of necessary and sufficient conditions, under which the coding performance (in the presence of noise) will be as good as it would be if there were no noise present at all. PMID:24586128

  5. Hypersonic Boundary Layer Instability Over a Corner

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Zhao, Hong-Wu; McClinton, Charles (Technical Monitor)

    2001-01-01

    A boundary-layer transition study over a compression corner was conducted under a hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full Navier-Stokes equations were solved to simulate the development of disturbance in the boundary layer. A linear stability analysis and PSE method were used to get the initial disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to solve the full Navier-stokes by using WENO(weighted essentially non-oscillating) scheme. The given numerical results show the evolution of the linear disturbance for the most amplified disturbance in supersonic and hypersonic flow over a compression ramp. The nonlinear computations also determined the minimal amplitudes necessary to cause transition at a designed location.

  6. New distributional records of the stygobitic crayfish Cambarus cryptodytes (Decapoda: Cambaridae) in the Floridan Aquifer System of southwestern Georgia

    USGS Publications Warehouse

    Fenolio, Dante B.; Niemiller, Matthew L.; Gluesenkamp, Andrew G.; Mckee, Anna; Taylor, Steven J.

    2017-01-01

    Cambarus cryptodytes (Dougherty Plain Cave Crayfish) is an obligate inhabitant of groundwater habitats (i.e., a stygobiont) with troglomorphic adaptations in the Floridan aquifer system of southwestern Georgia and adjacent Florida panhandle, particularly in the Dougherty Plain and Marianna Lowlands. Documented occurrences of Dougherty Plain Cave Crayfish are spatially distributed as 2 primary clusters separated by a region where few caves and springs have been documented; however, the paucity of humanly accessible karst features in this intermediate region has inhibited investigation of the species' distribution. To work around this constraint, we employed bottle traps to sample for Dougherty Plain Cave Crayfish and other groundwater fauna in 18 groundwater-monitoring wells that access the Floridan aquifer system in 10 counties in southwestern Georgia. We captured 32 Dougherty Plain Cave Crayfish in 9 wells in 8 counties between September 2014 and August 2015. We detected crayfish at depths ranging from 17.9 m to 40.6 m, and established new county records for Early, Miller, Mitchell, and Seminole counties in Georgia, increasing the number of occurrences in Georgia from 8 to 17 sites. In addition, a new US Geological Survey (USGS) Hydrologic Unit Code 8 (HUC8) watershed record was established for the Spring Creek watershed. These new records fill in the distribution gap between the 2 previously known clusters in Georgia and Jackson County, FL. Furthermore, this study demonstrates that deployment of bottle traps in groundwater-monitoring wells can be an effective approach to presence—absence surveys of stygobionts, especially in areas where surface access to groundwater is limited.

  7. Development of a two-equation turbulence model for hypersonic flows. Volume 1; Evaluation of a low Reynolds number correction to the Kappa - epsilon two equation compressible turbulence model

    NASA Technical Reports Server (NTRS)

    Knight, Doyle D.; Becht, Robert J.

    1995-01-01

    The objective of the current research is the development of an improved k-epsilon two-equation compressible turbulence model for turbulent boundary layer flows experiencing strong viscous-inviscid interactions. The development of an improved model is important in the design of hypersonic vehicles such as the National Aerospace Plane (NASP) and the High Speed Civil Transport (HSCT). Improvements have been made to the low Reynolds number functions in the eddy viscosity and dissipation of solenoidal dissipation of the k-epsilon turbulence mode. These corrections offer easily applicable modifications that may be utilized for more complex geometries. The low Reynolds number corrections are functions of the turbulent Reynolds number and are therefore independent of the coordinate system. The proposed model offers advantages over some current models which are based upon the physical distance from the wall, that modify the constants of the standard model, or that make more corrections than are necessary to the governing equations. The code has been developed to solve the Favre averaged, boundary layer equations for mass, momentum, energy, turbulence kinetic energy, and dissipation of solenoidal dissipation using Keller's box scheme and the Newton spatial marching method. The code has been validated by removing the turbulent terms and comparing the solution with the Blasius solution, and by comparing the turbulent solution with an existing k-epsilon model code using wall function boundary conditions. Excellent agreement is seen between the computed solution and the Blasius solution, and between the two codes. The model has been tested for both subsonic and supersonic flat-plate turbulent boundary layer flow by comparing the computed skin friction with the Van Driest II theory and the experimental data of Weighardt; by comparing the transformed velocity profile with the data of Weighardt, and the Law of the Wall and the Law of the Wake; and by comparing the computed results of an adverse pressure gradient with the experimental data of Fernando and Smits. Good agreement is obtained with the experimental correlations for all flow conditions.

  8. Tristan code and its application

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.

    Since TRISTAN: The 3-D Electromagnetic Particle Code was introduced in 1990, it has been used for many applications including the simulations of global solar windmagnetosphere interaction. The most essential ingridients of this code have been published in the ISSS-4 book. In this abstract we describe some of issues and an application of this code for the study of global solar wind-magnetosphere interaction including a substorm study. The basic code (tristan.f) for the global simulation and a local simulation of reconnection with a Harris model (issrec2.f) are available at http:/www.physics.rutger.edu/˜kenichi. For beginners the code (isssrc2.f) with simpler boundary conditions is suitable to start to run simulations. The future of global particle simulations for a global geospace general circulation (GGCM) model with predictive capability (for Space Weather Program) is discussed.

  9. A Study of Neutron Leakage in Finite Objects

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code capable of simulating High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for simple shielded objects. Monte Carlo (MC) benchmarks were used to verify the 3DHZETRN methodology in slab and spherical geometry, and it was shown that 3DHZETRN agrees with MC codes to the degree that various MC codes agree among themselves. One limitation in the verification process is that all of the codes (3DHZETRN and three MC codes) utilize different nuclear models/databases. In the present report, the new algorithm, with well-defined convergence criteria, is used to quantify the neutron leakage from simple geometries to provide means of verifying 3D effects and to provide guidance for further code development.

  10. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  11. An MHD Code for the Study of Magnetic Structures in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Allred, J. C.; MacNeice, P. J.

    2015-01-01

    We have developed a 2.5D MHD code designed to study how the solar wind influences the evolution of transient events in the solar corona and inner heliosphere. The code includes thermal conduction, coronal heating and radiative cooling. Thermal conduction is assumed to be magnetic field-aligned in the inner corona and transitions to a collisionless formulation in the outer corona. We have developed a stable method to handle field-aligned conduction around magnetic null points. The inner boundary is placed in the upper transition region, and the mass flux across the boundary is determined from 1D field-aligned characteristics and a 'radiative energy balance' condition. The 2.5D nature of this code makes it ideal for parameter studies not yet possible with 3D codes. We have made this code publicly available as a tool for the community. To this end we have developed a graphical interface to aid in the selection of appropriate options and a graphical interface that can process and visualize the data produced by the simulation. As an example, we show a simulation of a dipole field stretched into a helmet streamer by the solar wind. Plasmoids periodically erupt from the streamer, and we perform a parameter study of how the frequency and location of these eruptions changed in response to different levels of coronal heating. As a further example, we show the solar wind stretching a compact multi-polar flux system. This flux system will be used to study breakout coronal mass ejections in the presence of the solar wind.

  12. A CellML simulation compiler and code generator using ODE solving schemes

    PubMed Central

    2012-01-01

    Models written in description languages such as CellML are becoming a popular solution to the handling of complex cellular physiological models in biological function simulations. However, in order to fully simulate a model, boundary conditions and ordinary differential equation (ODE) solving schemes have to be combined with it. Though boundary conditions can be described in CellML, it is difficult to explicitly specify ODE solving schemes using existing tools. In this study, we define an ODE solving scheme description language-based on XML and propose a code generation system for biological function simulations. In the proposed system, biological simulation programs using various ODE solving schemes can be easily generated. We designed a two-stage approach where the system generates the equation set associating the physiological model variable values at a certain time t with values at t + Δt in the first stage. The second stage generates the simulation code for the model. This approach enables the flexible construction of code generation modules that can support complex sets of formulas. We evaluate the relationship between models and their calculation accuracies by simulating complex biological models using various ODE solving schemes. Using the FHN model simulation, results showed good qualitative and quantitative correspondence with the theoretical predictions. Results for the Luo-Rudy 1991 model showed that only first order precision was achieved. In addition, running the generated code in parallel on a GPU made it possible to speed up the calculation time by a factor of 50. The CellML Compiler source code is available for download at http://sourceforge.net/projects/cellmlcompiler. PMID:23083065

  13. A conflict-based model of color categorical perception: evidence from a priming study.

    PubMed

    Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi

    2014-10-01

    Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.

  14. Integrating Observations of the Boundary Current Flow around Sri Lanka

    DTIC Science & Technology

    2015-09-30

    around Sri Lanka Uwe Send and Matthias Lankhorst Scripps Institution of Oceanography 9500 Gilman Drive, Mail Code 0230 La Jolla, CA 92093-0230...of Bengal. For this, the flow around Sri Lanka is critical since it exchanges salt and freshwater between the Bay of Bengal and the Arabian Sea...OBJECTIVES In-situ continuous observations of the boundary current flow around Sri Lanka will be collected over a period of several years. In order

  15. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  16. Optimum Boundaries of Signal-to-Noise Ratio for Adaptive Code Modulations

    DTIC Science & Technology

    2017-11-14

    1510–1521, Feb. 2015. [2]. Pursley, M. B. and Royster, T. C., “Adaptive-rate nonbinary LDPC coding for frequency - hop communications ,” IEEE...and this can cause a very narrowband noise near the center frequency during USRP signal acquisition and generation. This can cause a high BER...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 3550 Aberdeen Ave

  17. National Aerospace Leadership Initiative - Phase I

    DTIC Science & Technology

    2008-09-30

    Devised and validated CFD code for operation of a micro-channel heat exchanger. The work was published at the 2008 AIAA Annual Meeting and Exposition...and (3) preparation to implement this algorithm in TURBO. Heat Transfer Capability In the short and medium term, the following plan has been adopted...to provide heat transfer capability to the TURBO code: • Incorporation of a constant wall temperature boundary condition. This capability will be

  18. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.

  19. Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  20. The use of a panel code on high lift configurations of a swept forward wing

    NASA Technical Reports Server (NTRS)

    Scheib, J. S.; Sandlin, D. R.

    1985-01-01

    A study was done on high lift configurations of a generic swept forward wing using a panel code prediction method. A survey was done of existing codes available at Ames, frow which the program VSAERO was chosen. The results of VSAERO were compared with data obtained from the Ames 7- by 10-foot wind tunnel. The results of the comparison in lift were good (within 3.5%). The comparison of the pressure coefficients was also good. The pitching moment coefficients obtained by VSAERO were not in good agreement with experiment. VSAERO's ability to predict drag is questionable and cannot be counted on for accurate trends. Further studies were done on the effects of a leading edge glove, canards, leading edge sweeps and various wing twists on spanwise loading and trim lift with encouraging results. An unsuccessful attempt was made to model spanwise blowing and boundary layer control on the trailing edge flap. The potential results of VSAERO were compared with experimental data of flap deflections with boundary layer control to check the first order effects.

  1. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects

    NASA Astrophysics Data System (ADS)

    Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo

    2017-12-01

    This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.

  2. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  3. The NATA code: Theory and analysis, volume 1. [user manuals (computer programming) - gas dynamics, wind tunnels

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.

  4. Recent progress in the analysis of iced airfoils and wings

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  5. Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates

    NASA Technical Reports Server (NTRS)

    Deane, Anil E.

    1996-01-01

    Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.

  6. Data Sciences Summer Institute Topology Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Seth

    DSSI_TOPOPT is a 2D topology optimization code that designs stiff structures made of a single linear elastic material and void space. The code generates a finite element mesh of a rectangular design domain on which the user specifies displacement and load boundary conditions. The code iteratively designs a structure that minimizes the compliance (maximizes the stiffness) of the structure under the given loading, subject to an upper bound on the amount of material used. Depending on user options, the code can evaluate the performance of a user-designed structure, or create a design from scratch. Output includes the finite element mesh,more » design, and visualizations of the design.« less

  7. NASA Radiation Protection Research for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Heinbockel, John H.; Tweed, John; Mertens, Christopher J.; Walker, Steve A.; Blattnig, Steven R.; Zeitlin, Cary J.

    2006-01-01

    The HZETRN code was used in recent trade studies for renewed lunar exploration and currently used in engineering development of the next generation of space vehicles, habitats, and EVA equipment. A new version of the HZETRN code capable of simulating high charge and energy (HZE) ions, light-ions and neutrons with either laboratory or space boundary conditions with enhanced neutron and light-ion propagation is under development. Atomic and nuclear model requirements to support that development will be discussed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. We discuss limitations of code validation due to the currently available data and recommend priorities for new data sets.

  8. Agricultural Conservation Planning Framework: 3. Land Use and Field Boundary Database Development and Structure.

    PubMed

    Tomer, Mark D; James, David E; Sandoval-Green, Claudette M J

    2017-05-01

    Conservation planning information is important for identifying options for watershed water quality improvement and can be developed for use at field, farm, and watershed scales. Translation across scales is a key issue impeding progress at watershed scales because watershed improvement goals must be connected with implementation of farm- and field-level conservation practices to demonstrate success. This is particularly true when examining alternatives for "trap and treat" practices implemented at agricultural-field edges to control (or influence) water flows through fields, landscapes, and riparian corridors within agricultural watersheds. We propose that database structures used in developing conservation planning information can achieve translation across conservation-planning scales, and we developed the Agricultural Conservation Planning Framework (ACPF) to enable practical planning applications. The ACPF comprises a planning concept, a database to facilitate field-level and watershed-scale analyses, and an ArcGIS toolbox with Python scripts to identify specific options for placement of conservation practices. This paper appends two prior publications and describes the structure of the ACPF database, which contains land use, crop history, and soils information and is available for download for 6091 HUC12 watersheds located across Iowa, Illinois, Minnesota, and parts of Kansas, Missouri, Nebraska, and Wisconsin and comprises information on 2.74 × 10 agricultural fields (available through /). Sample results examining land use trends across Iowa and Illinois are presented here to demonstrate potential uses of the database. While designed for use with the ACPF toolbox, users are welcome to use the ACPF watershed data in a variety of planning and modeling approaches. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.

  10. Development of V/STOL methodology based on a higher order panel method

    NASA Technical Reports Server (NTRS)

    Bhateley, I. C.; Howell, G. A.; Mann, H. W.

    1983-01-01

    The development of a computational technique to predict the complex flowfields of V/STOL aircraft was initiated in which a number of modules and a potential flow aerodynamic code were combined in a comprehensive computer program. The modules were developed in a building-block approach to assist the user in preparing the geometric input and to compute parameters needed to simulate certain flow phenomena that cannot be handled directly within a potential flow code. The PAN AIR aerodynamic code, which is higher order panel method, forms the nucleus of this program. PAN AIR's extensive capability for allowing generalized boundary conditions allows the modules to interact with the aerodynamic code through the input and output files, thereby requiring no changes to the basic code and easy replacement of updated modules.

  11. Lattice surgery on the Raussendorf lattice

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Paler, Alexandru; Devitt, Simon J.; Nori, Franco

    2018-07-01

    Lattice surgery is a method to perform quantum computation fault-tolerantly by using operations on boundary qubits between different patches of the planar code. This technique allows for universal planar code computation without eliminating the intrinsic two-dimensional nearest-neighbor properties of the surface code that eases physical hardware implementations. Lattice surgery approaches to algorithmic compilation and optimization have been demonstrated to be more resource efficient for resource-intensive components of a fault-tolerant algorithm, and consequently may be preferable over braid-based logic. Lattice surgery can be extended to the Raussendorf lattice, providing a measurement-based approach to the surface code. In this paper we describe how lattice surgery can be performed on the Raussendorf lattice and therefore give a viable alternative to computation using braiding in measurement-based implementations of topological codes.

  12. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1993-01-01

    The main objective of this work period was to develop, maintain and exercise state-of-the-art methods for transition prediction in supersonic flow fields. Basic state and stability codes, acquired during the last work period, were exercised and applied to calculate the properties of various flowfields. The development of a code for the prediction of transition location using a currently novel method (the PSE or Parabolized Stability Equation method), initiated during the last work period and continued during the present work period, was cancelled at mid-year for budgetary reasons. Other activities during this period included the presentation of a paper at the APS meeting in Tallahassee, Florida entitled 'Stability of Two-Dimensional Compressible Boundary Layers', as well as the initiation of a paper co-authored with H. Reed of the Arizona State University entitled 'Stability of Boundary Layers'.

  13. Numerical Simulations of the Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.

    2010-01-01

    Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.

  14. Generalized Wall Function for Complex Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Chen, Kuo-Huey

    2000-01-01

    A generalized wall function was proposed by Shih et al., (1999). It accounts the effect of pressure gradients on the flow near the wall. Theory shows that the effect of pressure gradients on the flow in the inertial sublayer is very significant and the standard wall function should be replaced by a generalized wall function. Since the theory is also valid for boundary layer flows toward separation, the generalized wall function may be applied to complex turbulent flows with acceleration, deceleration, separation and recirculation. This paper is to verify the generalized wall function with numerical simulations for boundary layer flows with various adverse and favorable pressure gradients, including flows about to separate. Furthermore, a general procedure of implementation of the generalized wall function for National Combustion Code (NCC) is described, it can be applied to both structured and unstructured CFD codes.

  15. Entanglement negativity and sudden death in the toric code at finite temperature

    NASA Astrophysics Data System (ADS)

    Hart, O.; Castelnovo, C.

    2018-04-01

    We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.

  16. Entanglement and area law with a fractal boundary in a topologically ordered phase

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Lidar, Daniel A.; Severini, Simone

    2010-01-01

    Quantum systems with short-range interactions are known to respect an area law for the entanglement entropy: The von Neumann entropy S associated to a bipartition scales with the boundary p between the two parts. Here we study the case in which the boundary is a fractal. We consider the topologically ordered phase of the toric code with a magnetic field. When the field vanishes it is possible to analytically compute the entanglement entropy for both regular and fractal bipartitions (A,B) of the system and this yields an upper bound for the entire topological phase. When the A-B boundary is regular we have S/p=1 for large p. When the boundary is a fractal of the Hausdorff dimension D, we show that the entanglement between the two parts scales as S/p=γ⩽1/D, and γ depends on the fractal considered.

  17. Simulation of xenon, uranium vacancy and interstitial diffusion and grain boundary segregation in UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis

    2014-10-31

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO 2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO 2 ( Σ5 tilt, Σ5more » twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.« less

  18. SCISEAL: A CFD code for analysis of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej

    1994-01-01

    A viewgraph presentation is made of the objectives, capabilities, and test results of the computer code SCISEAL. Currently, the seal code has: a finite volume, pressure-based integration scheme; colocated variables with strong conservation approach; high-order spatial differencing, up to third-order; up to second-order temporal differencing; a comprehensive set of boundary conditions; a variety of turbulence models and surface roughness treatment; moving grid formulation for arbitrary rotor whirl; rotor dynamic coefficients calculated by the circular whirl and numerical shaker methods; and small perturbation capabilities to handle centered and eccentric seals.

  19. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  20. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  1. Numerical study of 3D flow structure near a cylinder piercing turbulent free-convection boundary layer on a vertical plate

    NASA Astrophysics Data System (ADS)

    Levchenya, A. M.; Smirnov, E. M.; Zhukovskaya, V. D.

    2018-05-01

    The present contribution covers RANS-based simulation of 3D flow near a cylinder introduced into turbulent vertical-plate free-convection boundary layer. Numerical solutions were obtained with a finite-volume Navier-Stokes code of second-order accuracy using refined grids. Peculiarities of the flow disturbed by the obstacle are analyzed. Cylinder-diameter effect on the horseshoe vortex size and its position is evaluated.

  2. Transition in Turbines

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.

  3. A simple finite-difference scheme for handling topography with the first-order wave equation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  4. Research in computational fluid dynamics and analysis of algorithms

    NASA Technical Reports Server (NTRS)

    Gottlieb, David

    1992-01-01

    Recently, higher-order compact schemes have seen increasing use in the DNS (Direct Numerical Simulations) of the Navier-Stokes equations. Although they do not have the spatial resolution of spectral methods, they offer significant increases in accuracy over conventional second order methods. They can be used on any smooth grid, and do not have an overly restrictive CFL dependence as compared with the O(N(exp -2)) CFL dependence observed in Chebyshev spectral methods on finite domains. In addition, they are generally more robust and less costly than spectral methods. The issue of the relative cost of higher-order schemes (accuracy weighted against physical and numerical cost) is a far more complex issue, depending ultimately on what features of the solution are sought and how accurately they must be resolved. In any event, the further development of the underlying stability theory of these schemes is important. The approach of devising suitable boundary clusters and then testing them with various stability techniques (such as finding the norm) is entirely the wrong approach when dealing with high-order methods. Very seldom are high-order boundary closures stable, making them difficult to isolate. An alternative approach is to begin with a norm which satisfies all the stability criteria for the hyperbolic system, and look for the boundary closure forms which will match the norm exactly. This method was used recently by Strand to isolate stable boundary closure schemes for the explicit central fourth- and sixth-order schemes. The norm used was an energy norm mimicking the norm for the differential equations. Further research should be devoted to BC for high order schemes in order to make sure that the results obtained are reliable. The compact fourth order and sixth order finite difference scheme had been incorporated into a code to simulate flow past circular cylinders. This code will serve as a verification of the full spectral codes. A detailed stability analysis by Carpenter (from the fluid Mechanics Division) and Gottlieb gave analytic conditions for stability as well as asymptotic stability. This had been incorporated in the code in form of stable boundary conditions. Effects of the cylinder rotations had been studied. The results differ from the known theoretical results. We are in the middle of analyzing the results. A detailed analysis of the effects of the heating of the cylinder on the shedding frequency had been studied using the above schemes. It has been found that the shedding frequency decreases when the wire was heated. Experimental work is being carried out to affirm this result.

  5. Middle atmosphere project. A semi-spectral numerical model for the large-scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Holton, J. R.; Wehrbein, W.

    1979-01-01

    The complete model is a semispectral model in which the longitudinal dependence is represented by expansion in zonal harmonics while the latitude and height dependencies are represented by a finite difference grid. The model is based on the primitive equations in the log pressure coordinate system. The lower boundary of the model domain is set at the 100 mb level (i.e., near the tropopause) and the effects of tropospheric forcing are included in the lower boundary condition. The upper boundary is at approximately 96 km, and the latitudinal extent is either global or hemispheric. The basic differential equations and boundary conditions are outlined. The finite difference equations are described. The initial conditions are discussed and a sample calculation is presented. The FORTRAN code is given in the appendix.

  6. Efficient computation of turbulent flow in ribbed passages using a non-overlapping near-wall domain decomposition method

    NASA Astrophysics Data System (ADS)

    Jones, Adam; Utyuzhnikov, Sergey

    2017-08-01

    Turbulent flow in a ribbed channel is studied using an efficient near-wall domain decomposition (NDD) method. The NDD approach is formulated by splitting the computational domain into an inner and outer region, with an interface boundary between the two. The computational mesh covers the outer region, and the flow in this region is solved using the open-source CFD code Code_Saturne with special boundary conditions on the interface boundary, called interface boundary conditions (IBCs). The IBCs are of Robin type and incorporate the effect of the inner region on the flow in the outer region. IBCs are formulated in terms of the distance from the interface boundary to the wall in the inner region. It is demonstrated that up to 90% of the region between the ribs in the ribbed passage can be removed from the computational mesh with an error on the friction factor within 2.5%. In addition, computations with NDD are faster than computations based on low Reynolds number (LRN) models by a factor of five. Different rib heights can be studied with the same mesh in the outer region without affecting the accuracy of the friction factor. This is tested with six different rib heights in an example of a design optimisation study. It is found that the friction factors computed with NDD are almost identical to the fully-resolved results. When used for inverse problems, NDD is considerably more efficient than LRN computations because only one computation needs to be performed and only one mesh needs to be generated.

  7. Watershed boundaries and digital elevation model of Oklahoma derived from 1:100,000-scale digital topographic maps

    USGS Publications Warehouse

    Cederstrand, J.R.; Rea, A.H.

    1995-01-01

    This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.

  8. Applied Computational Transonic Aerodynamics,

    DTIC Science & Technology

    1982-08-01

    contributions. Considering first the body integral (2.95) we now have the situation that, with the effect of the boundary layer represented, e.g. through... effects , (3) static aeroelastic distortion, (4) up to three interfering bodies of nacelle or store type, and (5) an improved method of treating...tip. To date, no modeling of nacelle or store pylons has been included in this code. In the NLR code [641, the effect of (finite) bodies and wing

  9. Bio-Physical Ocean Modeling in the Gulf of Mexico

    DTIC Science & Technology

    2009-01-01

    up to 1 20-hour forecasts for the region. In this configuration, the model receives (initial) boundary information from the operational 1/8" Global ...NCOM, and it is forced by 3-hourly 1/2° momentum and heat fluxes from the Naval Operational Global Prediction System (NOGAPS). The NCOMGOM model...H. Preller, 7300 Security, Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified

  10. PARC Navier-Stokes code upgrade and validation for high speed aeroheating predictions

    NASA Technical Reports Server (NTRS)

    Liver, Peter A.; Praharaj, Sarat C.; Seaford, C. Mark

    1990-01-01

    Applications of the PARC full Navier-Stokes code for hypersonic flowfield and aeroheating predictions around blunt bodies such as the Aeroassist Flight Experiment (AFE) and Aeroassisted Orbital Transfer Vehicle (AOTV) are evaluated. Two-dimensional/axisymmetric and three-dimensional perfect gas versions of the code were upgraded and tested against benchmark wind tunnel cases of hemisphere-cylinder, three-dimensional AFE forebody, and axisymmetric AFE and AOTV aerobrake/wake flowfields. PARC calculations are in good agreement with experimental data and results of similar computer codes. Difficulties encountered in flowfield and heat transfer predictions due to effects of grid density, boundary conditions such as singular stagnation line axis and artificial dissipation terms are presented together with subsequent improvements made to the code. The experience gained with the perfect gas code is being currently utilized in applications of an equilibrium air real gas PARC version developed at REMTECH.

  11. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  12. Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.

  13. Semidiscrete Galerkin modelling of compressible viscous flow past a circular cone at incidence. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Meade, Andrew James, Jr.

    1989-01-01

    A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.

  14. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  15. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  16. MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas

    2015-11-01

    The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.

  17. Sensitivity of the Boundary Plasma to the Plasma-Material Interface

    DOE PAGES

    Canik, John M.; Tang, X. -Z.

    2017-01-01

    While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less

  18. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  19. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virtanen, E.; Haapalehto, T.; Kouhia, J.

    1995-09-01

    Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary sidemore » both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.« less

  20. User's Manual for FEMOM3DS. Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M. D.

    1997-01-01

    FEMOM3DS is a computer code written in FORTRAN 77 to compute electromagnetic(EM) scattering characteristics of a three dimensional object with complex materials using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity and the triangular elements with the basis functions similar to that described for MoM at the outer boundary. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.

  1. Measurements in Regions of Shock Wave/Turbulent Boundary Layer Interaction from Mach 3 to 10 for Open and Blind Code Evaluation/Validation

    DTIC Science & Technology

    2013-03-01

    rakes containing pitot pressure probes, stagnation heat transfer gauges on hemispherical cylinders, total temperature measurements with vented...defined configurations in both “true temperature” and “cold” supersonic and hypersonic flows with boundary and flow conditions to provide the basis for...conducted over the past 50 years to provide data on both wedge- and shock- induced turbulent separated regions in supersonic and hypersonic flows suffer from

  2. Diagnosis of the GLAS climate model's stationary planetary waves using a linearized steady state model

    NASA Technical Reports Server (NTRS)

    Youngblut, C.

    1984-01-01

    Orography and geographically fixed heat sources which force a zonally asymmetric motion field are examined. An extensive space-time spectral analysis of the GLAS climate model (D130) response and observations are compared. An updated version of the model (D150) showed a remarkable improvement in the simulation of the standing waves. The main differences in the model code are an improved boundary layer flux computation and a more realistic specification of the global boundary conditions.

  3. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1990-01-01

    Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.

  4. A perspective of laminar-flow control. [aircraft energy efficiency program

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Muraca, R. J.

    1978-01-01

    A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.

  5. Comparisons of rational engineering correlations of thermophoretically-augmented particle mass transfer with STAN5-predictions for developing boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range.

  6. 3-D inelastic analysis methods for hot section components (base program). [turbine blades, turbine vanes, and combustor liners

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1984-01-01

    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.

  7. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less

  8. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics.

    PubMed

    James, Katherine; Cockell, Simon J; Zenkin, Nikolay

    2017-05-01

    The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Design of supercritical swept wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    Computational fluid dynamics are used to discuss problems inherent to transonic three-dimensional flow past supercritical swept wings. The formulation for a boundary value problem for the flow past the wing is provided, including consideration of weak shock waves and the use of parabolic coordinates. A swept wing code is developed which requires a mesh of 152 x 10 x 12 points and 200 time cycles. A formula for wave drag is calculated, based on the idea that the conservation form of the momentum equation becomes an entropy inequality measuring the drag, expressible in terms of a small-disturbance equation for a potential function in two dimensions. The entropy inequality has been incorporated in a two-dimensional code for the analysis of transonic flow over airfoils. A method of artificial viscosity is explored for optimum pressure distributions with design, and involves a free boundary problem considering speed over only a portion of the wing.

  10. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  11. Drift wave turbulence simulations in LAPD

    NASA Astrophysics Data System (ADS)

    Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.

    2009-11-01

    We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.

  12. Analysis of iced wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.

    1992-01-01

    A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  13. Comparison of analytical and experimental performance of a wind-tunnel diffuser section

    NASA Technical Reports Server (NTRS)

    Shyne, R. J.; Moore, R. D.; Boldman, D. R.

    1986-01-01

    Wind tunnel diffuser performance is evaluated by comparing experimental data with analytical results predicted by an one-dimensional integration procedure with skin friction coefficient, a two-dimensional interactive boundary layer procedure for analyzing conical diffusers, and a two-dimensional, integral, compressible laminar and turbulent boundary layer code. Pressure, temperature, and velocity data for a 3.25 deg equivalent cone half-angle diffuser (37.3 in., 94.742 cm outlet diameter) was obtained from the one-tenth scale Altitude Wind Tunnel modeling program at the NASA Lewis Research Center. The comparison is performed at Mach numbers of 0.162 (Re = 3.097x19(6)), 0.326 (Re = 6.2737x19(6)), and 0.363 (Re = 7.0129x10(6)). The Reynolds numbers are all based on an inlet diffuser diameter of 32.4 in., 82.296 cm, and reasonable quantitative agreement was obtained between the experimental data and computational codes.

  14. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    DTIC Science & Technology

    2018-02-09

    Lens-XX facility. This flow was chosen since a recent blind-code validation exercise revealed differences in CFD predictions and experimental data... experimental data that could be due to rarefied flow effects. The CFD solutions (using the US3D code) were run with no-slip boundary conditions and with...excellent agreement with that predicted by CFD. This implies that the dif- ference between CFD predictions and experimental data is not due to rarefied

  15. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  16. Drag of two-dimensional small-amplitude symmetric and asymmetric wavy walls in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Walsh, M. J.; Balasubramanian, R.

    1984-01-01

    Included are results of an experimental investigation of low-speed turbulent flow over multiple two-dimensional transverse rigid wavy surfaces having a wavelength on the order of the boundary-layer thickness. Data include surface pressure and total drag measurements on symmetric and asymmetric wall waves under a low-speed turbulent boundary-layer flow. Several asymmetric wave configurations exhibited drag levels below the equivalent symmetric (sine) wave. The experimental results compare favorably with numerical predictions from a Reynolds-averaged Navier-Stokes spectral code. The reported results are of particular interest for the estimation of drag, the minimization of fabrication waviness effects, and the study of wind-wave interactions.

  17. Off-diagonal Jacobian support for Nodal BCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, John W.; Andrs, David; Gaston, Derek R.

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite elementmore » codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  18. Tests and applications of nonlinear force-free field extrapolations in spherical geometry

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.

    2013-07-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry with an analytical solution from Low and Lou. The potential field source surface (PFSS) model is served as the initial and boundary conditions where observed data are not available. The analytical solution can be well recovered if the boundary and initial conditions are properly handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data, and find that preprocessing is necessary for NLFFF extrapolations when we use the observed photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a solar area where four active regions interacting with each other. An M8.7 flare occurred in one active region. NLFFF modeling in spherical geometry simultaneously constructs the small and large scale magnetic field configurations better than the PFSS model does.

  19. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  20. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.

    1988-01-01

    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.

  1. A validation of LTRAN2 with high frequency extensions by comparisons with experimental measurements of unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Hessenius, K. A.; Goorjian, P. M.

    1981-01-01

    A high frequency extension of the unsteady, transonic code LTRAN2 was created and is evaluated by comparisons with experimental results. The experimental test case is a NACA 64A010 airfoil in pitching motion at a Mach number of 0.8 over a range of reduced frequencies. Comparisons indicate that the modified code is an improvement of the original LTRAN2 and provides closer agreement with experimental lift and moment coefficients. A discussion of the code modifications, which involve the addition of high frequency terms of the boundary conditions of the numerical algorithm, is included.

  2. Power-on performance predictions for a complete generic hypersonic vehicle configuration

    NASA Technical Reports Server (NTRS)

    Bennett, Bradford C.

    1991-01-01

    The Compressible Navier-Stokes (CNS) code was developed to compute external hypersonic flow fields. It has been applied to various hypersonic external flow applications. Here, the CNS code was modified to compute hypersonic internal flow fields. Calculations were performed on a Mach 18 sidewall compression inlet and on the Lewis Mach 5 inlet. The use of the ARC3D diagonal algorithm was evaluated for internal flows on the Mach 5 inlet flow. The initial modifications to the CNS code involved generalization of the boundary conditions and the addition of viscous terms in the second crossflow direction and modifications to the Baldwin-Lomax turbulence model for corner flows.

  3. Object-oriented code SUR for plasma kinetic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, V.D.; Sigov, Y.S.

    1995-12-31

    We have developed a self-consistent simulation code based on object-oriented model of plasma (OOMP) for solving the Vlasov/Poisson (V/P), Vlasov/Maxwell (V/M), Bhatnagar-Gross-Krook (BGK) as well as Fokker-Planck (FP) kinetic equations. The application of an object-oriented approach (OOA) to simulation of plasmas and plasma-like media by means of splitting methods permits to uniformly describe and solve the wide circle of plasma kinetics problems, including those being very complicated: many-dimensional, relativistic, with regard for collisions, specific boundary conditions etc. This paper gives the brief description of possibilities of the SUR code, as a concrete realization of OOMP.

  4. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  5. Low Energy Electrons in the Mars Plasma Environment

    NASA Technical Reports Server (NTRS)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  6. Numerical Study of Boundary Layer Interaction with Shocks: Method Improvement and Test Computation

    NASA Technical Reports Server (NTRS)

    Adams, N. A.

    1995-01-01

    The objective is the development of a high-order and high-resolution method for the direct numerical simulation of shock turbulent-boundary-layer interaction. Details concerning the spatial discretization of the convective terms can be found in Adams and Shariff (1995). The computer code based on this method as introduced in Adams (1994) was formulated in Cartesian coordinates and thus has been limited to simple rectangular domains. For more general two-dimensional geometries, as a compression corner, an extension to generalized coordinates is necessary. To keep the requirements or limitations for grid generation low, the extended formulation should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, periodicity can be assumed in one cross-flow direction. For easy vectorization, the compact-ENO coupling algorithm as used in Adams (1994) treated whole planes normal to the derivative direction with the ENO scheme whenever at least one point of this plane satisfied the detection criterion. This is apparently too restrictive for more general geometries and more complex shock patterns. Here we introduce a localized compact-ENO coupling algorithm, which is efficient as long as the overall number of grid points treated by the ENO scheme is small compared to the total number of grid points. Validation and test computations with the final code are performed to assess the efficiency and suitability of the computer code for the problems of interest. We define a set of parameters where a direct numerical simulation of a turbulent boundary layer along a compression corner with reasonably fine resolution is affordable.

  7. Privacy protection versus cluster detection in spatial epidemiology.

    PubMed

    Olson, Karen L; Grannis, Shaun J; Mandl, Kenneth D

    2006-11-01

    Patient data that includes precise locations can reveal patients' identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies.

  8. SPLASH program for three dimensional fluid dynamics with free surface boundaries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.

    1996-05-01

    This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.

  9. Design and fabrication considerations for stainless steel liquid helium jackets surrounding SCRF cavities

    NASA Astrophysics Data System (ADS)

    Bonnema, E. C.; Cunningham, E. K.; Rumel, J. D.

    2014-01-01

    The Department of Energy requires its subcontractors to meet 10 CFR 851 Appendix A Part 4 for all new pressure vessels and pressure piping. The stainless steel pressure vessel boundaries surrounding SCRF cavities fall under this requirement. Methods for meeting this requirement include design and fabrication of the pressure vessels to meet the requirements of the ASME Boiler & Pressure Vessel Code Section VIII Division 1 or Division 2. Design considerations include determining whether the configuration of the SCRF cavity can be accommodated under the rules of Division 1 or must be analyzed under Division 2 Part 4 Design by Rule Requirements or Part 5 Design by Analysis Requirements. Regardless of the Division or Part choice, designers will find the rules of the ASME Code require thicker pressure boundary members, larger welds, and additional non-destructive testing and quality assurance requirements. These challenges must be met and overcome by the fabricator through the development of robust, detailed, and repeatable manufacturing processes. In this paper we discuss the considerations for stainless steel pressure vessels that must meet the ASME Code and illustrate the discussion with examples from direct experience fabricating such vessels.

  10. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  11. Computational and experimental investigation of two-dimensional scramjet inlets and hypersonic flow over a sharp flat plate

    NASA Astrophysics Data System (ADS)

    Messitt, Donald G.

    1999-11-01

    The WIND code was employed to compute the hypersonic flow in the shock wave boundary layer merged region near the leading edge of a sharp flat plate. Solutions were obtained at Mach numbers from 9.86 to 15.0 and free stream Reynolds numbers of 3,467 to 346,700 in-1 (1.365 · 105 to 1.365 · 107 m-1) for perfect gas conditions. The numerical results indicated a merged shock wave and viscous layer near the leading edge. The merged region grew in size with increasing free stream Mach number, proportional to Minfinity 2/Reinfinity. Profiles of the static pressure in the merged region indicated a strong normal pressure gradient (∂p/∂y). The normal pressure gradient has been neglected in previous analyses which used the boundary layer equations. The shock wave near the leading edge was thick, as has been experimentally observed. Computed shock wave locations and surface pressures agreed well within experimental error for values of the rarefaction parameter, chi/M infinity2 < 0.3. A preliminary analysis using kinetic theory indicated that rarefied flow effects became important above this value. In particular, the WIND solution agreed well in the transition region between the merged flow, which was predicted well by the theory of Li and Nagamatsu, and the downstream region where the strong interaction theory applied. Additional computations with the NPARC code, WIND's predecessor, demonstrated the ability of the code to compute hypersonic inlet flows at free stream Mach numbers up to 20. Good qualitative agreement with measured pressure data indicated that the code captured the important physical features of the shock wave - boundary layer interactions. The computed surface and pitot pressures fell within the combined experimental and numerical error bounds for most points. The calculations demonstrated the need for extremely fine grids when computing hypersonic interaction flows.

  12. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.

    PubMed

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2015-01-01

    Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity.

  13. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †

    PubMed Central

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  14. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  15. Novel Role of MDA-9/Syntenin in Regulating Urothelial Cell Proliferation by Modulating EGFR Signaling

    PubMed Central

    Dasgupta, Santanu; Menezes, Mitchell E.; Das, Swadesh K.; Emdad, Luni; Janjic, Aleksandar; Bhatia, Shilpa; Mukhopadhyay, Nitai D; Shao, Chunbo; Sarkar, Devanand; Fisher, Paul B.

    2013-01-01

    Purpose Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression. Experimental Design Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knock down was examined in multiple cells lines and key findings were validated in primary tumors. Results Significantly higher (p= 0.002–0.003) expression of MDA-9/Syntenin was observed in 64% (28/44) of primary tumors and an association was evident with stage (p=0.01), grade (p=0.03) and invasion status (p=0.02). MDA-9/Syntenin overexpression in non-tumorigenic HUC-1 cells increased proliferation (p=0.0012), invasion (p=0.0001) and EGFR, AKT, PI3K and c-Src expression. Alteration of Beta-catenin, E-Cadherin, Vimentin, Claudin-1, ZO-1 and TCF4 expression were also observed. MDA-9/Syntenin knock down in 3 UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and co-localization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin: AKT expressions with stage (p=0.04, EGFR), (p=0.01, AKT). A correlation between MDA-9/Syntenin: β-catenin co-expression with stage (p=0.03) and invasion (p=0.04) was also evident. Conclusions Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring and therapeutic strategies for managing UCC. PMID:23873690

  16. Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling.

    PubMed

    Dasgupta, Santanu; Menezes, Mitchell E; Das, Swadesh K; Emdad, Luni; Janjic, Aleksandar; Bhatia, Shilpa; Mukhopadhyay, Nitai D; Shao, Chunbo; Sarkar, Devanand; Fisher, Paul B

    2013-09-01

    Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression. Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knockdown was examined in multiple cells lines and key findings were validated in primary tumors. Significantly higher (P=0.002-0.003) expression of MDA-9/Syntenin was observed in 64% (28 of 44) of primary tumors and an association was evident with stage (P=0.01), grade (P=0.03), and invasion status (P=0.02). MDA-9/Syntenin overexpression in nontumorigenic HUC-1 cells increased proliferation (P=0.0012), invasion (P=0.0001), and EGF receptor (EGFR), AKT, phosphoinositide 3-kinase (PI3K), and c-Src expression. Alteration of β-catenin, E-cadherin, vimentin, claudin-1, ZO-1, and T-cell factor-4 (TCF4) expression was also observed. MDA-9/Syntenin knockdown in three UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and colocalization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin:AKT expressions with stage (P=0.04, EGFR; P=0.01, AKT). A correlation between MDA-9/Syntenin:β-catenin coexpression with stage (P=0.03) and invasion (P=0.04) was also evident. Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring, and therapeutic strategies for managing UCC. ©2013 AACR.

  17. Calibration of Axisymmetric and Quasi-1D Solvers for High Enthalpy Nozzles

    NASA Technical Reports Server (NTRS)

    Papadopoulos, P. E.; Gochberg, L. A.; Tokarcik-Polsky, S.; Venkatapathy, E.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    The proposed paper will present a numerical investigation of the flow characteristics and boundary layer development in the nozzles of high enthalpy shock tunnel facilities used for hypersonic propulsion testing. The computed flow will be validated against existing experimental data. Pitot pressure data obtained at the entrance of the test cabin will be used to validate the numerical simulations. It is necessary to accurately model the facility nozzles in order to characterize the test article flow conditions. Initially the axisymmetric nozzle flow will be computed using a Navier Stokes solver for a range of reservoir conditions. The calculated solutions will be compared and calibrated against available experimental data from the DLR HEG piston-driven shock tunnel and the 16-inch shock tunnel at NASA Ames Research Center. The Reynolds number is assumed to be high enough at the throat that the boundary layer flow is assumed turbulent at this point downstream. The real gas affects will be examined. In high Mach number facilities the boundary layer is thick. Attempts will be made to correlate the boundary layer displacement thickness. The displacement thickness correlation will be used to calibrate the quasi-1D codes NENZF and LSENS in order to provide fast and efficient tools of characterizing the facility nozzles. The calibrated quasi-1D codes will be implemented to study the effects of chemistry and the flow condition variations at the test section due to small variations in the driver gas conditions.

  18. Environmental boundaries as a mechanism for correcting and anchoring spatial maps

    PubMed Central

    2016-01-01

    Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618

  19. A penalty-based nodal discontinuous Galerkin method for spontaneous rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ye, R.; De Hoop, M. V.; Kumar, K.

    2017-12-01

    Numerical simulation of the dynamic rupture processes with slip is critical to understand the earthquake source process and the generation of ground motions. However, it can be challenging due to the nonlinear friction laws interacting with seismicity, coupled with the discontinuous boundary conditions across the rupture plane. In practice, the inhomogeneities in topography, fault geometry, elastic parameters and permiability add extra complexity. We develop a nodal discontinuous Galerkin method to simulate seismic wave phenomenon with slipping boundary conditions, including the fluid-solid boundaries and ruptures. By introducing a novel penalty flux, we avoid solving Riemann problems on interfaces, which makes our method capable for general anisotropic and poro-elastic materials. Based on unstructured tetrahedral meshes in 3D, the code can capture various geometries in geological model, and use polynomial expansion to achieve high-order accuracy. We consider the rate and state friction law, in the spontaneous rupture dynamics, as part of a nonlinear transmitting boundary condition, which is weakly enforced across the fault surface as numerical flux. An iterative coupling scheme is developed based on implicit time stepping, containing a constrained optimization process that accounts for the nonlinear part. To validate the method, we proof the convergence of the coupled system with error estimates. We test our algorithm on a well-established numerical example (TPV102) of the SCEC/USGS Spontaneous Rupture Code Verification Project, and benchmark with the simulation of PyLith and SPECFEM3D with agreeable results.

  20. Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery

    2015-01-01

    In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.

  1. Modeling of the heat transfer in bypass transitional boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  2. Teaching an Old Dog an Old Trick: FREE-FIX and Free-Boundary Axisymmetric MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca

    2015-11-01

    A common task in plasma physics research is the calculation of an axisymmetric equilibrium for tokamak modeling. The main unknown of the problem is the magnetic poloidal flux ψ. The easiest approach is to assign the shape of the plasma and only solve the equilibrium problem in the plasma / closed-field-lines region (the ``fixed-boundary approach''). Often, one may also need the vacuum fields, i.e. the equilibrium in the open-field-lines region, requiring either coil currents or ψ on some closed curve outside the plasma to be assigned (the ``free-boundary approach''). Going from one approach to the other is a textbook problem, involving the calculation of Green's functions and surface integrals in the plasma. However, no tools are readily available to perform this task. Here we present a code (FREE-FIX) to compute a boundary condition for a free-boundary equilibrium given only the corresponding fixed-boundary equilibrium. An improvement to the standard solution method, allowing for much faster calculations, is presented. Applications are discussed. PPPL fund 245139 and DOE grant G00009102.

  3. Interactive Visualization of National Airspace Data in 4D (IV4D)

    DTIC Science & Technology

    2010-08-01

    Research Laboratory) JView graphics engine. All of the software, IV4D/Viewer/JView, is written in Java and is platform independent, meaning that it...both parts. 11 3.3.1.1 Airspace Volumes Once appropriate CSV or ACES XML airspace boundary files are selected from a standard Java File Chooser...persistence mechanism, Hibernate , was replaced with JDBC specific code and, over time, quite a bit of JDBC support code was added to the Viewer and to

  4. Computational Fluid Dynamics Requirements at the Naval Postgraduate School.

    DTIC Science & Technology

    1986-10-01

    FIELD ANALYSIS OF WING-FUSELAGE .1?CONFIGURATION r 13. PROFILE- THE EPPLER PROGRAM FOR THE DESIGN AND ANALYSIS OF LOW-SPEED AIRFOILS 14. AERODYNAMIC...POSTORRDUATE SCHOOL(U) VI IJE UNIV MAUSSELS (ELGIUM) C HIRSCH 61 OCT 96 NPS-67-S6-007CR M62271-06-M-0242 UNCLSSIFIED F/0 26/4 NE"I ChE’i...codes Under this group ons can list the codes KELLER BOX METHOD FOR BOUNDARY LAYERS VISCID-INVISCID INTERACTION ON AIRFOIL FLOW OVER WING-BODY JUNCTION

  5. IGGy: An interactive environment for surface grid generation

    NASA Technical Reports Server (NTRS)

    Prewitt, Nathan C.

    1992-01-01

    A graphically interactive derivative of the EAGLE boundary code is presented. This code allows the user to interactively build and execute commands and immediately see the results. Strong ties with a batch oriented script language are maintained. A generalized treatment of grid definition parameters allows a more generic definition of the grid generation process and allows the generation of command scripts which can be applied to topologically similar configurations. The use of the graphical user interface is outlined and example applications are presented.

  6. Experimental and analytical studies of a model helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1981-01-01

    A benchmark test to aid the development of various rotor performance codes was conducted. Simultaneous blade pressure measurements and tip vortex surveys were made for a wide range of tip Mach numbers including the transonic flow regime. The measured tip vortex strength and geometry permit effective blade loading predictions when used as input to a prescribed wake lifting surface code. It is also shown that with proper inflow and boundary layer modeling, the supercritical flow regime can be accurately predicted.

  7. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.

    PubMed

    Barutcu, A Rasim; Maass, Philipp G; Lewandowski, Jordan P; Weiner, Catherine L; Rinn, John L

    2018-04-13

    The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.

  8. Comparison Between Simulated and Experimentally Measured Performance of a Four Port Wave Rotor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wilson, Jack; Welch, Gerard E.

    2007-01-01

    Performance and operability testing has been completed on a laboratory-scale, four-port wave rotor, of the type suitable for use as a topping cycle on a gas turbine engine. Many design aspects, and performance estimates for the wave rotor were determined using a time-accurate, one-dimensional, computational fluid dynamics-based simulation code developed specifically for wave rotors. The code follows a single rotor passage as it moves past the various ports, which in this reference frame become boundary conditions. This paper compares wave rotor performance predicted with the code to that measured during laboratory testing. Both on and off-design operating conditions were examined. Overall, the match between code and rig was found to be quite good. At operating points where there were disparities, the assumption of larger than expected internal leakage rates successfully realigned code predictions and laboratory measurements. Possible mechanisms for such leakage rates are discussed.

  9. Perceptually-Based Adaptive JPEG Coding

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.

  10. NASA Lewis Steady-State Heat Pipe Code Architecture

    NASA Technical Reports Server (NTRS)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  11. Acquisition Of Rainfall Dataset And The Application For The Automatic Harvester In The Chesapeake Bay Region

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Piasecki, M.

    2008-12-01

    The objective of this study is the preparation and indexing of rainfall data products for ingestion into the Chesapeake Bay Environmental Observatory (CBEO) node of the CUAHSI/WATERs network. Rainfall products (which are obtained and then processed based on the WSR-88D NEXRAD network) are obtained from the NOAA/NWS Advanced Hydrologic Prediction Service that combines the Multi-sensor Precipitation Estimate (MPE) data generated by the Regional River Forecast Centers and Hydro-NEXRAD rainfall data generated as a service by the University of Iowa. The former is collected on 4*4 km grid (HRAP) with a daily average temporal resolution and the latter on a 1minute*1minute degree grid with hourly values. We have generated a cut-out for the Chesapeake Bay Basin that contains about 9,300 nodes (sites) for the MPE data and about 300,000 nodes (sites) for the Hydro-NEXRAD product. Automated harvesting services have been implemented for both data products. The MPE data is harvested from its download site using ArcGIS which in turn is used to extract the data for the Chesapeake Bay watershed before a scripting program is used to scatter the data into the ODM. The Hydro-NEXRAD is downloaded from a web-based system at the University of Iowa which permits downloads for large scale watersheds organized by Hydraulic Unit Codes (HUC). The resulting ASCII is then automatically parsed and the information stored alongside the MPE data. The two data products stored side-by-side then allows a comparison between them addressing the accuracy and agreement between the methods used to arrive at rainfall data as both use the raw reflectivity data from the WSD-88D system.

  12. Comparison of Measured and Block Structured Simulations for the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Boelens, O. J.; Badcock, K. J.; Elmilgui, A.; Abdol-Hamid, K. S.; Massey, S. J.

    2008-01-01

    This article presents a comparison of the predictions of three RANS codes for flight conditions of the F-16XL aircraft which feature vortical flow. The three codes, ENSOLV, PMB and PAB3D, solve on structured multi-block grids. Flight data for comparison was available in the form of surface pressures, skin friction, boundary layer data and photographs of tufts. The three codes provided predictions which were consistent with expectations based on the turbulence modelling used, which was k- , k- with vortex corrections and an Algebraic Stress Model. The agreement with flight data was good, with the exception of the outer wing primary vortex strength. The confidence in the application of the CFD codes to complex fighter configurations increased significantly through this study.

  13. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  14. A Short Review of Ablative-Material Response Models and Simulation Tools

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean; Magin, Thierry E.; Cozmuta, Ioana; Mansour, Nagi N.

    2011-01-01

    A review of the governing equations and boundary conditions used to model the response of ablative materials submitted to a high-enthalpy flow is proposed. The heritage of model-development efforts undertaken in the 1960s is extremely clear: the bases of the models used in the community are mathematically equivalent. Most of the material-response codes implement a single model in which the equation parameters may be modified to model different materials or conditions. The level of fidelity of the models implemented in design tools only slightly varies. Research and development codes are generally more advanced but often not as robust. The capabilities of each of these codes are summarized in a color-coded table along with research and development efforts currently in progress.

  15. Physical therapists' perceptions of sexual boundaries in clinical practice in the United States.

    PubMed

    Roush, Susan E; Cox, Kenneth; Garlick, John; Kane, Molly; Marchand, Lauren

    2015-07-01

    Physical therapists' perceptions of sexual boundaries in clinic settings in the United States have not been studied. Given the magnitude of potential consequences of sexual boundary violations, examination of this topic is imperative. The purpose of this study was to describe the perceptions of sexual boundaries among licensed physical therapists in the United States. Licensed physical therapists from Arkansas, Kansas, Maine, Ohio, and Oregon were contacted by email and asked to complete a sexual boundaries questionnaire via Survey Monkey™; 967 surveys (7.3%) were returned. While most physical therapists practice within the profession's Code of Ethics, there are practitioners who date current and former patients, and condone patients' sexual banter in the clinic. Almost half (42%) of the participants acknowledged feeling sexually attracted to a patient. While gender differences were seen throughout the analyses, generally, the demographic and professional variables did not account for meaningful variance. Results were similar to previous research on physiotherapists in other countries. Sexuality is part of the physical therapy practice environment and physical therapists' understanding of sexual boundaries is ambiguous. These data can inform professional conversation on sexual boundaries in physical therapy practice leading to greater understanding and decreased potential for violations.

  16. Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂

    DOE PAGES

    Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...

    2015-07-01

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less

  17. Patient privacy and social media.

    PubMed

    Hader, Amy L; Brown, Evan D

    2010-08-01

    Healthcare providers using social media must remain mindful of professional boundaries and patients' privacy rights. Facebook and other online postings must comply with the Health Insurance Portability and Accountability Act of 1996 (HIPAA), applicable facility policy, state law, and AANA's Code of Ethics.

  18. Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.

    2008-01-01

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.

  19. Additional extensions to the NASCAP computer code, volume 3

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Cooke, D. L.

    1981-01-01

    The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.

  20. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

Top