Science.gov

Sample records for code including molten

  1. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOEpatents

    Trudel, David R.; Meyer, Thomas N.; Kinosz, Michael J.; Arnaud, Guy; Bigler, Nicolas

    2003-06-17

    The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.

  2. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOEpatents

    Meyer, Thomas N.

    2004-06-01

    The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

  3. Transient Analyses for a Molten Salt Transmutation Reactor Using the Extended SIMMER-III Code

    SciTech Connect

    Wang, Shisheng; Rineiski, Andrei; Maschek, Werner; Ignatiev, Victor

    2006-07-01

    Recent developments extending the capabilities of the SIMMER-III code for the dealing with transient and accidents in Molten Salt Reactors (MSRs) are presented. These extensions refer to the movable precursor modeling within the space-time dependent neutronics framework of SIMMER-III, to the molten salt flow modeling, and to new equations of state for various salts. An important new SIMMER-III feature is that the space-time distribution of the various precursor families with different decay constants can be computed and took into account in neutron/reactivity balance calculations and, if necessary, visualized. The system is coded and tested for a molten salt transmuter. This new feature is also of interest in core disruptive accidents of fast reactors when the core melts and the molten fuel is redistributed. (authors)

  4. Investigation of the Fission Product Release From Molten Pools Under Oxidizing Conditions With the Code RELOS

    SciTech Connect

    Kleinhietpass, Ingo D.; Unger, Hermann; Wagner, Hermann-Josef; Koch, Marco K.

    2006-07-01

    With the purpose of modeling and calculating the core behavior during severe accidents in nuclear power plants system codes are under development worldwide. Modeling of radionuclide release and transport in the case of beyond design basis accidents is an integrated feature of the deterministic safety analysis of nuclear power plants. Following a hypothetical, uncontrolled temperature escalation in the core of light water reactors, significant parts of the core structures may degrade and melt down under formation of molten pools, leading to an accumulation of large amounts of radioactive materials. The possible release of radionuclides from the molten pool provides a potential contribution to the aerosol source term in the late phase of core degradation accidents. The relevance of the amount of transferred oxygen from the gas atmosphere into the molten pool on the specification of a radionuclide and its release depends strongly on the initial oxygen inventory. Particularly for a low oxygen potential in the melt as it is the case for stratification when a metallic phase forms the upper layer and, respectively, when the oxidation has proceeded so far so that zirconium was completely oxidized, a significant influence of atmospheric oxygen on the specification and the release of some radionuclides has to be anticipated. The code RELOS (Release of Low Volatile Fission Products from Molten Surfaces) is under development at the Department of Energy Systems and Energy Economics (formerly Department of Nuclear and New Energy Systems) of the Ruhr-University Bochum. It is based on a mechanistic model to describe the diffusive and convective transport of fission products from the surface of a molten pool into a cooler gas atmosphere. This paper presents the code RELOS, i. e. the features and abilities of the latest code version V2.3 and the new model improvements of V2.4 and the calculated results evaluating the implemented models which deal with the oxygen transfer from the

  5. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  6. Simulation of the thermalhydraulic behavior of a molten core within a structure, with the three dimensions three components TOLBIAC code

    SciTech Connect

    Spindler, B.; Moreau, G.M.; Pigny S.

    1995-09-01

    The TOLBIAC code is devoted to the simulation of the behavior of a molten core within a structure (pressure vessel of core catcher), taking into account the relative position of the core components, the wall ablation and the crust formation. The code is briefly described: 3D model, physical properties and constitutive laws. wall ablation and crust model. Two results are presented: the simulation of the COPO experiment (natural convection with water in a 1/2 scale elliptic pressure vessel), and the simulation of the behavior of a corium in a PWR pressure vessel, with ablation and crust formation.

  7. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  8. Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code

    NASA Astrophysics Data System (ADS)

    Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian

    2017-07-01

    FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.

  9. Iterative optimal subcritical aerodynamic design code including profile drag

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    A subcritical aerodynamic design computer code has been developed, which uses linearized aerodynamics along with sweep theory and airfoil data to obtain minimum total drag preliminary designs for multiple planform configurations. These optimum designs consist of incidence distributions yielding minimum total drag at design values of Mach number and lift and pitching moment coefficients. Linear lofting is used between airfoil stations. Solutions for isolated transport wings have shown that the solution is unique, and that including profile drag effects decreases tip loading and incidence relative to values obtained for minimum induced drag solutions. Further, including effects of variation of profile drag with Reynolds number can cause appreciable changes in the optimal design for tapered wings. Example solutions are also discussed for multiple planform configurations.

  10. Iterative optimal subcritical aerodynamic design code including profile drag

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    A subcritical aerodynamic design computer code has been developed, which uses linearized aerodynamics along with sweep theory and airfoil data to obtain minimum total drag preliminary designs for multiple planform configurations. These optimum designs consist of incidence distributions yielding minimum total drag at design values of Mach number and lift and pitching moment coefficients. Linear lofting is used between airfoil stations. Solutions for isolated transport wings have shown that the solution is unique, and that including profile drag effects decreases tip loading and incidence relative to values obtained for minimum induced drag solutions. Further, including effects of variation of profile drag with Reynolds number can cause appreciable changes in the optimal design for tapered wings. Example solutions are also discussed for multiple planform configurations.

  11. Kinetic models of gene expression including non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  12. Advances in pleural disease management including updated procedural coding.

    PubMed

    Haas, Andrew R; Sterman, Daniel H

    2014-08-01

    Over 1.5 million pleural effusions occur in the United States every year as a consequence of a variety of inflammatory, infectious, and malignant conditions. Although rarely fatal in isolation, pleural effusions are often a marker of a serious underlying medical condition and contribute to significant patient morbidity, quality-of-life reduction, and mortality. Pleural effusion management centers on pleural fluid drainage to relieve symptoms and to investigate pleural fluid accumulation etiology. Many recent studies have demonstrated important advances in pleural disease management approaches for a variety of pleural fluid etiologies, including malignant pleural effusion, complicated parapneumonic effusion and empyema, and chest tube size. The last decade has seen greater implementation of real-time imaging assistance for pleural effusion management and increasing use of smaller bore percutaneous chest tubes. This article will briefly review recent pleural effusion management literature and update the latest changes in common procedural terminology billing codes as reflected in the changing landscape of imaging use and percutaneous approaches to pleural disease management.

  13. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.

    2013-10-01

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  14. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  15. Scoping assessments of ATF impact on late-stage accident progression including molten core-concrete interaction

    NASA Astrophysics Data System (ADS)

    Farmer, M. T.; Leibowitz, L.; Terrani, K. A.; Robb, K. R.

    2014-05-01

    Simple scoping models that can be used to evaluate ATF performance under severe accident conditions have been developed. The methodology provides a fundamental technical basis (a.k.a. metric) based on the thermodynamic boundary for evaluating performance relative to that of traditional Zr-based claddings. The initial focus in this study was on UO2 fuel with the advanced claddings 310 SS, D9, FeCrAl, and SiC. The evaluation considered only energy release with concurrent combustible gas production from fuel-cladding-coolant interactions and, separately, molten core-concrete interactions at high temperatures. Other important phenomenological effects that can influence the rate and extent of cladding decomposition (e.g., eutectic interactions, degradation of other core constituents) were not addressed. For the cladding types addressed, potential combustible gas production under both in-vessel and ex-vessel conditions was similar to that for Zr. However, exothermic energy release from cladding oxidation was substantially less for iron-based alloys (by at least a factor of 4), and modestly less (by ∼20%) for SiC. Data on SiC-clad UO2 fuel performance under severe accident conditions are sparse in the literature; thus, assumptions on the nature of the cladding decomposition process were made in order to perform this initial screening evaluation. Experimental data for this system under severe accident conditions is needed for a proper evaluation and comparison to iron-based claddings.

  16. Scoping assessments of ATF impact on late–stage accident progression including molten core-concrete interaction

    SciTech Connect

    Farmer, Mitchell T.; Leibowitz, Leonard; Terrani, Kurt A.; Robb, Kevin R.

    2013-12-31

    Simple scoping models that can be used to evaluate ATF performance under severe accident conditions have been developed. The methodology provides a fundamental technical basis (a.k.a. metric) based on the thermodynamic boundary for evaluating performance relative to that of traditional Zr-based claddings. The initial focus in this study was on UO2 fuel with the advanced claddings 310 SS, D9, FeCrAl, and SiC. The evaluation considered only energy release with concurrent combustible gas production from fuel–cladding–coolant interactions and, separately, molten core–concrete interactions at high temperatures. Other important phenomenological effects that can influence the rate and extent of cladding decomposition (e.g., eutectic interactions, degradation of other core constituents) were not addressed. For the cladding types addressed, potential combustible gas production under both in-vessel and ex-vessel conditions was similar to that for Zr. However, exothermic energy release from cladding oxidation was substantially less for iron-based alloys (by at least a factor of 4), and modestly less (by ~20%) for SiC. Data on SiC-clad UO2 fuel performance under severe accident conditions are sparse in the literature; thus, assumptions on the nature of the cladding decomposition process were made in order to perform this initial screening evaluation. Furthermore, experimental data for this system under severe accident conditions is needed for a proper evaluation and comparison to iron-based claddings.

  17. Molten metal reactors

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  18. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  19. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    SciTech Connect

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  20. Application of transonic codes to aeroelastic modeling of airfoils including active controls

    NASA Technical Reports Server (NTRS)

    Batina, J. T.; Yang, T. Y.

    1984-01-01

    A study is performed using aeroelastic modeling to investigate the stability behavior of airfoils in small-disturbance transonic flow. Two conventional airfoils, NACA 64.A006 and NACA 64A010, and a supercritical airfoil, MBB A-3, are considered. Three sets of unsteady aerodynamic data are computed using three different transonic codes (LTRAN2-NLR, LTRAN2-HI, and USTS) for comparison purposes. Stability results obtained using a constant matrix, state-space, aeroelastic model are presented in a root-locus format. Use of the state-space model is demonstrated through application to flutter suppression using active controls. Aeroelastic effects due to simple, constant gain, partial feedback, control laws that utilize displacement, velocity, and acceleration sensing are studied using a variety of control gains. Calculations are also performed using linear subsonic aerodynamic theory to reveal the differences between including and not including transonic effects in the aeroelastic model. Aeroelastic stability behavior of these airfoils is physically interpreted and discussed in detail.

  1. A method of measuring a molten metal liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  2. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    SciTech Connect

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-07-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  3. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  4. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  5. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  6. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  7. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  8. The Self-Referential Genetic Code is Biologic and Includes the Error Minimization Property.

    PubMed

    Guimarães, Romeu Cardoso

    2015-06-01

    The distribution of the triplet to amino acid correspondences in the genetic code matrix contains blocks of similarity. There are (a) groups of similar triplets coding for the same amino acid, which is called code degeneracy, and (b) clusters of similar amino acids corresponding to similar triplets. Processes that led to this regionalization have been investigated through a variety of perspectives but no consensus has been reached and no model has been convincing enough to drive experimental tests. Most traditional has been the hypothesis that the code was derived from the standard evolutionary processes of testing variations in the correspondences through the fitness measure of reaching distributions in the matrix space in an optimal manner so that the effects of mutations on protein phenotypes would be minimized, that is, with reduction of the intensity or of the deviant quality of the functional alterations associated with variations. In contrast, the self-referential model for the formation of the code is based on an original regionalization of characters through the concerted superposition of the two components of the encodings: the four modules of dimers of tRNAs are occupied sequentially by sets of amino acids that are also sequentially devoted to fulfilling specific functions in the protein sites and motifs to which they preferentially belong. Therewith, part (b) of the error-minimizing property follows. Part (a) of the property, the code degeneracy, is derived from the synthetase character of developing specificities directed initially to the principal dinucleotides of the triplets, resulting in tetracodonic degeneracy. This was later partly modified during evolution according to the developments of codon usage and the introduction of new amino acids.

  9. The Self-Referential Genetic Code is Biologic and Includes the Error Minimization Property

    NASA Astrophysics Data System (ADS)

    Guimarães, Romeu Cardoso

    2015-06-01

    The distribution of the triplet to amino acid correspondences in the genetic code matrix contains blocks of similarity. There are (a) groups of similar triplets coding for the same amino acid, which is called code degeneracy, and (b) clusters of similar amino acids corresponding to similar triplets. Processes that led to this regionalization have been investigated through a variety of perspectives but no consensus has been reached and no model has been convincing enough to drive experimental tests. Most traditional has been the hypothesis that the code was derived from the standard evolutionary processes of testing variations in the correspondences through the fitness measure of reaching distributions in the matrix space in an optimal manner so that the effects of mutations on protein phenotypes would be minimized, that is, with reduction of the intensity or of the deviant quality of the functional alterations associated with variations. In contrast, the self-referential model for the formation of the code is based on an original regionalization of characters through the concerted superposition of the two components of the encodings: the four modules of dimers of tRNAs are occupied sequentially by sets of amino acids that are also sequentially devoted to fulfilling specific functions in the protein sites and motifs to which they preferentially belong. Therewith, part (b) of the error-minimizing property follows. Part (a) of the property, the code degeneracy, is derived from the synthetase character of developing specificities directed initially to the principal dinucleotides of the triplets, resulting in tetracodonic degeneracy. This was later partly modified during evolution according to the developments of codon usage and the introduction of new amino acids.

  10. GCKP84-general chemical kinetics code for gas-phase flow and batch processes including heat transfer effects

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1984-01-01

    A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.

  11. Modification of the User Friendly Thermodynamic Code to Include the Effects of Minor Species

    DTIC Science & Technology

    1991-04-01

    employed in BLAKE and the ICT codes. This equation of state was developed to accurately calculate the pressures of mixtures of water, carbon monoxide...density increases, real gas efforts cause the calculated flame temperature to decrease and the calculated pressure to increase. A computer program to...by reading the review article by Zeleznik and Gordon (ref 1). Since most combust .n takes place at atmospheric pressure it is perfectly valid to treat

  12. General Monte Carlo reliability simulation code including common mode failures and HARP fault/error-handling

    NASA Technical Reports Server (NTRS)

    Platt, M. E.; Lewis, E. E.; Boehm, F.

    1991-01-01

    A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.

  13. Stability of Molten Core Materials

    SciTech Connect

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  14. Chemistry and technology of Molten Salt Reactors - history and perspectives

    NASA Astrophysics Data System (ADS)

    Uhlíř, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R&D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium.

  15. European Code against Cancer 4th Edition: Medical exposures, including hormone therapy, and cancer.

    PubMed

    Friis, Søren; Kesminiene, Ausrele; Espina, Carolina; Auvinen, Anssi; Straif, Kurt; Schüz, Joachim

    2015-12-01

    The 4th edition of the European Code against Cancer recommends limiting - or avoiding when possible - the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen-progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen-progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit-risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events.

  16. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2010-04-01 2010-04-01 false May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF...

  17. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2011-04-01 2011-04-01 false May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF...

  18. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2014-04-01 2014-04-01 false May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF INDIAN...

  19. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2012-04-01 2011-04-01 true May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF INDIAN...

  20. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2013-04-01 2013-04-01 false May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF INDIAN...

  1. Poly(A) RNAs Including Coding Proteins RNAs Occur in Plant Cajal Bodies

    PubMed Central

    Niedojadło, Janusz; Kubicka, Ewa; Kalich, Beata; Smoliński, Dariusz J.

    2014-01-01

    The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention. PMID:25369024

  2. Poly(A) RNAs including coding proteins RNAs occur in plant Cajal bodies.

    PubMed

    Niedojadło, Janusz; Kubicka, Ewa; Kalich, Beata; Smoliński, Dariusz J

    2014-01-01

    The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.

  3. Feet sunk in molten aluminium: The burn and its prevention.

    PubMed

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  4. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  5. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  6. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  7. Molten carbonate fuel cell matrices

    DOEpatents

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  8. Molten carbonate fuel cell matrices

    SciTech Connect

    Vogel, W. M.; Smith, S. W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO/sub 3/, the matrix may include LaA1O/sub 3/ or a lithium containing material such as LiA1O/sub 2/ or Li/sub 2/TiO/sub 3/.

  9. Recirculating Molten Metal Supply System And Method

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  10. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms.

    PubMed

    Solano, Carlos J F; Pothula, Karunakar R; Prajapati, Jigneshkumar D; De Biase, Pablo M; Noskov, Sergei Yu; Kleinekathöfer, Ulrich

    2016-05-10

    All-atom molecular dynamics simulations have a long history of applications studying ion and substrate permeation across biological and artificial pores. While offering unprecedented insights into the underpinning transport processes, MD simulations are limited in time-scales and ability to simulate physiological membrane potentials or asymmetric salt solutions and require substantial computational power. While several approaches to circumvent all of these limitations were developed, Brownian dynamics simulations remain an attractive option to the field. The main limitation, however, is an apparent lack of protein flexibility important for the accurate description of permeation events. In the present contribution, we report an extension of the Brownian dynamics scheme which includes conformational dynamics. To achieve this goal, the dynamics of amino-acid residues was incorporated into the many-body potential of mean force and into the Langevin equations of motion. The developed software solution, called BROMOCEA, was applied to ion transport through OmpC as a test case. Compared to fully atomistic simulations, the results show a clear improvement in the ratio of permeating anions and cations. The present tests strongly indicate that pore flexibility can enhance permeation properties which will become even more important in future applications to substrate translocation.

  11. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  12. Molten Salt Electrochemical Systems.

    DTIC Science & Technology

    1983-05-31

    metal tetrafluoroborates were examined for similar behavior. Commercial samples of the lithium, sodium and potassium salts were used, while the...REPORT a PERID C £0 inal, 1 June 1980-31 March Molten Salt Electrochemical Systems 1983 6 PERFORMING OŘG. REPORT NUMBER 7. AUTHOR(a) I CONTRACT OR...dilfferent from Reporl) IS. KEY WORDS (Continue ora ow... side 55 n~cssay and Identify by block number ) Molten Salt , Phase Diagram, Electrolyte 30

  13. Developmental assessment of the SCDAP/RELAP5 code

    SciTech Connect

    Harvego, E.A.; Slefken, L.J.; Coryell, E.W.

    1997-12-31

    The development and assessment of the late-phase damage progression models in the current version (designated MOD3.2) of the SCDAP/RELAP5 code are described. The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the US Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems (RCS) during severe accident conditions. Recent modeling improvements made to the MOD3.2 version of the code include (1) molten pool formation and heat up, including the transient start-up of natural circulation heat transfer, (2) in-core molten pool thermal-mechanical crust failure, (3) the melting and relocation of upper plenum structures, and (4) improvements in the modeling of lower plenum debris behavior and the potential for failure of the lower head. Finally, to eliminate abrupt transitions between core damage states and provide more realistic predictions of late phase accident progression phenomena, a transition smoothing methodology was developed and implemented that results in the calculation of a gradual transition from an intact core geometry through the different core damage states leading to molten pool formation. A wide range of experiments and modeling tools were used to assess the capabilities of MOD3.2. The results of the SCDAP/RELAP5/MOD3.2 assessment indicate that modeling improvements have significantly enhanced the code capabilities and performance in several areas compared to the earlier code version. New models for transition smoothing between core damage states, and modeling improvements/additions for cladding oxide failure, molten pool behavior, and molten pool crust failure have significantly improved the code usability for a wide range of applications and have significantly improved the prediction of hydrogen production, molten pool melt mass and core melt relocation time.

  14. Molten iron containing vessel with improved refractory lining

    SciTech Connect

    Coordes, H.; Oberbach, M.

    1984-02-21

    A molten iron containing vessel includes a refractory fireproof inner lining of dolomite bricks and bauxite bricks. The lining includes magnesia bricks positioned between the dolomite and bauxite bricks, thereby avoiding contact reactions between the dolomite and bauxite. A gas permeable brick member extends through an end portion of the vessel for injecting a gas into the molten iron contained therein.

  15. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  16. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  17. Point Kernel Code System for Neutron and Gamma-Ray Shielding Calculations in Complex Geometry, Including a Graphical User Interface.

    SciTech Connect

    SUBBAIAH, K. V.

    2001-10-01

    Version 01 GUI2QAD is an aid in preparation of input for the included QAD-CGPIC program, which is based on CCC-493/QAD-CGGP and PICTURE. QAD-CGPIC is a Fortran code for fast neutron and gamma-ray shielding calculations through various shield configurations defined by combinatorial geometry specifications. Provision is available to interactively input the geometry and view the same in three dimensions with arbitrary rotations along x,y,z axis. The salient features of the present package include: a) Handles off centered multiple identical sources b) Axis of cylindrical sources can be parallel to any of the axes. c) Provides plots of buildup factors (ANSI-1990) and material cross sections d) Estimates dose rate for point source-slab shield situations e) Interactive input of CG geometry with 3D view and rotation f) Fission product decay power computation and plots for source term calculations. g) Provision to read and graphical 1y display picture input file.

  18. Simulation of Weld Mechanical Behavior to Include Welding Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    induced residual stresses and distortions from weld simulations in the SYSWELD software code in structural Finite Element Analysis ( FEA ) simulations...performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Local Weld Model in Structural FEA ....................................................15 CONCLUSIONS

  19. Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostoma magnum.

    PubMed

    Heaphy, Stephen M; Mariotti, Marco; Gladyshev, Vadim N; Atkins, John F; Baranov, Pavel V

    2016-11-01

    mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, TAG, and TGA) specify amino acids in Condylostoma magnum We provide evidence suggesting that the functions of these codons in C. magnum depend on their location within mRNA. They are decoded as amino acids at internal positions, but specify translation termination when in close proximity to an mRNA 3' end. The frequency of stop codons in protein coding sequences of closely related Climacostomum virens suggests that it may represent a transitory state. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Multi-fluid code simulations including anomalous non-diffusive transport of plasma and impurities in the tokamak SOL

    SciTech Connect

    Pigarov, A Y; West, W; Soukhanovskii, V; Rognlien, T; Maingi, R; Lipschultz, B; Krasheninnikov, S; LaBombard, B

    2003-11-25

    Fast intermittent transport has been observed in the scrape-off layer (SOL) of major tokamaks including Alcator C-Mod, DIII-D, and NSTX. This kind of transport is not diffusive but rather convective. It strongly increases plasma flux to the chamber walls and enhances the recycling of neutral particles in the main chamber. We discuss anomalous cross-field convection (ACFC) model for impurity and main plasma ions and its relation to intermittent transport events, i.e. plasma density blobs and holes in the SOL. Along with plasma diffusivity coefficients, our transport model introduces time-independent anomalous cross-field convective velocity. In the discharge modelling, diffusivity coefficients and ACFC velocity profiles are adjusted to match a set of representative experimental data. We use this model in the edge plasma physics code UEDGE to simulate the multi-fluid two-dimensional transport for these three tokamaks. We present simulation results suggesting the dominance of anomalous convection in the far SOL transport. These results are consistent with the hypothesis that the chamber wall is an important source of impurities and that different impurity charge states have different directions of anomalous convective velocity.

  1. Experimental studies of actinides in molten salts

    SciTech Connect

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  2. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  3. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  4. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  5. Implementation and evaluation of a simulation curriculum for paediatric residency programs including just-in-time in situ mock codes

    PubMed Central

    Sam, Jonathan; Pierse, Michael; Al-Qahtani, Abdullah; Cheng, Adam

    2012-01-01

    OBJECTIVE: To develop, implement and evaluate a simulation-based acute care curriculum in a paediatric residency program using an integrated and longitudinal approach. DESIGN: Curriculum framework consisting of three modular, year-specific courses and longitudinal just-in-time, in situ mock codes. SETTING: Paediatric residency program at BC Children’s Hospital, Vancouver, British Columbia. INTERVENTIONS: The three year-specific courses focused on the critical first 5 min, complex medical management and crisis resource management, respectively. The just-in-time in situ mock codes simulated the acute deterioration of an existing ward patient, prepared the actual multidisciplinary code team, and primed the surrounding crisis support systems. Each curriculum component was evaluated with surveys using a five-point Likert scale. RESULTS: A total of 40 resident surveys were completed after each of the modular courses, and an additional 28 surveys were completed for the overall simulation curriculum. The highest Likert scores were for hands-on skill stations, immersive simulation environment and crisis resource management teaching. Survey results also suggested that just-in-time mock codes were realistic, reinforced learning, and prepared ward teams for patient deterioration. CONCLUSIONS: A simulation-based acute care curriculum was successfully integrated into a paediatric residency program. It provides a model for integrating simulation-based learning into other training programs, as well as a model for any hospital that wishes to improve paediatric resuscitation outcomes using just-in-time in situ mock codes. PMID:23372405

  6. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  7. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  8. Special Education Coding Criteria 2009/2010: ECS to Grade 12 Mild/Moderate (Including Gifted and Talented) Severe

    ERIC Educational Resources Information Center

    Alberta Education, 2009

    2009-01-01

    Alberta Education provides programming support and funding to school authorities to develop and implement special education programming for ECS children and students in grades 1 to 12. "Special Education Coding Criteria 2009/2010" outlines criteria within specific categories to help school authorities identify those children and students…

  9. Detection and removal of molten salts from molten aluminum alloys

    SciTech Connect

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  10. 13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN SALT EXTRACTION PROCESS WAS USED TO PURIFY PLUTONIUM BY REMOVING AMERICIUM, A DECAY BY-PRODUCT OF PLUTONIUM. (1/98) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  11. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Screen shots of the Visual Viewer function showing a) drop-down menus to save an ASCII contour ( text -based file) and b) different properties available to...contour ( text -based file). To save stress data, STRESSES_ELE_XX (or YY, ZZ, XZ, YZ, or XY), as highlighted by the dotted red box, are required

  12. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  13. Removing Dross From Molten Solder

    NASA Technical Reports Server (NTRS)

    Webb, Winston S.

    1990-01-01

    Automatic device helps to assure good solder connections. Machine wipes dross away from area on surface of molten solder in pot. Sweeps across surface of molten solder somewhat in manner of windshield wiper. Each cycle of operation triggered by pulse from external robot. Equipment used wherever precise, automated soldering must be done to military specifications.

  14. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.; Kramer, C. M.; Bradshaw, R. W.; Nissen, D. A.; Goods, S. H.; Mar, R. W.; Munford, J. W.; Karnowsky, M. M.; Biefeld, R. N.; Norem, N. J.

    1981-03-01

    Of the fluids proposed for heat transfer and energy storage, molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO3 and KNO3. Although nitrate/nitrite mixtures were used for decades as heat transfer and heat treatment fluids the use was at temperatures of about 4500 C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 6000 C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program was developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms.

  15. Apparatus and method for stripping tritium from molten salt

    DOEpatents

    Holcomb, David E.; Wilson, Dane F.

    2017-02-07

    A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.

  16. Heat transfer behavior of molten nitrate salt

    NASA Astrophysics Data System (ADS)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  17. Monte Carlo N-Particle Transport Code System Including MCNP6.1, MCNP5-1.60, MCNPX-2.7.0 and Data Libraries.

    SciTech Connect

    GOORLEY, TIM

    2013-07-16

    Version 01 US DOE 10CFR810 Jurisdiction. MCNP6™ is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. MCNP6 represents the culmination of a multi-year effort to merge the MCNP5™ [X-503] and MCNPX™ [PEL11] codes into a single product comprising all features of both. For those familiar with previous versions of MCNP, you will discover the code has been expanded to handle a multitude of particles and to include model physics options for energies above the cross-section table range, a material burnup feature, and delayed particle production. Expanded and/or new tally, source, and variance-reduction options are available to the user as well as an improved plotting capability. The capability to calculate keff eigenvalues for fissile systems remains a standard feature. Although MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, the result is much more than the sum of these two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in the Los Alamos National Laboratory's (LANL) X Computational Physics Division, Monte Carlo Codes Group (XCP-3), and Nuclear Engineering and Nonproliferation Division, Systems Design and Analysis Group (NEN-5, formerly D-5), have combined their code development efforts to produce the next evolution of MCNP. While maintenance and bug fixes will continue for MCNP5 v.1.60 and MCNPX v.2.7.0 for upcoming years, new code development capabilities will be developed and released only in MCNP6. In fact, this initial production release of MCNP6 (v. 1.0) contains 16 new features not previously found in either code. These new features include (among others) the abilities to import unstructured mesh geometries from the finite element code Abaqus, to transport photons down to 1.0 eV, to model complete

  18. Monte Carlo N-Particle Transport Code System Including MCNP6.1, MCNP5-1.60, MCNPX-2.7.0 and Data Libraries.

    SciTech Connect

    GOORLEY, TIM

    2013-07-16

    Version 00 US DOE 10CFR810 Jurisdiction. MCNP6™ is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. MCNP6 represents the culmination of a multi-year effort to merge the MCNP5™ [X-503] and MCNPX™ [PEL11] codes into a single product comprising all features of both. For those familiar with previous versions of MCNP, you will discover the code has been expanded to handle a multitude of particles and to include model physics options for energies above the cross-section table range, a material burnup feature, and delayed particle production. Expanded and/or new tally, source, and variance-reduction options are available to the user as well as an improved plotting capability. The capability to calculate keff eigenvalues for fissile systems remains a standard feature. Although MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, the result is much more than the sum of these two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in the Los Alamos National Laboratory's (LANL) X Computational Physics Division, Monte Carlo Codes Group (XCP-3), and Nuclear Engineering and Nonproliferation Division, Systems Design and Analysis Group (NEN-5, formerly D-5), have combined their code development efforts to produce the next evolution of MCNP. While maintenance and bug fixes will continue for MCNP5 v.1.60 and MCNPX v.2.7.0 for upcoming years, new code development capabilities will be developed and released only in MCNP6. In fact, this initial production release of MCNP6 (v. 1.0) contains 16 new features not previously found in either code. These new features include (among others) the abilities to import unstructured mesh geometries from the finite element code Abaqus, to transport photons down to 1.0 eV, to model complete

  19. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  20. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    SciTech Connect

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

  1. Interfacial Phenomena and Thermophysical Properties of Molten Steel and Oxides

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahito; Onodera, Kenta; Ueno, Shoya; Tsukada, Takao; Tanaka, Toshihiro; Tamaru, Haruka; Ishikawa, Takehiko

    At present, interfacial phenomena between molten steel and oxides, usually called slag or mold flux, play an important role in steel processing for material design. Therefore, understanding interfacial tension is important for process control. From this, we propose an interfacial tension measurement technique between molten steel and oxides using a modified oscillating drop method with levitation techniques. The interfacial tension data using traditional techniques based on the sessile drop method have been obtained only at temperatures around the melting point of iron due to dissolution of containers and the substrate into molten steel and oxides in higher temperature regions. Our proposed technique to obtain the temperature dependence of interfacial tension between molten iron and oxides is to use a core-shell form droplet including an interface between two liquids using electrostatic levitation, which negates the use for containers. The experiment was performed on the International Space Station using the electrostatic levitation furnace (ELF) in the KIBO module.

  2. Electrolysis of a molten semiconductor

    NASA Astrophysics Data System (ADS)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  3. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  4. Dynamics of the Molten Contact Line

    NASA Technical Reports Server (NTRS)

    Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing

    1999-01-01

    The purpose of this program is to develop a basic understanding of how a molten material front spreads over a solid that is below its melting point, arrests, and freezes. Our hope is that the work will contribute toward a scientific knowledge base for certain new applications involving molten droplet deposition, including the "printing" of arbitrary three-dimensional objects by precise deposition of individual molten microdrops that solidify after impact. Little information is available at this time on the capillarity-driven motion and arrest of molten contact line regions. Schiaffino and Sonin investigated the arrest of the contact line of a molten microcrystalline wax spreading over a subcooled solid "target" of the same material. They found that contact line arrest takes place at an apparent liquid contact angle that depends primarily on the Stefan number S=c(T(sub f) -T(sub t)/L based on the temperature difference between the fusion point and the target temperature, and proposed that contact line arrest occurs when the liquid's dynamic contact angle approaches the angle of attack of the solidification front just behind the contact line. They also showed, however, that the conventional continuum equations and boundary conditions have no meaningful solution for this angle. The solidification front angle is determined by the heat flux just behind the contact line, and the heat flux is singular at that point. By comparing experiments with numerical computations, Schiaffino and Sonin estimated that the conventional solidification model must break down within a distance of order 0.1 - 1 microns of the contact line. The physical mechanism for this breakdown is as yet undetermined, and no first-principles theory exists for the contact angle at arrest. Schiaffino and Sonin also presented a framework for understanding how to moderate Weber number molten droplet deposition in terms of similarity laws and experimentation. The study is based on experiments with three molten

  5. Molten Wax As A Dust Control Agent

    SciTech Connect

    Carter, E.E.

    2008-07-01

    Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet-rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite clay have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct-buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. A larger test

  6. Catalysis by molten metals and molten alloys

    SciTech Connect

    Ogino, Y.

    1981-01-01

    Various reactors and techniques for activity measurement are described. Possible applications of the catalysis include the dehydrogenation of alcohols, amines, hydrocarbons, and coal liquefaction. Chemical reaction kinetics and electronic aspects of the reactions are discussed. 69 references, 28 figures, 7 tables.

  7. Evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, D. J.; Tackley, P.

    2016-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the

  8. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  9. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  10. Apparatus for making molten silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  11. ANL/RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance

    NASA Technical Reports Server (NTRS)

    Mclennan, G. A.

    1986-01-01

    This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.

  12. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  13. Ceramics for Molten Materials Transfer

    NASA Technical Reports Server (NTRS)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  14. Molten carbonate fuel cell stack design options

    NASA Astrophysics Data System (ADS)

    Benjamin, T. G.; Petri, R. J.

    Significant strides in molten carbonate fuel cell (MCFC) life and performance were made duing the last 20 years. Results include single cell performance improvement from 10 watts/sq ft to 120 watts/sq ft, testing of several subscale stacks, and significant reductions in cost. In the 1980s, attention has turned toward stack related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. The MCFC stack hardware design options are discussed and a brief introduction to MCFC technology is presented.

  15. Molten carbonate fuel cell improvements

    NASA Astrophysics Data System (ADS)

    Blurton, K. F.; Marianowski, L. G.

    It is noted that a molten carbonate fuel cell integrated with a coal gasification power plant is one of the most promising coal-using technologies because of its high efficiency, acceptable cost, and environmental acceptability. For the molten carbonate system to achieve these goals, however, continued development is required which must take into account the operating conditions of the application. The progress made in improving cell performance and life is surveyed, evaluating the effect of contaminants on cell performance and the design of multicell stacks and identifying alternative electrolyte compositions. Also discussed is the status of research on other major areas.

  16. Dual intercalating molten electrolyte batteries

    SciTech Connect

    Carlin, R.T.; Long, H.C. De; Fuller, J.; Lauderdale, W.J.; Naughton, T.; Trulove, P.C.; Bahn, C.S.

    1995-12-31

    Dual Intercalating Molten Electrolyte (DIME) electrodes and cells have been examined using a number of low-melting and room-temperature molten salts. A cell with a chloroaluminate melt achieved a cycling efficiency of 85% with a discharge voltage of 2.92 V. Coke-elastomer composite electrodes underwent cation reductive intercalation without experiencing the exfoliation and degradation seen for graphite rods. Theoretical studies for an imidazolium-graphite intercalate predicted the graphite layer spacing expands between 5.18 and 8.01 {angstrom} upon insertion of the imidazolium molecule into the graphite lattice.

  17. Supported Molten Metal Catalysis. A New Class of Catalysts

    SciTech Connect

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  18. Electrolysis of a molten semiconductor

    DOE PAGES

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. Inmore » conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less

  19. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  20. Electrolysis of a molten semiconductor

    SciTech Connect

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  1. Chemical Reactions of Simulated Producer Gas with Molten Tin-Bismuth Alloy

    Treesearch

    Keith J. Bourne

    2012-01-01

    A pyrolysis and gasification system utilizing molten metal as an energy carrier has been proposed and the initial stages of its design have been completed. However, there are several fundamental questions that need to be answered before the design of this system can be completed. These questions include: How will the molten metal interact with the products of biomass...

  2. Molten nitrate salt technology development status report

    SciTech Connect

    Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

    1981-03-01

    Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

  3. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  4. A high temperature molten salt thermal electrochemical cell

    NASA Astrophysics Data System (ADS)

    Plichta, Edward J.; Behl, Wishvender K.

    1990-02-01

    This invention relates in general to a high temperature molten salt thermal electrochemical cell and in particular to such a cell including cobalt oxide (Co3O4) as the cathode material. High temperature molten salt thermal electrochemical cells are widely used as power sources for projectiles, rockets, bombs, mines, missiles, decoys, jammers, and torpedoes. These are also used as fuses. Thermal electrochemical cells are reserve-type cells that can be activated by heating with a pyrotechnic heat source such as zirconium and barium chromate powders or mixtures of iron powder and potassium perchlorate.

  5. Molten nitrate salt materials studies

    NASA Astrophysics Data System (ADS)

    Carling, R. M.

    1981-03-01

    An overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program is presented. The experimental programs are concentrating on molten nitrate salts which were proposed as heat transfer and energy storage medium. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications are presented.

  6. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  7. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  8. Metals Electroprocessing in Molten Salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1985-01-01

    The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.

  9. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  10. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  11. Stable colloids in molten inorganic salts.

    PubMed

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  12. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  13. Organic waste processing using molten salt oxidation

    SciTech Connect

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  14. Stable colloids in molten inorganic salts

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  15. Transient simulation of molten salt central receiver

    NASA Astrophysics Data System (ADS)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  16. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION.(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...METAL OXIDE SOLUBILITY AND MOLTEN SALT Interim report on a continuing CORROSION NRL problem. S. PERFORMING a4. REPORT NUMlER 7. AuTtwORr) S. CONTRACT OR...EQUILIBRIA AND OXIDE SOLUTION RELATIONS IN MOLTEN SALTS ............................................. 2 IV. METHODS FOR DETERMINING SOLUBILITIES

  17. Conjugated polymer/molten salt blend optimization.

    PubMed

    Habrard, F; Ouisse, T; Stéphan, O

    2006-08-10

    Light-emitting electrochemical cells with low current threshold can be realized through mixing conjugated polymers and molten salts. Current drive capability is proportional to the overall interface perimeter of the planar, discotic molten salt domains inserted into the polymer matrix. Electric force microscopy indicates that this interface perimeter exhibits a specific dependence on the molten salt content in the active layer, with a well-defined maximum. We show that this maximum corresponds to an optimal current drive.

  18. GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon.

    PubMed

    Pontel, Lucas B; Audero, María E Pérez; Espariz, Martín; Checa, Susana K; Soncini, Fernando C

    2007-11-01

    Salmonella employs a specific set of proteins that allows it to detect the presence of gold salts in the environment and to mount the appropriate resistance response. This includes a P-type ATPase, GolT, and a small cytoplasmic metal binding protein, GolB. Their expression is controlled by a MerR-like sensor, GolS, which is highly selective for Au ions. Here, we identify a new GolS-controlled operon named gesABC which codes for a CBA efflux system, and establish its role in Au resistance. GesABC can also mediate drug resistance when induced by Au in a GolS-dependent manner, in a strain deleted in the main drug transporter acrAB. The GolS-controlled transcription of gesABC differs from the other GolS-regulated loci. It is activated by gold, but not induced by copper, even in a strain deleted of the main Cu transporter gene copA, which triggers a substantial GolS-dependent induction of golTS and golB. We demonstrate that the Au-dependent induction of gesABC transcription requires higher GolS levels than for the other members of the gol regulon. This correlates with a divergent GolS operator in the gesABC promoter. We propose that the hierarchical induction within the gol regulon allows Salmonella to cope with Au-contaminated environments.

  19. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  20. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    DOEpatents

    Praeg, Walter F.

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  1. Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant

    SciTech Connect

    Osamu KAawabata; Mitsuhiro Kajimoto

    2006-07-01

    In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the

  2. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Pollara, Fabrizio; Hamkins, Jon; Dolinar, Sam; Andrews, Ken; Divsalar, Dariush

    2006-01-01

    This viewgraph presentation reviews uplink coding. The purpose and goals of the briefing are (1) Show a plan for using uplink coding and describe benefits (2) Define possible solutions and their applicability to different types of uplink, including emergency uplink (3) Concur with our conclusions so we can embark on a plan to use proposed uplink system (4) Identify the need for the development of appropriate technology and infusion in the DSN (5) Gain advocacy to implement uplink coding in flight projects Action Item EMB04-1-14 -- Show a plan for using uplink coding, including showing where it is useful or not (include discussion of emergency uplink coding).

  3. The molten glass sewing machine.

    PubMed

    Brun, P-T; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-05-13

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'. © 2017 The Author(s).

  4. The molten glass sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, P.-T.; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-04-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

  5. Experimental investigation of molten metal freezing on to a structure

    SciTech Connect

    Mizanur Rahman, M.; Hino, Tomohiko; Morita, Koji; Matsumoto, Tatsuya; Nakagawa, Kiyoshi; Fukuda, Kenji; Maschek, Werner

    2007-10-15

    During core disruptive accidents (CDAs) of Liquid Metal Reactors (LMRs), it is important to understand the freezing phenomena of molten metal, which may prevent fuel dispersal and subsequent shutdown. The present paper describes the freezing behavior of molten metal during interaction with a structure with a view to the safety of LMRs. In this study, Wood's metal (melting point 78.8 C) was used as a simulant melt, while stainless steel and copper were used as freezing structures. A series of simulation experiments was conducted to study the freezing behavior of Wood's metal during pouring on to the freezing structures immersed in a coolant. In the experiments, simulant melt was poured into a stainless steel tube and finally ejected into a coolant through a nozzle so as to observe the freezing behavior of the molten metal. The penetration length and width were measured in the air cooled experiments, whereas penetration length and the proportion of adhering frozen metal were measured in water coolant experiment. The melt flow and distribution were observed in both types of experiment using a high-speed video camera. Distinct freezing modes were observed in the water coolant experiments, whereas only one freezing mode with a longer melt penetration was found in air coolant experiments. The present result will be utilized to create a relevant database for the verification of reactor safety analysis codes. (author)

  6. Candidate molten salt investigation for an accelerator driven subcritical core

    NASA Astrophysics Data System (ADS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  7. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  8. Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP.

    PubMed

    Pinevich, Alexander V

    2015-03-01

    This taxonomic note was motivated by the recent proposal [Oren & Garrity (2014) Int J Syst Evol Microbiol 64, 309-310] to exclude the oxygenic photosynthetic bacteria (cyanobacteria) from the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), which entails unilateral coverage of these prokaryotes by the International Code of Nomenclature for algae, fungi, and plants (ICN; formerly the International Code of Botanical Nomenclature, ICBN). On the basis of key viewpoints, approaches and rules in the systematics, taxonomy and nomenclature of prokaryotes it is reciprocally proposed to apply the ICNP to names of cyanobacteria including those validly published under the ICBN/ICN. For this purpose, a change to Principle 2 of the ICNP is proposed to enable validation of cyanobacterial names published under the ICBN/ICN rules.

  9. Undercooling of acoustically levitated molten drops

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Glicksman, M. E.

    1990-01-01

    It was observed that the acoustically levitated molten SCN (succinonitrile) drops can generally be undercooled to a degree where the impurities in the drop are responsible for the nucleation of the solid phase. However, it was also observed that ultrasound occasionally terminates undercooling of the levitated drops by initiating the nucleation of the solid at an undercooling level which is lower than that found for the nucleation catalyzed by the impurities in the drop. This premature nucleation can be explained by thermodynamic considerations which predict an increase in effective undercooling of the liquid upon the collapse of cavities. Pre-existing gas microbubbles which grow under the influence of ultrasound are suggested as the source of cavitation. The highly undercooled SCN drops can be utilized to measure the growth velocity of the solid in the deeply undercooled region including the hypercooled region.

  10. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    SciTech Connect

    Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most

  11. Transmutation and inventory analysis in an ATW molten salt system

    SciTech Connect

    Sisolak, J.E.; Truebenbach, M.T.; Henderson, D.L.

    1995-10-01

    As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, the authors infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and k{sub eff} both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

  12. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, Eddie C.

    1995-01-01

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  13. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    SciTech Connect

    Gay, E.C.

    1993-12-23

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  14. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, Walter F.

    1997-01-01

    An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.

  15. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, W.F.

    1997-02-11

    An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

  16. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.

    1981-04-01

    This paper presents an overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program. The experimental programs are concentrating on molten nitrate salts which have been proposed as heat transfer and energy storage medium. The salt composition of greatest interest is drawsalt, nominally a 50-50 molar mixture of NaNO3 and KNO3 with a melting point of 220 C. Several technical uncertainties have been identified that must be resolved before nitrate based solar plants can be commercialized. Research programs at Sandia National Laboratories, universities, and industrial suppliers have been implemented to resolve these technical uncertainties. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications such as the repowering/industrial retrofit and cogeneration program are presented.

  17. Beryllium Interactions in Molten Salts

    SciTech Connect

    G. S. Smolik; M. F. Simpson; P. J. Pinhero; M. Hara; Y. Hatano; R. A. Anderl; J. P. Sharpe; T. Terai; S. Tanaka; D. A. Petti; D.-K. Sze

    2006-01-01

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanic effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.

  18. Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena

    SciTech Connect

    Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

    2008-07-09

    An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

  19. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  20. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  1. Electrode for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    A sintered porous electrode useful for a molten carbonate fuel cell is produced which is composed of a plurality of 5 wt. % to 95 wt. % nickel balance copper alloy encapsulated ceramic particles sintered together by the alloy.

  2. Molten Hydroxide Trapping Process for Radioiodine

    SciTech Connect

    Trowbridge, L.D.

    2003-01-28

    A molten hydroxide trapping process has been considered for removing radioiodine species from off-gas streams whereby iodine is reacted directly with molten hydroxides such as NaOH or KOH. The resulting product is the corresponding iodide, which can be separated by simple cooling of the molten mixture to grow the iodide primary phase once the mixture reaches 70-80 mol% in the iodide component. Thermodynamic analysis indicates that such a chemical process is highly favorable. Experimental testing of the trapping process using molecular iodine showed trapping of up to 96% of the volatile iodine. The trapping efficiency was dependent on operational parameters such as temperature and gas-melt contact efficiency, and higher efficiencies are expected as the process is further developed. While an iodide phase could be effectively isolated by slow cooling of a molten iodide-hydroxide mixture, the persistent appearance of hydroxide indicated that an appreciable solubility of hydroxide occurred in the iodide phase.

  3. Corrosion of Mullite by Molten Salts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

    1996-01-01

    The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

  4. Molten carbonate fuel cell matrix tape

    SciTech Connect

    Vine, R.W.; Schroll, C.R.; Reiser, C.A.

    1986-04-08

    A matrix material for a molten carbonate fuel cell is described comprising particles inert to molten carbonate electrolyte having a particle size less than about 1 micron, ceramic particles having a particle size greater than about 25 microns, and an organic polymeric binder material, the binder material being present in an amount at least about 35% by volume, the matrix material being flexible, pliable, and compliant at room temperature.

  5. Investigations to determine whether Section XI of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code should include PLEX (plant life extension) baseline inspection guidance

    SciTech Connect

    Bustard, L.D.

    1988-01-01

    A plant life extension (PLEX) issue repeatedly mentioned is whether special PLEX supplemental inspection requirements should be added to Section XI of the ASME Boiler and Pressure Vessel Code. To assist the ASME answer this question, the DOE Technology Management Center performed an industry survey to assess whether there was a technical consensus regarding the desirability and scope of a supplemental PLEX baseline inspection. This survey demonstrated the lack of an initial industry consensus. In response to the survey results, ASME has formed a task group to investigate various PLEX supplemental inspection strategies and to assess their value and liabilities. The results of the survey and initial task group activities are reviewed.

  6. Development of molten carbonate fuel cell power plant, volume 1

    NASA Astrophysics Data System (ADS)

    1985-03-01

    The technical results of a molten carbonate fuel cell power plant evelopment program are presented which establish the necessary technology base and demonstrate readiness to proceed with the fabrication and test of full size prototype stacks for coal fueled molten carbonate fuel cell power plants. The effort covered power plant systems studies, fuel cell component technology development, fuel cell stack design and analysis, manufacturing process definition, and an extensive experimental program. The reported results include: the definition and projected costs for a reference coal fueled power plant system based on user requirements, state-of-the-art advances in anode and electrolyte matrix technology, the detailed description of an internally manifolded stack design concept offering a number of attractive advantages, and the specification of the fabrication processes and methods necessary to produce and assemble this design. Results from the experimental program are documented.

  7. Investigation of Coatings Which Prevent Molten Aluminum/Water Explosions

    NASA Astrophysics Data System (ADS)

    León, D. D.; Richter, R. T.; Levendusky, T. L.

    The Aluminum Association contracted Alcoa in 1995 to identify and test new protective coatings for casting pits as a replacement for Porter International's 7001 (Tarset Standard). Three new coatings have been identified through a series of selection criteria including: 1) A standardized splash test used to evaluate personal protective clothing, 2) An industry-standard molten metal explosion test, 3) A multiple-exposure test to measure durability, and 4) An external shock impact test. The results of this program will be reviewed. This study only tested protective coatings at the "in-service cure time", as defined by the manufacturer. These curing times can be excessive for a production casting facility. The Aluminum Association has contracted Alcoa in a second program to investigate the effect of reduced cure times on adhesion and their effectiveness in preventing molten metal/water explosions. A status update of this new two year program is provided.

  8. Structure of molten titanium dioxide

    SciTech Connect

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-01

    The x-ray structure factor of molten TiO2 has been measured for the first time, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T = 2250(30) K. Ti-O coordination number in the melt is close to nTiO = 5.0(2), with modal Ti-O bond length rTiO = 1.881(5) Å, both values being significantly smaller than for the high temperature stable Rutile crystal structure (nTiO = 6.0, rTiO = 1.959 Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. New interatomic potentials, suitable for modelling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These new potentials have the additional great advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO = 5.85(2) – (3.0(1) x 10-4 )T (K, 2.75 Å cut-off). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of 5-fold polyhedra in the melt implies the existence of as yet undiscovered TiO2 polymorphs, based on lowerthan-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  9. Structure of molten titanium dioxide

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-01

    The x-ray structure factor of molten TiO2 has been measured, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T=2250(30)K. The Ti-O coordination number in the melt is close to nTiO=5.0(2), with modal Ti-O bond length rTiO=1.881(5)Å, both values being significantly smaller than for the high temperature stable rutile crystal structure (nTiO=6.0,rTiO=1.959Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. Interatomic potentials, suitable for modeling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These potentials have the additional advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO=5.85(2)-[3.0(1)×10-4]T(K ,2.75Åcutoff). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of fivefold polyhedra in the melt implies the existence of as-yet-undiscovered TiO2 polymorphs, based on lower-than-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  10. Users manual for the laser welding code WELD2D

    SciTech Connect

    Russo, A.J.

    1984-04-01

    The two-dimensional laser welding code, WELD2D, was developed to model the conduction mode welding (weld pool motions are not considered) of common metals. For butt welded configurations two dissimilar materials may be used. Either Gaussian or uniform laser beam power distributions may be selected and insulated or conducting ends can be treated. Specification of the laser wavelength, energy per pulse, pulse duration and repetition rate is required as input and the temperature field and molten pool shape are calculated as functions of time. Currently material parameters for six metals, aluminum, nickel, steel, molybdenum, copper and silicon are included in the code; however, these may be modified or expanded easily with simple changes to data records. This report is a users manual for WELD2D and contains a description of the models employed, code usage, and sample calculations.

  11. Permeability of Partially Molten Rocks from Lattice-Boltzmann Modeling

    NASA Astrophysics Data System (ADS)

    Garapic, G.; Faul, U.

    2013-12-01

    Timescales of melt transport at mid-ocean ridges from mantle source to the surface depend on permeability of the partially molten mantle. The permeability is usually predicted indirectly from experimental observations based on porosities that are much higher than the porosities inferred for the partially molten mantle. Low porosities are for example predicted by geochemical models from the onset of melt migration. Since melting starts at the grain scale, permeability of the partially molten mantle will depend on the grain-scale melt distribution. We reconstructed a 3-D view of melt geometry of two experimentally produced samples of partially molten olivine which demonstrates that melt exists in thin layers on two-grain boundaries (Garapić et al.,G3, 2013). The wetted two-grain boundaries have a width about 100 times smaller than the average grain size. Additionally, the pore space consists of a network of triple-junction tubules at all porosities, and large 'melt pools'. Due to the relative size of the wetted two-grain boundaries as well as the size of the triple-junction network compared to the grain size imagining and numerical analyses of partially molten samples require high resolution. Since no direct experimental permeability measurements are possible on partially molten aggregates, we investigate numerically the permeability as a function of porosity for this system. We simulate porous flow through an artificial pore volume using the lattice-Boltzmann method (LBM) and Palabos LB code. Flow simulations were done on a computer cluster on three or four 125 GB nodes with 16 processors per node. With the available memory and allowed run time the maximum size of our pore structure was 1100 voxels per edge. In its simplest form the pore structure consists of a network of cylinders within a matrix of cubic grains. To approximate the observed 3-D melt geometry we added randomly distributed sheets on cube faces ('wetted two-grain boundaries') as well as randomly

  12. Design of a helium-cooled molten salt fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; DeVan, J.H.

    1985-02-01

    A new conceptual blanket design for a fusion reactor produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF/sub 2/ + TghF/sub 4/) is circulated through the blanket and on to the online processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. We estimate the breeder, having 3000 MW of fusion power, produces 6400 kg of /sup 233/U per year, which is enough to provide make up for 20 GWe of LWR per year (or 14 LWR plants of 4440 MWt) or twice that many HTGRs or CANDUs. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times an LWR of the same power. The estimated present value cost of the /sup 2/anumber/sup 3/U produced is $40/g if utility financed or $16/g if government financed.

  13. Method and apparatus for atomization and spraying of molten metals

    DOEpatents

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1988-07-19

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

  14. Method and apparatus for atomization and spraying of molten metals

    DOEpatents

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1990-01-01

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.

  15. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  16. Monte Carlo N-Particle Transport Code System Including MCNP6.1.1BETA, MCNP6.1, MCNP5-1.60, MCNPX-2.7.0 and Data Libraries.

    SciTech Connect

    2014-09-01

    Version 01 MCNP6™ is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP6.1.1Beta is a follow-on to the MCNP6.1 production version which itself was the culmination of a multi-year effort to merge the MCNP5™ [X-503] and MCNPX™ [PEL11] codes into a single product. This MCNP6.1.1 beta has been released in order to provide the radiation transport community with the latest feature developments and bug fixes in the code. MCNP6.1.1 has taken input from a group of people, residing in the Los Alamos National Laboratory's (LANL) X Computational Physics Division, Radiation Transport Group (XCP-3), and Nuclear Engineering and Nonproliferation Division, Systems Design and Analysis Group (NEN-5). They have combined their code development efforts to produce this next evolution of MCNP. For those familiar with previous versions of MCNP, you will discover the code has been expanded to handle a multitude of particles and to include model physics options for energies above the cross-section table range, a material burnup feature, and delayed particle production. Expanded and/or new tally, source, and variance-reduction options are available to the user as well as an improved plotting capability. The capability to calculate keff eigenvalues for fissile systems remains a standard feature. Although MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, the result is much more than the sum of these two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams.

  17. Molten salts and nuclear energy production

    NASA Astrophysics Data System (ADS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  18. Physical properties of molten carbonate electrolyte

    SciTech Connect

    Kojima, T.; Yanagida, M.; Tanimoto, K.

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  19. Dynamics of the Molten Contact Line

    NASA Technical Reports Server (NTRS)

    Sonin, Ain A.; Schiaffino, Stefano

    1996-01-01

    In contrast to the ordinary contact line problem, virtually no information is available on the similar problem associated with a molten material spreading on a solid which is below the melt's fusion point. The latter is a more complex problem which heat transfer and solidification take place simultaneously with spreading, and requires answers not only for the hot melt's advance speed over the cold solid as a function of contact angle, but also for how one is to predict the point of the molten contact line's arrest by freezing. This issues are of importance in evolving methods of materials processing. The purpose of our work is to develop, based on both experiments and theory, an understanding of the dynamic processes that occur when a molten droplet touches a subcooled solid, spreads partly over it by capillary action, and freezes. We seek answers to the following basic questions. First, what is the relationship between the melt's contact line speed and the apparent (dynamic) contact angle? Secondly, at what point will the contact line modon be arrested by freezing? The talk will describe three components of our work: (1) deposition experiments with small molten droplets; (2) investigation of the dynamics of the molten contact line by means of a novel forced spreading method; and (3) an attempt to provide a theoretical framework for answering the basic questions posed above.

  20. Direct contact heat recovery from molten salt

    NASA Astrophysics Data System (ADS)

    Technological deficiencies associated with efficient and economical retrieval of heat energy from molten salt systems are addressed. The large latent heat of fusion stored in molten salt hydrates and other candidate phase change materials (PCM) is removed by internal boiling of a volatile heat transfer fluid (HTF). This procedure eliminates the conventional use of submerged heat exchangers which are costly and, in crystallizing salts, ineffective. The thermochemical conditions and material properties that are critical for application of this concept in environments that yield significant energy savings are investigated and defined.

  1. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOEpatents

    Mamantov, Gleb

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  2. Studies of metals electroprocessing in molten salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1982-01-01

    Fluid flow patterns in molten salt electrolytes were observed in order to determine how mass transport affects the morphology of the metal deposit. Studies conducted on the same metal, both in aqueous electrolytes in which coherent solid electrodeposits are produced, as well as in transparent molten salt electrolytes are described. Process variables such as current density and composition of the electrolyte are adjusted to change the morphology of the electrodeposit and, thus, to permit the study of the nature of electrolyte flow in relation to the quality of the electrodeposit.

  3. Cathodes for molten-salt batteries

    NASA Technical Reports Server (NTRS)

    Argade, Shyam D.

    1993-01-01

    Viewgraphs of the discussion on cathodes for molten-salt batteries are presented. For the cathode reactions in molten-salt cells, chlorine-based and sulfur-based cathodes reactants have relatively high exchange current densities. Sulfur-based cathodes, metal sulfides, and disulfides have been extensively investigated. Primary thermal batteries of the Li-alloy/FeS2 variety have been available for a number of years. Chlorine based rechargable cathodes were investigated for the pulse power application. A brief introduction is followed by the experimental aspects of research, and the results obtained. Performance projections to the battery system level are discussed and the presentation is summarized with conclusions.

  4. Process for recovering tritium from molten lithium metal

    DOEpatents

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  5. Badaling 1MWt molten salt tower power plant

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Xin; Zhang, Qiangqiang; Wang, Zhifeng; Liao, Zhirong; Chang, Chun

    2017-06-01

    Molten salt tower technology is successful due to its advantage on high operation temperature and non-intermittence electricity production. In order to overcome the potential devastating risks, a small scale experimental pilot is needed to validate and find average technical solution at low cost. Also, the pilot's operation can help improve the key equipment design, understand molten salt system integration and optimize molten salt system design. This paper introduces the Badaling 1MWt molten salt solar tower power system in detail.

  6. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  7. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  8. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    PubMed

    Nabuurs, Sanne M; Westphal, Adrie H; aan den Toorn, Marije; Lindhoud, Simon; van Mierlo, Carlo P M

    2009-06-17

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.

  9. Turbulent Coagulation of Solid Particles in Molten Aluminium—Kinetics of Cluster Formation

    NASA Astrophysics Data System (ADS)

    Li, Tao; Shimasaki, Shin-ichi; Taniguchi, Shoji; Uesugi, Kentaro

    Removal of inclusions plays a key role in the process of aluminum recycling. Many research works focus on the behaviors of inclusions in molten metal, such as particle coagulation. To reveal its mechanism water model experiments have been performed by some researchers including the authors' group. In the present research, experiments of particle coagulation were carried out with molten Al including SiC particles in a mechanically agitated system. Particle coagulation and formation of clusters were observed under turbulent flow of the molten Al. The number of clusters in the metal decreased with agitating time whilst the size increased. 3-D analysis of the clusters in solidified Al was implemented by X-ray micro CT in SPring-8. A 3-D image analysis was adopted to a number of sliced 2-D images, and the size and structure of the SiC cluster were analyzed.

  10. Advances in Molten Oxide Electrolysis for the Production of Oxygen and Metals from Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Sadoway, Donald R.; Sirk, Aislinn; Sibille, Laurent; Melendez, Orlando; Lueck, Dale; Curreri, Peter; Dominquez, Jesus; Whitlow, Jonathan

    2008-01-01

    As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.

  11. An efficient method to predict and include Bragg curve degradation due to lung-equivalent materials in Monte Carlo codes by applying a density modulation

    NASA Astrophysics Data System (ADS)

    Baumann, Kilian-Simon; Witt, Matthias; Weber, Uli; Engenhart-Cabillic, Rita; Zink, Klemens

    2017-05-01

    Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic ‘modulation power’ is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue’s density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.

  12. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  13. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  14. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  15. Al/Cl2 molten salt battery

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  16. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.B.; White, R.E. . Dept. of Chemical Engineering); Srinivasan, S; Appleby, A.J. . Center for Electrochemical Systems and Hydrogen Research)

    1990-01-01

    During this quarter, impedance data were analyzed for oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature,'' was prepared which will be submitted to Journal of the Electrochemical Society for publication. 31 refs., 10 figs., 5 tabs.

  17. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  18. Molten salt/metal extractions for recovery of transuranic elements

    SciTech Connect

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-09-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

  19. Molten salt/metal extractions for recovery of transuranic elements

    SciTech Connect

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

  20. A new approach for modeling and analysis of molten salt reactors using SCALE

    SciTech Connect

    Powers, J. J.; Harrison, T. J.; Gehin, J. C.

    2013-07-01

    The Office of Fuel Cycle Technologies (FCT) of the DOE Office of Nuclear Energy is performing an evaluation and screening of potential fuel cycle options to provide information that can support future research and development decisions based on the more promising fuel cycle options. [1] A comprehensive set of fuel cycle options are put into evaluation groups based on physics and fuel cycle characteristics. Representative options for each group are then evaluated to provide the quantitative information needed to support the valuation of criteria and metrics used for the study. Included in this set of representative options are Molten Salt Reactors (MSRs), the analysis of which requires several capabilities that are not adequately supported by the current version of SCALE or other neutronics depletion software packages (e.g., continuous online feed and removal of materials). A new analysis approach was developed for MSR analysis using SCALE by taking user-specified MSR parameters and performing a series of SCALE/TRITON calculations to determine the resulting equilibrium operating conditions. This paper provides a detailed description of the new analysis approach, including the modeling equations and radiation transport models used. Results for an MSR fuel cycle option of interest are also provided to demonstrate the application to a relevant problem. The current implementation is through a utility code that uses the two-dimensional (2D) TRITON depletion sequence in SCALE 6.1 but could be readily adapted to three-dimensional (3D) TRITON depletion sequences or other versions of SCALE. (authors)

  1. Method for determining molten metal pool level in twin-belt continuous casting machines

    DOEpatents

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  2. Test Data for USEPR Severe Accident Code Validation

    SciTech Connect

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  3. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)

    NASA Astrophysics Data System (ADS)

    Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2014-06-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.

  4. Device for controlling the pouring of molten materials

    DOEpatents

    Moore, Alan F.; Duncan, Alfred L.

    1994-01-01

    A device for controlling the pouring of a molten material from a crucible or other container. The device (10) includes an annular retainer ring (12) for mounting in the drain opening in the bottom of a conventional crucible (16), the retainer ring defining a opening (14) therethrough. The device (10) also includes a plug member (22) having an annular forward end portion (24) for force-fit reception in the opening (14) of the retainer ring (12) to selectively seal the opening (14) and for being selectively forced through the opening (14). The plug member (22) has a rear end portion (26) for being positioned within the crucible (16), the rear end portion (26) including stop means for prohibiting the rear end portion from passing through the opening (14) in the retainer ring (12) when the forward end portion (24) is selectively forced through the opening. The plug member (22) defines at least one, and preferably a plurality of flutes (32), each extending from a point rearward the annular forward end portion (24) of the plug member (22), and forward the stop means, to a point rearward of the stop means. The flutes (32) permit fluid communication between the interior and exterior of the crucible (16) when the forward end portion (24) of the plug member (22) is forced through the opening (14) in the retaining ring (12) such that the molten material is allowed to flow from the crucible (16).

  5. Device for controlling the pouring of molten materials

    DOEpatents

    Moore, A.F.; Duncan, A.L.

    1994-02-15

    A device is described for controlling the pouring of a molten material from a crucible or other container. The device includes an annular retainer ring for mounting in the drain opening in the bottom of a conventional crucible, the retainer ring defining a opening there through. The device also includes a plug member having an annular forward end portion for force-fit reception in the opening of the retainer ring to selectively seal the opening and for being selectively forced through the opening. The plug member has a rear end portion for being positioned within the crucible, the rear end portion including stop means for prohibiting the rear end portion from passing through the opening in the retainer ring when the forward end portion is selectively forced through the opening. The plug member defines at least one, and preferably a plurality of flutes, each extending from a point rearward the annular forward end portion of the plug member, and forward the stop means, to a point rearward of the stop means. The flutes permit fluid communication between the interior and exterior of the crucible when the forward end portion of the plug member is forced through the opening in the retaining ring such that the molten material is allowed to flow from the crucible. 5 figures.

  6. Measurement of Solubility of Metallic Lithium Dissolved in Molten LiCl-Li2O

    NASA Astrophysics Data System (ADS)

    Burak, Adam J.; Simpson, Michael F.

    2016-10-01

    The solubility of lithium metal in molten LiCl-Li2O mixtures has been measured at various concentrations of Li2O ranging from 0 wt.% to 2.7 wt.% at a temperature of approximately 670-680°C. After contacting molten lithium with molten LiCl-Li2O for several hours to achieve equilibrium saturation, samples were taken by freezing the salt onto a room-temperature steel rod and dissolving in water for analysis. Both volume of hydrogen gas generated and volume of titrated HCl were measured to investigate two different approaches to calculating the lithium concentration. There appeared to be no effect of Li2O concentration on the Li solubility in the salt. But the results vary between different methods of deducing the amount of dissolved Li. The H2 collection method is recommended, but care must be taken to ensure all of the H2 has been included.

  7. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, E.C.

    1995-10-03

    An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

  8. Reversible electro-optic device employing aprotic molten salts and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Hall, Simon B.

    2008-01-08

    A single-compartment reversible mirror device having a solution of aprotic molten salt, at least one soluble metal-containing species comprising metal capable of being electrodeposited, and at least one anodic compound capable of being oxidized was prepared. The aprotic molten salt is liquid at room temperature and includes lithium and/or quaternary ammonium cations, and anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). A method for preparing substantially pure molten salts is also described.

  9. Reversible Electro-Optic Device Employing Aprotic Molten Salts And Method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Hall, Simon B.

    2005-03-01

    A single-compartment reversible mirror device having a solution of aprotic molten salt, at least one soluble metal-containing species comprising metal capable of being electrodeposited, and at least one anodic compound capable of being oxidized was prepared. The aprotic molten salt is liquid at room temperature and includes lithium and/or quaternary ammonium cations, and anions selected from trifluoromethylsulfonate (CF.sub.3 SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3 SO.sub.2).sub.2 N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3 CF.sub.2 SO.sub.2).sub.2 N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3 SO.sub.2).sub.3 C.sup.-). A method for preparing substantially pure molten salts is also described.

  10. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  11. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  12. An overview of the measurements of thermophysical properties and some results on molten superalloys and semiconductors

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.

    1993-01-01

    This presentation consists of two parts: comments on the results of measurements on thermophysical properties based on the paper, 'Things Mother Never Taught Me (About Thermophysical Properties of Solids)' and results of thermophysical property measurements on selected solid and molten semiconductors and a proprietary superalloy. The first part may be considered as a tutorial for those involved in using or procuring thermophysical property data. The second part is presented as illustrations of what has been accomplished on molten materials at the Thermophysical Properties Research Laboratory (TPRL). The materials include Ge, PbTe, PbSnTe, HgCdTe and a superalloy.

  13. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  14. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  15. Liquid fuel molten salt reactors for thorium utilization

    SciTech Connect

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with the online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides

  16. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGES

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  17. On purpose simulation model for molten salt CSP parabolic trough

    NASA Astrophysics Data System (ADS)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  18. Molten uranium dioxide structure and dynamics

    SciTech Connect

    Skinner, L. B.; Benmore, C. J.; Weber, Johann R.; Williamson, Mark A.; Tamalonis, Anthony J.; Hebden, Andrew S.; Wiencek, Thomas; Alderman, Oliver L. G.; Guthrie, Malcolm; Leibowitz, L.; Parise, John B.

    2014-11-20

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 +/- 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  19. Method and apparatus for spraying molten materials

    DOEpatents

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Nelson, G.L.; Lee, Y.M.

    1996-06-25

    A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.

  20. Pulsed power molten salt battery development

    NASA Astrophysics Data System (ADS)

    Argade, S. D.; Boos, D. L.; Ryan, D. M.

    The authors describe a program aimed at developing a primary-reserve pulse-power battery design. The program focus at the present time is on developing high-rate chlorine cathodes for the lithium-aluminum/chlorine system. A novel activation treatment has been developed to use porous carbon and graphite materials as chlorine cathodes in this battery system. Results obtained with these electrodes in molten-salt cells are discussed. In molten LiCl-KCl at 450 C, these chlorine electrodes deliver remarkable pulse-power performance, 20-25 W/cm2. The IR-free cell polarization with Li-Al/chlorine cells appears to be ohmic, which is desirable for the pulse power application.

  1. Microphase segregation in molten randomly grafted copolymers

    NASA Astrophysics Data System (ADS)

    Qi, Shuyan; Chakraborty, Arup K.; Balsara, Nitash P.

    2001-08-01

    We study microphase ordering of molten randomly grafted copolymers (RGCs) by using a mean field theory and the replica method to calculate the quenched average. Our results illustrate that in the weak segregation limit (WSI), the optimal wave vector q* of the lamellar phase formed by molten RGCs, has a temperature dependence different from either linear random copolymers (LRCs) or diblock copolymers (DCPs): when close, but below the microphase separation transition (MST) temperature, q* increases sharply with decreasing temperature; then q* gradually acquires an asymptotic value determined by the length of the branch and the average distance between branch points on the backbone. Our results are compared with recent experiments, and the effects of chain architecture on the microphase separation characteristics of RGCs are delineated. Our results suggest a new method for controlling the microphase spacing by exploiting quenched disorder.

  2. Molten uranium dioxide structure and dynamics

    SciTech Connect

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  3. Molten uranium dioxide structure and dynamics

    DOE PAGES

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; ...

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  4. Molten uranium dioxide structure and dynamics.

    PubMed

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts. Copyright © 2014, American Association for the Advancement of Science.

  5. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  6. Actinides recovery from molten salt/liquid metal system by electrochemical methods

    NASA Astrophysics Data System (ADS)

    Iizuka, Masatoshi; Koyama, Tadafumi; Kondo, Naruhito; Fujita, Reiko; Tanaka, Hiroshi

    1997-08-01

    Electrochemical methods were examined for the recovery of actinides from the electrorefiner which is used in pyrometallurgical reprocessing of spent metal fuel for fast reactors. Uranium was successfully collected at the solid steel cathode from both liquid cadmium and molten salt solvents. In electrotransport from liquid cadmium, the behavior of uranium and rare earths was as expected by a computer simulation code based on the diffusion layer model at the interface between the electrolyte and the electrodes. In electroreduction from the molten salt electrolyte, a considerable amount of uranium was reduced at the CdLi anode by direct chemical reduction with lithium, especially at a lower anodic current density. The decrease in collection efficiency of uranium due to the direct chemical reduction would be avoided by maintaining the anode potential higher than the deposition potential of uranium.

  7. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  8. Molten-Caustic-Leaching System Integration Project

    SciTech Connect

    Not Available

    1992-01-01

    The objective of this project is to modify an existing molten-caustic-leaching (MCL) system for coal upgrading so that it operates in an integrated continuous manner. The overall strategy consists of several tasks, but only a few are discussed here. Tasks discussed are: MCL circuit component testing (coal sample procurement), final circuit modifications for integrated operation, coal product handling/waste disposal (coal inventory disposal, MCL solid waste disposal), project management and control. (VC)

  9. Molten salt destruction of base hydrolysate

    SciTech Connect

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.; Upadhye, R.S.; Promeda, C.O.

    1996-10-01

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  10. Advanced heat exchanger development for molten salts

    DOE PAGES

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; ...

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  11. Advanced heat exchanger development for molten salts

    SciTech Connect

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  12. Molten salt battery having inorganic paper separator

    DOEpatents

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  13. Electrolysis of aluminum sulfide in molten chlorides

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-01-01

    A laboratory-scale investigation of the production of aluminum by the electrolysis of aluminum sulfide in molten salt electrolytes has been carried out at Argonne National Laboratory. The solubility, electrochemical behavior, and electrolysis of Al/sub 2/S/sub 3/ were studied in MgCl/sub 2/-NaCl-KCl eutectic and in the eutectic containing AlCl/sub 3/ at 1023K.

  14. Thermal Characterization of Molten Salt Systems

    SciTech Connect

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  15. A Molten Salt Lithium-Oxygen Battery.

    PubMed

    Giordani, Vincent; Tozier, Dylan; Tan, Hongjin; Burke, Colin M; Gallant, Betar M; Uddin, Jasim; Greer, Julia R; McCloskey, Bryan D; Chase, Gregory V; Addison, Dan

    2016-03-02

    Despite the promise of extremely high theoretical capacity (2Li + O2 ↔ Li2O2, 1675 mAh per gram of oxygen), many challenges currently impede development of Li/O2 battery technology. Finding suitable electrode and electrolyte materials remains the most elusive challenge to date. A radical new approach is to replace volatile, unstable and air-intolerant organic electrolytes common to prior research in the field with alkali metal nitrate molten salt electrolytes and operate the battery above the liquidus temperature (>80 °C). Here we demonstrate an intermediate temperature Li/O2 battery using a lithium anode, a molten nitrate-based electrolyte (e.g., LiNO3-KNO3 eutectic) and a porous carbon O2 cathode with high energy efficiency (∼95%) and improved rate capability because the discharge product, lithium peroxide, is stable and moderately soluble in the molten salt electrolyte. The results, supported by essential state-of-the-art electrochemical and analytical techniques such as in situ pressure and gas analyses, scanning electron microscopy, rotating disk electrode voltammetry, demonstrate that Li2O2 electrochemically forms and decomposes upon cycling with discharge/charge overpotentials as low as 50 mV. We show that the cycle life of such batteries is limited only by carbon reactivity and by the uncontrolled precipitation of Li2O2, which eventually becomes electrically disconnected from the O2 electrode.

  16. Molecular dynamics study on glass and molten state of AgI-AgPO3

    NASA Astrophysics Data System (ADS)

    Matsunaga, Shigeki

    2017-08-01

    Molecular dynamics (MD) simulation on molten and glass state of AgI-AgPO3 have been performed to investigate the structural features and transport properties. In MD, the screened Born-Mayer type potentials including the effect of polarizability of ions have been used. The structure, conductivity, shear viscosity, and Voronoi polyhedron are discussed in relation with the temperature change.

  17. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    SciTech Connect

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  18. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  19. Progress in modeling solidification in molten salt coolants

    NASA Astrophysics Data System (ADS)

    Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier

    2017-10-01

    Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.

  20. Precise Deposition of Molten Microdrops: The Physics of Digital Microfabrication

    NASA Astrophysics Data System (ADS)

    Gao, Fuquan; Sonin, Ain A.

    1994-03-01

    Objects, materials or components may be built up by precise deposition of molten microdrops under controlled thermal conditions. This provides a means of `digital microfabrication', or fabrication of 3D objects microdrop by microdrop under complete computer control much in the same way as 2D hard copy is obtained by ink-jet printing. In this paper we present a study of some basic modes of precise deposition and solidification of molten microdrops. The conditions required for controlled deposition are discussed, and experimental results and theoretical analyses are given for various basic deposition modes. These include columnar (i.e. drop-on-drop) deposition at both low and high frequencies, sweep deposition of continuous beads on flat surfaces, and repeated sweep deposition for buildup of larger objects or materials. The theory provides a means for generalizing our particular experimental results, which were obtained with hard waxes, to other melts. An important parameter in the theory is the solidification angle, that is, the apparent contact angle of the solidified melt. Our study indicates that in microscale deposition this angle appears under some conditions to be a property of the melt material, the target material and the characteristic temperatures involved, independent of the spreading dynamics.

  1. Supported Molten Metal Membranes for Hydrogen Separation

    SciTech Connect

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  2. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  3. Mobility of partially molten crust, heat and mass transfer, and the stabilization of continents

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Whitney, Donna L.; Rey, Patrice F.

    2017-04-01

    The core of orogens typically consists of migmatite terrains and associated crustal-derived granite bodies (typically leucogranite) that represent former partially molten crust. Metamorphic investigations indicate that migmatites crystallize at low pressure (cordierite stability) but also contain inclusions of refractory material (mafic, aluminous) that preserve evidence of crystallization at high pressure (HP), including HP granulite and eclogite (1.0-1.5 GPa), and in some cases ultrahigh pressure (2.5-3.0 GPa) when the continental crust was subducted (i.e. Norwegian Caledonides). These observations indicate that the partially molten crust originates in the deep crust or at mantle depths, traverses the entire orogenic crust, and crystallizes at shallow depth, in some cases at the near-surface ( 2 km depth) based on low-T thermochronology. Metamorphic assemblages generally show that this nearly isothermal decompression is rapid based on disequilibrium textures (symplectites). Therefore, the mobility of partially molten crust results in one of the most significant heat and mass transfer mechanisms in orogens. Field relations also indicate that emplacement of partially molten crust is the youngest major event in orogeny, and tectonic activity essentially ceases after the partially molten crust is exhumed. This suggests that flow and emplacement of partially molten crust stabilize the orogenic crust and signal the end of orogeny. Numerical modeling (open source software Underworld; Moresi et al., 2007, PEPI 163) provides useful insight into the mechanisms of exhumation of partially molten crust. For example, extension of thickened crust with T-dependent viscosity shows that extension of the shallow crust initially drives the mobility of the lowest viscosity crust (T>700°C), which begins to flow in a channel toward the zone of extension. This convergent flow generates channel collision and the formation of a double-dome of foliation (two subdomes separated by a steep

  4. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  5. Interaction between Oxygen and Molten Carbonate: A DFT Study

    DTIC Science & Technology

    2011-11-01

    rate of the oxygen ion from the electrolyte to the cathode is largely limited due to small surface area. With the addition of molten carbonate to the...REPORT Interaction between Oxygen and Molten Carbonate: A DFT Study 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Student Senior Thesis by Gladney...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Oxygen, Molten Carbonate, DFT, Molecular Modeling Arianna Gladney

  6. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  7. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  8. Compatibility of molten salts with advanced solar dynamic receiver materials

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Perry, W. D.

    1989-01-01

    Metal-coated graphite fibers are being considered as a thermal conductivity enhancement filler material for molten salts in solar dynamic thermal energy storage systems. The successful metal coating chosen for this application must exhibit acceptable wettability and must be compatible with the molten salt environment. Contact angle values between molten lithium fluoride and several metal, metal fluoride, and metal oxide substrates have been determined at 892 C using a modification of the Wilhelmy plate technique. Reproducible contact angles with repeated exposure to the molten LiF indicated compatibility.

  9. Crust formation and its effect on the molten pool coolability

    SciTech Connect

    Park, R.J.; Lee, S.J.; Sim, S.K.

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  10. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  11. Behavior of Stabilized Zirconia in Molten Sodium Sulfate.

    DTIC Science & Technology

    ZIRCONIUM OXIDES, *CHEMICAL ATTACK(DEGRADATION), *MOLTEN SALTS , MICROSTRUCTURE, MICROSCOPY, ELECTRON MICROSCOPY, ADDITIVES, SULFATES, YTTRIUM OXIDES, CALCIUM OXIDES, MAGNESIUM OXIDES, SODIUM COMPOUNDS.

  12. ARA type protograph codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2008-01-01

    An apparatus and method for encoding low-density parity check codes. Together with a repeater, an interleaver and an accumulator, the apparatus comprises a precoder, thus forming accumulate-repeat-accumulate (ARA codes). Protographs representing various types of ARA codes, including AR3A, AR4A and ARJA codes, are described. High performance is obtained when compared to the performance of current repeat-accumulate (RA) or irregular-repeat-accumulate (IRA) codes.

  13. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  14. Anode composite for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    An anode composite useful for a molten carbonate fuel cell comprised of a porous sintered metallic anode component having a porous bubble pressure barrier integrally sintered to one face thereof, said barrier being comprised of metal coated ceramic particles sintered together and to said anode by means of said metal coating, said metal coating enveloping said ceramic particle and being selected from the group consisting of nickel, copper and alloys thereof, the median pore size of the barrier being significantly smaller than that of the anode.

  15. Molten Salt Techniques for Reproducible Excess Heat

    DTIC Science & Technology

    1994-01-05

    International Conference on Cold Fusion , it seems dear to me that D-D fusion was not the origin of the anomalous effects that we have observed in this... Cold Fusion , December 6-9, 1993, Lahaina, Maui, HI, M. C. H. McKubre and T. Passell, ed., Electric Power Research Institute, CA. 6. [Tech. Report #5...Conference on. Cold Fusion , December 6-9, 1993, Lahaina, Maui, HI. 7. [Tech. Report #6, to be submitted] B. Y. Liaw. "Molten Salt Techniques for

  16. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  17. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  18. Purification using high pressure molten aluminum

    NASA Astrophysics Data System (ADS)

    Sample, Vivek M.; Cassada, William A.

    A novel technique has been developed to separate eutectic forming elements using a continuous supply of high pressure molten aluminum. In this continuous process, enriched liquid in the mushy zone is selectively expelled from the solidifying mold through a permeable membrane. The fraction of expelled liquid and the level of purification attained can be controlled in real time. Applications of this technique for refining smelter grade aluminum as well as recycling aluminum scrap are being explored. Unique aspects and advantages of the process will be discussed.

  19. Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.

    2014-04-01

    The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.

  20. Production of Synthetic Rutile from Molten Titanium Slag with the Addition of B2O3

    NASA Astrophysics Data System (ADS)

    Fan, Helin; Duan, Huamei; Tan, Kai; Li, Yuankun; Chen, Dengfu; Long, Mujun; Liu, Tao

    2017-02-01

    A new process of producing synthetic rutile from molten titanium slag with the addition B2O3 is proposed. The process includes a molten modification process and a leaching process. The molten modification process was conducted by adding B2O3 into molten slag. The leaching process was conducted by adding hydrochloric acid and subsequent NaOH. The results show that CaO and MgO are leached out by hydrochloric acid and that synthetic rutile is further improved by NaOH. The optimized conditions are 2% B2O3 amount, 5% hydrochloric concentration, 80°C leaching temperature, and 30 min leaching time. The synthetic rutile with 86.77% TiO2 and 1.23% (CaO + MgO) was prepared. From x-ray diffraction results, thermodynamic calculation and the theory of bond parameter function, with the addition of B2O3, calcium silicate is transformed into calcium borate and anosovite is transformed into magnesium borate. Calcium borate and magnesium borate are leached out by hydrochloric acid, leading to the enrichment of rutile.

  1. Production of Synthetic Rutile from Molten Titanium Slag with the Addition of B2O3

    NASA Astrophysics Data System (ADS)

    Fan, Helin; Duan, Huamei; Tan, Kai; Li, Yuankun; Chen, Dengfu; Long, Mujun; Liu, Tao

    2017-10-01

    A new process of producing synthetic rutile from molten titanium slag with the addition B2O3 is proposed. The process includes a molten modification process and a leaching process. The molten modification process was conducted by adding B2O3 into molten slag. The leaching process was conducted by adding hydrochloric acid and subsequent NaOH. The results show that CaO and MgO are leached out by hydrochloric acid and that synthetic rutile is further improved by NaOH. The optimized conditions are 2% B2O3 amount, 5% hydrochloric concentration, 80°C leaching temperature, and 30 min leaching time. The synthetic rutile with 86.77% TiO2 and 1.23% (CaO + MgO) was prepared. From x-ray diffraction results, thermodynamic calculation and the theory of bond parameter function, with the addition of B2O3, calcium silicate is transformed into calcium borate and anosovite is transformed into magnesium borate. Calcium borate and magnesium borate are leached out by hydrochloric acid, leading to the enrichment of rutile.

  2. Grain Boundary Penetration of Various Types of Ni Layer by Molten Metals

    NASA Astrophysics Data System (ADS)

    Yang, S.; Chang, C. Y.; Zhu, Z. X.; Lin, Y. F.; Kao, C. R.

    2017-07-01

    The grain boundary penetration of three types of Ni layer, Ni foil, electroplated Ni, and electroless Ni, by molten Pb and 95Pb5Sn (wt.%) is investigated. The average grain sizes of Ni foil and electroplated Ni are 10 μm and 1 μm, respectively, while the electroless Ni is amorphous. The purpose of using two molten metals is to study the effect of intermetallic formation on grain boundary penetration. Molten Pb was able to penetrate or disintegrate all three types of Ni, including amorphous Ni, which does not contain any grain boundaries. On the other hand, the addition of merely 5 wt.% Sn into molten Pb was able to slow the penetration down substantially for all three types of Ni layer, with the greatest suppression found in electroless Ni where a grain boundary penetration event did not take place. The mechanism for the Sn effect is due to the formation of a protective Ni3Sn4 intermetallic compound at the interface acting as a barrier against grain boundary penetration.

  3. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  4. A Parametric Sizing Model for Molten Regolith Electrolysis Reactors to Produce Oxygen from Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.

  5. A parametric sizing model for Molten Regolith Electrolysis reactors to produce oxygen on the Moon

    NASA Astrophysics Data System (ADS)

    Schreiner, Samuel S.; Sibille, Laurent; Dominguez, Jesus A.; Hoffman, Jeffrey A.

    2016-04-01

    We present a parametric sizing model for a Molten Regolith Electrolysis (MRE) reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material property models validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a database linking reactor design and performance trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that can (1) sustain the required current, operating temperature, and mass of molten regolith to meet a desired oxygen production level, (2) operate for long periods of time by protecting the reactor walls from the corrosive molten regolith with a layer of solid "frozen" regolith, and (3) support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. Sensitivity analyses are presented for several design variables, including operating temperature, regolith feedstock composition, and the degree of operational flexibility.

  6. Grain Boundary Penetration of Various Types of Ni Layer by Molten Metals

    NASA Astrophysics Data System (ADS)

    Yang, S.; Chang, C. Y.; Zhu, Z. X.; Lin, Y. F.; Kao, C. R.

    2017-02-01

    The grain boundary penetration of three types of Ni layer, Ni foil, electroplated Ni, and electroless Ni, by molten Pb and 95Pb5Sn (wt.%) is investigated. The average grain sizes of Ni foil and electroplated Ni are 10 μm and 1 μm, respectively, while the electroless Ni is amorphous. The purpose of using two molten metals is to study the effect of intermetallic formation on grain boundary penetration. Molten Pb was able to penetrate or disintegrate all three types of Ni, including amorphous Ni, which does not contain any grain boundaries. On the other hand, the addition of merely 5 wt.% Sn into molten Pb was able to slow the penetration down substantially for all three types of Ni layer, with the greatest suppression found in electroless Ni where a grain boundary penetration event did not take place. The mechanism for the Sn effect is due to the formation of a protective Ni3Sn4 intermetallic compound at the interface acting as a barrier against grain boundary penetration.

  7. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    SciTech Connect

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-07-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  8. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  9. Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.

    PubMed

    Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo

    2015-05-30

    SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Morse Code Activity Packet.

    ERIC Educational Resources Information Center

    Clinton, Janeen S.

    This activity packet offers simple directions for setting up a Morse Code system appropriate to interfacing with any of several personal computer systems. Worksheets are also included to facilitate teaching Morse Code to persons with visual or other disabilities including blindness, as it is argued that the code is best learned auditorily. (PB)

  11. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  12. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  13. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  14. DIANE multiparticle transport code

    NASA Astrophysics Data System (ADS)

    Caillaud, M.; Lemaire, S.; Ménard, S.; Rathouit, P.; Ribes, J. C.; Riz, D.

    2014-06-01

    DIANE is the general Monte Carlo code developed at CEA-DAM. DIANE is a 3D multiparticle multigroup code. DIANE includes automated biasing techniques and is optimized for massive parallel calculations.

  15. Method of making molten carbonate fuel cell ceramic matrix tape

    DOEpatents

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  16. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  17. Thermal conductivity of molten salt-based nanofluid

    NASA Astrophysics Data System (ADS)

    Ueki, Yoshitaka; Fujita, Naoyuki; Kawai, Masaya; Shibahara, Masahiko

    2017-05-01

    Nanoparticle dispersed fluids, nanofluids, have been widely investigated. However, thermal conductivity of molten salt-based nanofluid had never been measured and investigated yet. Since molten salts are high Prandtl number fluids, it is necessary to enhance heat transfer of the molten salts when they are employed as coolants. Therefore, in the present study we produced a molten salt-based nanofluid, and measured its thermal conductivity to demonstrate the molten salt-based nanofluid was able to enhance its own thermal conductivity. We employed Heat Transfer Salt (HTS: 40 wt% NaNO2, 7 wt% NaNO3, and 53 wt% KNO3) as a base fluid since it was a typical example of molten salts. We mixed HTS with silicon carbide nanoparticles, which was a molten salt-based nanofluid, and investigated change in thermal conductivity by mixing nanoparticle by means of transient hot-wire method. We found that, at a particle volume fraction of 0.72%, the effective thermal conductivity increased by 13% at 200oC. Compared with Wiener equations, and Hashin-Shtrikman equations, we confirmed that the measured value was located in between the theoretical upper and lower limits of nanofluids thermal conductivity. Based on this, we concluded that mixing nanoparticle with a molten salt was able to enhance its thermal conductivity.

  18. Production of Oxygen from Lunar Regolith using Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Sadoway, Donald R.; Sirk, Aislinn; Tripathy, Prabhat; Melendez, Orlando; Standish, Evan; Dominquez, Jesus A.; Stefanescu, Doru M.; Curreri, Peter A.; Poizeau, Sophie

    2009-01-01

    This slide presentation reviews the possible use of molten oxide electrolysis to extract oxygen from the Lunar Regolith. The presentation asserts that molten regolith electrolysis has advanced to be a useful method for production of oxygen and metals in situ on the Moon. The work has demonstrated an 8 hour batch of electrolysis at 5 amps using Iridium inert anodes.

  19. 46 CFR 151.50-55 - Sulfur (molten).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a... depositing of sulfur within the system. (b) Void spaces: (1) Openings to void spaces adjacent to cargo...

  20. 46 CFR 151.50-55 - Sulfur (molten).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a... depositing of sulfur within the system. (b) Void spaces: (1) Openings to void spaces adjacent to cargo...

  1. 46 CFR 151.50-55 - Sulfur (molten).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a... depositing of sulfur within the system. (b) Void spaces: (1) Openings to void spaces adjacent to cargo...

  2. 46 CFR 151.50-55 - Sulfur (molten).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a... depositing of sulfur within the system. (b) Void spaces: (1) Openings to void spaces adjacent to cargo...

  3. 46 CFR 151.50-55 - Sulfur (molten).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a... depositing of sulfur within the system. (b) Void spaces: (1) Openings to void spaces adjacent to cargo...

  4. Dynamic characteristics of a molten carbonate fuel cell stack

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Matsumoto, Shuichi; Tanaka, Toshihide; Ohtsuki, Jitsuji

    Dynamic characteristics have been investigated for a molten carbonate fuel cell (MCFC) prototype stack, which is, an eletrochemical energy conversion device for electric power generation. The authors identify the MCFC stack and construct a control strategy for MCFC plants in operation. Both an experimental approach and a theoretical approach are described. Basic data are first obtained with respect to indicial responses of an MCFC stack including a cathode gas recycle loop for cooling use. These data are assumed to be sets of dead time and first-order lag, and a matrix transfer function is derived. A physically based model is then developed to describe the dynamics of the MCFC stack. This model consists of a semiempirical MCFC performance model and a thermodynamical gas flow model. The potential of this model for examining control problems for MCFC plant operations is discussed.

  5. Molten Materials Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu

    2008-01-01

    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  6. Molten Materials Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu

    2008-01-01

    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  7. Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions

    NASA Astrophysics Data System (ADS)

    Liou, Nai-Shang; Okada, Makoto; Prakash, Vikas

    2004-09-01

    The present paper describes results of plate-impact pressure-shear friction experiments conducted to study time-resolved growth of molten metal films during dry metal-on-metal slip under extreme interfacial conditions. By employing tribo-pairs comprising hard tool-steel against relatively low melt-point metals such as 7075-T6 aluminum alloys, interfacial friction stress ranging from 100 to 400 MPa and slip speeds of approximately 100 m/ s have been generated. These relatively high levels of friction stress combined with high slip-speeds generate conditions conducive for interfacial temperatures to approach the melting point of the lower melt point metal (Al alloy) comprising the tribo-pair. A Lagrangian finite element code is developed to understand the evolution of the thermo-mechanical fields and their relationship to the observed slip response. The code accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below the melting point the material is described as an isotropic thermally softening elastic-viscoplastic solid. For material elements with temperatures in excess of the melt point a purely Newtonian fluid constitutive model is employed. The results of the hybrid experimental-computational study provides new insights into the thermoelastic-plastic interactions during high speed metal-on-metal slip under extreme interfacial conditions. During the early part of frictional slip the coefficient of kinetic friction is observed to decrease with increasing slip velocity. During the later part transition in interfacial slip occurs from dry metal-on-metal sliding to the formation of molten Al films at the tribo-pair interface. Under these conditions the interfacial resistance approaches the shear strength of the molten aluminum alloy under normal pressures of approximately 1- 3 GPa and shear strain rates of ˜10 7 s-1. The results of the study indicate that under these extreme conditions molten

  8. Simple shear deformation of partially molten aplite

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Tullis, Jan; Berger, Alfons

    2013-04-01

    The tectonic processes which are important for melt distribution and transport in the intermediate and lower crust and which can result in crustal weakening are not yet well understood. Natural migmatites are usually overprinted by annealing and retrogression during uplift and exhumation, largely obliterating the deformation structures and microstructures of their partially molten history. Deformation experiments on partially molten crustal rocks have so far been conducted in pure shear geometry and mostly under low confining pressures in the brittle deformation field, both of which are not representative of nature. We carried out deformation experiments in simple shear that predominates in the crust and especially crustal shear zones. Undrained experiments were carried out on Enfield aplite at ~1.5 GPa, 900° -1000° C, and ˜ 5*10-6 s-1, conditions which favor crystal plastic deformation of quartz and feldspar (Dell'Angelo and Tullis, 1988). Sample slices 1.0-1.5 mm thick were placed between the shear pistons with the shear plane at a 45° -angle to the compression direction. Maximum shear strain in the experiments is ? ?2.8. Despite difficulties in controlling the melt content by varying the amount of added water, we were able to achieve the full range of brittle to crystal plastic deformation mechanisms. With decreasing melt content Enfield aplite displays a transition from discrete fracturing at a high angle (~70-90° ) to the shear plane (>20 vol.% melt), to cataclastic shearing (10-20 vol.% melt) and to crystal plastic deformation (

  9. Does Mercury have a molten core

    NASA Technical Reports Server (NTRS)

    Fricker, P. E.; Reynolds, R. T.; Summers, A. L.; Cassen, P. M.

    1976-01-01

    The question of whether or not Mercury could contain a molten metallic core is investigated by studying the possible thermal evolution of a metallic core in that planet. The calculations involve the solution of the equation of heat conduction for a spherically symmetric body with internal heat sources, modifications to take account of the latent heat of fusion as well as the redistribution of radioactive heat sources as a consequence of melting, the terrestrial Fe/U ratio, and a Th/U ratio of 3.7. The temperature profile predicted by the calculations for a period of 4.6 billion years indicates that the inner 1400 km of the core would now be solid while the outer 500 km would be molten. It is emphasized that this result is a direct consequence of a discontinuity in melting temperatures at the core-mantle boundary and that although a dynamo is possible, it would have to be driven mechanically rather than by thermal convection.

  10. Recent advances in the molten salt destruction of energetic materials

    SciTech Connect

    Pruneda, C. O., LLNL

    1996-09-01

    We have demonstrated the use of the Molten Salt Destruction (MSD) Process for destroying explosives, liquid gun propellant, and explosives-contaminated materials on a 1.5 kg of explosive/hr bench- scale unit (1, 2, 3, 4, 5). In our recently constructed 5 kg/hr pilot- scale unit we have also demonstrated the destruction of a liquid gun propellant and simulated wastes containing HMX (octogen). MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen, and water. Any inorganic constituents of the waste, such as metallic particles, are retained in the molten salt. The destruction of energetic materials waste is accomplished by introducing it, together with air, into a vessel containing molten salt (a eutectic mixture of sodium, potassium, and lithium carbonates). The following pure explosives have been destroyed in our bench-scale experimental unit located at Lawrence Livermore National Laboratory`s (LLNL) High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K- 6 (keto-RDX), NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following compositions were also destroyed: Comp B, LX- IO, LX- 1 6, LX- 17, PBX-9404, and XM46 (liquid gun propellant). In this 1.5 kg/hr bench-scale unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NO{sub x} were found to be well below 1%. In addition to destroying explosive powders and compositions we have also destroyed materials that are typical of residues which result from explosives operations. These include shavings from machined pressed parts of plastic-bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the process data obtained on the bench-scale unit we designed and constructed a next-generation 5 kg/hr pilot-scale unit, incorporating LLNL`s advanced chimney design. The pilot unit has completed process implementation operations and explosives safety reviews. To date, in this

  11. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.

  12. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  13. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  14. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  15. Impact, thermal, and shock sensitivity of molten TNT and of asphalt-contaminated molten TNT

    SciTech Connect

    Mainiero, R.J.; Miron, Y.; Kwak, S.S.W.; Kopera, L.H.; Wheeler, J.Q.

    1996-12-01

    The research reported here was part of an effort to evaluate the safety of a process to recover TNT from MK-9 depth bombs by the autoclave meltout process. In this process the depth bombs are heated to 121 C so that the TNT will melt and run into a vat. Unfortunately, asphalt lining the inside surface of the bomb also melts and flows out with the TNT. Testing was conducted on molten TNT and molten TNT contaminated with 2 pct asphalt at 90, 100, 110, 120, 125, and 130 C. In the liquid drop test apparatus with a 2-kg weight, the molten TNT yielded a 50 pct probability of initiation at a drop height of 6.5 cm at 110 C, decreasing to 4.5 cm at 130 C. Asphalt-contaminated TNT was somewhat less impact-sensitive than pure TNT at temperatures of 110 to 125 C, but became more sensitive at 130 C. There is a 50 pct probability of initiation at a drop height of 7.8 cm at 110 C, decreasing to 3.3 cm at 130 C. In the card gap test, the molten TNT detonated at high velocity for a gap of 0.25 inches at 90 to 125 C and detonated at high velocity for a gap of 0.5 inches at 130 C. For gaps of 0.5 to 3 inches at 90 to 125 C and 0.75 inches to 3 inches at 130 C, the TNT did not detonate at high velocity but produced a violent explosion that caused significant damage to the test fixture. The thermal analysis test results showed that when asphalt is present in TNT, it greatly accelerates the exothermic decomposition of TNT, starting at temperatures near 200 C. It appears that at relatively low shock stimulus levels, the molten TNT may be undergoing a low velocity detonation, wherein the shock wave traveling through the gap test pipe cavitates the molten TNT, greatly increasing its sensitivity. These results are crucial for assuring continued safety in recovering TNT from munitions through the autoclave meltout process.

  16. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go

  17. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  18. Grain boundary wetness of partially molten dunite

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  19. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  20. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  1. Castable cements to prevent corrosion of metals in molten salts

    SciTech Connect

    Gomez-Vidal, Judith C.; Morton, E.

    2016-04-22

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 °C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72±0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C shows a corrosion rate of 9E-04 mm/year. Here, the present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.

  2. Castable cements to prevent corrosion of metals in molten salts

    DOE PAGES

    Gomez-Vidal, Judith C.; Morton, E.

    2016-04-22

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 °C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72±0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl – 65.58more » wt% LiCl at 650 °C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C shows a corrosion rate of 9E-04 mm/year. Here, the present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.« less

  3. Castable cements to prevent corrosion of metals in molten salts

    SciTech Connect

    Gomez-Vidal, J. C.; Morton, E.

    2016-08-01

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 degrees C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72+/-0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C shows a corrosion rate of 9E-04 mm/year. The present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.

  4. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  5. Molten salt eutectics from atomistic simulations.

    PubMed

    Jayaraman, Saivenkataraman; Thompson, Aidan P; von Lilienfeld, O Anatole

    2011-09-01

    Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements.

  6. Molten carbonate fuel cells - Technology status

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.

    The functional principles, components, operating conditions, and problems in prototype molten carbonate fuel cell plants are described. Centralized carbonate fuel cells consist of four subsystems: a coal gasifier and gas cleanup system, fuel cell stacks, heat removal and recovery system, and a power conditioner to convert dc to ac current. The fuel in the cells comprises hydrogen and carbon monoxide, and produces current by means of completion of an electrical circuit through transfer of carbonate ions through the electrolyte and electrons from cell to cell and eventually into the external circuit. Electrodes are porous sheets which provide sites for the electrochemical reaction and conduction paths for the reactants and products. The construction of LiAlO2-carbonate electrolyte structures is noted, and the electrolyte distribution and structures, the anodes, cathodes, separator plate, and operational problems are considered.

  7. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.; Adanuvor, P.K.; White, R.E.; Enayetullah, M.A.; Srinivasan, S.; Appleby, A.J.

    1988-01-01

    Electrode kinetics of oxygen reduction on gold in molten lithium carbonate was investigated. Steady state cyclic voltammograms were obtained for the peroxide reduction at the gold electrode in Li{sub 2}CO{sub 3} melt, results were found to be in good agreement with the data in the literature. Impedance measurements were made as a function of frequency to evaluate the kinetics and mass transfer related parameters. Impedance data were analyzed using a Complex Nonlinear Least Square (CNLS) parameter estimation program and a graphical procedure based upon the Randles-Ershler equivalent circuit. Parameters estimated by both the methods are in good agreement. One of the proposed micro electrodes is a micro ring, which involves a gold film positioned tightly between two alumina roots. As an initial study, the stability of gold films, sputter-deposited on alumina substrates, in the Li{sub 2}CO{sub 3} melt was determined.

  8. The removal of iron from molten aluminium

    SciTech Connect

    Donk, H.M. van der; Nijhof, G.H.; Castelijns, C.A.M.

    1995-12-31

    In this work an overview is given about the techniques available for the removal of metallic impurities from molten aluminium. The overview is focused on the removal of iron. Also, some experimental results are given about the creation of iron-rich intermetallic compounds in an aluminium system, which are subsequently removed by gravity segregation and filtration techniques. This work is part of an ongoing research project of three major European aluminium companies who are co-operating on the subject of recycling of aluminium packaging materials recovered from household waste by means of Eddy-Current techniques. Using this technique the pick-up of some contaminating metals, particularly iron, is almost unavoidable.

  9. Molten Composition B Viscosity at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zerkle, David K.; Núñez, Marcel P.; Zucker, Jonathan M.

    2016-10-01

    A shear-thinning viscosity model is developed for molten Composition B at elevated temperature from analysis of falling ball viscometer data. Results are reported with the system held at 85, 110, and 135°C. Balls of densities of 2.7, 8.0, and 15.6 g/cm3 are dropped to generate a range of strain rates in the material. Analysis of video recordings gives the speed at which the balls fall. Computer simulation of the viscometer is used to determine parameters for a non-Newtonian model calibrated to measured speeds. For the first time, viscosity is shown to be a function of temperature and strain rate-dependent maximum RDX (cyclotrimethylenetrinitramine) particle volume fraction.

  10. Electrolyte paste for molten carbonate fuel cells

    SciTech Connect

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  11. Molten salt eutectics from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Jayaraman, Saivenkataraman; Thompson, Aidan P.; von Lilienfeld, O. Anatole

    2011-09-01

    Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements.

  12. Dynamics of vitreous and molten zinc chloride

    SciTech Connect

    Price, D.L.; Saboungi, M.L.; Susman, S.; Volin, K.J. ); Wright, A.C. . J.J. Thomson Physical Lab.)

    1991-09-01

    The dynamics of vitreous and molten zinc chloride have been studied with inelastic neutron scattering at the Intense Pulsed Neutron Source. The results are analyzed in terms of the scattering function S(Q,E) and the effective vibrational density of states G(E). The vibrational spectra of both glass and liquid are dominated by broad features centered at 15 and 35 MeV which are identified with F{sub 2} modes of ZnCl{sub 4}{sup 2{minus}} tetrahedra. The other two normal modes are not observed because of inadequate resolution and broadening and overlap resulting from coupling between tetrahedra. The behavior of ZnCl{sub 2} is contrasted with other tetrahedrally coordinated glasses that have been studied with the same technique. 15 refs,. 5 figs., 1 tab.

  13. Does Mercury have a molten core

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1976-01-01

    A feasible nonseismic observational experiment is proposed for determining the existence and extent of a conducting molten core within Mercury. This experiment would utilize the effects of a liquid core on the dynamics of Mercury's rotation; two necessary conditions for performing it are that the core must not follow the mantle's forced librations in longitude but must follow the mantle on the timescale of the 250,000-yr precession. A method is developed by assuming these conditions to be satisfied, and bounds are established on the core viscosity for which they are satisfied. It is shown that the value of the ratio of the moment of inertia of the mantle to the largest principal moment of inertia of the entire planet would indicate whether the core is most probably solid, partially fluid, or entirely fluid. Techniques are suggested for determining the unknowns required to compute the necessary ratio.

  14. Single ion dynamics in molten sodium bromide

    SciTech Connect

    Alcaraz, O.; Trullas, J.; Demmel, F.

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  15. Energetic materials destruction using molten salt

    SciTech Connect

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-04-29

    The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. LLNL has built a small-scale unit to test the destruction of HE using the Molten Salt Destruction (MSD) Process. In addition to the high explosive HMX, destruction has been carried out on RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. Also destroyed was a liquid gun propellant comprising hydroxyammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, destruction has been carried out on a number of commonly used formulations, such as LX-10, LX-16, LX-17, and PBX-9404.

  16. Production of Lunar Concrete Using Molten Sulfur

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  17. Molten carbonate fuel cell technology improvement

    NASA Astrophysics Data System (ADS)

    1989-09-01

    The overall objective of this program is to define a competitive CG/MCFC (Molten Carbonate Fuel Cell) power plant and the associated technology development requirements and to develop an improved cell configuration for molten carbonate fuel cells which has improved performance, has reduced cell creep and electrolyte management consistent with 40,000 hour projected life, reduces existing cell cost, and is adaptable to a range of power plant applications. Component design specifications for the end-cells of the alternative cell configuration were completed. Testing to evaluate new components was performed on 14 cells during this reporting period with eight tests started and terminated, and six tests continuing into the next reporting period. A test and performance summary of all the single cell tests conducted to date on this program is presented. A single cell test to qualify new matrix materials and matrix reinforcement was successfully completed. Integrated cell testing of new anode- and cathode-side components was completed. Single cell tests were conducted to identify the electrolyte fill procedure for the new cell configuration. Methods of fabricating manifold seals from the new candidate materials are being developed. Preparation of construction drawings for the 1-ft(sup 2) short stack was continued. Fabrication of repeating cell components for the 1-ft(sup 2) short stack was initiated. Trials to tape cast electrodes and matrices were initiated, tooling to form current collectors is being fabricated, and existing tooling to form separator plates is being modified. Non-repeat components from the previous 1-ft(sup 2) short stack that are acceptable for re-use were identified. New non-repeat components that are required have been ordered. Preparation of the test stand for the 1-ft(sup 2) short stack test was initiated.

  18. Molten uranium/Zircaloy interaction studies

    SciTech Connect

    Randklev, E.H.; Wolf, G.A.; Hinman, C.A.; Miller, G.E.; Quapp, W.J.

    1988-08-01

    A program has been initiated to determine the chemical interaction behavior, during a hypothetical loss-of-coolant (LOCA) in the N Reactor, between the zirconium alloy pressure tubing and the fuel (zirconium alloy-clad metallic uranium fuel) system components inside the tubing. The hypothetical accident consists of complete rupture of a primary coolant pipe, failure of the Emergency Core-Cooling System (ECCS), and operation of the Graphite and Shielding Cooling System (GSCS). Two series of scoping tests and two series of prototypic tests have been completed. The test results indicated that the most severe degradation (i.e., thinning) of the pressure tube wall occurred during elevated temperature tests in a nonoxidizing (argon) atmosphere at all outer element support locations (i.e., even when molten uranium alloy was not present in the attack zone). Segments of pressure tubes have been tested in argon for as long as 10 h at 1300{degree}C and have survived with at least 0.25 cm (0.10 in.) or more of wall thickness remaining in the regions of most severe attack (i.e., opposite the steel shoe/support locations). The attack at these support locations begins with the interdiffusion of iron from the steel shoes and the Zircaloy-2 pressure tube constituents. This interdiffusion results in information of a eutectic (liquid) at about 935{degree}C for the pure component system (85 wt % Zr/15 wt % Fe) and at a slightly lower temperature for this alloyed system. The results also indicate that beryllium from the Zircaloy-2/beryllium braze material used to attach the endcaps appears to increase the local attack by molten uranium in the lowermost region of the pressure tube ID profile. The effects of an oxidizing atmosphere (e.g., steam) on these interactions will be the subject of a series of follow-on tests in this project. 24 refs., 33 figs., 14 tabs.

  19. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  20. Mercury's Core Molten, Radar Study Shows

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Scientists using a high-precision planetary radar technique for the first time have discovered that the innermost planet Mercury probably has a molten core, resolving a mystery of more than three decades. The discovery, which used the National Science Foundation's Robert C. Byrd Green Bank Telescope in West Virginia and Arecibo Observatory in Puerto Rico, and NASA/Jet Propulsion Laboratory antennas in California, is an important step toward a better understanding of how planets form and evolve. Planetary Radar High-precision planetary radar technique sent signal to Mercury, received reflection. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for high-resolution file (447 KB) "For a long time it was thought we'd have to land spacecraft on Mercury to learn if its core is solid or molten. Now we've answered that question using ground-based telescopes," said Jean-Luc Margot, of Cornell University, leader of the research team, which published its results in the May 4 issue of the journal Science. Mercury is one of the least-understood of the planets in our Solar System. Its distance from the Sun is just over one-third that of the Earth, and it contains a mass just 5½ percent that of Earth. Only about half of Mercury's surface has been photographed by a spacecraft, Mariner 10, back in 1974. Mariner 10 also discovered that Mercury has a weak magnetic field, about one percent as strong as Earth's. That discovery spurred a scientific debate about the planet's core. Scientists normally expect a rocky planet's magnetic field to be caused by an electromagnetic dynamo in a molten core. However, Mercury is so small that most scientists expected its core to have cooled and solidified long ago. Those scientists speculated that the magnetic field seen today may have been "frozen" into the planet when the core cooled. "Whether the core is molten or solid today depends greatly on the chemical composition of the core. That chemical composition can provide important clues about the

  1. STEEP32 computer code

    NASA Technical Reports Server (NTRS)

    Goerke, W. S.

    1972-01-01

    A manual is presented as an aid in using the STEEP32 code. The code is the EXEC 8 version of the STEEP code (STEEP is an acronym for shock two-dimensional Eulerian elastic plastic). The major steps in a STEEP32 run are illustrated in a sample problem. There is a detailed discussion of the internal organization of the code, including a description of each subroutine.

  2. Method for the regeneration of spent molten zinc chloride

    DOEpatents

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  3. Control strategies in a thermal oil - Molten salt heat exchanger

    NASA Astrophysics Data System (ADS)

    Roca, Lidia; Bonilla, Javier; Rodríguez-García, Margarita M.; Palenzuela, Patricia; de la Calle, Alberto; Valenzuela, Loreto

    2016-05-01

    This paper presents a preliminary control scheme for a molten salt - thermal oil heat exchanger. This controller regulates the molten salt mass flow rate to reach and maintain the desired thermal oil temperature at the outlet of the heat exchanger. The controller architecture has been tested using an object-oriented heat exchanger model that has been validated with data from a molten salt testing facility located at CIEMAT-PSA. Different simulations are presented with three different goals: i) to analyze the controller response in the presence of disturbances, ii) to demonstrate the benefits of designing a setpoint generator and iii) to show the controller potential against electricity price variations.

  4. A Possible Regenerative, Molten-Salt, Thermoelectric Fuel Cell

    NASA Technical Reports Server (NTRS)

    Greenberg, Jacob; Thaller, Lawrence H.; Weber, Donald E.

    1964-01-01

    Molten or fused salts have been evaluated as possible thermoelectric materials because of the relatively good values of their figures of merit, their chemical stability, their long liquid range, and their ability to operate in conjunction with a nuclear reactor to produce heat. In general, molten salts are electrolytic conductors; therefore, there will be a transport of materials and subsequent decomposition with the passage of an electric current. It is possible nonetheless to overcome this disadvantage by using the decomposition products of the molten-salt electrolyte in a fuel cell. The combination of a thermoelectric converter and a fuel cell would lead to a regenerative system that may be useful.

  5. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    SciTech Connect

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  6. Enhanced molten salt purification by electrochemical methods: feasibility experiments with flibe

    SciTech Connect

    Alan K Wertsching; Brandon S Grover; Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project (INL/EXT-10-18297) highlighted how thermo-physical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the of composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report titled ‘An experimental test plan for the characterization of molten salt thermo

  7. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  8. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  9. Practices in Code Discoverability

    NASA Astrophysics Data System (ADS)

    Teuben, P.; Allen, A.; Nemiroff, R. J.; Shamir, L.

    2012-09-01

    Much of scientific progress now hinges on the reliability, falsifiability and reproducibility of computer source codes. Astrophysics in particular is a discipline that today leads other sciences in making useful scientific components freely available online, including data, abstracts, preprints, and fully published papers, yet even today many astrophysics source codes remain hidden from public view. We review the importance and history of source codes in astrophysics and previous efforts to develop ways in which information about astrophysics codes can be shared. We also discuss why some scientist coders resist sharing or publishing their codes, the reasons for and importance of overcoming this resistance, and alert the community to a reworking of one of the first attempts for sharing codes, the Astrophysics Source Code Library (ASCL). We discuss the implementation of the ASCL in an accompanying poster paper. We suggest that code could be given a similar level of referencing as data gets in repositories such as ADS.

  10. Reprocessing of LiH in Molten Chlorides

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Gabriel, Armand; Poignet, Jean-Claude

    2008-06-01

    LiH was used as inactive material to stimulate the reprocessing of lithium tritiate in molten chlorides. The electrochemical properties (diffusion coefficients, apparent standard potentials) were measured by means of transient electrochemical techniques (cyclic voltammetry and chronopotentiometry). At 425 ºC the diffusion coefficient and the apparent standard potential were 2.5 · 10-5 cm2 s-1 and -1.8 V vs. Ag/AgCl, respectively. For the process design the LiH solubility was measured by means of DTA to optimize the LiH concentration in the molten phase. In addition electrolysis tests were carried out at 460 ºC with current densities up to 1 A cm-2 over 24 h. These results show that LiH may be reprocessed in molten chlorides consisting in the production of hydrogen gas at the anode and molten metallic lithium at the cathode.

  11. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  12. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    PubMed Central

    Matsumi, Noriyoshi; Toyota, Yoshiyuki; Joshi, Prerna; Puneet, Puhup; Vedarajan, Raman; Takekawa, Toshihiro

    2014-01-01

    Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl)-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl)-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl) imide) (LiNTf2), the resulting 1-(2-hydroxyethyl)-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN) to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10−4–1.6 × 10−5 S cm−1 at 51 °C. This was higher than other organoboron molten salts ever reported. PMID:25405738

  13. Molten salt electrolyte battery cell with overcharge tolerance

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  14. WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ELECTRIC FURNACE AFTER ADDING A CHEMICAL COAGULANT TO FORCE IT TO THE SURFACE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  15. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  16. Degassing of molten alloys with the assistance of ultrasonic vibration

    DOEpatents

    Han, Qingyou; Xu, Hanbing; Meek, Thomas T.

    2010-03-23

    An apparatus and method are disclosed in which ultrasonic vibration is used to assist the degassing of molten metals or metal alloys thereby reducing gas content in the molten metals or alloys. High-intensity ultrasonic vibration is applied to a radiator that creates cavitation bubbles, induces acoustic streaming in the melt, and breaks up purge gas (e.g., argon or nitrogen) which is intentionally introduced in a small amount into the melt in order to collect the cavitation bubbles and to make the cavitation bubbles survive in the melt. The molten metal or alloy in one version of the invention is an aluminum alloy. The ultrasonic vibrations create cavitation bubbles and break up the large purge gas bubbles into small bubbles and disperse the bubbles in the molten metal or alloy more uniformly, resulting in a fast and clean degassing.

  17. Advanced high-temperature molten-salt storage research

    SciTech Connect

    Copeland, R J; Coyle, R T

    1983-08-01

    We are researching advanced high-temperature molten-salt thermal storage for use in direct absorption receiver and thermal storage (DARTS) solar thermal systems. A molten salt at 900/sup 0/C or higher is both the receiver heat transfer medium and the storage medium; a unique insulated platform (raft) separates the hot and cold medium in the thermocline thermal storage. We have measured raft performance experimentally, and it performs equally or better than a natural thermocline. Containment materials for the molten salts ae being experimentally screened. NaOH has a very high corrosion rate on ceramics and metals. Both carbonates and chlorides can be contained at 900/sup 0/C with relatively little corrosion. Based on the measured corrosion rates, the economic potential of molten-salt thermal storage was analyzed. Both the chlorides and carbonates have potential (i.e., cost less than value) at the capacity of storage expected for commercial-scale solar thermal systems.

  18. Polymers' surface interactions with molten iron: A theoretical study

    NASA Astrophysics Data System (ADS)

    Assadi, M. Hussein N.; Sahajwalla, Veena

    2014-10-01

    Environmental concerns are the chief drive for more innovative recycling techniques for end-of-life polymeric products. One attractive option is taking advantage of C and H content of polymeric waste in steelmaking industry. In this work, we examined the interaction of two high production polymers i.e. polyurethane and polysulfide with molten iron using ab initio molecular dynamics simulation. We demonstrate that both polymers can be used as carburizers for molten iron. Additionally, we found that light weight H2 and CHx molecules were released as by-products of the polymer-molten iron interaction. The outcomes of this study will have applications in the carburization of molten iron during ladle metallurgy and waste plastic injection in electric arc furnace.

  19. Boric ester-type molten salt via dehydrocoupling reaction.

    PubMed

    Matsumi, Noriyoshi; Toyota, Yoshiyuki; Joshi, Prerna; Puneet, Puhup; Vedarajan, Raman; Takekawa, Toshihiro

    2014-11-14

    Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl)-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl)-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl) imide) (LiNTf2), the resulting 1-(2-hydroxyethyl)-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN) to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10⁻⁴-1.6 × 10⁻⁵ S cm⁻¹ at 51 °C. This was higher than other organoboron molten salts ever reported.

  20. SYNTHESIZED SPECTRA OF OPTICALLY THIN EMISSION LINES PRODUCED BY THE BIFROST STELLAR ATMOSPHERE CODE, INCLUDING NONEQUILIBRIUM IONIZATION EFFECTS: A STUDY OF THE INTENSITY, NONTHERMAL LINE WIDTHS, AND DOPPLER SHIFTS

    SciTech Connect

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; Pontieu, B. De

    2015-03-20

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2–3) × 10{sup 5} K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii{sub 19.5} line reported by Doschek et al. are reproduced.

  1. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  2. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  3. Endpoint temperature prediction of molten steel in RH using improved case-based reasoning

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Wang, Hong-bing; Xu, An-jun; He, Dong-feng

    2013-12-01

    An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressions and a pairwise comparison matrix in analytic hierarchy process (AHP) was determined by this linear regression's coefficient. The weights of various influencing factors were obtained by AHP. Secondly, the dividable principles of case base including "0-1" and "breakpoint" were proposed, and the case base was divided into several homogeneous parts. Finally, the improved CBR was compared with ordinary CBR, which is based on the even weight and the single base. The results show that the improved CBR has a higher hit rate for predicting the endpoint temperature of molten steel in RH.

  4. Device for equalizing molten electrolyte content in a fuel cell stack

    DOEpatents

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  5. Device for equalizing molten electrolyte content in a fuel cell stack

    DOEpatents

    Smith, James L.

    1987-01-01

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  6. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  7. Molten Salt: Concept Definition and Capital Cost Estimate

    SciTech Connect

    Stoddard, Larry; Andrew, Daniel; Adams, Shannon; Galluzzo, Geoff

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2

  8. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  9. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  10. Melt segregation during Poiseuille flow of partially molten rocks

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, A.; Dillman, A. M.; Kohlstedt, D. L.

    2015-12-01

    Studies of the dynamics of partially molten regions of the Earth's mantle provide the basis necessary for understanding the chemical and physical evolution of our planet. Since we cannot directly observe processes occurring at depth, we rely on models and experiments to constrain the rheological behavior of partially molten rocks. Here, we present the results of an experimental investigation of the role of viscous anisotropy on melt segregation in partially molten rocks through Poiseuille flow experiments. Partially molten rock samples with a composition of either forsterite or anorthite plus a few percent melt were prepared from vacuum sintered powders and taken to 1200ºC at 0.1 MPa. The partially molten samples were then extruded through a channel of circular cross section under a fixed pressure gradient at 1200o to 1500oC. The melt distribution in the channel was subsequently mapped through image analyses of optical and backscattered electron microscopy images. In these experiments, melt segregates from the center toward the outer radius of the channel with the melt fraction at the outer radius increasing to twice that at the center. These results are consistent with base-state melt segregation as predicted by Takei and Holtzman (JGR, 2009), Takei and Katz (JFM, 2013) and Allwright and Katz (GJI, 2014) for sheared partially molten rocks for which viscosity is anisotropic due to the stress-induced, grain-scale alignment of melt.

  11. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack

    NASA Astrophysics Data System (ADS)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    An investigation is made of the relationships between the gas channel height, the gas-flow characteristics, and the gas-diffusion characteristics in a plate heat-exchanger type molten carbonate fuel cell stack. Effects of the gas channel height on the uniformity and pressure loss of the gas flow are evaluated by numerical analysis using a computational fluid dynamics code. The effects of the gas channel height on the distribution of the reactive gas concentration in the direction perpendicular to the channel flow are evaluated by an analytical solution of the two-dimensional concentration transport equation. Considering the results for uniformity and pressure loss of the gas flow, and for distribution of the reactive gas concentration, the appropriate gas channel height in the molten carbonate fuel cell stack is investigated.

  12. On the effect of accident conditions on the molten core debris relocation into lower head of a PWR vessel

    NASA Astrophysics Data System (ADS)

    An, Xuegao

    From 1975 to present, it has been found that the primary risk to the public health and safety from nuclear power reactors lies in ``beyond design basis'' accidents. During such severe accidents, melting of the reactor core may lead to a loss of primary system integrity, or even containment failure, which will allow escape of significant amounts of radioactive material to the environment. It is very important to understand the mechanism of reactor core degradation during a severe accident. In this study, the damage progression of the reactor core and the slumping mechanism of molten material to the lower head of the reactor vessel were examined through simulation of severe accident scenarios that lead to large-scale core damage. The calculations were carried out using the computer code SCDAP/RELAP5. Different modeling parameters or models were used in calculations by version MOD3.2. The cladding oxidation shell ``durability'' parameter, which can control the timing of fuel clad failure, was varied. The heat flux model of steady-state natural convection of the molten pool was changed. The ultimate strength of the crust supporting the molten pool was doubled. These changes were made to examine the effects on the calculated core damage, and the molten pool expansion and its slumping. Different accident scenarios were simulated. The HPI/makeup flow rates were changed. The timing of opening and closing the PORV was considered. Reflood by restart of coolant pump 2B was also studied. Finally, the size of the PORV opening was also changed. The effects of these accident scenarios on accident progression and core damage process were studied. From the calculated results, it was concluded that the accurate modeling of core damage phenomena was very important to the prediction of the later stage of an accident. According to code MOD3.2, the molten material in a pool slumped to the lower head of the reactor vessel when the juncture of the top and side crusts failed after the

  13. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1997-05-01

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  14. QR code for medical information uses.

    PubMed

    Fontelo, Paul; Liu, Fang; Ducut, Erick G

    2008-11-06

    We developed QR code online tools, simulated and tested QR code applications for medical information uses including scanning QR code labels, URLs and authentication. Our results show possible applications for QR code in medicine.

  15. Purification and Chemical Control of Molten Li2BeF 4 for a Fluoride Salt Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian Christopher

    Out of the many proposed generation IV, high-temperature reactors, the molten salt reactor (MSR) is one of the most promising. The first large scale MSR, the molten salt reactor experiment (MSRE), operated from 1965 to 1969 using Li2BeF4, or flibe, as a coolant and solvent for uranium fluoride fuel, at maximum temperatures of 654°C, for over 15000 hours. The MSRE experienced no concept breaking surprises and was considered a success. Newly proposed designs of molten salt reactors use solid fuels, making them less exotic compared to the MSRE. However, any molten salt reactor will require a great deal of research pertaining to the chemical and mechanical mastery of molten salts in order to prepare it for commercialization. To supplement the development of new molten salt reactors, approximately 100 kg of flibe was purified using the standard hydrofluorination process. Roughly half of the purified salt was lithium-7 enriched salt from the secondary loop of the MSRE. Purification rids the salt of impurities and reduces its capacity for corrosion, also known as the redox potential. The redox potential of flibe was measured at various stages of purification for the first time using a dynamic beryllium reference electrode. These redox measurements have been superimposed with metal impurities measurements found by neutron activation analysis. Lastly, reductions of flibe with beryllium metal have been investigated. Over reductions have been performed, which have shown to decrease redox potential while seemingly creating a beryllium-beryllium halide system. Recommendations of the lowest advisable redox potential for corrosion tests are included along with suggestions for future work.

  16. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  17. Was the early Earth completely molten?

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Pflugrath, J. C.

    1984-01-01

    The nature of the interior of the primitive Earth was examined. The question is posted: was the Earth a cold solid or was it a hot liquid, much like a lava lakes seen in today's volcanic cauldrons. The various energy sources available to heat the primitive Earth to see if they are sufficient to cause melting were analyzed. The two largest contributors to the Earth's early heat appear to be the heat due to accretion and the heat of core formation. The Earth formed by the accretion of particles ranging in size from millimeters to hundreds of kilometers and each impact into the protoearth provided more energy to heat the body. It is found that early in the Earth's history, the sinking of iron to the center of the Earth to form the core released a substantial amount of energy; enough to heat the entire Earth an average 2000 deg C. Mechanisms for the removal of such a large amount of heat appear inadequate to prevent substantial melting, and it is assumed that the Earth was completely molten, i.e., a magma ocean at one time early in its history.

  18. Evaporation of Molten Salts by Plasma Torch

    NASA Astrophysics Data System (ADS)

    Putvinski, S.; Agnew, S. F.; Chamberlain, F.; Freeman, R. L.; Litvak, A.; Meekins, M.; Schwedock, T.; Umstadter, K. R.; Yung, S.; Bakharev, V.; Dresvin, S.; Egorov, S.; Feygenson, O.; Gabdullin, P.; Ivanov; Kizevetter, D.; Kostrukov, A.; Kuteev, B.; Malugin, V.; Zverev, S.

    2003-10-01

    Archimedes Technology Group is developing a plasma nuclear waste separation technology, called the Plasma Mass Filter. The experimental results on thermal evaporation of molten NaOH based surrogates for the Filter are presented. The main goal of the experiments was the study of high-density plasma discharges in NaOH vapor with the aim to minimize injection of additional working gas in the plasma torch. In these experiments NaOH vapor has been produced either by evaporation of the melt from a crucible introduced inside the plasma torch, or by injection of the melt droplets inside the torch. In the latter case, the melt was first atomized by an ultrasonic nebulizer at a flow rate of up to 2g/s with a droplet size of ˜50um. Plasma composition has been monitored by optical measurements. An optical diagnostic for droplet size measurement is presented together with results of the measurements of the size spectrum of the NaOH droplets.

  19. Molten wax as a dust control agent for demolition of facilities

    SciTech Connect

    Carter, E.E.; Welty, B.D.

    2007-07-01

    Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite clay have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. (authors)

  20. Development of molten carbonate fuel cell power plant. Volume I. Final report

    SciTech Connect

    Not Available

    1985-03-01

    This report presents the technical results of a molten carbonate fuel cell power plant development program to establish the necessary technology base and demonstrate readiness to proceed with the fabrication and test of full-size prototype stacks for coal fueled molten carbonate fuel cell power plants. A broad, comprehensive effort covered power plant systems studies, fuel cell component technology development, fuel cell stack design and analysis, manufacturing process definition, and an extensive experimental program. The reported results include: the definition and projected costs for a reference coal fueled power plant system based on user requirements, state-of-the-art advances in anode and electrolyte matrix technology, the detailed description of an internally manifolded stack design concept offering a number of attractive advantages, and the specification of the fabrication processes and methods necessary to produce and assemble this design. Results from the experimental program are documented to verify that a repeatable, high level of performance was achieved, with system derived gas-conditions, for small scale cells. In addition, the status of work is reported for alternate cathode development, electrolyte management, corrosion studies, contaminant effects and other areas related to fuel cell materials selection and component definition. Areas requiring further development or demonstration are identified. The reported results provide a technical basis for proceeding with the scale-up and optimization of the molten carbonate fuel cell design.

  1. Dissipative particle dynamics simulations of the viscosities of molten TNT and molten TNT suspensions containing nanoparticles.

    PubMed

    Zhou, Yang; Li, Yixue; Qian, Wen; He, Bi

    2016-09-01

    Based on dissipative particle dynamics (DPD) methods and experimental data, we used an empirical relationship between the DPD temperature and the real temperature to build a model that describes the viscosity of molten TNT fluids. The errors in the predicted viscosity based on this model were no more than 2.3 %. We also studied the steady-state shear rheological behavior of molten TNT fluids containing nanoparticles ("nanofluids"). The dependence of the nanofluid viscosity on the temperature was found to satisfy an Arrhenius-type equation, η = Ae (B/T) , where B, the flow activation energy, depends on particle content, size, and shape. We modified the Einstein-type viscosity model to account for the effects of nanoparticle solvation in TNT nanofluids. The resulting model was able to correctly predict the viscosities of suspensions containing nano- to microsized particles, and did not require any changes to the physical background of Einstein's viscosity theory. Graphical Abstract The revised Einstein viscosity model that correctly predict the viscosity of TNT suspensions containing nanoparticles.

  2. Ethical coding.

    PubMed

    Resnik, Barry I

    2009-01-01

    It is ethical, legal, and proper for a dermatologist to maximize income through proper coding of patient encounters and procedures. The overzealous physician can misinterpret reimbursement requirements or receive bad advice from other physicians and cross the line from aggressive coding to coding fraud. Several of the more common problem areas are discussed.

  3. Evaluation of the Molten Salt Reactor Experiment drain tanks for reuse in salt disposal, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1998-05-01

    This report was prepared to identify the source documentation used to evaluate the drain tanks in the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). The evaluation considered the original quality of the tanks, their service history, and their intended use during the removal of fluoride salts. It also includes recommendations for a quality verification plan. The estimates of corrosion damage to the salt containing system at the MSRE are low enough to lend optimism that the system will be fit for its intended use, which is disposal of the salt by transferring it to transport containers. The expected corrosion to date is estimated between 10 and 50 mil, or 2 to 10% of the shell wall. The expected corrosion rate when the tanks are used to remove the salt at 110 F is estimated to be .025 to 0.1 mil per hour of exposure to HF and molten salt. To provide additional assurance that the estimates of corrosion damage are accurate, cost effective nondestructive examination (NDE) has been recommended. The NDE procedures are compared with industry standards and give a perspective for the extent of additional measures taken in the recommendation. A methodology for establishing the remaining life has been recommended, and work is progressing towards providing an engineering evaluation based upon thickness and design conditions for the future use of the tanks. These extra measures and the code based analysis will serve to define the risk of salt or radioactive gases leaking during processing and transfer of the salt as acceptable.

  4. Coding for urologic office procedures.

    PubMed

    Dowling, Robert A; Painter, Mark

    2013-11-01

    This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff.

  5. XSOR codes users manual

    SciTech Connect

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  6. RADONE: a computer code for simulating fast-transient, one-dimensional hydrodynamic conditions and two-layer radionuclide concentrations including the effect of bed-deposition in controlled rivers and tidal estuaries

    SciTech Connect

    Eraslan, A.H.; Abdel-Razek, M.M.

    1985-05-01

    RADONE is a computer code for predicting the transient, one-dimensional transport of radiouclides in receiving water bodies. The model formulation considers the one-dimensional (cross-sectionally averaged) conservation of mass and momentum equations and the two coupled, depth-averaged radionuclide transport equations for the water layer and the bottom sediment layer. The coupling conditions incorporate bottom deposition and resuspension effects. The computer code uses a discrete-element method that offers variable river cross-section spacing, accurate representation of cross-sectional geometry, and numerical accuracy. A sample application is provided for the problem of hypothetical accidental releases and actual routine releases of radionuclides to the Hudson River.

  7. Shear rheology of molten crumb chocolate.

    PubMed

    Taylor, J E; Van Damme, I; Johns, M L; Routh, A F; Wilson, D I

    2009-03-01

    The shear rheology of fresh molten chocolate produced from crumb was studied over 5 decades of shear rate using controlled stress devices. The Carreau model was found to be a more accurate description than the traditional Casson model, especially at shear rates between 0.1 and 1 s(-1). At shear rates around 0.1 s(-1) (shear stress approximately 7 Pa) the material exhibited a transition to a solid regime, similar to the behavior reported by Coussot (2005) for other granular suspensions. The nature of the suspension was explored by investigating the effect of solids concentration (0.20 < phi < 0.75) and the nature of the particles. The rheology of the chocolate was then compared with the rheology of (1) a synthetic chocolate, which contained sunflower oil in place of cocoa butter, and (2) a suspension of sugar of a similar size distribution (volume mean 15 mum) in cocoa butter and emulsifier. The chocolate and synthetic chocolate showed very similar rheological profiles under both steady shear and oscillatory shear. The chocolate and the sugar suspension showed similar Krieger-Dougherty dependency on volume fraction, and a noticeable transition to a stiff state at solids volume fractions above approximately 0.5. Similar behavior has been reported by Citerne and others (2001) for a smooth peanut butter, which had a similar particle size distribution and solids loading to chocolate. The results indicate that the melt rheology of the chocolate is dominated by hydrodynamic interactions, although at high solids volume fractions the emulsifier may contribute to the departure of the apparent viscosity from the predicted trend.

  8. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  9. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  10. Gasification characteristics of organic waste by molten salt

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Minami, Keishi; Yamauchi, Makoto; Morimitsu, Shinsuke; Tanimoto, Kazumi

    Recently, along with the growth in economic development, there has been a dramatic accompanying increase in the amount of sludge and organic waste. The disposal of such is a significant problem. Moreover, there is also an increased in the consumption of electricity along with economic growth. Although new energy development, such as fuel cells, has been promoted to solve the problem of power consumption, there has been little corresponding promotion relating to the disposal of sludge and organic waste. Generally, methane fermentation comprises the primary organic waste fuel used in gasification systems. However, the methane fermentation method takes a long time to obtain the fuel gas, and the quality of the obtained gas is unstable. On the other hand, gasification by molten salt is undesirable because the molten salt in the gasification gas corrodes the piping and turbine blades. Therefore, a gasification system is proposed by which the sludge and organic waste are gasified by molten salt. Moreover, molten carbonate fuel cells (MCFC) are needed to refill the MCFC electrolyte volatilized in the operation. Since the gasification gas is used as an MCFC fuel, MCFC electrolyte can be provided with the fuel gas. This paper elucidates the fundamental characteristics of sludge and organic waste gasification. A crucible filled with the molten salt comprising 62 Li 2CO 3/38 K 2CO 3, is installed in the reaction vessel, and can be set to an arbitrary temperature in a gas atmosphere. In this instance, the gasifying agent gas is CO 2. Sludge or the rice is supplied as organic waste into the molten salt, and is gasified. The chemical composition of the gasification gas is analyzed by a CO/CO 2 meter, a HC meter, and a SO x meter gas chromatography. As a result, although sludge can generate CO and H 2 near the chemical equilibrium value, all of the sulfur in the sludge is not fixed in the molten salt, because the sludge floats on the surface of the carbonate by the specific

  11. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  12. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  13. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  14. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    SciTech Connect

    Aji, Indarta Kuncoro; Waris, Abdul Permana, Sidik

    2015-09-30

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  15. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-09-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  16. Application of lithium in molten-salt reduction processes.

    SciTech Connect

    Gourishankar, K. V.

    1998-11-11

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li{sub 2}O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes.

  17. Viscosity of molten lithium, thorium and beryllium fluorides mixtures

    NASA Astrophysics Data System (ADS)

    Merzlyakov, Alexander V.; Ignatiev, Victor V.; Abalin, Sergei S.

    2011-12-01

    Considering development of Molten Salt Fast Reactor (MSFR) concept, following Molten Salt fluorides mixtures have been chosen as an object for viscosity studies in this work (in mol%): 78LiF-22ThF 4; 71LiF-27ThF 4-2BeF 2 and 75LiF-20ThF 4-5BeF 2. Additionally, the effect of the 3 mol% CeF 3 additives on viscosity of the molten 75LiF-20ThF 4-5BeF 2 (mol%) salt mixture has been investigated experimentally. The method of torsional oscillations of cylindrical crucible filled by molten fluorides mixture has been chosen for kinematic viscosity measurement at temperatures up to 800-850 °C. In temperature ranges, where melts behave as normal liquids, dependences on viscosity vs. temperature are received: ν = А exp [B/T(K)], where ν - kinematic viscosity, m 2/s; T - temperature, K. The kinematic viscosity Rout mean squares (RMS) estimated in the assumption about dispersion homoscedasticity is (0.04-0.12) × 10 -6 (m 2/s). Discrepancies left in the data of viscosity for molten mixtures of LiF, BeF 2 and ThF 4 received by different researchers need further investigations in this area to be continued.

  18. Normal Spectral Emissivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ueno, Shoya; Nakamura, Yuki; Sugioka, Ken-Ichi; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki

    2017-02-01

    The normal spectral emissivity of molten Cu-Co alloy with different compositions was measured in the wavelength range of 780 nm to 920 nm and in the temperature range of 1430 K to 1770 K including the undercooled condition by an electromagnetic levitator superimposed with a static magnetic field. The emissivity was determined as the ratio of the radiance from a levitated molten Cu-Co droplet measured by a spectrometer to the radiance from a blackbody calculated by Planck's law at a given temperature, where a static magnetic field of 2.5 T to 4.5 T was applied to the levitated droplet to suppress the surface oscillation and translational motion of the sample. We found little temperature dependence of the normal spectral emissivity of molten Cu-Co alloy. Concerning the composition dependence, the emissivity decreased markedly above 80 at%Cu and reached that of pure Cu, although its dependence was low between 20 at%Cu and 80 at%Cu. In addition, this composition dependence of the emissivity of molten Cu-Co alloy can be explained well by the Drude free-electron model.

  19. Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt

    NASA Astrophysics Data System (ADS)

    Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.

    2017-01-01

    A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.

  20. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  1. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  2. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  3. Presence of Li Clusters in Molten LiCl-Li

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  4. Presence of Li Clusters in Molten LiCl-Li.

    PubMed

    Merwin, Augustus; Phillips, William C; Williamson, Mark A; Willit, James L; Motsegood, Perry N; Chidambaram, Dev

    2016-05-05

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  5. Presence of Li clusters in molten LiCl-Li

    DOE PAGES

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; ...

    2016-05-05

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. ln the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. Furthermore, this observation is indicative of a nanofluid type colloidal suspension of Li8, in a molten salt matrix.more » It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.« less

  6. Presence of Li clusters in molten LiCl-Li

    SciTech Connect

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-05

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. ln the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. Furthermore, this observation is indicative of a nanofluid type colloidal suspension of Li8, in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  7. Primary and secondary room temperature molten salt electrochemical cells

    NASA Astrophysics Data System (ADS)

    Reynolds, G. F.; Dymek, C. J., Jr.

    1985-07-01

    Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.

  8. Modelling of molten fuel/concrete interactions. [PWR; BWR

    SciTech Connect

    Muir, J. F.; Benjamin, A. S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data.

  9. Presence of Li Clusters in Molten LiCl-Li

    PubMed Central

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-01-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable. PMID:27145895

  10. Bubble-driven anodic gas in molten salt electrolytes

    NASA Astrophysics Data System (ADS)

    Osarinmwian, C.

    2017-03-01

    Herein online mass spectrometry is used to record real-time concentration curves of anodic gases released during the electrochemical oxidation of graphite anodes in molten CaCl2. The shape of these curves suggests that electrochemical oxidation is rate limited by the mass transport of oxidant ions to the anode surface. Anodic gas bubbles are formed and released from nucleation sites at this surface. Although the applied voltage is less than the decomposition voltage, an unexpectedly high release of Cl2 gas indicates continuous decomposition of molten CaCl2. The origin of experimentally observed anodic gas bubbling is explained using phase-field simulations of a rising gas bubble in molten CaCl2.

  11. Sharing code.

    PubMed

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  12. Dry Molten Globule Intermediates and the Mechanism of Protein Unfolding

    PubMed Central

    Baldwin, Robert L.; Frieden, Carl; Rose, George D.

    2010-01-01

    New experimental results show that either gain or loss of close packing can be observed as a discrete step in protein folding or unfolding reactions. This finding poses a significant challenge to the conventional two-state model of protein folding. Results of interest involve dry molten globule intermediates, an expanded form of the protein that lacks appreciable solvent. When an unfolding protein expands to the dry molten globule state, side chains unlock and gain conformational entropy, while liquid-like van der Waals interactions persist. Four unrelated proteins are now known to form dry molten globules as the first step of unfolding, suggesting that such an intermediate may well be commonplace in both folding and unfolding. Data from the literature show that peptide amide protons are protected in the dry molten globule, indicating that backbone structure is intact despite loss of side chain close packing. Other complementary evidence shows that secondary structure formation provides a major source of compaction during folding. In our model, the major free-energy barrier separating unfolded from native states usually occurs during the transition between the unfolded state and the dry molten globule. The absence of close packing at this barrier provides an explanation for why ϕ-values, derived from a Brønsted-Leffler plot, depend primarily on structure at the mutational site and not on specific side chain interactions. The conventional two-state folding model breaks down when there are dry molten globule intermediates, a realization that has major implications for future experimental work on the mechanism of protein folding. PMID:20635344

  13. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  14. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  15. SENER molten salt tower technology. Ouarzazate NOOR III case

    NASA Astrophysics Data System (ADS)

    Relloso, Sergio; Gutiérrez, Yolanda

    2017-06-01

    NOOR III 150 MWe project is the evolution of Gemasolar (19.9 MWe) to large scale Molten Salt Tower plants. With more than 5 years of operational experience, Gemasolar lessons learned have been the starting point for the optimization of this technology, considered the leader of potential cost reduction in CSP. In addition, prototypes of plant key components (heliostat and receiver) were manufactured and thoroughly tested before project launch in order to prove the new engineering solutions adopted. The SENER proprietary technology of NOOR III will be applied in the next Molten Salt Tower plants that will follow in other countries, such as South Africa, Chile and Australia.

  16. Castable Cement Can Prevent Molten-Salt Corrosion in CSP

    SciTech Connect

    2016-09-01

    NREL's study demonstrated that castable cements on metals are a protective barrier that can prevent permeation of molten salts toward metallic surfaces. The silica-based castable cement Aremco 645-N, when sprayed with boron nitride, can protect containment metallic alloys from attack by molten chlorides at high temperatures (650 degrees C) in short-term tests. Improved thermal energy storage technology could increase the performance of CSP and reduce costs, helping to reach the goal of the U.S. Department of Energy's SunShot Initiative to make solar cost-competitive with other non-renewable sources of electricity by 2020.

  17. Porous electrolyte retainer for molten carbonate fuel cell

    DOEpatents

    Singh, Raj N.; Dusek, Joseph T.

    1983-06-21

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H.sub.2 and CO opposite to oxidant gases such as O.sub.2 and CO.sub.2. The tile is prepared with a porosity of 55-65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  18. Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate

    DOEpatents

    Singh, R.N.; Dusek, J.T.

    1979-12-27

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  19. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  20. Thermal conditions and functional requirements for molten fuel containment

    SciTech Connect

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed.

  1. A highly conductive electrolyte for molten oxide fuel cells.

    PubMed

    Belousov, V V; Fedorov, S V

    2017-01-03

    A gas-tight and ductile solid/liquid δ-Bi2O3-0.2 wt% B2O3 electrolyte for molten oxide fuel cells (MOFCs) is developed. The MOFCs are a new class of intermediate temperature fuel cells. The composite, consisting of solid (δ-Bi2O3) and liquid (molten Bi2O3 + B2O3) oxygen ion-conducting phases, demonstrates the promising application as an MOFC electrolyte with the highest oxygen ionic conductivity.

  2. Ionic liquids: the link to high-temperature molten salts?

    PubMed

    El Abedin, Sherif Zein; Endres, Frank

    2007-11-01

    Due to their wide thermal windows, ionic liquids can be regarded as the missing link between aqueous/organic solutions and high-temperature molten salts. They can be employed efficiently for the coating of other metals with thin layers of tantalum, aluminum, and presumably many others at reasonable temperatures by electrochemical means. The development of ionic liquids, especially air and water stable ones, has opened the door for the electrodeposition of reactive elements such as, for example, Al, Ta, and Si, which in the past were only accessible using high-temperature molten salts or, in part, organic solvents.

  3. Direct containment heating models in the CONTAIN code

    SciTech Connect

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  4. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  5. DNA codes

    SciTech Connect

    Torney, D. C.

    2001-01-01

    We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated

  6. Oxygen electrode reaction in molten carbonate fuel cells

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  7. Liquid surface skimmer apparatus for molten lithium and method

    DOEpatents

    Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.

    1995-01-01

    This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

  8. INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS FROM CUPOLA TO IRON TREATMENT AREAS BEFORE BEING TRANSFERRED TO PIPE CASTING MACHINES. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  9. 9. VIEW OF MOLTEN SALT BATH EQUIPMENT AND ROLLER PRESSES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF MOLTEN SALT BATH EQUIPMENT AND ROLLER PRESSES BEING INSTALLED ON THE WEST SIDE (SIDE B) OF BUILDING 883. SIDE B OF BUILDING 883 WAS USED TO PROCESS ENRICHED URANIUM FROM 1957-66. (1/23/57) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  10. Research and development issues for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  11. Structural change in molten basalt at deep mantle conditions.

    PubMed

    Sanloup, Chrystèle; Drewitt, James W E; Konôpková, Zuzana; Dalladay-Simpson, Philip; Morton, Donna M; Rai, Nachiketa; van Westrenen, Wim; Morgenroth, Wolfgang

    2013-11-07

    Silicate liquids play a key part at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to present-day volcanic activity. Quantitative models of these processes require knowledge of the structural changes and compression mechanisms that take place in liquid silicates at the high pressures and temperatures in the Earth's interior. However, obtaining such knowledge has long been impeded by the challenging nature of the experiments. In recent years, structural and density information for silica glass was obtained at record pressures of up to 100 GPa (ref. 1), a major step towards obtaining data on the molten state. Here we report the structure of molten basalt up to 60 GPa by means of in situ X-ray diffraction. The coordination of silicon increases from four under ambient conditions to six at 35 GPa, similar to what has been reported in silica glass. The compressibility of the melt after the completion of the coordination change is lower than at lower pressure, implying that only a high-order equation of state can accurately describe the density evolution of silicate melts over the pressure range of the whole mantle. The transition pressure coincides with a marked change in the pressure-evolution of nickel partitioning between molten iron and molten silicates, indicating that melt compressibility controls siderophile-element partitioning.

  12. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  13. 19. MOLTEN IRON FLOWS INTO A 'BOTTLE' AT FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. MOLTEN IRON FLOWS INTO A 'BOTTLE' AT FURNACE NO. 1. THE IRON WILL BE TRANSPORTED BY RAIL TO THE OPEN HEARTH OR BASIC OXYGEN FURNACES, WHERE IT IS A MAJOR COMPONENT IN THE PRODUCTION OF STEEL. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  14. Method for preventing sulfur emissions from vessels containing molten sulfur

    SciTech Connect

    Hass, R. H.

    1984-10-23

    Emissions from sulfur pits or other vessels containing molten sulfur are prevented or minimized by use of an air purge drawn into the vessel from the atmosphere and subsequently utilized as a portion of the oxidant required in a process for oxidizing hydrogen sulfide to elemental sulfur.

  15. X-Ray Investigations on Molten Cu-Sb Alloys

    NASA Astrophysics Data System (ADS)

    Halm, Th.; Neumann, H.; Hoyer, W.

    1994-05-01

    Using X-ray diffraction, structure factors and pair correlation functions of several molten Cu-Sb alloys and pure antimony were determined and compared with published structural, thermodynamic and electronic properties. The eutectic concentration Cu37Sb63 was investigated in dependence on temperature, and a model structure factor was calculated applying a segregation model.

  16. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  17. Production of oxygen from lunar soil by molten salt electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1989-01-01

    A simple approach to utilizing lunar resources proposes to dissolve lunar soil, without or with little beneficiation, in a suitable molten salt and to electrolyze the oxides to oxygen and a metal byproduct. The envisioned process and the required technological advances are discussed. Promising electrolysis conditions have been identified in a recent experimental program to manufacture silicon and aluminum from anorthite.

  18. Hydrated multivalent cations are new class of molten salt mixtures

    NASA Technical Reports Server (NTRS)

    Angell, C. A.

    1967-01-01

    Electrical conductance and activation energy measurements on mixtures of calcium and potassium nitrate show the hydrated form to be a new class of molten salt. The theoretical glass transition temperature of the hydrate varied in a manner opposite to that of the anhydrous system.

  19. 30 CFR 56.16013 - Working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials...

  20. 30 CFR 57.16013 - Working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  1. 30 CFR 56.16013 - Working with molten metal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials...

  2. 30 CFR 57.16013 - Working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  3. 30 CFR 56.16013 - Working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials...

  4. 30 CFR 56.16013 - Working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials...

  5. 30 CFR 57.16013 - Working with molten metal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  6. 30 CFR 56.16013 - Working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials...

  7. 30 CFR 57.16013 - Working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  8. 30 CFR 57.16013 - Working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  9. Radiative and gas cooling of falling molten drops

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.

    1978-01-01

    The supercooling rate and solidification time for molten drops of niobium, copper, and lead are calculated. Calculations for both radiation and helium gas cooling are presented in order to estimate the influence that the presence of helium gas would have upon the cooling rate of falling drops in the Marshall Space Flight Center space processing drop tube.

  10. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  11. 13. VIEW OF THE MOLTEN SALT BATHS USED TO UNIFORMLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MOLTEN SALT BATHS USED TO UNIFORMLY AND QUICKLY HEAT METALS PRIOR TO WORKING (ROLLING). (9/16/85) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  12. Impact of corrosion test container material in molten fluorides

    DOE PAGES

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; ...

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion inmore » graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.« less

  13. Impact of corrosion test container material in molten fluorides

    SciTech Connect

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion in graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.

  14. Conduit for high temperature transfer of molten semiconductor crystalline material

    NASA Technical Reports Server (NTRS)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  15. Two techniques enable sampling of filtered and unfiltered molten metals

    NASA Technical Reports Server (NTRS)

    Burris, L., Jr.; Pierce, R. D.; Tobias, K. R.; Winsch, I. O.

    1967-01-01

    Filtered samples of molten metals are obtained by filtering through a plug of porous material fitted in the end of a sample tube, and unfiltered samples are obtained by using a capillary-tube extension rod with a perforated bucket. With these methods there are no sampling errors or loss of liquid.

  16. Sulfur tolerant molten carbonate fuel cell anode and process

    DOEpatents

    Remick, Robert J.

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  17. Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes.

    PubMed

    Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang

    2011-08-01

    Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered.

  18. Corrosion Behavior of Alloys in Molten Fluoride Salts

    NASA Astrophysics Data System (ADS)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight

  19. Sharing code

    PubMed Central

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing. PMID:25165519

  20. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    1985-10-01

    This report summarizes the work performed to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive, coal-fired, electrical utility central station, or industrial cogeneration power plant. Fabrication of the cell components to be used in the 100-cell stack was completed successfully. Compressive creep of the anode to be used in the 100-cell stack was measured through 720 hours of testing at 1300(0)F. The data continue to support the creep resistance of this component. Anode and bubble barrier pore spectra data obtained after aging at 1300F confirmed the sintering resistance of these components. A parametric study of candidate separator material data obtained from retort corrosion tests was completed. Based on the study, cell testing of treated INCO 825 was begun. A 1000 hour cell test of Ni-201/316SS at accelerated test conditions showed no failure of this separator plate material. Single cell tests to evaluate Co-based and Ti-based alternate cathode materials were conducted. The cell test performance data and post test chemical analysis show both materials are unstable. Cell testing of a doped Fe-based cathode showed a reaction with the matrix used. A repeat test using a different matrix material is planned. Testing of the 20-cell Subscale Stack was completed on schedule following 2000 hours of operation. A post test analysis was begun in order to correlate the diagnostic test data with the physical evidence of component stability, including electrolyte containment.

  1. Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts

    NASA Astrophysics Data System (ADS)

    Yan, Xiao Y.

    2008-04-01

    A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.

  2. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    NASA Astrophysics Data System (ADS)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  3. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  4. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  5. Certain Adenylated Non-Coding RNAs, Including 5′ Leader Sequences of Primary MicroRNA Transcripts, Accumulate in Mouse Cells following Depletion of the RNA Helicase MTR4

    PubMed Central

    Dorweiler, Jane E.; Ni, Ting; Zhu, Jun; Munroe, Stephen H.; Anderson, James T.

    2014-01-01

    RNA surveillance plays an important role in posttranscriptional regulation. Seminal work in this field has largely focused on yeast as a model system, whereas exploration of RNA surveillance in mammals is only recently begun. The increased transcriptional complexity of mammalian systems provides a wider array of targets for RNA surveillance, and, while many questions remain unanswered, emerging data suggest the nuclear RNA surveillance machinery exhibits increased complexity as well. We have used a small interfering RNA in mouse N2A cells to target the homolog of a yeast protein that functions in RNA surveillance (Mtr4p). We used high-throughput sequencing of polyadenylated RNAs (PA-seq) to quantify the effects of the mMtr4 knockdown (KD) on RNA surveillance. We demonstrate that overall abundance of polyadenylated protein coding mRNAs is not affected, but several targets of RNA surveillance predicted from work in yeast accumulate as adenylated RNAs in the mMtr4KD. microRNAs are an added layer of transcriptional complexity not found in yeast. After Drosha cleavage separates the pre-miRNA from the microRNA's primary transcript, the byproducts of that transcript are generally thought to be degraded. We have identified the 5′ leading segments of pri-miRNAs as novel targets of mMtr4 dependent RNA surveillance. PMID:24926684

  6. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    SciTech Connect

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  7. Molten salt coal gasification process development unit. Phase 1. Volume 2. Commercial plant study. Final report

    SciTech Connect

    Kohl, Arthur L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit (PDU). This process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of the salt. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  8. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  9. The molten carbonate carbon dioxide concentrator - Cathode performance at high CO2 utilization. [in manned space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Weaver, J. L.; Winnick, J.

    1983-01-01

    An experimental study of the cathode performance of the molten carbonate carbon dioxide concentrator (MCCDC) at typical gas concentrations is reported, and the behavior is described in terms of standard electrochemical kinetic analysis. Theoretical aspects of the MCCDC are discussed, including the current-generating processes, the overpotential, and the reaction kinetics. A final working equation is derived, and the electrochemical cell is described. The parameters determined by the experiments include cathode overpotentials and removal and current efficiency as a function of current density, as well as carbon dioxide removal rate as a function of flow rate. The results are compared with data for other cells; the agreement with data for the molten carbonate fuel cell suggests that the major difference between the two cells is in the wetting characteristics. The MCCDC achieves high removal efficiencies at high current efficiencies. The lowest current efficiency recorded was 80 percent, and at most current densities, current efficiencies were above 100 percent.

  10. The molten carbonate carbon dioxide concentrator - Cathode performance at high CO2 utilization. [in manned space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Weaver, J. L.; Winnick, J.

    1983-01-01

    An experimental study of the cathode performance of the molten carbonate carbon dioxide concentrator (MCCDC) at typical gas concentrations is reported, and the behavior is described in terms of standard electrochemical kinetic analysis. Theoretical aspects of the MCCDC are discussed, including the current-generating processes, the overpotential, and the reaction kinetics. A final working equation is derived, and the electrochemical cell is described. The parameters determined by the experiments include cathode overpotentials and removal and current efficiency as a function of current density, as well as carbon dioxide removal rate as a function of flow rate. The results are compared with data for other cells; the agreement with data for the molten carbonate fuel cell suggests that the major difference between the two cells is in the wetting characteristics. The MCCDC achieves high removal efficiencies at high current efficiencies. The lowest current efficiency recorded was 80 percent, and at most current densities, current efficiencies were above 100 percent.

  11. Suboptimum decoding of block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    This paper investigates a class of decomposable codes, their distance and structural properties. it is shown that this class includes several classes of well known and efficient codes as subclasses. Several methods for constructing decomposable codes or decomposing codes are presented. A two-stage soft decision decoding scheme for decomposable codes, their translates or unions of translates is devised. This two-stage soft-decision decoding is suboptimum, and provides an excellent trade-off between the error performance and decoding complexity for codes of moderate and long block length.

  12. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  13. Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering.

    PubMed Central

    Kataoka, M.; Kuwajima, K.; Tokunaga, F.; Goto, Y.

    1997-01-01

    A compact denatured state is often observed under a mild denaturation condition for various proteins. A typical example is the alpha-lactalbumin molten globule. Although the molecular compactness and shape are the essential properties for defining the molten globule, there have been ambiguities of these properties for the molten globule of alpha-lactalbumin. Using solution X-ray scattering, we have examined the structural properties of two types of molten globule of alpha-lactalbumin, the apo-protein at neutral pH and the acid molten globule. The radius of gyration for the native holo-protein was 15.7 A, but the two different molten globules both had a radius of gyration of 17.2 A. The maximum dimension of the molecule was also increased from 50 A for the native state to 60 A for the molten globule. These values clearly indicate that the molten globule is not as compact as the native state. The increment in the radius of gyration was less than 10% for the alpha-lactalbumin molten globule, compared with up to 30% for the molten globules of other globular proteins. Intramolecular disulfide bonds restrict the molecular expansion of the molten globule. The distance distribution function of the alpha-lactalbumin molten globule is composed of a single peak suggesting a globular shape, which is simply swollen from the native state. The scattering profile in the high Q region of the molten globule indicates the presence of a significant amount of tertiary fold. Based on the structural properties obtained by solution X-ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance. PMID:9041645

  14. Insurance billing and coding.

    PubMed

    Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H

    2008-07-01

    The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.

  15. Recent advances in the molten salt technology for the destruction of energetic materials

    SciTech Connect

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.

    1995-11-01

    The DOE has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The authors have demonstrated the Molten Salt Destruction (MSD) Process for the treatment of explosives and explosive-containing wastes on a 1.5 kilogram of explosive per hour scale and are currently building a 5 kilogram per hour unit. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. The destruction of energetic material waste is accomplished by introducing it, together with air, into a crucible containing a molten salt, in this case a eutectic mixture of Na, K, and Li carbonates. The following pure component DOE and DoD explosives have been destroyed in LLNL`s experimental unit at their High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K-6, NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following formulations were also destroyed: Comp B, LX-10, LX-16, LX-17, PBX-9404, and XM46, a US Army liquid gun propellant. In this 1.5 kg/hr unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NOx were found to be well below 1T. In addition to destroying explosive powders and molding powders the authors have also destroyed materials that are typical of real world wastes. These include shavings from machined pressed parts of plastic bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the information obtained on the smaller unit, the authors have constructed a 5 kg/hr MSD unit, incorporating LLNL`s advanced chimney design. This unit is currently under shakedown tests and evaluation.

  16. Authorship Attribution of Source Code

    ERIC Educational Resources Information Center

    Tennyson, Matthew F.

    2013-01-01

    Authorship attribution of source code is the task of deciding who wrote a program, given its source code. Applications include software forensics, plagiarism detection, and determining software ownership. A number of methods for the authorship attribution of source code have been presented in the past. A review of those existing methods is…

  17. Authorship Attribution of Source Code

    ERIC Educational Resources Information Center

    Tennyson, Matthew F.

    2013-01-01

    Authorship attribution of source code is the task of deciding who wrote a program, given its source code. Applications include software forensics, plagiarism detection, and determining software ownership. A number of methods for the authorship attribution of source code have been presented in the past. A review of those existing methods is…

  18. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  19. Dissolution of alumina, copper oxide and nitrogen in molten slags: Thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Fan, Peng

    Three studies have been conducted concerning thermodynamics and kinetics of dissolution of alumina, copper oxides and nitrogen in various molten slags. In the first study, the dissolution rate of alumina particles in molten CaO-Al2O3-SiO2 slag was measured at 1500--1550°C by direct sampling method for the purpose of understanding the dissolution behavior of alumina inclusion in molten slags. It was found that the dissolution rate decreased with increasing SiO2 and Al2O3 contents in slag, but increased with increasing temperature. In the ladle type slags, alumina particles dissolved much faster than in the tundish type slags. In the second study, solubility of solid CuO in molten Na2O-B 2O3 slag and liquid Cu2O in molten CaO-B 2O3-SiO2 slag was measured at 1000°C and 1250°C, with attempts to find suitable slags for the fluxing stage of the proposed oxidizing-fluxing process to remove copper from steel scrap. Experimental results showed that the minimum solubility occurred at neutral slag compositions, demonstrating amphoteric nature of CuO and Cu2O A regular solution model was employed to interpret the solubility data of CuO in Na2O-B 2O3 slag to obtain the interaction energies of CuO-NaO 0.5 and CuO-BO1.5, and then solubility curve, iso-activity curves and isothermal section of phase diagram of CuO-Na2O-B 2O3 system at 1000°C were drawn from the model calculation. Basic Na2O-B2O3 slag is expected to be a suitable slag for the fluxing process. The objective of the third study is to investigate the feasibility of removing nitrogen from molten steel by two newly proposed slag systems, TiO slag and Ti2O3 slag. Nitrogen distribution ratios between slag and steel were measured at 1600°C, for CaO-Al2O3-TiO, CaO-Al2O3-Ti 2O, CaO-Al2O3-TiO2 and CaO-Al 2O3 by two new slag-metal equilibration techniques, i.e., liquid sealing method and static atmosphere method. Activity coefficients of AIN and TiN, as useful indexes of measuring ability of slag to remove nitrogen, were

  20. Nature's Code

    NASA Astrophysics Data System (ADS)

    Hill, Vanessa J.; Rowlands, Peter

    2008-10-01

    We propose that the mathematical structures related to the `universal rewrite system' define a universal process applicable to Nature, which we may describe as `Nature's code'. We draw attention here to such concepts as 4 basic units, 64- and 20-unit structures, symmetry-breaking and 5-fold symmetry, chirality, double 3-dimensionality, the double helix, the Van der Waals force and the harmonic oscillator mechanism, and our explanation of how they necessarily lead to self-aggregation, complexity and emergence in higher-order systems. Biological concepts, such as translation, transcription, replication, the genetic code and the grouping of amino acids appear to be driven by fundamental processes of this kind, and it would seem that the Platonic solids, pentagonal symmetry and Fibonacci numbers have significant roles in organizing `Nature's code'.

  1. Show Code.

    PubMed

    Shalev, Daniel

    2017-01-01

    "Let's get one thing straight: there is no such thing as a show code," my attending asserted, pausing for effect. "You either try to resuscitate, or you don't. None of this halfway junk." He spoke so loudly that the two off-service consultants huddled at computers at the end of the unit looked up… We did four rounds of compressions and pushed epinephrine twice. It was not a long code. We did good, strong compressions and coded this man in earnest until the end. Toward the final round, though, as I stepped up to do compressions, my attending looked at me in a deep way. It was a look in between willing me as some object under his command and revealing to me everything that lay within his brash, confident surface but could not be spoken. © 2017 The Hastings Center.

  2. Tritium permeation and recovery for the helium-cooled molten salt fusion breeder

    SciTech Connect

    Sherwood, A.E.

    1984-09-01

    Design concepts are presented to control tritium permeation from a molten salt/helium fusion breeder reactor. This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. The proposed permeation barrier for the reactor tubes is a 10 ..mu..m layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate. A research and development effort is needed to prove feasibility or to develop alternative barriers. A 1 mm aluminum sleeve is proposed to suppress permeation through the steam generator tubes. This gives a calculated reduction factor of more than 500 relative to bare steel, including a factor of 30 due to an assumed oxide layer. The permeation equations are developed in detail for a multi-layer tube wall including a frozen salt layer and with two fluid boundary-layer resistances. Conditions are discussed for which Sievert's or Henry's Law materials become flux limiters. An analytical model is developed to establish the tritium split between wall permeation and reactor-tube flow.

  3. Development of a solar thermal central heat receiver using molten salt

    NASA Astrophysics Data System (ADS)

    Tracey, T. R.

    1981-06-01

    The development and test of a 5 MWth solar heat receiver using a molten nitrate salt (60 percent NaNO3, 40 percent KNaNO3) as the heat transfer fluid is described. The application of the receiver concept in a central receiver solar power system is explained. The advantages of using molten nitrate salts as the receiver heat transfer fluid and the storage fluid are discussed. The problems associated with the receiver development including the need for high temperatures and combinations of creep and fatigue in the receiver tubes are discussed. Our approach to scaling from the 5 MWth test receiver to commercial receivers in the range of 200 MWth to 500 MWth is defined. The 5 MWth test system is described including the instrumentation used. The test facility which has a 60 m tower and 222 heliostats is described. The test results are presented. The receiver was in test for 500 hr at temperature and heat flux levels expected in commercial receiver systems.

  4. Mechanisms of absorption and desorption of CO2 by molten NaNO3-promoted MgO.

    PubMed

    Jo, Seung-Ik; An, Young-In; Kim, Kang-Yeong; Choi, Seo-Yeong; Kwak, Jin-Su; Oh, Kyung-Ryul; Kwon, Young-Uk

    2017-02-22

    In order to realize carbon capture and sequestration (CCS), a technology proposed to circumvent the global warming problem while maintaining the present level of economic activity, the development of efficient carbon-capturing agents is of prime importance. In addition to the prevailing amine-based agents that operate at temperatures lower than 200 °C, agents that can operate at higher temperatures are being considered to reduce the cost of CCS. For the mid-temperature (200-500 °C) operation, alkali nitrate-promoted MgO is a promising candidate; whose detailed reaction mechanisms are not yet fully understood, however. In the present study, we have performed a comprehensive investigation on the mechanisms of CO2 absorption and desorption of NaNO3-promoted MgO. Highly efficient CO2 absorbents were obtained by decomposing Mg5(CO3)4(OH)2·4H2O with NaNO3 intimately mixed with it. Our collective data, including isothermal CO2 uptake curves, MgO solubility in molten NaNO3, and observations on the reaction of MgO wafers with CO2, indicate that the absorption takes place in the molten NaNO3 medium in which both CO2 and MgO are dissolved. MgCO3 is formed inside the molten promoter through the nucleation and growth steps. The decomposition of MgCO3 back to MgO, that is desorption of CO2, is also facilitated by molten NaNO3, which we attribute to the decreased relative stability of MgCO3 with respect to MgO when in contact with molten NaNO3. The relative affinity of molten nitrate to MgO and MgCO3 was estimated by measuring the 'contact angles' of nitrate on them. Implications of our findings for the real applications of alkali nitrate-promoted MgO absorbents with numerous repeated cycles of absorption and desorption of CO2 are discussed.

  5. Computer-Based Coding of Occupation Codes for Epidemiological Analyses

    PubMed Central

    Russ, Daniel E.; Ho, Kwan-Yuet; Johnson, Calvin A.; Friesen, Melissa C.

    2014-01-01

    Mapping job titles to standardized occupation classification (SOC) codes is an important step in evaluating changes in health risks over time as measured in inspection databases. However, manual SOC coding is cost prohibitive for very large studies. Computer based SOC coding systems can improve the efficiency of incorporating occupational risk factors into large-scale epidemiological studies. We present a novel method of mapping verbatim job titles to SOC codes using a large table of prior knowledge available in the public domain that included detailed description of the tasks and activities and their synonyms relevant to each SOC code. Job titles are compared to our knowledge base to find the closest matching SOC code. A soft Jaccard index is used to measure the similarity between a previously unseen job title and the knowledge base. Additional information such as standardized industrial codes can be incorporated to improve the SOC code determination by providing additional context to break ties in matches. PMID:25221787

  6. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    SciTech Connect

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  7. Activation energy-activation volume master plots for ion transport behavior in polymer electrolytes and supercooled molten salts.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W

    2005-09-08

    We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.

  8. Steam methane reforming in molten carbonate salt. Final report

    SciTech Connect

    Erickson, D.C.

    1996-05-01

    This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

  9. Review of literature surface tension data for molten silicon

    NASA Technical Reports Server (NTRS)

    Hardy, S.

    1981-01-01

    Measurements of the surface tension of molten silicon are reported. For marangoni flow, the important parameter is the variation of surface tension with temperature, not the absolute value of the surface tension. It is not possible to calculate temperature coefficients using surface tension measurements from different experiments because the systematic errors are usually larger than the changes in surface tension because of temperature variations. The lack of good surface tension data for liquid silicon is probably due to its extreme chemical reactivity. A material which resists attack by molten silicon is not found. It is suggested that all of the sessile drip surface tension measurements are probably for silicon which is contaminated by the substrate materials.

  10. Uranium (III) precipitation in molten chloride by wet argon sparging

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  11. Solids concentration measurements in molten wax by an ultrasonic technique

    SciTech Connect

    Soong, Y.; Gamwo, I.K.; Blackwell, A.G.; Schehl, R.R.; Zarochak, M.F.

    1994-12-31

    The application of the three-phase slurry reactor system to coal liquefaction processing and chemical industries has recently received considerable attention. To design and efficiently operate a three-phase slurry reactor, the degree of dispersion of the solid (catalyst) in the reactor should be understood. The solids distribution within the reactor greatly affects its performance. An ultrasonic technique is under development for measuring solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 189 C. The data show that the velocity and attenuation of the sound are well-defined functions of the solid and gas concentrations in the molten wax.

  12. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  13. Molten salt treatment to minimize and optimize waste

    SciTech Connect

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-07-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability.

  14. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  15. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  16. Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique

    PubMed Central

    Angappan, S.; Kalaiselvi, N.; Sudha, R.; Visuvasam, A.

    2014-01-01

    The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF–B2O3–MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm2. The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed. PMID:27350961

  17. MAG-GATE System for Molten metal Flow Control

    SciTech Connect

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  18. Molten metal analysis by laser produced plasmas. Technical progress report

    SciTech Connect

    Kim, Yong W.

    1994-02-01

    A new method of molten metal analysis, based on time- and space-resolved spectroscopy of a laser-produced plasma (LPP) plume of a molten metal surface, has been implemented in the form of a prototype LPP sensor-probe, allowing in-situ analysis in less than 1 minute. The research at Lehigh University has been structured in 3 phases: laboratory verification of concept, comparison of LPP method with conventional analysis of solid specimens and field trials of prototype sensor-probe in small-scale metal shops, and design/production/installation of two sensor-probes in metal production shops. Accomplishments in the first 2 phases are reported. 6 tabs, 3 figs.

  19. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    NASA Astrophysics Data System (ADS)

    Gurevich, L.; Pronichev, D.; Trunov, M.

    2016-02-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured.

  20. Wetting and Spreading of Molten Volcanic Ash in Jet Engines.

    PubMed

    Song, Wenjia; Lavallée, Yan; Wadsworth, Fabian B; Hess, Kai-Uwe; Dingwell, Donald B

    2017-04-20

    A major hazard to jet engines posed by volcanic ash is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Here, using the sessile drop method, we study the evolution of the wettability and spreading of volcanic ash. We employ rapid temperature changes up to 1040-1450 °C, to replicate the heating conditions experienced by volcanic ash entering an operating jet engine. In this scenario, samples densify as particles coalesce under surface tension until they form a large system-sized droplet (containing remnant gas bubbles and crystals), which subsequently spreads on the surface. The data exhibit a transition from a heterogeneous to a homogeneous wetting regime above 1315 °C as crystals in the drops are dissolved in the melt. We infer that both viscosity and microstructural evolution are key controls on the attainment of equilibrium in the wetting of molten volcanic ash droplets.

  1. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.

    PubMed

    Matta, Chérif F; Bader, Richard F W

    2003-08-15

    volume contributions) yielding linear regressions with r2 values of 0.78 and 0.89, respectively. These results are a prelude to the single-site mutation-induced changes in the stabilities of two typical proteins: ubiquitin and staphylococcal nuclease. Strong quadratic correlations (r2 approximately 0.9) were obtained between DeltaCSI upon mutation and each of the two terms DeltaDeltaH and TDeltaDeltaS taken from recent and accurate differential scanning calorimetry experiments on ubiquitin. When the two terms are summed to yield DeltaDeltaG, the quadratic terms nearly cancel, and the result is a simple linear fit between DeltaDeltaG and DeltaCSI with r2 = 0.88. As another example, the change in the stability of staphylococcal nuclease upon mutation has been fitted linearly (r2 = 0.83) to the sum of a DeltaCSI term and a term representing the change in the van der Waals volume of the side chains upon mutation. The suggested correlation of the polarity of the side chain with the second letter of the AA triplet genetic codon is given concrete expression in a classification of the side chains in terms of their CSI values and their group dipole moments. For example, all amino acids with a pyrimidine base as their second letter in mRNA possess side-chain CSI < or = 2.8 (with the exception of Cys), whereas all those with CSI > 2.8 possess an purine base. The article concludes with two proposals for measuring and predicting molecular complementarity: van der Waals complementarity expressed in terms of the van der Waals isodensity surface and Lewis complementarity expressed in terms of the local charge concentrations and depletions defined by the topology of the Laplacian of the electron density. A display of the experimentally accessible Laplacian distribution for a folded protein would offer a clear picture of the operation of the "stereochemical code" proposed as the determinant in the folding process.

  2. Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2

    SciTech Connect

    Not Available

    1993-03-01

    This is a report of the maintenance, refurbishment, modifications, and off-line circuit component testing of the integrated test circuit of the Molten-Caustic-Leaching (MCL or Gravimelt) process for the desulfurization and demineralization of coal. The project is sponsored by the Pittsburgh Energy Technology Center of the US Department of Energy under Contract No. DE-AC22-86-PC91257.

  3. Molten carbonate fuel cell reduction of nickel deposits

    DOEpatents

    Smith, James L.; Zwick, Stanley A.

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  4. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  5. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  6. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  7. Charging Hydrogen into Ni in Hydride-Containing Molten Salts

    DTIC Science & Technology

    1994-01-01

    on Cold Fusion (ICCF-4) December 6-9, 1993, Lahaina, Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology...on Cold Fusion , ICCF-4 December 6-9, 1993, Lahaina, Hawaii CHARGING HYDROGEN INTO Ni IN HYDRIDE-CONTAINING MOLTEN SALTS Bor Yann Liaw and Yi Ding...Development in the University of Hawaii. References 1. R. T. Bush. "A Light Water Excess Heat Reaction Suggests that " Cold Fusion " May Be "Alkali

  8. Polaron theory of electrons solvated in molten salts

    NASA Astrophysics Data System (ADS)

    Malescio, G.; Parrinello, M.

    1987-01-01

    A suitably modified version of the polaron theory of Chandler et al. [J. Chem. Phys. 81, 1975 (1984)] is applied to the study of the solvation of electrons in molten salts. The results obtained compare favorably with recent numerical simulations and confirm the picture of the formation in the melt of an F-center analog. A novel expression for the explicit evaluation of the electron kinetic energy is given.

  9. Non-segregating electrolytes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Kaun, T.; Lanagan, M.

    1996-08-01

    Current MCFCs use a Li/K carbonate mixture; the segregation increases the K concentration near the cathode, leading to increase cathode solubility and performance decline. ANL is developing molten carbonates that have minimal segregation; the approach is using Li-Na carbonates. In screening tests, fully developed potential distributions were obtained for 4 Li/Na compositions, and performance data were used to compare these.

  10. METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1960-08-16

    Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

  11. Electrochemical and Spectroscopic Investigation of Molten Chloroaluminates and Related Solvents

    DTIC Science & Technology

    1988-11-07

    melts. A test cell using molten FeC13 -NaCl in contact with a P"-alumina separator performed very poorly; the internal resistance rose rapidly and...such operations. Results of these preliminary investigations indicate that reduction of the NiF2 to metallic Ni is a reversible, diffusion- controlled...respectively, are probably indicative of an ohmic potential drop across the OTE due to the high resistance of the thin solution layer (5). Peak current ratios

  12. Thermocapillary-induced breakup of molten cladding films

    SciTech Connect

    Henkel, P.R.

    1987-06-01

    The fragmentation of molten cladding films into rivulets and single waves is investigated. This problem is especially relevant to liquid-metal fast breeder reactor safety analysis because of its impact on the flow regime of the clad metal. Among other effects, various instabilities may contribute to film breakup. In the axial direction, the Kelvin-Helmholtz instability can arise. As the Sandia transient axial relocation experiments frequently exhibit, an azimuthal fragmentation process also occurs. Consequently, another instability due to thermocapillarity is proposed.

  13. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  14. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  15. Evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants

    SciTech Connect

    Vidt, E.J.; Jablonski, G.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1981-12-01

    This interim report satisfies the Task B requirement to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The configurations studied include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation. Cleanup systems not chosen by DOE's MCFC contractors, General Electric and United Technologies, Inc., for their MCFC power plant work by virtue of the resource requirements of those systems for commercial development were chosen for detailed study in Tasks C and D of this contract. Such systems include Westinghouse fluidized-bed gasification, air and oxygen blown, Rockwell molten carbonate air-blown gasification, METC iron oxide desulfurization, and dolomitic desulfurization. In addition, for comparison, gasification systems such as the Texaco entrained and the British Gas/Lurgi slagging units, along with wet scrubbing by Rectisol II, have also been chosen for detailed study.

  16. Report number codes

    SciTech Connect

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  17. Prebiotic formation of polyamino acids in molten urea

    NASA Astrophysics Data System (ADS)

    Mita, H.; Nomoto, S.; Terasaki, M.; Shimoyama, A.; Yamamoto, Y.

    2005-04-01

    It is important for research into the origins of life to elucidate polyamino acid formation under prebiotic conditions. Only a limited set of amino acids has been reported to polymerize thermally. In this paper we demonstrate a novel thermal polymerization mechanism in a molten urea of alkylamino acids (i.e. glycine, alanine, β-alanine, α-aminobutyric acid, valine, norvaline, leucine and norleucine), which had been thought to be incapable of undergoing thermal polymerization. Also, aspartic acid was found to polymerize in molten urea at a lower temperature than that at which aspartic acid alone had previously been thermally polymerized. Individual oligomers produced in heating experiments on urea-amino acid mixtures were analysed using a liquid chromatograph mass spectrometer. Major products in the reaction mixture were three different types of polyamino acid derivatives: N-carbamoylpolyamino acids, polyamino acids containing a hydantoin ring at the N-terminal position and unidentified derivatives with molecular weights that were greater by 78 than those of the corresponding peptide forms. The polymerization reaction occurred by taking advantage of the high polarity of molten urea as well as its dehydrating ability. Under the presumed prebiotic conditions employed here, many types of amino acids were thus revealed to undergo thermal polymerization.

  18. Density functional theory study of oxygen migration in molten carbonate

    NASA Astrophysics Data System (ADS)

    Lei, Xueling; Haines, Kahla; Huang, Kevin; Qin, Changyong

    2016-02-01

    The process of oxygen migration in alkali molten carbonate salts has been examined using density functional theory method. All geometries were optimized at the B3LYP/6-31G(d) level, while single point energy corrections were performed using MP4 and CCSD(T). At TS, a O-O-O linkage is formed and O-O bond forming and breaking is concerted. A cooperative "cogwheel" mechanism as described in the equation of CO42- + CO32- → CO32- ⋯O ⋯ CO32- → CO32- + CO42- is involved. The energy barrier is calculated to be 103.0, 136.3 and 127.9 kJ/mol through an intra-carbonate pathway in lithium, sodium and potassium carbonate, respectively. The reliability and accuracy of B3LYP/6-31G(d) were confirmed by CCSD(T). The calculated low values of activation energy indicate that the oxygen transfer in molten carbonate salts is fairly easy. In addition, it is found that lithium carbonate is not only a favorable molten carbonate salt for better cathode kinetics, but also it is widely used for reducing the melting point of Li/Na and Li/K eutectic MC mixtures. The current results imply that the process of oxygen reduction in MC modified cathodes is facilitated by the presence of MC, resulting in an enhancement of cell performance at low operating temperatures.

  19. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  20. Pipe Poiseuille flow of viscously anisotropic, partially molten rock

    NASA Astrophysics Data System (ADS)

    Allwright, Jane; Katz, Richard F.

    2014-12-01

    Laboratory experiments in which synthetic, partially molten rock is subjected to forced deformation provide a context for testing hypotheses about the dynamics and rheology of the mantle. Here our hypothesis is that the aggregate viscosity of partially molten mantle is anisotropic, and that this anisotropy arises from deviatoric stresses in the rock matrix. We formulate a model of pipe Poiseuille flow based on theory by Takei & Holtzman and Takei & Katz. Pipe Poiseuille is a configuration that is accessible to laboratory experimentation but for which there are no published results. We analyse the model system through linearized analysis and numerical simulations. This analysis predicts two modes of melt segregation: migration of melt from the centre of the pipe towards the wall and localization of melt into high-porosity bands that emerge near the wall, at a low angle to the shear plane. We compare our results to those of Takei & Katz for plane Poiseuille flow; we also describe a new approximation of radially varying anisotropy that improves the self-consistency of models over those of Takei & Katz. This study provides a set of baseline, quantitative predictions to compare with future laboratory experiments on forced pipe Poiseuille flow of partially molten mantle.

  1. CO2 decomposition using electrochemical process in molten salts

    NASA Astrophysics Data System (ADS)

    Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2012-08-01

    The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.

  2. Electromagnetic confinement for vertical casting or containing molten metal

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  3. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  4. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  5. Reconstruction in 3D of the fast wave fields in ITER, DIII-D, C-Mod and NSTX, including the coupling of full-wave and particle codes to resolve finite orbit effects

    SciTech Connect

    Green, David L; Jaeger, Erwin Frederick; Berry, Lee A; Choi, M.

    2009-01-01

    The rf-SciDAC collaboration is developing computer simulations to predict the damping of radio frequency (rf) waves in fusion plasmas. Here we extend self-consistent quasi-linear calculations of ion cyclotron resonant heating to include the finite drift of ions from magnetic flux surfaces and rf induced spatial transport. The all-orders spectral wave solver AORSA is iteratively coupled with a particle based update of the plasma distribution function using a quasi-linear diffusion tersor representative of the (k) over right arrow spectrum. Initial results are presented for a high power minority heating scenario on the Alcator C-Mod tokamak and a high harmonic beam heating scenario on DIII-D. Finite orbit effects are shown to give a less peaked perpendicular energy profile and rf induced transport.

  6. On lossless coding for HEVC

    NASA Astrophysics Data System (ADS)

    Gao, Wen; Jiang, Minqiang; Yu, Haoping

    2013-02-01

    In this paper, we first review the lossless coding mode in the version 1 of the HEVC standard that has recently finalized. We then provide a performance comparison between the lossless coding mode in the HEVC and MPEG-AVC/H.264 standards and show that the HEVC lossless coding has limited coding efficiency. To improve the performance of the lossless coding mode, several new coding tools that were contributed to JCT-VC but not adopted in version 1 of HEVC standard are introduced. In particular, we discuss sample based intra prediction and coding of residual coefficients in more detail. At the end, we briefly address a new class of coding tools, i.e., a dictionary-based coder, that is efficient in encoding screen content including graphics and text.

  7. Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association?

    PubMed

    Harris, Kenneth R

    2016-12-01

    There have long been arguments supporting the concept of ion association in molten salts and ionic liquids, largely based on differences between the conductivity and that predicted from self-diffusion coefficients by the Nernst-Einstein equation for noninteracting ions. It is known from molecular dynamics simulations that even simple models based on charged hard spheres show such a difference due to the (anti)-correlation of ion motions. Formally this is expressed as a difference between the velocity cross-correlation coefficient of the oppositely charged ions and the mean of those for the two like-charged ions. This article examines molten salt and ionic liquid transport property data, comparing simple and model associated salts (ZnCl2, PbCl2, and TlCl) including weakly dissociated molecular liquids (H2O, HCOOH, H2SO4). Analysis employing Laity resistance coefficients (rij) shows that the common ion-association rationalization is flawed, consistent with recent direct measurements of the degree of ionicity in ionic liquid chlorides and with theoretical studies. However, the protic ionic liquids [PyrOMe][BF4] and [DBUH][CH3SO3] have larger than usual NE deviation parameters (>0.5), and large negative like-ion rii, analogous to those of ZnCl2. Structural, spectroscopic, and theoretical studies are suggested to determine whether these are indeed genuine examples of association.

  8. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  9. A test for Io's magma ocean: Modeling tidal dissipation with a partially molten mantle

    NASA Astrophysics Data System (ADS)

    Bierson, C. J.; Nimmo, F.

    2016-11-01

    Magnetic induction measurements and astrometry provide constraints on the internal structure of Io, a volcanically active moon of Jupiter. We model the tidal response of a partially molten Io using an Andrade rheology which is supported by silicate deformation experiments. This model uses material properties similar to the Earth's mantle and includes feedbacks between partial melting, tidal heat production, and melt transport. We are able to satisfy constraints provided by the measured imaginary part of the tidal Love number Im(k2), the inferred depth and melt fraction of a near-surface partially molten layer, and the observed equatorial concentration of volcanic landforms. We predict a value for the real part of the tidal Love number of Re(k2) = 0.09 ± 0.02, much smaller than the value of Re(k2)≈0.5 predicted for an Io with a fluid magma ocean. Future spacecraft observations should be able to measure this value and test which model is correct.

  10. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium–nickel chloride (ZEBRA) battery is operated at relatively high temperature (250–350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β"-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. Finally, the cells also exhibited stable cycling performance even at 150 °C.

  11. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    PubMed

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    SciTech Connect

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  13. Analysis of the molten/solidified zone in selective laser melted parts

    NASA Astrophysics Data System (ADS)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Contuzzi, Nicola; Angelastro, Andrea; Ludovico, Antonio D.

    2014-02-01

    The process of Selective Laser Melting (SLM) is an innovative technology for rapid prototyping that can be included among the SFF (Solid Freeform Fabrication) techniques, which are characterized by "free-form" manufacturing of solid parts. SLM is an additive technology that operates starting from the data encoded in the three-dimensional computer aided design (CAD) file of the component to be built. After the slicing operation made on the 3D model of the component, the consequent data file is sent to a computer-controlled laser device that fuses successive layers of metal powder to create the three-dimensional product. The SLM is a technological process which involves optical, thermal and solidification phenomena; thus the analysis of the process is rather complex. This work aims to study the molten/solidified zone in SLM samples through the experimental analysis of the shape and the size of laser tracks. The functional relationships between dimensional parameter of the molten/solidified track and the main parameters used to control the process was identified.

  14. Corrosion of Ferritic Steels in High Temperature Molten Salt Coolants for Nuclear Applications

    SciTech Connect

    Farmer, J; El-Dasher, B; de Caro, M S; Ferreira, J

    2008-11-25

    Corrosion of ferritic steels in high temperature molten fluoride salts may limit the life of advanced reactors, including some hybrid systems that are now under consideration. In some cases, the steel may be protected through galvanic coupling with other less noble materials with special neutronic properties such a beryllium. This paper reports the development of a model for predicting corrosion rates for various ferritic steels, with and without oxide dispersion strengthening, in FLiBe (Li{sub 2}BeF{sub 4}) and FLiNaK (Li-Na-K-F) coolants at temperatures up to 800 C. Mixed potential theory is used to account for the protection of steel by beryllium, Tafel kinetics are used to predict rates of dissolution as a function of temperature and potential, and the thinning of the mass-transfer boundary layer with increasing Reynolds number is accounted for with dimensionless correlations. The model also accounts for the deceleration of corrosion as the coolants become saturated with dissolved chromium and iron. This paper also reports electrochemical impedance spectroscopy of steels at their corrosion potentials in high-temperature molten salt environments, with the complex impedance spectra interpreted in terms of the interfacial charge transfer resistance and capacitance, as well as the electrolyte conductivity. Such in situ measurement techniques provide valuable insight into the degradation of materials under realistic conditions.

  15. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-01

    The sodium-nickel chloride (ZEBRA) battery is operated at relatively high temperature (250-350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β″-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150 °C.

  16. Molten salt destruction as an alternative to open burning of energetic material wastes

    SciTech Connect

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-07-05

    LLNL has built a small-scale (about 1 kg/hr throughput unit to test the destruction of energetic materials using the Molten Salt Destruction (MSD) process. We have modified the unit described in the earlier references to inject energetic waste material continuously into the unit. In addition to the HMX, other explosives we have destroyed include RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. We have also destroyed a liquid gun propellant comprising hydroxyl ammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, we have destroyed a number of commonly used formulations, such as LX-10 (HMX/Viton), LX-16 (PETN/FPC461, LX-17 (TATB/Kel F), and PBX-9404 (HMX)/CEF/Nitro cellulose). Our experiments have demonstrated that energetic materials can be safely and effectively treated by MSD.We have also investigated the issue of steam explosions in molten salt units, both experimentally and theoretically, and concluded that steam explosions can be avoided under proper design and operating conditions. We are currently building a larger unit (nominal capacity 5 kg/hr,) to investigate the relationship between residence time, temperature, feed concentration and throughputs, avoidance of back-burn, a;nd determination of the products of combustion under different operating conditions.

  17. Sonic resonator control and method for determining component concentration in multiple component molten liquids

    DOEpatents

    Shen, Sin-Yan

    1984-01-01

    This invention teaches a control to be used in smelting aluminum by the electrolysis breakdown of alumina (A1.sub.2 O.sub.3) in a molten electrolyte heated to approximately 950.degree.-1000.degree. C. The invention provides a sonic resonator and control that can accurately detect the resonant frequency of the resonator in the molten electrolyte. The resonator preferably is made with tubular side wall 1/4 of the sonic wavelength, or is a quarter wave resonator. A wave generator inputs a signal having a range of frequencies that includes the resonant frequency, so that a peak resonant output at the resonant frequency can be detected on an oscilloscope or like detector. This instantaneous resonant frequency is then checked against an accurate data base correlating the resonant frequencies of the resonator in the electrolyte at specific alumina concentrations normally experienced throughout the electrolysis cycle. The electrolysis cycle can thus be controlled and recharged at any predetermined low alumina concentration greater than where the anode effect phase of the cycle normally might begin.

  18. Effect of mold designs on molten metal behaviour in high-pressure die casting

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  19. SASSYS LMFBR systems code

    SciTech Connect

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time.

  20. Distribution of melt during Poiseuille flow of partially molten rocks

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Dillman, Amanda; Kohlstedt, David

    2016-04-01

    The mechanisms of melt extraction from the Earth's partially molten mantle are a key factor in the chemical and physical evolution of our planet and therefore are the topic of intense research. Since such processes cannot be observed directly, most of our understanding of the dynamics of partially molten rock relies on numerical models. Laboratory experiments are important for testing the validity of models at scales that we can observe. We designed a set of experiments to investigate the role of viscous anisotropy on melt segregation in partially molten rocks through Poiseuille flow. Partially molten rock samples composed of forsterite plus a few percent melt of different composition (anorthite, albite or lithium silicate) were prepared from high-purity nano-powders and taken to T = 1300oC at P = 0.1 MPa. The melt composition was varied in order to vary its viscosity. The partially molten samples were then extruded through a channel of circular cross section under a fixed pressure gradient. Different extrusion assemblies and consequently different flow geometries were explored. The melt distribution in the channel was subsequently mapped using image analysis on backscattered electron microscopy images and energy dispersive x-ray spectroscopy maps. In all experiments, melt segregates from the center toward the outer radius of the channel with the melt fraction at the outer radius increasing to at least twice that at the center. Furthermore, melt enriched areas are also observed in the center of the channel. The shape of the melt distribution depends on the extrusion geometry and on the melt viscosity. The segregation of melt toward the outer radius of the channel is consistent with the base-state melt segregation as predicted by viscous anisotropy theory developed by Takei and Holtzman (2009) and Takei and Katz (2014). However, the melt distribution profiles observed in our experiments have steeper gradients than the base-state melt segregation profiles described