Sample records for code thermal envelope

  1. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Kessler, B.; Mullens, M.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  2. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Kessler, B.; Mullens, M.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  3. Stud Walls With Continuous Exterior Insulation for Factory Built Housing: New York, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research - stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  4. Technology Solutions Case Study: Stud Walls with Continuous Exterior Insulation for Factory Built Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  5. Effects from the Reduction of Air Leakage on Energy and Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E.; Childs, Phillip W.; Atchley, Jerald Allen

    2014-01-01

    Buildings are responsible for approximately 40% of the energy used in the US. Codes have been increasing building envelope requirements, and in particular those related to improving airtightness, in order to reduce energy consumption. The main goal of this research was to evaluate the effects from reductions in air leakage on energy loads and material durability. To this end, we focused on the airtightness and thermal resistance criteria set by the 2012 International Energy Conservation Code (IECC).

  6. The environment of the fast rotating star Achernar. II. Thermal infrared interferometry with VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Domiciano de Souza, A.; Kanaan, S.; Meilland, A.; Spang, A.; Stee, Ph.

    2009-01-01

    Context: As is the case of several other Be stars, Achernar is surrounded by an envelope, recently detected by near-IR interferometry. Aims: We search for the signature of circumstellar emission at distances of a few stellar radii from Achernar, in the thermal IR domain. Methods: We obtained interferometric observations on three VLTI baselines in the N band (8-13 μm), using the MIDI instrument. Results: From the measured visibilities, we derive the angular extension and flux contribution of the N band circumstellar emission in the polar direction of Achernar. The interferometrically resolved polar envelope contributes 13.4 ± 2.5% of the photospheric flux in the N band, with a full width at half maximum of 9.9 ± 2.3 mas (≈6 R_star). This flux contribution is in good agreement with the photometric IR excess of 10-20% measured by fitting the spectral energy distribution. Due to our limited azimuth coverage, we can only establish an upper limit of 5-10% for the equatorial envelope. We compare the observed properties of the envelope with an existing model of this star computed with the SIMECA code. Conclusions: The observed extended emission in the thermal IR along the polar direction of Achernar is well reproduced by the existing SIMECA model. Already detected at 2.2 μm, this polar envelope is most probably an observational signature of the fast wind ejected by the hot polar caps of the star. Based on observations made with ESO Telescopes at Paranal Observatory under programs 078.D-0295(C), (D) and (E). Table 2 is only available in electronic form at http://www.aanda.org

  7. Beam-dynamics codes used at DARHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Jr., Carl August

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  8. Preserving Envelope Efficiency in Performance Based Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less

  9. Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.

    2014-01-01

    While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545

  10. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    PubMed

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate anatomically distinct cortical representations of modulated noise in normal-hearing and hearing-impaired listeners. This work provides the first link among hearing thresholds, the amplitude of cortical representations of modulated sounds, and the ability to understand speech in modulated background noise. In light of previous work, we propose that magnified cortical representations of modulated sounds disrupt the separation of speech from modulated background noise in auditory cortex. Copyright © 2017 Millman et al.

  11. The impact of heat blanketing envelopes on neutron stars cooling

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.; Fortin, M.; Haensel, P.; Zdunik, J. L.

    2017-11-01

    The goal of this work is to investigate the effects of chemical composition of heat blanketing envelopes of neutron stars on their thermal states and thermal evolution. To this purpose, we employ newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard “onion-like” envelope. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study cooling of neutron stars. We show that uncertainties in the chemical composition of the envelopes can lead up to ~ 2.5 times uncertainty of the internal temperature of the star which significantly complicates theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  12. Use of cost-effectiveness and comfort bases for selecting from among alternative envelope design strategies for a high-rise office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, A.F.; Heerwagen, D.R.; Johnson, B.R.

    1981-01-01

    A continuing study of the thermal performance of a prototypical urban high-rise office building is reported. A series of alternative envelope compositions is evaluated in terms of occupant thermal comfort and benefit-cost issues. The thermal behavior of a perimeter single-person office with these envelopes is simulated using the computer program UWENSOL. Envelope variables included in the study are: percentage of glazing, types of glazing and glazing assemblies, and the mass and resistance of the opaque envelope. Annual energy consumptions are derived and, using a savings-to-investment ratio, the economic desirabilities of the various compositions are determined. Also, by employing the computermore » routine COMFORT which is based on the Fanger Comfort Equation, the extents of likely occupant comfort for the several envelopes are predicted.« less

  13. Concept and performance study of turbocharged solid propellant ramjet

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Liu, Kai; Liu, Yang; Liu, Shichang

    2018-06-01

    This study proposes a turbocharged solid propellant ramjet (TSPR) propulsion system that integrates a turbocharged system consisting of a solid propellant (SP) air turbo rocket (ATR) and the fuel-rich gas generator of a solid propellant ramjet (SPR). First, a suitable propellant scheme was determined for the TSPR. A solid hydrocarbon propellant is used to generate gas for driving the turbine, and a boron-based fuel-rich propellant is used to provide fuel-rich gas to the afterburner. An appropriate TSPR structure was also determined. The TSPR's thermodynamic cycle was analysed to prove its theoretical feasibility. The results showed that the TSPR's specific cycle power was larger than those of SP-ATR and SPR and thermal efficiency was slightly less than that of SP-ATR. Overall, TSPR showed optimal performance in a wide flight envelope. The specific impulses and specific thrusts of TSPR, SP-ATR, and SPR in the flight envelope were calculated and compared. TSPR's flight envelope roughly overlapped that of SP-ATR, its specific impulse was larger than that of SP-ATR, and its specific thrust was larger than those of SP-ATR and SPR. Attempts to improve the TSPR off-design performance prompted our proposal of a control plan for off-design codes in which both the turbocharger corrected speed and combustor excess gas coefficient are kept constant. An off-design performance model was established by analysing the TSPR working process. We concluded that TSPR with a constant corrected speed had wider flight envelope, higher thrust, and higher specific impulse than TSPR with a constant physical speed determined by calculating the performance of off-design TSPR codes under different control plans. The results of this study can provide a reference for further studies on TSPRs.

  14. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  15. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOEpatents

    Siminovitch, Michael J.

    1992-01-01

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.

  16. Neural coding of sound envelope in reverberant environments.

    PubMed

    Slama, Michaël C C; Delgutte, Bertrand

    2015-03-11

    Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbit using sinusoidally amplitude modulated (AM) broadband noise stimuli presented in simulated anechoic and reverberant environments. Although reverberation degraded both rate and temporal coding of AM in IC neurons, in most neurons, the degradation in temporal coding was smaller than the AM attenuation in the stimulus. This compensation could largely be accounted for by the compressive shape of the modulation input-output function (MIOF), which describes the nonlinear transformation of modulation depth from acoustic stimuli into neural responses. Additionally, in a subset of neurons, the temporal coding of AM was better for reverberant stimuli than for anechoic stimuli having the same modulation depth at the ear. Using hybrid anechoic stimuli that selectively possess certain properties of reverberant sounds, we show that this reverberant advantage is not caused by envelope distortion, static interaural decorrelation, or spectral coloration. Overall, our results suggest that the auditory system may possess dual mechanisms that make the coding of amplitude envelope relatively robust in reverberation: one general mechanism operating for all stimuli with small modulation depths, and another mechanism dependent on very specific properties of reverberant stimuli, possibly the periodic fluctuations in interaural correlation at the modulation frequency. Copyright © 2015 the authors 0270-6474/15/354452-17$15.00/0.

  17. The Betelgeuse Project II: Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nance, S.; Sullivan, J. M.; Diaz, M.; Wheeler, J. Craig

    2018-06-01

    We explore the question of whether the interior state of massive red supergiant supernova progenitors can be effectively probed with asteroseismology. We have computed a suite of ten models with ZAMS masses from 15 to 25 M⊙ in intervals of 1 M⊙ including the effects of rotation, with the stellar evolutionary code MESA. We estimate characteristic frequencies and convective luminosities of convective zones at two illustrative stages, core helium burning and off-center convective carbon burning. We also estimate the power that might be delivered to the surface to modulate the luminous output considering various efficiencies and dissipation mechanisms. The inner convective regions should generate waves with characteristic periods of ˜ 20 days in core helium burning, ˜10 days in helium shell burning, and 0.1 to 1 day in shell carbon burning. Acoustic waves may avoid both shock and diffusive dissipation relatively early in core helium burning throughout most of the structure. In shell carbon burning, years before explosion, the signal generated in the helium shell might in some circumstances be weak enough to avoid shock dissipation, but is subject to strong thermal dissipation in the hydrogen envelope. Signals from a convective carbon-burning shell are very likely to be even more severely damped by within the envelope. In the most optimistic case, early in core helium burning, waves arriving close to the surface could represent luminosity fluctuations of a few millimagnitudes, but the conditions in the very outer reaches of the envelope suggest severe thermal damping there.

  18. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOEpatents

    Siminovitch, M.J.

    1992-11-10

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.

  19. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous-state analysis" (that provides the only energy performance of the structure) and considering the "building-equipments" as a system (which provides the overall performance of the "building system"). The first analysis shows as the absence of thermal mass and the envelope super-heating prevent to incoming heat to exit, overheating the indoor environment. The analysis of the overall performance of the "building system" highlights, instead, as the thermal load is much greater during the summer than in winter; this means that, using a low inertia envelopes, the energy saved in the winter can be used to satisfy the thermal performance in the summer. This is further demonstrated by comparing the performance of indoor temperatures and the relative energy consumption of a similar building with greater thermal inertia. Further analysis involved a critical comparison between the "semisteady-state analysis" ("CasaClima" methodology) and the analysis in dynamic conditions (using "Energy Plus" software).

  20. Magnetic neutron star cooling and microphysics

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Chabrier, G.

    2018-01-01

    Aims: We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their crusts. Methods: We use a finite-difference code for simulation of neutron-star thermal evolution on timescales from hours to megayears with an updated microphysics input. The consideration of short timescales (≲1 yr) is made possible by a treatment of the heat-blanketing envelope without the quasistationary approximation inherent to its treatment in traditional neutron-star cooling codes. For the strongly magnetized neutron stars, we take into account the effects of Landau quantization on thermodynamic functions and thermal conductivities. We simulate cooling of ordinary neutron stars and magnetars with non-accreted and accreted crusts and compare the results with observations. Results: Suppression of radiative and conductive opacities in strongly quantizing magnetic fields and formation of a condensed radiating surface substantially enhance the photon luminosity at early ages, making the life of magnetars brighter but shorter. These effects together with the effect of strong proton superfluidity, which slows down the cooling of kiloyear-aged neutron stars, can explain thermal luminosities of about a half of magnetars without invoking heating mechanisms. Observed thermal luminosities of other magnetars are still higher than theoretical predictions, which implies heating, but the effects of quantizing magnetic fields and baryon superfluidity help to reduce the discrepancy.

  1. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual formation of a gas planet.

  2. Interior thermal insulation systems for historical building envelopes

    NASA Astrophysics Data System (ADS)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  3. The polarization signature from the circumstellar disks of classical Be stars

    NASA Astrophysics Data System (ADS)

    Halonen, R. J.; Jones, C. E.

    2012-05-01

    The scattering of light in the nonspherical circumstellar envelopes of classical Be stars produces distinct polarimetric properties that can be used to investigate the physical nature of the scattering environment. Both the continuum and emission line polarization are potentially important diagnostic tools in the modeling of these systems. We combine the use of a new multiple scattering code with an established non-LTE radiative transfer code to study the characteristic wavelength-dependence of the intrinsic polarization of classical Be stars. We construct models using realistic chemical composition and self-consistent calculations of the thermal structure of the disk, and then determine the fraction of emergent polarized light. In particular, the aim of this theoretical research project is to investigate the effect of gas density and metallicity on the observed polarization properties of classical Be stars.

  4. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Mullens, M.; Rath, P.

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysismore » of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less

  6. Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco

    NASA Astrophysics Data System (ADS)

    Kharbouch, Yassine; Mimet, Abdelaziz; El Ganaoui, Mohammed; Ouhsaine, Lahoucine

    2018-07-01

    This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs' integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.

  7. Thermal structure and cooling of neutron stars with magnetized envelopes

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Yakovlev, D. G.

    2001-07-01

    The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (Tint) and local surface temperatures is calculated and fitted by analytic expressions for magnetic field strengths B from 0 to 1016 G and arbitrary inclination of the field lines to the surface. The luminosity of a neutron star with dipole magnetic field is calculated and fitted as a function of B, Tint, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the effects of the magnetic field of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.

  8. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    NASA Astrophysics Data System (ADS)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  9. Lithospheric strength of Ganymede: Clues to early thermal profiles from extensional tectonic features

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1985-01-01

    While it is generally agreed that the strength of a planet's lithosphere is controlled by a combination of brittle sliding and ductile flow laws, predicting the geometry and initial characteristics of faults due to failure from stresses imposed on the lithospheric strength envelope has not been thoroughly explored. Researchers used lithospheric strength envelopes to analyze the extensional features found on Ganymede. This application provides a quantitative means of estimating early thermal profiles on Ganymede, thereby constraining its early thermal evolution.

  10. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    PubMed

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  11. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    NASA Astrophysics Data System (ADS)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  12. Buoyancy-induced flow studies in thermally stratified loop of a double-envelope building

    NASA Astrophysics Data System (ADS)

    Ghaffari, H. T.; Jones, R. F.

    There is a wide interest in the flow studies of thermally stratified loops of double-envelope houses. These loops primarily serve to hold a moderate air temperature around the inner buildings, and to reduce thermal losses and air movements into the house by diminishing infiltration. Further, if the thermal mechanism of the buildng is well designed, it may be possible to cause a solar-assisted, buoyancy-induced cycling of the flow during the day and a probable reverse cycling during the night. The benefits of this flow pattern are a possible storage of heat in the ground level of the crawl space during the day, its retrieval at night, and a better mixing of warmed air in various zones of the loop. The double-envelope section of the buildng was monitored from October 1981 to October 1982. Data collected were debugged and the monitoring system was adjusted and calibrated. Results from this experiment concerning significant local flows are analyzed. Hence, a validation of the conceptual thermal mechanism is obtained, and empirical and analytical assessments are compared.

  13. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  14. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  15. Recertification of the air and methane storage vessels at the Langley 8-foot high-temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Girouard, R. L.; Young, C. P., Jr.; Petley, D. H.; Hudson, J. L., Jr.; Hudgins, J. L.

    1977-01-01

    This center operates a number of sophisticated wind tunnels in order to fulfill the needs of its researchers. Compressed air, which is kept in steel storage vessels, is used to power many of these tunnels. Some of these vessels have been in use for many years, and Langley is currently recertifying these vessels to insure their continued structural integrity. One of the first facilities to be recertified under this program was the Langley 8-foot high-temperature structures tunnel. This recertification involved (1) modification, hydrotesting, and inspection of the vessels; (2) repair of all relevant defects; (3) comparison of the original design of the vessel with the current design criteria of Section 8, Division 2, of the 1974 ASME Boiler and Pressure Vessel Code; (4) fracture-mechanics, thermal, and wind-induced vibration analyses of the vessels; and (5) development of operating envelopes and a future inspection plan for the vessels. Following these modifications, analyses, and tests, the vessels were recertified for operation at full design pressure (41.4 MPa (6000 psi)) within the operating envelope developed.

  16. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  17. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing

    PubMed Central

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E.

    2017-01-01

    There is accumulating evidence that the brain’s neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals. PMID:28575032

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Mullens, M.; Rath, P.

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. This work is part of a multiphase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall designmore » with exterior continuous insulation (CI). This report describes Phase 3, which was completed in two stages and continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less

  19. Disk-Planet Torques from Radiation-Hydrodynamics Calculations with Spatially-Resolved Planetary Envelopes Undergoing Solids' Accretion

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.

    2016-12-01

    D'Angelo & Bodenheimer (2013, ApJ, 778, 77) performed global 3D radiation-hydrodynamics disk-planet simulations aimed at studying envelope formation around planetary cores, during the phase of sustained planetesimal accretion. The calculations modeled cores of 5, 10, and 15 Earth masses orbiting a sun-like star in a protoplanetary disk extending from ap/2 to 2ap in radius, ap=5 or 10 AU being the core's orbital radius. The gas equation of state - for a solar mixture of H2, H, He - accounted for translational, rotational, and vibrational states, for molecular dissociation and atomic ionization, and for radiation energy. Dust opacity calculations applied the Mie theory to multiple grain species whose size distributions ranged from 5e-6 to 1 mm. Mesh refinement via grid nesting allowed the planets' envelopes to be resolved at the core-radius length scale. Passive tracers were used to determine the volume of gas bound to a core, defining the envelope, and resulting in planet radii comparable to the Bondi radius. The energy budjet included contributions from the accretion of solids on the cores, whose rates were self-consistently computed with a 1D planet formation code. At this stage of the planet's growth, gravitational energy released in the envelope by solids' accretion far exceeds that released by gas accretion. These models are used to determine the gravitational torques exerted by the disk's gas on the planet and the resulting orbital migration rates. Since the envelope radius is a direct product of the models, they allow for a non-ambiguous assessment of the torques exerted by gas not bound to the planet. Additionally, since planets' envelopes are fully resolved, thermal and dynamical effects on the surrounding disk's gas are accurately taken into account. The computed migration rates are compared to those obtained from existing semi-analytical formulations for planets orbiting in isothermal and adiabatic disks. Because these formulations do not account for thermodynamical interactions between the planet's envelope and the disk's gas, the numerical models are also used to quanitfy the impact of short-scale tidal interactions on the total torque acting on the planet. Computing resources were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at Ames Research Center.

  20. Hierarchical Fragmentation in the Perseus Molecular Cloud: From the Cloud Scale to Protostellar Objects

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Myers, Philip C.; Dunham, Michael M.; Stephens, Ian W.; Sadavoy, Sarah I.; Zhang, Qizhou; Bourke, Tyler L.; Tobin, John J.; Lee, Katherine I.; Gutermuth, Robert A.; Offner, Stella S. R.

    2018-01-01

    We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud (≳ 10 pc) to smaller clumps (∼1 pc), cores (∼0.05–0.1 pc), envelopes (∼300–3000 au), and protostellar objects (∼15 au). We use new observations from the Submillimeter Array (SMA) large project “Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES)” to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However, at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.

  1. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  2. The structure of common-envelope remnants

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.

    2015-05-01

    We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of evolved stars. These formulae can be used to better compute the outcome of common-envelope evolution with rapid evolution codes. We find that the new formulae are necessary for accurate predictions of the properties of post-common envelope systems. Finally, we use detailed remnant models of massive stars to investigate whether hydrogen may be retained after a common-envelope phase to the point of core-collapse and so be observable in supernovae. We find that this is possible and thus common-envelope evolution may contribute to the formation of Type IIb supernovae.

  3. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; ...

    2017-10-17

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  4. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  5. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2018-01-01

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details of electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF&RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.

  6. Estimating envelope thermal characteristics from single point in time thermal images

    NASA Astrophysics Data System (ADS)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data-based methodology. This approach integrates the exterior surface temperature measurements, historical utility data, and easily accessible or potentially easily accessible housing data. A Random Forest model is developed from a training subset of residences for which the envelope U-value is known. This model is used to predict the envelope U-value for a validation set of houses with unknown U-value. Demonstrated is an ability to estimate the wall/roof U-value with an R-squared value in the range of 0.97 and 0.96 respectively, using as few as 9 and 24 training houses for respectively wall and ceiling U-value estimation. The implication of this research is significant, offering the possibility of auditing residences remotely at-scale via aerial and drive-by thermal imaging.

  7. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Novel dynamic thermal characterization of multifunctional concretes with microencapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Cabeza, Luisa F.; Ubertini, Filippo; Cotana, Franco

    2017-04-01

    Concrete is widely applied in the construction sector for its reliable mechanical performance, its easiness of use and low costs. It also appears promising for enhancing the thermal-energy behavior of buildings thanks to its capability to be doped with multifunctional fillers. In fact, key studies acknowledged the benefits of thermally insulated concretes for applications in ceilings and walls. At the same time, thermal capacity also represents a key property to be optimized, especially for lightweight constructions. In this view, Thermal-Energy Storage (TES) systems have been recently integrated into building envelopes for increasing thermal inertia. More in detail, numerical experimental investigations showed how Phase Change materials (PCMs), as an acknowledged passive TES strategy, can be effectively included in building envelope, with promising results in terms of thermal buffer potentiality. In particular, this work builds upon previous papers aimed at developing the new PCM-filled concretes for structural applications and optimized thermalenergy efficiency, and it is focused on the development of a new experimental method for testing such composite materials in thermal-energy dynamic conditions simulated in laboratory by exposing samples to environmentally controlled microclimate while measuring thermal conductivity and diffusivity by means of transient plane source techniques. The key findings show how the new composites are able to increasingly delay the thermal wave with increasing the PCM concentration and how the thermal conductivity varies during the course of the phase change, in both melting and solidification processes. The new analysis produces useful findings in proposing an effective method for testing composite materials with adaptive thermal performance, much needed by the scientific community willing to study building envelopes dynamics.

  9. 2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander

    2015-08-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.

  10. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  11. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  12. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  13. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  14. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  15. Discharge lamp with reflective jacket

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  16. Lea's Pies

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center worked with a pie company owner to develop an inexpensive container that would protect pies and keep them in a near frozen condition for shipping in 48 hours. A NASA engineer made a thermal barrier envelope from a metalized mylar called 'space blanket material,' developed during the Apollo era. The envelope protects the pies from heat transfer. Pictured, a NASA engineer removes the temperature logger from a pecan pie shipped to him in a prototype envelope.

  17. Circumstellar envelopes of Cepheids: a possible bias affecting the distance scale?

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Gallenne, Alexandre; Mérand, Antoine

    2013-02-01

    Circumstellar envelopes (CSEs) have been detected around many Cepheids, first based on long-baseline interferometry, and now also using other observing techniques. These envelopes are particularly interesting for two reasons: their presence could impact the Cepheid distance scale, and they may be valuable tracers of stellar mass loss. Here we focus on their potential impact on the calibration of the Cepheid distance scale. We consider the photometric contribution of the envelopes in the visible, near-, and thermal-infrared domains. We conclude that the impact of CSEs on the apparent luminosities of Cepheids is negligible at visible wavelengths and generally weak (<5%) in the near-infrared (λ ~ 2 μm). In the thermal-infrared domain (λ ~ 8 μm), the flux contribution of the CSEs differs depending on the pulsation period: it is relatively weak (<15%) for stars with periods shorter than P ~ 10 days, but can reach ~ 30% for long-period Cepheids. We specifically discuss the long-period Galactic Cepheid RS Puppis, which exhibits a very large circumstellar, dusty envelope, and we conclude that this is not a representative case. Overall, the contribution of CSEs to the usual period-luminosity relations (from the visible to the K band) is mostly negligible. They could affect calibrations at longer wavelengths, although the presence of envelopes may have been partially taken into account in the existing empirical calibrations.

  18. 77 FR 69572 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... inadvertently or intentionally exceeding a speed approximately equivalent to V FC or attaining V DF . Current Title 14 Code of Federal Regulations (14 CFR) part 25 do not relate to a high speed limiter that might...

  19. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  20. The limited role of recombination energy in common envelope removal

    NASA Astrophysics Data System (ADS)

    Grichener, Aldana; Sabach, Efrat; Soker, Noam

    2018-05-01

    We calculate the outward energy transport time by convection and photon diffusion in an inflated common envelope and find this time to be shorter than the envelope expansion time. We conclude therefore that most of the hydrogen recombination energy ends in radiation rather than in kinetic energy of the outflowing envelope. We use the stellar evolution code MESA and inject energy inside the envelope of an asymptotic giant branch star to mimic energy deposition by a spiraling-in stellar companion. During 1.7 years the envelope expands by a factor of more than 2. Along the entire evolution the convection can carry the energy very efficiently outwards, to the radius where radiative transfer becomes more efficient. The total energy transport time stays within several months, shorter than the dynamical time of the envelope. Had we included rapid mass loss, as is expected in the common envelope evolution, the energy transport time would have been even shorter. It seems that calculations that assume that most of the recombination energy ends in the outflowing gas might be inaccurate.

  1. Development of low thermal conductivity brick using rice husk, corn cob and waste tea in clay brick manufacturing

    NASA Astrophysics Data System (ADS)

    Saman, Nor Sarwani Mat; Deraman, Rafikullah; Hamzah, Mohamad Hazmi

    2017-12-01

    The consumption of energy for cooling the indoor environment of buildings in Malaysia is high and mostly related to poor thermal performance of the building envelope. It is evident that reducing energy consumption of buildings has become vital, taking into considerations the limitation of conventional energy resources and the adverse effects associated with the use of such type of energy on the environment. Therefore, selecting the proper thermal properties of a building envelope play a major role in determining the energy consumption patterns and comfort conditions in enclosed spaces. The objective of this study is to investigate the potential application of rice husk (RH), corn cob (CC) and waste tea (WT) as an additive agent in a fired clay brick manufacturing to produce an improved thermal conductivity of final brick product. In the execution of this study, these agricultural wastes were mixed together with clay soil in different percentages, ranging from 0 %, 2.5 %, 5 %, 7.5 % and 10 % by weight. Physical and mechanical properties including soil physical properties, density, shrinkage, water absorption, compressive strength as well as thermal conductivity were measured, reported and discussed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985, MS 76: 1972: Part 2 and ASTM C 518. The results show that RH at 7.5 % is the most effective combination to achieve low thermal conductivity of fired clay brick. This finding suggests that RH waste is a potentially good additive material to be used for thermal properties enhancement of the building envelope.

  2. Ducted-Fan Engine Acoustic Predictions using a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.

    1998-01-01

    A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor; temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier-Stokes codes can be used both to generate and propagate rotor/stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.

  3. Imprints of the ejecta-companion interaction in Type Ia supernovae: main-sequence, subgiant, and red giant companions

    NASA Astrophysics Data System (ADS)

    Boehner, P.; Plewa, T.; Langer, N.

    2017-02-01

    We study supernova ejecta-companion interactions in a sample of realistic semidetached binary systems representative of Type Ia supernova progenitor binaries in a single-degenerate scenario. We model the interaction process with the help of a high-resolution hydrodynamic code assuming cylindrical symmetry. We find that the ejecta hole has a half-opening angle of 40-50° with the density by a factor of 2-4 lower, in good agreement with the previous studies. Quantitative differences from the past results in the amounts and kinematics of the stripped companion material and levels of contamination of the companion with the ejecta material can be explained by different model assumptions and effects due to numerical diffusion. We analyse and, for the first time, provide simulation-based estimates of the amounts and of the thermal characteristics of the shock-heated material responsible for producing a prompt, soft X-ray emission. Besides the shocked ejecta material, considered in the original model by Kasen, we also account for the stripped, shock-heated envelope material of stellar companions, which we predict partially contributes to the prompt emission. The amount of the energy deposited in the envelope is comparable to the energy stored in the ejecta. The total energy budget available for the prompt emission is by a factor of about 2-4 smaller than originally predicted by Kasen. Although the shocked envelope has a higher characteristic temperature than the shocked ejecta, the temperature estimates of the shocked material are in good agreement with the Kasen's model. The hottest shocked plasma is produced in the subgiant companion case.

  4. Identification of an Envelope Protein from the FRD Family of Human Endogenous Retroviruses (HERV-FRD) Conferring Infectivity and Functional Conservation among Simians

    PubMed Central

    Blaise, Sandra; Ruggieri, Alessia; Dewannieux, Marie; Cosset, François-Loic; Heidmann, Thierry

    2004-01-01

    A member of the HERV-W family of human endogenous retroviruses (HERV) had previously been demonstrated to encode a functional envelope which can form pseudotypes with human immunodeficiency virus type 1 virions and confer infectivity on the resulting retrovirus particles. Here we show that a second envelope protein sorted out by a systematic search for fusogenic proteins that we made among all the HERV coding envelope genes and belonging to the HERV-FRD family can also make pseudotypes and confer infectivity. We further show that the orthologous envelope genes that were isolated from simians—from New World monkeys to humans—are also functional in the infectivity assay, with one singular exception for the gibbon HERV-FRD gene, which is found to be fusogenic in a cell-cell fusion assay, as observed for the other simian envelopes, but which is not infectious. Sequence comparison of the FRD envelopes revealed a limited number of mutations among simians, and one point mutation—located in the TM subunit—was shown to be responsible for the loss of infectivity of the gibbon envelope. The functional characterization of the identified envelopes is strongly indicative of an ancestral retrovirus infection and endogenization, with some of the envelope functions subsequently retained in evolution. PMID:14694139

  5. Identification of an envelope protein from the FRD family of human endogenous retroviruses (HERV-FRD) conferring infectivity and functional conservation among simians.

    PubMed

    Blaise, Sandra; Ruggieri, Alessia; Dewannieux, Marie; Cosset, François-Loic; Heidmann, Thierry

    2004-01-01

    A member of the HERV-W family of human endogenous retroviruses (HERV) had previously been demonstrated to encode a functional envelope which can form pseudotypes with human immunodeficiency virus type 1 virions and confer infectivity on the resulting retrovirus particles. Here we show that a second envelope protein sorted out by a systematic search for fusogenic proteins that we made among all the HERV coding envelope genes and belonging to the HERV-FRD family can also make pseudotypes and confer infectivity. We further show that the orthologous envelope genes that were isolated from simians-from New World monkeys to humans-are also functional in the infectivity assay, with one singular exception for the gibbon HERV-FRD gene, which is found to be fusogenic in a cell-cell fusion assay, as observed for the other simian envelopes, but which is not infectious. Sequence comparison of the FRD envelopes revealed a limited number of mutations among simians, and one point mutation-located in the TM subunit-was shown to be responsible for the loss of infectivity of the gibbon envelope. The functional characterization of the identified envelopes is strongly indicative of an ancestral retrovirus infection and endogenization, with some of the envelope functions subsequently retained in evolution.

  6. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  7. Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain

    PubMed Central

    Gross, Joachim; Hoogenboom, Nienke; Thut, Gregor; Schyns, Philippe; Panzeri, Stefano; Belin, Pascal; Garrod, Simon

    2013-01-01

    Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations. PMID:24391472

  8. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  9. CONVECTION IN OBLATE SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2016-10-10

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less

  10. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  11. Center for the Built Environment: Research on Building Envelope Systems

    Science.gov Websites

    Studies Facade and Perimeter Zone Field Study Facades and Thermal Comfort Facade Symposium Mixed-Mode Research Adaptive Comfort Model Mixed-Mode Case Studies Operable Windows and Thermal Comfort Occupant thermal preferences in naturally ventilated as sealed buildings? Case Study Research of Mixed-Mode Office

  12. Optimal decoding in fading channels - A combined envelope, multiple differential and coherent detection approach

    NASA Astrophysics Data System (ADS)

    Makrakis, Dimitrios; Mathiopoulos, P. Takis

    A maximum likelihood sequential decoder for the reception of digitally modulated signals with single or multiamplitude constellations transmitted over a multiplicative, nonselective fading channel is derived. It is shown that its structure consists of a combination of envelope, multiple differential, and coherent detectors. The outputs of each of these detectors are jointly processed by means of an algorithm. This algorithm is presented in a recursive form. The derivation of the new receiver is general enough to accommodate uncoded as well as coded (e.g., trellis-coded) schemes. Performance evaluation results for a reduced-complexity trellis-coded QPSK system have demonstrated that the proposed receiver dramatically reduces the error floors caused by fading. At Eb/N0 = 20 dB the new receiver structure results in bit-error-rate reductions of more than three orders of magnitude compared to a conventional Viterbi receiver, while being reasonably simple to implement.

  13. Peak Performance for Healthy Schools

    ERIC Educational Resources Information Center

    McKale, Chuck; Townsend, Scott

    2012-01-01

    Far from the limelight of LEED, Energy Star or Green Globes certifications are the energy codes developed and updated by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and the International Code Council (ICC) through the support of the Department of Energy (DOE) as minimum guidelines for building envelope,…

  14. Effect of core cooling on the radius of sub-Neptune planets

    NASA Astrophysics Data System (ADS)

    Vazan, A.; Ormel, C. W.; Dominik, C.

    2018-02-01

    Sub-Neptune planets are very common in our Galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter, core), which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling only has a minor effect on the radius evolution of the gaseous envelope because the cooling of the core is in sync with the envelope; that is most of the initial heat is released early on timescales of 10-100 Myr. In this Letter we examined the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relaxed the early core cooling assumption and present a model in which the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. Gyr. Consequently, the interpretation of the mass-radius observations of sub-Neptunes depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.

  15. Country Report on Building Energy Codes in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  16. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    PubMed Central

    Rallapalli, Varsha H.

    2016-01-01

    Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  17. Mixed Mode Fracture of Plasma Sprayed Thermal Barrier Coatings: Effects of Anisotropy and Heterogeneity

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.

    2008-01-01

    The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  18. Low heat-leak cryogenic envelope

    DOEpatents

    DeHaan, James R.

    1976-10-19

    A plurality of cryogenic envelope sections are joined together to form a power transmission line. Each of the sections is comprised of inner and outer tubes having multilayer metalized plastic spirally wrapped within a vacuum chamber formed between the inner and outer tubes. A refrigeration tube traverses the vacuum chamber, but exits one section and enters another through thermal standoffs for reducing heat-leak from the outer tube to the refrigeration tube. The refrigeration tube passes through a spirally wrapped shield within each section's vacuum chamber in a manner so that the refrigeration tube is in close thermal contact with the shield, but is nevertheless slideable with respect thereto.

  19. Response of Marine Taxa to Climate Variability in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Morley, J. W.; Pinsky, M. L.; Batt, R. D.

    2016-02-01

    Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.

  20. Why middle-aged listeners have trouble hearing in everyday settings.

    PubMed

    Ruggles, Dorea; Bharadwaj, Hari; Shinn-Cunningham, Barbara G

    2012-08-07

    Anecdotally, middle-aged listeners report difficulty conversing in social settings, even when they have normal audiometric thresholds [1-3]. Moreover, young adult listeners with "normal" hearing vary in their ability to selectively attend to speech amid similar streams of speech. Ignoring age, these individual differences correlate with physiological differences in temporal coding precision present in the auditory brainstem, suggesting that the fidelity of encoding of suprathreshold sound helps explain individual differences [4]. Here, we revisit the conundrum of whether early aging influences an individual's ability to communicate in everyday settings. Although absolute selective attention ability is not predicted by age, reverberant energy interferes more with selective attention as age increases. Breaking the brainstem response down into components corresponding to coding of stimulus fine structure and envelope, we find that age alters which brainstem component predicts performance. Specifically, middle-aged listeners appear to rely heavily on temporal fine structure, which is more disrupted by reverberant energy than temporal envelope structure is. In contrast, the fidelity of envelope cues predicts performance in younger adults. These results hint that temporal envelope cues influence spatial hearing in reverberant settings more than is commonly appreciated and help explain why middle-aged listeners have particular difficulty communicating in daily life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Nature of the Galactic centre NIR-excess sources. I. What can we learn from the continuum observations of the DSO/G2 source?

    NASA Astrophysics Data System (ADS)

    Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton

    2017-06-01

    Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.

  2. Study of heat sink thermal protection systems for hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Edwards, C. L. W.

    1978-01-01

    The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates

  3. Impacts of projected mid-century temperatures on thermal regimes for select specialty and fieldcrops common to the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Elias, E.; Lopez-Brody, N.; Dialesandro, J.; Steele, C. M.; Rango, A.

    2015-12-01

    The impacts of projected temperature increases in agricultural ecosystems are complex, varyingby region, cropping system, crop growth stage and humidity. We analyze the impacts of mid-century temperature increases on crops grown in five southwestern states: Arizona, California,New Mexico, Nevada and Utah. Here we present a spatial impact assessment of commonsouthwestern specialty (grapes, almonds and tomatoes) and field (alfalfa, cotton and corn)crops. This analysis includes three main components: development of empirical temperaturethresholds for each crop, classification of predicted future climate conditions according to thesethresholds, and mapping the probable impacts of these climatic changes on each crop. We use30m spatial resolution 2012 crop distribution and seasonal minimum and maximumtemperature normals (1970 to 2000) to define the current thermal envelopes for each crop.These represent the temperature range for each season where 95% of each crop is presentlygrown. Seasonal period change analysis of mid-century temperatures changes downscaled from20 CMIP5 models (RCP8.5) estimate future temperatures. Change detection maps representareas predicted to become more or less suitable, or remain unchanged. Based upon mid-centurytemperature changes, total regional suitable area declined for all crops except cotton, whichincreased by 20%. For each crop there are locations which change to and from optimal thermalenvelope conditions. More than 80% of the acres currently growing tomatoes and almonds willshift outside the present 95% thermal range. Fewer acres currently growing alfalfa (14%) andcotton (20%) will shift outside the present 95% thermal range by midcentury. Crops outsidepresent thermal envelopes by midcentury may adapt, possibly aided by adaptation technologiessuch as misters or shade structures, to the new temperature regime or growers may elect togrow alternate crops better suited to future thermal envelopes.

  4. Pictorial Formats. Volume 1. Format Development

    DTIC Science & Technology

    1982-02-01

    inside a threat envelope when the map scale prevents showing the normal cues. 3.1.4 Special Topographic Formats The primary tactical interest in...coverage is in white to prevent confuzing it with the threat’s envelopes. The border between, PMAXI and RMAX2 missile ranges is lined with yellow and... prevent confusion with red-coded emergency action items. 4.3 STORES DISPLAYS: COLOR RASTER Figures 55, 56, 57 and 58 illustrate the color raster

  5. Country Report on Building Energy Codes in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildingsmore » in Canada.« less

  6. On the application of a new thermal diagnostic model: the passive elements equivalent in term of ventilation inside a room

    NASA Astrophysics Data System (ADS)

    El Khattabi, El Mehdi; Mharzi, Mohamed; Raefat, Saad; Meghari, Zouhair

    2018-05-01

    In this paper, the thermal equivalence of the passive elements of a room in a building located in Fez-Morocco has been studied. The possibility of replacing them with a semi-passive element such as ventilation has been appraised. For this aim a Software in Fortran taking into account the meteorological external conditions along with different parameters of the building envelope has been performed. A new computational approach is adapted to determinate the temperature distribution throughout the building multilayer walls. A novel equation gathering the internal temperature with the external conditions, and the building envelope has been deduced in transient state.

  7. Isolating The Building Thermal Envelope

    NASA Astrophysics Data System (ADS)

    Harrje, D. T.; Dutt, G. S.; Gadsby, K. J.

    1981-01-01

    The evaluation of the thermal integrity of building envelopes by infrared scanning tech-niques is often hampered in mild weather because temperature differentials across the envelope are small. Combining the infrared scanning with positive or negative building pressures, induced by a "blower door" or the building ventilation system, considerably extends the periods during which meaningful diagnostics can be conducted. Although missing or poorly installed insulation may lead to a substantial energy penalty, it is the search for air leakage sites that often has the largest potential for energy savings. Infrared inspection of the attic floor with air forced from the occupied space through ceiling by-passes, and inspecting the interior of the building when outside air is being sucked through the envelope reveals unexpected leakage sites. Portability of the diagnostic equipment is essential in these surveys which may include access into some tight spaces. A catalog of bypass heat losses that have been detected in residential housing using the combined infrared pressure differential technique is included to point out the wide variety of leakage sites which may compromise the benefits of thermal insulation and allow excessive air infiltration. Detection and suppression of such leaks should be key items in any building energy audit program. Where a calibrated blower door is used to pressurize or evacuate the house, the leakage rate can be quantified and an excessively tight house recognized. Houses that are too tight may be improved with a minimal energy penalty by forced ventilation,preferably with a heat recuperator and/or by providing combustion air directly to the furnace.

  8. Jet or shock breakout? The low-luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher M.; Chevalier, Roger A.

    2016-08-01

    We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3 M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the non-thermal X-rays and gamma-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.

  9. Echolocation-Based Foraging by Harbor Porpoises and Sperm Whales, Including Effects on Noise and Acoustic Propagation

    DTIC Science & Technology

    2008-09-01

    Behavioural Point Process Data 234 Appendix B: Matlab Code 258 Matlab Code Used in Chapter 2 (Porpoise Prey Capture Analysis) 258 Click Extraction and...Measurement of Click Properties 258 Envelope-based Click Detector 262 Matlab Code Used in Chapter 3 (Transmission Loss in Porpoise Habitats) ..267...Click Extraction from Data Wavefiles 267 Click Level Determination (Grand Manan Datasets) 270 Click Level Determination (Danish Datasets) 287 Matlab

  10. Study of an experimental methodology for thermal properties diagnostic of building envelop

    NASA Astrophysics Data System (ADS)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The measured data from different sensors were analysed and compared. The emissivity of wall surface and treated sensor surfaces were evaluated by using an IR camera with an adapted post-processing. Then, convective and radiative heat fluxes, at wall level, were estimated. Finally, the wall thermal properties can be calculated by using the measured temperatures and estimated heat fluxes using a dedicated thermal quadrupoles heat transfer model and an inverse method. This study aims at providing some guidelines for the choice of sensors, measurements protocol and adapted inverse model to be tested in real conditions on pilot situ scale. Aknowledgments : The Authors are very grateful to H2020 Built2Spec project for supporting this work.

  11. A Literature Review of Sealed and Insulated Attics—Thermal, Moisture and Energy Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Levinson, Ronnen

    In this literature review and analysis, we focus on the thermal, moisture and energy performance of sealed and insulated attics in California climates. Thermal. Sealed and insulated attics are expected to maintain attic air temperatures that are similar to those in the house within +/- 10°F. Thermal stress on the assembly, namely high shingle and sheathing temperatures, are of minimal concern. In the past, many sealed and insulated attics were constructed with insufficient insulation levels (~R-20) and with too much air leakage to outside, leading to poor thermal performance. To ensure high performance, sealed and insulated attics in new Californiamore » homes should be insulated at levels at least equivalent to the flat ceiling requirements in the code, and attic envelopes and ducts should be airtight. We expect that duct systems in well-constructed sealed and insulated attics should have less than 2% HVAC system leakage to outside. Moisture. Moisture risk in sealed and insulated California attics will increase with colder climate regions and more humid outside air in marine zones. Risk is considered low in the hot-dry, highly populated regions of the state, where most new home construction occurs. Indoor humidity levels should be controlled by following code requirements for continuous whole-house ventilation and local exhaust. Pending development of further guidance, we recommend that the air impermeable insulation requirements of the International Residential Code (2012) be used, as they vary with IECC climate region and roof finish. Energy. Sealed and insulated attics provide energy benefits only if HVAC equipment is located in the attic volume, and the benefits depend strongly on the insulation and airtightness of the attic and ducts. Existing homes with leaky, uninsulated ducts in the attic should have major savings. When compared with modern, airtight duct systems in a vented attic, sealed and insulated attics in California may still provide substantial benefit. Energy performance is expected to be roughly equivalent between sealed and insulated attics and prescriptive advanced roof/attic options in Title 24 2016. System performance can also be expected to improve, such as pull down time, performance at peak load, etc. We expect benefits to be reduced for all advanced roof/attic approaches, relative to a traditional vented attic, as duct system leakage is reduced close to 0. The most recent assessments, comparing advanced roof/attic assemblies to code compliant vented attics suggest average 13% TDV energy savings, with substantial variation by climate zone (more savings in more extreme climates). Similar 6-11% reductions in seasonally adjusted HVAC duct thermal losses have been measured in a small subset of such California homes using the ducts in conditioned space approach. Given the limited nature of energy and moisture monitoring in sealed and insulated attic homes, there is crucial need for long-term data and advanced modeling of these approaches in the California new and existing home contexts.« less

  12. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  13. Thermal insulation materials for inside applications: Hygric and thermal properties

    NASA Astrophysics Data System (ADS)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  14. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  15. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  16. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    NASA Astrophysics Data System (ADS)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  17. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes.The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductlessmore » mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.« less

  19. The New Generation of Thermal Mapping

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2012-01-01

    Thermal imaging was used 60+ years ago to enable the targeting of heat-seeking missiles and seeing opposing forces at night. Today thermograpy is employed for myriad uses, from turning on faucets, to tracking and attacking enemies from aerial spy drones, to identifying the scope of moisture infiltration in building envelopes. Thermography for…

  20. Accelerated long-term assessment of thermal and chemical stability of bio-based phase change materials

    USDA-ARS?s Scientific Manuscript database

    Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...

  1. Indoor environmental quality (IEQ) of school classrooms: Case study in Malaysia

    NASA Astrophysics Data System (ADS)

    Samad, Muna Hanim Abdul; Aziz, Zalena Abdul; Isa, Mohd Hafizal Mohd

    2017-10-01

    Thermal Comfort is one of the key criteria for occupants' comfort and productivity in a building. In schools, it is vital for a conduciveness for teaching and learning environment. Thermal comfort is dependent on air temperature, humidity, radiation, internal lighting, air movement, activities, clothing and climatic change and is part of the Indoor Environmental Quality (IEQ) components which have has significant effects on occupants. The main concern over energy and running cost has meant that most public schools in Malaysia are designed for natural ventilation and not air-conditioning. The building envelope plays a significant role in reducing the radiant heat and keeps the interior cooler than the outdoor temperature for acceptable thermal comfort level. The requirement of Industrial Building System (IBS) as the envelope system for school building in Malaysia could affect the role of envelope as a climate moderator. This paper is based on a research conducted on two schools in Malaysia of varied construction materials as the building envelopes to ascertain the thermal comfort level of the classrooms. Elements of IEQ such as air temperature, air movement, daylighting and noise level were taken of various classrooms to fulfill the required objectives of determining the level of quality. The data collected and analysed from the study shows that in terms of air temperature which range from 28°C to 34.5°C, the schools do not achieve the recommended comfort level for tropical climate. As for daylighting element, results also show that some classrooms suffered with too much glare whilst others had insufficient daylighting. The findings also show the unsatisfactory level of air movement in the classrooms as well as an unacceptable noise level exceeding the allowable threshold. This research also concluded that the use of materials and orientation in the school design are the major determinant factors towards good IEQ levels in school buildings.

  2. Carbon chemistry of circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Bieging, John H.

    1990-01-01

    The chemical composition of envelopes surrounding cool evolved stars, as determined from microwave spectroscopic observations, is reviewed. Emphasis is placed on recent observations with the new large mm-wavelength telescopes and interferometer arrays, and on new theoretical work, especially concerning ion-molecule chemistry of carbon-bearing in these envelopes. Thermal (as opposed to maser) emission lines are discussed. Much progress has been made in the past few years in the theoretical understanding of these objects. It is already clear, however, that observations with the new generation of mm-telescopes will require substantial improvements in the theoretical models to achieve a thorough understanding of the data now becoming available.

  3. Radio Imaging of Envelopes of Evolved Stars

    NASA Astrophysics Data System (ADS)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  4. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  5. Distribution of SO_{2} and so in the Envelope of Vy-Canis Majoris: Insight Into Circumstellar Sulfur Chemistry

    NASA Astrophysics Data System (ADS)

    Adande, Gilles; Ziurys, L. M.

    2013-06-01

    Millimeter wave observations of SO_{2} and SO in the envelope of the O-rich supergiant VY-Canis Majoris have been conducted with the Submillimeter Telescope (SMT) of the Arizona Radio Observatory, between 210 and 290 GHz. A non LTE radiative transfer code has been written to fit the line profile of 22 lines of SO_{2} and 5 transitions of SO, and model their abundance and distribution within the circumstellar envelope. The rotational levels involved span a wide energy range, from 13 cm^{-1} to 104 cm^{-1} for SO_{2}, and 17 to 40 cm^{-1} for SO. The high number of transitions fitted provides strong constraints on the excitation conditions, hydrogen density and kinetic temperatures. The results will be discussed in relation to the formation processes and chemistry of these two species in O-rich molecular envelopes.

  6. The efficiency of convective energy transport in the sun

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  7. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.

    PubMed

    Song, Erwei; Zhu, Pengcheng; Lee, Sang-Kyung; Chowdhury, Dipanjan; Kussman, Steven; Dykxhoorn, Derek M; Feng, Yi; Palliser, Deborah; Weiner, David B; Shankar, Premlata; Marasco, Wayne A; Lieberman, Judy

    2005-06-01

    Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.

  8. Studies of hydrodynamic events in stellar evolution. 3: Ejection of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Kutter, G. S.

    1973-01-01

    The dynamic behavior of the H-rich envelope (0.101 solar mass) of an evolved star (1.1 solar mass) as the luminosity rises to 19000 solar luminosity during the second ascent of the red giant branch. For luminosities in the range 3100 L 19000 solar luminosity the H-rich envelope pulsates like a long-period variable (LPV) with periods of the order of a year. As L reaches 19000 solar luminosity, the entire H-rich envelope is ejected as a shell with speeds of a few 10 km/s. The ejection occurs on a timescale of a few LPV pulsation periods. This ejection is associated with the formation of a planetary nebula. The computations are based on an implicit hydrodynamic computer code. T- and RHO-dependent opacities and excitation and ionization energies are included. As the H-rich envelope is accelerated off the stellar core, the gap between envelope and core is approximated by a vacuum, filled with radiation. Across the vacuum, the luminosity is conserved and the anisotropy of the radiation is considered as well as the solid angle subtended by the remnant star at the inner surface of the H-rich envelope. Spherical symmetry and the diffusion approximation are assumed.

  9. NASA Glenn Steady-State Heat Pipe Code Users Manual, DOS Input. Version 2

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.

    2000-01-01

    The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.

  10. Passive solar/Earth sheltered office/dormitory cooling season thermal performance

    NASA Astrophysics Data System (ADS)

    Christian, J.

    1984-06-01

    Continuous detailed hourly thermal performance measurements were taken since February 1982 in and around an occupied, underground, 4000 ft(2) office/dormitory building at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. This building has a number of energy saving features which were analyzed relative to their performance in a southeastern US climate and with respect to overall commercial building performance. Cooling season performance is documented, as well as effects of earth constact, interior thermal mass, an economizer cycle and interface of an efficient building envelope with a central three-ton heat pump. The Joint Institute Dormitory obtains a cooling energy savings of about 30% compared with an energy-efficient, above-grade structure and has the potential to save as much as 50%. The proper instllation of the overhand, interior thermal mass, massive supply duct system, and earth contact team up to prevent summertime overheating. From May through September, this building cost a total of $300 (at 5.7) cents/kWh) to cool and ventilate 24 hours per day. Besides thermal performance of the building envelope, extensive comfort data was taken illustrating that at least 90% of the occupants are comfortable all of the time according to the PMV measurements.

  11. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    NASA Astrophysics Data System (ADS)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  12. Is Passive or Active House Needed In Face of Global Warming?

    NASA Astrophysics Data System (ADS)

    Tamosaitis, Romualdas

    2017-10-01

    The article aims to determine how effective the stricter current requirements for the building envelope insolation are from the economic energy savings perspective. The article deals with a mathematical method for economic assessment of optimal building thermal insulation. The mathematical methods used in this article are based on evaluating the break-even point between the construction expenditures and the economic profit. Recent research shows that energy savings achieved solely through stricter standards applied to the building envelopes are limited in their ability to achieve maximum results. As the ratio of building volume to building envelope increases, further energy saving measures applied to the building envelope produce lower energy saving effects. Energy savings achieved using renewable energy resources, recuperation systems are much more effective. Research shows that much greater effect can be achieved by combining optimal building envelope energy efficiency measures with new requirements related to renewable energy sources and recuperating systems, such as solar batteries, wind turbines or heat pumps.

  13. Envelope of Correlation Used with Deconvolution and Reconvolution to Remove the Direct Arrival in a Multipath Environment

    DTIC Science & Technology

    1990-03-01

    London - Amsterdam:Geophysical Press, 1984. 3 Dicus, Ronald L., "Impulse response estimation with underwater explosive charge acoustic signals," Journal of... Ronald N. Bracewell, The Fourier Transform and Its Applications. New York: McGraw-Hill, 1978, pp 267-71. 6 Julius S. Bendat and Allan G. Pierson...Feuillade Code 212 Ted Kennedy L. Dolly Lee Code 240 Dr. Ron Wagstaff 833 Hancock Sq., Suite G Dr. Robert Farwell Bay St. Louis, MS 39520 Code 242 Roger

  14. Simulation of free-electron lasers seeded with broadband radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl

    2011-03-10

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FELmore » process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.« less

  15. Short segment search method for phylogenetic analysis using nested sliding windows

    NASA Astrophysics Data System (ADS)

    Iskandar, A. A.; Bustamam, A.; Trimarsanto, H.

    2017-10-01

    To analyze phylogenetics in Bioinformatics, coding DNA sequences (CDS) segment is needed for maximal accuracy. However, analysis by CDS cost a lot of time and money, so a short representative segment by CDS, which is envelope protein segment or non-structural 3 (NS3) segment is necessary. After sliding window is implemented, a better short segment than envelope protein segment and NS3 is found. This paper will discuss a mathematical method to analyze sequences using nested sliding window to find a short segment which is representative for the whole genome. The result shows that our method can find a short segment which more representative about 6.57% in topological view to CDS segment than an Envelope segment or NS3 segment.

  16. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less

  17. State-Of High Brightness RF Photo-Injector Design

    NASA Astrophysics Data System (ADS)

    Ferrario, Massimo; Clendenin, Jym; Palmer, Dennis; Rosenzweig, James; Serafini, Luca

    2000-04-01

    The art of designing optimized high brightness electron RF Photo-Injectors has moved in the last decade from a cut and try procedure, guided by experimental experience and time consuming particle tracking simulations, up to a fast parameter space scanning, guided by recent analytical results and a fast running semi-analytical code, so to reach the optimum operating point which corresponds to maximum beam brightness. Scaling laws and the theory of invariant envelope provide to the designers excellent tools for a first parameters choice and the code HOMDYN, based on a multi-slice envelope description of the beam dynamics, is tailored to describe the space charge dominated dynamics of laminar beams in presence of time dependent space charge forces, giving rise to a very fast modeling capability for photo-injectors design. We report in this talk the results of a recent beam dynamics study, motivated by the need to redesign the LCLS photoinjector. During this work a new effective working point for a split RF photoinjector has been discovered by means of the previous mentioned approach. By a proper choice of rf gun and solenoid parameters, the emittance evolution shows a double minimum behavior in the drifting region. If the booster is located where the relative emittance maximum and the envelope waist occur, the second emittance minimum can be shifted at the booster exit and frozen at a very low level (0.3 mm-mrad for a 1 nC flat top bunch), to the extent that the invariant envelope matching conditions are satisfied.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Prior to 1978, the Wilsonville Advanced Coal Liquefaction facility material balance surrounded only the thermal liquefaction unit and involved analyses of only the slurry stream and individual gas streams. The distillate solvent yield was determined by difference. Subsequently, several modifications and additional process units were introduced to this single unit system. With the inclusion of the deashing unit in 1978 and the catalytic hydrogenation unit in 1981, the process has evolved into a sophisticated two-stage coal liquefaction process and has the potential for various modes of integration. This report presents an elemental balancing procedure and a simplified presentation format thatmore » is sufficiently flexible to meet current and future needs. The development of the elemental balancing technique and the relevant computer programs to handle the calculations have been addressed. This will be useful in modelling individual unit performance as well as determining the impact of each unit on the overall liquefaction system, provided the units are on a steady-state basis. Five different material balance envelopes are defined. Three of these envelopes pertain to the individual units (the thermal liquefaction or TL unit, the Critical Solvent Deashing or CSD unit and the H-Oil Ebullated Bed Hydrotreating or HTR unit). The fourth or single stage material balance envelope combines the TL and CSD units. The fifth envelope is the two-stage configuration combining all three units. 3 references.« less

  19. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  20. Current and anticipated uses of thermal-hydraulic codes in NFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, K.; Takayasu, M.

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  1. Role of the UV external radiation field on the presence of astrophysical ices in protostellars environments

    NASA Astrophysics Data System (ADS)

    Robson Monteiro Rocha, Will; Pilling, Sergio

    2016-07-01

    The astrophysical ices survival is directly related with the temperature and ionizing radiation field in protostellars environments such as disks and envelopes. Computational models has shown that pure volatile molecules like CO and CH _{4} should survive only inside densest regions of molecular clouds or protoplanetary disks On the other hand, solid molecules such as H _{2}O and CH _{3}OH can be placed around 5 - 10 AU from the central protostar. Unlike of the previous models, we investigate the role of the UV external radiation field on the presence of ices in disks and envelopes. Once that a star-forming region is composed by the formation of many protostars, the external radiation field should be an important component to understand the real localization of the ices along the sight line. To address this topic it was employed the radiative transfer code RADMC-3D based on the Monte Carlo method. The code was used to model the spectrum and the near-infrared image of Elias 29. The initial parameters of the disk and envelope was taken from our previous paper (Rocha & Pilling (2015), ApJ 803:18). The opacities of the ices were calculated from the complex refractive index obtained at laboratory experiments perfomed at Grand Accélerateur National d'Íons Lourds (GANIL), by using the NKABS code from Rocha & Pilling (2014), SAA 123:436. The partial conclusions that we have obtained shows that pure CO volatile molecule cannot be placed at disk or envelope of Elias 29, unlike shown in our paper about Elias 29. Once it was observed in Elias 29 spectrum obtained with Infrared Space Observatory (ISO) between 2.5 - 190 μm, this molecule should be placed in foreground molecular clouds or trapped in the water ice matrix. The next calculations will be able to show where are placed the ices such as CH _{3}OH and CH _{3}CHO observed in Elias 29 spectrum.

  2. Water Around a Carbon Star

    NASA Image and Video Library

    2010-09-01

    This ESA Herschel image shows IRC+10216, also known as CW Leonis, a star rich in carbon where astronomers were surprised to find water. This color-coded image shows the star, surrounded by a clumpy envelope of dust.

  3. Termination unit

    DOEpatents

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  4. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.

    PubMed

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: •Place SFH in an airtight aluminum envelope.•Thermally treat SFH within the envelope in a common laboratory oven.•Open the envelope to obtain the carbonized sunflower hulls.

  5. Investigating the effectiveness of using agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane baggasse (SB) to produce low thermal conductivity clay bricks

    NASA Astrophysics Data System (ADS)

    Hamzah, Mohamad Hazmi; Deraman, Rafikullah; Saman, Nor Sarwani Mat

    2017-12-01

    In Malaysia, 45% of the average household electricity was consumed by air conditioners to create an acceptable indoor environment. This high energy consumption was mostly related to poor thermal performance of the building envelope. Therefore, selecting a low thermal conductivity of brick wall was of considerable importance in creating energy efficient buildings. Previously, numerous researchers reported the potential used of agricultural waste as an additive in building materials to enhance their thermal properties. The aim of this study is to examine how agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane bagasse (SB) can act as additive agents in a fired clay brick manufacturing process to produce a low thermal conductivity clay brick. In this study, these agricultural wastes were individually mixed with clay soil in different proportions ranging from 0%, 2.5%, 5%, 7.5% and 10% by weight. Physical and mechanical properties including soil physical properties, as well as thermal conductivity were performed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985 and ASTM C518. The results reveal that incorporating 5% of EFB as an additive component into the brick making process significantly enhances the production of a low thermal conductivity clay brick as compared to other waste alternatives tested. This finding suggests that EFB waste was a potential additive material to be used for the thermal property enhancement of the building envelope.

  6. Supernova 1987A - the evolution from blue to red

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuchman, Y.; Wheeler, J.C.

    1989-09-01

    The evolution of stars with mass comparable to that of the progenitor of SN 1987A from the main sequence to the Hayashi track is critically examined to determine why some models evolve to the red on nuclear time scales, some on thermal time scales, and some not at all. Thermal equilibrium solutions to a parametrized series of structural models with active hydrogen burning shells have two stable solutions with different T(eff) for the same helium core M(He) mass and a minimum M(He) below which no blue thermal equlibrium solution is possible. The dependence of the equilibrium solutions on stellar mass,more » envelope composition, and mass loss are investigated. The solutions quantitatively account for the 'gap' in the HR diagrams of massive stars in the Galaxy and LMC and suggest that the outer envelopes are not substantially enriched in helium during the first passage from the main sequence to the Hayashi track. 23 refs.« less

  7. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  8. Burner liner thermal-structural load modeling

    NASA Technical Reports Server (NTRS)

    Maffeo, R.

    1986-01-01

    The software package Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) was developed. The TRANCITS code is used to interface temperature data between thermal and structural analytical models. The use of this transfer module allows the heat transfer analyst to select the thermal mesh density and thermal analysis code best suited to solve the thermal problem and gives the same freedoms to the stress analyst, without the efficiency penalties associated with common meshes and the accuracy penalties associated with the manual transfer of thermal data.

  9. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas

    PubMed Central

    Zhong, Ziwei; Henry, Kenneth S.; Heinz, Michael G.

    2014-01-01

    People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. PMID:24315815

  10. Burner liner thermal/structural load modeling: TRANCITS program user's manual

    NASA Technical Reports Server (NTRS)

    Maffeo, R.

    1985-01-01

    Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) is discussed. The TRANCITS code satisfies all the objectives for transferring thermal data between heat transfer and structural models of combustor liners and it can be used as a generic thermal translator between heat transfer and stress models of any component, regardless of the geometry. The TRANCITS can accurately and efficiently convert the temperature distributions predicted by the heat transfer programs to those required by the stress codes. It can be used for both linear and nonlinear structural codes and can produce nodal temperatures, elemental centroid temperatures, or elemental Gauss point temperatures. The thermal output of both the MARC and SINDA heat transfer codes can be interfaced directly with TRANCITS, and it will automatically produce stress model codes formatted for NASTRAN and MARC. Any thermal program and structural program can be interfaced by using the neutral input and output forms supported by TRANCITS.

  11. THERMAL EVOLUTION AND STRUCTURE MODELS OF THE TRANSITING SUPER-EARTH GJ 1214b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nettelmann, N.; Fortney, J. J.; Kramm, U.

    The planet GJ 1214b is the second known super-Earth with a measured mass and radius. Orbiting a quiet M star, it receives considerably less mass-loss driving X-ray and UV radiation than CoRoT-7b, so that the interior may be quite dissimilar in composition, including the possibility of a large fraction of water. We model the interior of GJ 1214b assuming a two-layer (envelope+rock core) structure where the envelope material is either H/He, pure water, or a mixture of H/He and H{sub 2}O. Within this framework, we perform models of the thermal evolution and contraction of the planet. We discuss possible compositionsmore » that are consistent with M{sub p} = 6.55 M{sub +}, R{sub p} = 2.678 R{sub +}, an age {tau} = 3-10 Gyr, and the irradiation level of the atmosphere. These conditions require that if water exists in the interior, it must remain in a fluid state, with important consequences for magnetic field generation. These conditions also require the atmosphere to have a deep isothermal region extending down to 80-800 bar, depending on composition. Our results bolster the suggestion of a metal-enriched H/He atmosphere for the planet, as we find water-world models that lack an H/He atmosphere to require an implausibly large water-to-rock ratio of more than 6:1. We instead favor an H/He/H{sub 2}O envelope with high water mass fraction ({approx}0.5-0.85), similar to recent models of the deep envelope of Uranus and Neptune. Even with these high water mass fractions in the H/He envelope, generally the bulk composition of the planet can have subsolar water:rock ratios. Dry, water-enriched, and pure water envelope models differ to an observationally significant level in their tidal Love numbers k{sub 2} of, respectively, {approx}0.018, {approx}0.15, and {approx}0.7.« less

  12. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    NASA Technical Reports Server (NTRS)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating environments, coupled with the use of unstructured methods, is considered enabling for TPS material selection and design in conceptual studies where vehicle mission, shape, and entry strategies evolve rapidly.

  13. Analysis for Building Envelopes and Mechanical Systems Using 2012 CBECS Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, David W.; Halverson, Mark A.; Butzbaugh, Joshua B.

    This report describes the aggregation and mapping of certain building characteristics data available in the most recent Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2012) to describe most typical building construction practices. This report provides summary data for potential use in the support of modifications to the Pacific Northwest National Laboratory’s commercial building prototypes used for building energy code analysis. Specifically, this report outlines findings and most typical design choices for certain building envelope and heating, ventilating, and air-conditioning (HVAC) system choices.

  14. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  15. Passive solar/earth sheltered office/dormitory cooling season thermal performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.

    1984-01-01

    Continuous detailed hourly thermal performance measurements have been taken since February 1982 in and around an occupied, underground, 4000 ft/sup 2/ office/dormitory building at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. This building has a number of energy saving features which have been analyzed relative to their performance in a southeastern US climate and with respect to overall commercial building performance. This analysis documents cooling season performance, as well as effects of earth contact, interior thermal mass, an economizer cycle and interface of an efficient building envelope with a central three-ton heat pump. The Joint Institute Dormitory obtainsmore » a cooling energy savings of about 30% compared with an energy-efficient, above-grade structure and has the potential to save as much as 50%. The proper installation of the overhand, interior thermal mass, massive supply duct system, and earth contact team up to prevent summertime overheating. From May through September, this building cost a total of $300 (at 5.7 cents/kWh) to cool and ventilate 24 hours per day. Besides thermal performance of the building envelope, extensive comfort data was taken illustrating that at least 90% of the occupants are comfortable all of the time according to the PMV measurements.« less

  16. NSEG, a segmented mission analysis program for low and high speed aircraft. Volume 1: Theoretical development

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.

  17. 10 CFR 434.101 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... occupant comfort and sanitation, and which impose thermal loads in excess of 5% of the loads that would otherwise be required for occupant comfort and sanitation without the process; 101.2.4Envelope requirements...

  18. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOEpatents

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  19. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.

    PubMed

    Eddins, Ann Clock; Eddins, David A

    This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000-Hz dichotic conditions, consistent with similar use of binaural temporal envelope cues across age in these conditions. For all groups, thresholds and derived BMLD values obtained using the behavioral and CAEP methods were strongly correlated, supporting the notion that CAEP measures may be useful as an objective index of age-related changes in binaural temporal processing. These results demonstrate an age-related decline in the processing of binaural temporal fine-structure cues with preserved temporal envelope coding that was similar with and without mild-to-moderate peripheral hearing loss. Such age-related changes can be reliably indexed by both behavioral and CAEP measures in young and older adults.

  20. SN 1987A - The evolution from red to blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuchman, Y.; Wheeler, J.C.

    1989-11-01

    Envelope models in thermal and dynamic equilibrium are used to explore the nature of the transition of SK -69 deg 202, the progenitor of SN 1987A, from the Hayashi track to its final blue position in the H-R diagram. Loci of possible thermal equilibrium solutions are presented as a function of Teff and M(C/O), the mass of the carbon/oxygen core interior to the helium burning shell. It is found that uniform helium enrichment of the envelope results in red-blue evolution but that the resulting blue solution is much hotter than SK -69 deg 202. Solutions in which the only changemore » is to redistribute the portion of the envelope enriched in helium during main-sequence convective core contraction into a step function with Y of about 0.5 at a mass cut of about 10 solar masses give a natural transition from red to blue and a final value of Teff in agreement with observations. It is argued that SK -69 deg 202 probably fell on a post-Hayashi track sequence at moderate Teff. The possible connection of this sequence to the step distribution in the H-R diagram of the LMC. 19 refs.« less

  1. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology.

    PubMed

    Janin, Alexandre; Bauer, Delphine; Ratti, Francesca; Millat, Gilles; Méjat, Alexandre

    2017-08-30

    Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.

  2. Black Hole Formation and Fallback during the Supernova Explosion of a 40 M ⊙ Star

    NASA Astrophysics Data System (ADS)

    Chan, Conrad; Müller, Bernhard; Heger, Alexander; Pakmor, Rüdiger; Springel, Volker

    2018-01-01

    Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an “aborted” neutrino-driven explosion of a 40 solar mass zero-metallicity progenitor from collapse to shock breakout. We follow the phase up to BH formation using the relativistic COCONUT-FMT code. For the subsequent evolution to shock breakout we apply the moving-mesh code AREPO to core-collapse supernovae for the first time. Our simulation shows that despite early BH formation, neutrino-heated bubbles can survive for tens of seconds before being accreted, leaving them sufficient time to transfer part of their energy to sustain the shock wave as is propagates through the envelope. Although the initial net energy (∼2 Bethe) of the neutrino-heated ejecta barely equals the binding energy of the envelope, 11 {M}ȯ of hydrogen are still expelled with an energy of 0.23 Bethe. We find no significant mixing and only a modest BH kick and spin, but speculate that stronger effects could occur for slightly more energetic explosions or progenitors with less tightly bound envelopes.

  3. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less

  4. Performative building envelope design correlated to solar radiation and cooling energy consumption

    NASA Astrophysics Data System (ADS)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  5. Current and anticipated uses of thermal hydraulic codes in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codesmore » with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.« less

  6. Chinese-English Rocketry Dictionary. Volume 2

    DTIC Science & Technology

    1978-02-01

    dissection; dissect jiesan • break up; peel off; disperse; dismiss; dissolve jieshi explan.ation; explain; interpretation; exposition jieshi chengxu...integral pulse-height 20fenbu distribution maichong baoxien f , jp pulse envelope 21 maichong banna I 4 I 1 impulse coding 22 maichong bianrs

  7. Analysis Techniques, Materials, and Methods for Treatment of Thermal Bridges in Building Envelopes

    DTIC Science & Technology

    2013-08-01

    effects of the R-value for given increment of time ............................................. 89 64 Crystals on a post-conditioned Aspen Aerogel ... aerogel on specific sites compared to conventional polyurethane foam insulation. Figures 55 and 56 show two examples of preliminary parametric... Aerogel , and (4) Honeywell’s polyurethane. Table 14 lists the four tested insulation ma- terials, their experimental thermal properties (derived

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

  9. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    NASA Technical Reports Server (NTRS)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  10. Computation of Thermally Perfect Compressible Flow Properties

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake

    1996-01-01

    A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.

  11. Abundances in red giant stars - Nitrogen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Andersson, B.-G.; Olofsson, H.; Ukita, N.; Young, K.

    1991-01-01

    Results are presented of millimeter- and submillimeter-wave observations of HCN and HCCCN that were made of the circmustellar envelopes of eight carbon stars, including the two protoplanetary nebulae CRL 618 and CRL 2688. The observations yield a measure of the double ratio (N-14)(C-13)/(N-15)(C-12). Measured C-12/C-13 ratios are used to estimate the N-14/N-15 abundance ratio, with the resulting lower limits in all eight envelopes and possible direct determinations in two envelopes. The two determinations and four of the remaining six lower limits are found to be in excess of the terrestrial value of N-14/N-15 = 272, indicating an evolution of the nitrogen isotope ratio, which is consistent with stellar CNO processing. Observations of thermal SiO (v = 0, J = 2-1) emission show that the Si-29/Si-28 ratio can be determined in carbon stars, and further observations are indicated.

  12. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding ofmore » the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.« less

  13. The possible nature of socket stars in H II regions

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socket stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen.

  14. NSEG: A segmented mission analysis program for low and high speed aircraft. Volume 2: Program users manual

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    A rapid mission analysis code based on the use of approximate flight path equations of motion is described. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelop performance mapping capabilities. Approximate take off and landing analyses can be performed. At high speeds, centrifugal lift effects are taken into account. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.

  15. Temperature feedback control for long-term carrier-envelope phase locking

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  16. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-risemore » multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARB’s) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.« less

  17. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-risemore » multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.« less

  18. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ​While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-risemore » multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.« less

  19. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate themore » interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully.« less

  20. Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity

    NASA Astrophysics Data System (ADS)

    Herwig, Falk

    2004-04-01

    The evolution of intermediate-mass stars at very low metallicity during their final thermal pulse asymptotic giant branch (AGB) phase is studied in detail. As representative examples, models with initial masses of 4 and 5Msolar and with a metallicity of Z=0.0001 ([Fe/H]~-2.3) are discussed. The one-dimensional stellar structure and evolution model includes time- and depth-dependent overshooting motivated by hydrodynamic simulations, as well as a full nuclear network and time-dependent mixing. Particular attention is given to high time and space resolution to avoid numerical artifacts related to third dredge-up and hot bottom burning predictions. The model calculations predict very efficient third dredge-up that mixes the envelope with the entire intershell layer or a large fraction thereof and in some cases penetrates into the C/O core below the He shell. In all cases primary oxygen is mixed into the envelope. The models predict efficient envelope burning during the interpulse phase. Depending on the envelope-burning temperature, oxygen is destroyed to varying degrees. The combined effect of dredge-up and envelope burning does not lead to any significant oxygen depletion in any of the cases considered in this study. The large dredge-up efficiency in our model is closely related to the particular properties of the H shell during the dredge-up phase in low-metallicity very metal-poor stars, which is followed here over many thermal pulses. During the dredge-up phase, the temperature just below the convective boundary is large enough for protons to burn vigorously when they are brought into the C-rich environment below the convection boundary by the time- and depth-dependent overshooting. H-burning luminosities of 105 to ~2×106Lsolar are generated. C, and to lesser degree O, is transformed into N in this dredge-up overshooting layer and enters the envelope. The global effect on the CNO abundance is similar to that of hot bottom burning. If the overshoot efficiency is larger, then dredge-up H burning causes a further increase in the dredge-up efficiency. After some thermal pulses, the dredge-up proceeds through the He shell and into the CO core beneath. Then neutrons may not be released from 13C in radiative conditions during the interpulse phase because of the scarcity of α-particles for the 13C(α,n)16O reactions. Conditions for the s-process are discussed qualitatively. The abundance evolution of H, He, C, N, O, and Na is described. Finally, the model predictions for sodium and oxygen are compared with observed abundances. The notion that massive AGB stars are the origin of the O-Na abundance anticorrelation in globular cluster giants is not consistent with the model predictions of this study. The abundance of the C-rich extremely metal-poor binaries LP 625-44, CS 29497-030, and HE 0024-2523 is discussed.

  1. Jet or Shock Breakout? The Low-Luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher; Chevalier, Roger

    2016-01-01

    We consider a model for the long-duration, low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The components of our model are: (1) a long-lived (tj ~ 3000 s) central engine and accompanying low-luminosity (Lj ~ 1045 erg s-1), mildly relativistic jet; (2) a low-mass (~ 10-2 Msun) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ~ 0.1) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the prompt nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ~ 1013 cm can explain the early optical peak. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ~ 30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that ultra-long bursts such as GRB 060218 and GRB 100316D may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt high-energy emission from the supernova.

  2. Comparison of the LLNL ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Burnham, A K

    2006-04-05

    Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less

  3. Validation of NASA Thermal Ice Protection Computer Codes Part 2 - LEWICE/Thermal

    DOT National Transportation Integrated Search

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center: LEWICE/Thermal 1 (electrothermal de-icing and anti-icing), and ANTICE 2 (hot gas and el...

  4. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025

  5. Ultra-long Gamma-Ray Bursts from the Collapse of Blue Supergiant Stars: An End-to-end Simulation

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Lazzati, Davide; Cantiello, Matteo

    2018-05-01

    Ultra-long gamma-ray bursts (ULGRBs) are a distinct class of GRBs characterized by durations of several thousands of seconds, about two orders of magnitude longer than those of standard long GRBs (LGRBs). The driving engine of these events has not yet been uncovered, and ideas range from magnetars, to tidal disruption events, to extended massive stars, such as blue super giants (BSG). BSGs, a possible endpoint of stellar evolution, are attractive for the relatively long freefall times of their envelopes, allowing accretion to power a long-lasting central engine. At the same time, their large radial extension poses a challenge to the emergence of a jet. Here, we perform an end-to-end simulation aimed at assessing the viability of BSGs as ULGRB progenitors. The evolution to the core-collapse of a BSG star model is calculated with the MESA code. We then compute the accretion rate for the fraction of envelope material with enough angular momentum to circularize and form an accretion disk, and input the corresponding power into a jet, which we evolve through the star envelope with the FLASH code. Our simulation shows that the jet can emerge, and the resulting light curves resemble those observed in ULGRBs, with durations T 90 ranging from ≈4000 s to ≈104 s, depending on the viewing angle.

  6. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  7. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.

    PubMed

    Song, Fan; Meng, Songhe; Xu, Xianghong; Shao, Yingfeng

    2010-03-26

    We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10,000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.

  8. Numerical simulation of experiments in the Giant Planet Facility

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1979-01-01

    Utilizing a series of existing computer codes, ablation experiments in the Giant Planet Facility are numerically simulated. Of primary importance is the simulation of the low Mach number shock layer that envelops the test model. The RASLE shock-layer code, used in the Jupiter entry probe heat-shield design, is adapted to the experimental conditions. RASLE predictions for radiative and convective heat fluxes are in good agreement with calorimeter measurements. In simulating carbonaceous ablation experiments, the RASLE code is coupled directly with the CMA material response code. For the graphite models, predicted and measured recessions agree very well. Predicted recession for the carbon phenolic models is 50% higher than that measured. This is the first time codes used for the Jupiter probe design have been compared with experiments.

  9. TEMPEST II--A NEUTRON THERMALIZATION CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shudde, R.H.; Dyer, J.

    The TEMPEST II neutron thermalization code in Fortran for IBM 709 or 7090 calculates thermal neutron flux spectra based upon the Wigner-Wilkins equation, the Wilkins equation, or the Maxwellian distribution. When a neutron spectrum is obtained, TEMPEST II provides microscopic and macroscopic cross section averages over that spectrum. Equations used by the code and sample input and output data are given. (auth)

  10. The possible nature of socket stars in H II regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelaz, M.W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socketmore » stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen. 22 refs.« less

  11. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    PubMed

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.

  12. Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis.

    PubMed Central

    Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A

    1990-01-01

    The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254

  13. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  14. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    NASA Technical Reports Server (NTRS)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; hide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the buildingmore » envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.« less

  16. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  17. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  18. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  19. Structure and evolution of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Macfarlane, J. J.

    1980-01-01

    Three-layer interior models of Uranus and Neptune with central rocky cores, mantles of water, methane, and ammonia (the 'ices'), and outer envelopes primarily composed of hydrogen and helium are presented. The models incorporate a new H2O equation of state based on experimental data which is considerably 'softer' than previous H2O equations of state. Corrections for interior temperatures approximately 5000 K are included in the models, and the thermal evolution of both planets is investigated using recent heat flow measurements. It is found that the evolutionary considerations are consistent with gravitational field data in supporting models with approximately solar abundances of 'ice' and 'rock'. Evolutionary considerations indicate that initial temperatures and luminosities for Uranus and Neptune were not substantially higher than the present value. Both planets apparently have relatively small approximately 1-2 earth masses) hydrogen-helium envelopes, with Neptune's envelope smaller than Uranus'. A monotonic trend is evident among the Jovian planets: all have central rock-ice cores of approximately 15 earth masses, but with hydrogen-helium envelopes which decrease in mass from Jupiter to Saturn to Uranus to Neptune.

  20. Current and anticipated uses of thermal-hydraulic codes in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  1. Thermal-envelope field measurements in an energy-efficient office/dormitory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.

    1982-01-01

    A 345 m/sup 2/ earth-covered structure located at the Oak Ridge National Laboratory is the focus of a DOE sponsored building-envelope research project. To heat the office/dormitory building over the 1981-1982 heating season would cost $1.70/m/sup 2/ ($0.16/ft/sup 2/), assuming $0.07/kWh. The thermal-integrity factor is 0.016 kWh/m/sup 2/ /sup 0/C (2.8 Btu/ft/sup 2/ /sup 0/F). A preliminary DOE-II model estimates the monthly electric energy needs for heating within 5% of field data derived estimates. DOE-II building simulations suggest that this earth-covered/passively heated office dormitory saves 30% for space heating and 26% for cooling compared to an energy efficient above grademore » structure. A preliminary winter energy balance has been generated from data collected in February and March providing a fractional breakdown of thermal losses and gains. A number of the energy-conserving component performances have been isolated; earth-covered roof, bermed wall, and nonvented trombe wall. The earth-covered roof system showed an overall thermal transmittance of 0.18 W/m/sup 2///sup 0/C (R=31 hr ft/sup 2/ /sup 0/F/Btu). The thermocouple wells located in the earth surrounding the building indicate the additional energy savings of burying over berming. For one week in February the trombe wall produced a 50% greater net thermal gain to the building then south facing windows per equivalent unit area.« less

  2. Preliminary result of the analysis of T Sagittarrii data and modeling

    NASA Astrophysics Data System (ADS)

    Menut, Jean-Luc; Chesneau, Olivier; Lopez, Bruno; Berruyer, Nicole; Graser, Uwe; Niccolini, Gilles; Dutrey, Anne; Perrin, Guy S.

    2004-10-01

    This document shows the first results of the study of the environment of the S star T Sagittarii. Observational constraints are obtained through 10 μm long baseline interferometry with MIDI at the VLTI. Models of the dust envelope are simulated with a monte-carlo radiative transfer code.

  3. RTE: A computer code for Rocket Thermal Evaluation

    NASA Technical Reports Server (NTRS)

    Naraghi, Mohammad H. N.

    1995-01-01

    The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.

  4. Masonry building envelope analysis

    NASA Astrophysics Data System (ADS)

    McMullan, Phillip C.

    1993-04-01

    Over the past five years, infrared thermography has proven an effective tool to assist in required inspections on new masonry construction. However, with more thermographers providing this inspection service, establishing a standard for conducting these inspections is imperative. To attempt to standardize these inspections, it is important to understand the nature of the inspection as well as the context in which the inspection is typically conducted. The inspection focuses on evaluating masonry construction for compliance with the design specifications with regard to structural components and thermal performance of the building envelope. The thermal performance of the building includes both the thermal resistance of the material as well as infiltration/exfiltration characteristics. Given that the inspections occur in the 'field' rather than the controlled environment of a laboratory, there are numerous variables to be considered when undertaking this type of inspection. Both weather and site conditions at the time of the inspection can vary greatly. In this paper we will look at the variables encountered during recent inspections. Additionally, the author will present the standard which was employed in collecting this field data. This method is being incorporated into a new standard to be included in the revised version of 'Guidelines for Specifying and Performing Infrared Inspections' developed by the Infraspection Institute.

  5. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    NASA Astrophysics Data System (ADS)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  6. An Unusual Stellar Death on Christmas Day

    NASA Technical Reports Server (NTRS)

    Thone, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Page, K. L.; Gorosabel, J.; Aloy, M. A.; Perley, D. A.; Kouveliotou, C.; Janka, H. T.; Mimica, P.; hide

    2011-01-01

    Long Gamma-Ray Bursts (GRBs) are the most dramatic examples of massive stellar deaths, usually associated with supernovae. They release ultra-relativistic jets producing non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the peculiar GRB 101225A (the "Christmas burst"). Its gamma-ray emission was exceptionally long and followed by a bright X-ray transient with a hot thermal component and an unusual optical couuterpart. During the first 10 days, the optical emission evolved as an expanding, cooling blackbody after which an additional component, consistent with a faint supernova, emerged. We determine its distance to 1.6 Gpc by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a helium star-neutron star merger that underwent a common envelope phase expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which gets thermalized by interacting with the dense, previously ejected material and thus creating the observed black-body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star io the Galaxy

  7. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  8. Combining Thermal And Structural Analyses

    NASA Technical Reports Server (NTRS)

    Winegar, Steven R.

    1990-01-01

    Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.

  9. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-01

    The numerical modeling code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde, pronounced "inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  10. Method of Minimizing Size of Heat Rejection Systems for Thermoelectric Coolers to Cool Detectors in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    A thermal design concept of attaching the thermoelectric cooler (TEC) hot side directly to the radiator and maximizing the number of TECs to cool multiple detectors in space is presented. It minimizes the temperature drop between the TECs and radiator. An ethane constant conductance heat pipe transfers heat from the detectors to a TEC cold plate which the cold side of the TECs is attached to. This thermal design concept minimizes the size of TEC heat rejection systems. Hence it reduces the problem of accommodating the radiator within a required envelope. It also reduces the mass of the TEC heat rejection system. Thermal testing of a demonstration unit in vacuum verified the thermal performance of the thermal design concept.

  11. Simulation of periodically focused, adiabatic thermal beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Akylas, T. R.; Barton, T. J.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam ismore » found be stable in the parameter regime where the simulations are performed.« less

  12. Behavior of sandwich panels in a fire

    NASA Astrophysics Data System (ADS)

    Chelekova, Eugenia

    2018-03-01

    For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.

  13. Balmer line profiles for infalling T Tauri envelopes

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee

    1992-01-01

    The possibility that the Balmer emission lines of T Tauri stars arise in infalling envelopes rather than winds is considered. Line profiles for the upper Balmer lines are presented for models with cone geometry, intended to simulate the basic features of magnetospheric accretion from a circumstellar disk. An escape probability treatment is used to determine line source functions in nonspherically symmetric geometry. Thermalization effects are found to produce nearly symmetric H-alpha line profiles at the same time the higher Balmer series lines exhibit inverse P Cygni profiles. The infall models produce centrally peaked emission line wings, in good agreement with observations of many T Tauri stars. It is suggested that the Balmer emission of many T Tauri stars may be produced in an infalling envelope, with blue shifted absorption contributed by an overlying wind. Some of the observed narrow absorption components with small blueshifts may also arise in the accretion column.

  14. Idealised large-eddy-simulation of thermally driven flows over an isolated mountain range with multiple ridges

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.; Leukauf, Daniel; Posch, Christian

    2014-05-01

    Two dimensional idealised large-eddy-simulations are performed using the WRF model to investigate thermally driven flows during the daytime over complex terrain. Both the upslope flows and the temporal evolution of the boundary layer structure are studied with a constant surface heat flux forcing of 150 W m-2. In order to distinguish between different heating processes the flow is Reynold decomposed into its mean and turbulent part. The heating processes associated with the mean flow are a cooling through cold-air advection along the slopes and subsidence warming within the valleys. The turbulent component causes bottom-up heating near the ground leading to a convective boundary layer (CBL) inside the valleys. Overshooting potentially colder thermals cool the stably stratified valley atmosphere above the CBL. Compared to recent investigations (Schmidli 2013, J. Atmos. Sci., Vol. 70, No. 12: pp. 4041-4066; Wagner et al. 2014, manuscript submitted to Mon. Wea. Rev.), which used an idealised topography with two parallel mountain crests separated by a straight valley, this project focuses on multiple, periodic ridges and valleys within an isolated mountain range. The impact of different numbers of ridges on the flow structure is compared with the sinusoidal envelope-topography. The present simulations show an interaction between the smaller-scale upslope winds within the different valleys and the large-scale flow of the superimposed mountain-plain wind circulation. Despite a smaller boundary layer air volume in the envelope case compared to the multiple ridges case the volume averaged heating rates are comparable. The reason is a stronger advection-induced cooling along the slopes and a weaker warming through subsidence at the envelope-topography compared to the mountain range with multiple ridges.

  15. A hydrodynamic study of a slow nova outburst. [computerized simulation of thermonuclear runaway in white dwarf envelope

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Starrfield, S.; Truran, J. W.

    1978-01-01

    The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.

  16. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    NASA Astrophysics Data System (ADS)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  17. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkovich, T.R.; Montan, D.N.

    1980-04-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less

  18. Transmutation Fuel Performance Code Thermal Model Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  19. Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III

    1996-01-01

    Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.

  20. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  1. Empirical-theoretical Survey of the Variety of Peculiarities and Anomalies in the Atmospheres Enveloping Actual Stars

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Phenomena observed in actual stellar atmospheres which contradict the speculative, standard thermal atmospheric model are discussed. Examples of stellar variability, emission line peculiarity, symbiotic stars and phenomena, extended atmosphere stars, superionization, and superthermic velocity are examined.

  2. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  3. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  4. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  5. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  6. A New Multiscale Model for the Madden-Julian Oscillation.

    NASA Astrophysics Data System (ADS)

    Biello, Joseph A.; Majda, Andrew J.

    2005-06-01

    A multiscale model of the MJO is developed here that accounts, in a simplified fashion, for both the upscale transfer from synoptic to planetary scales of momentum and temperature from wave trains of thermally driven equatorial synoptic-scale circulations in a moving convective envelope as well as direct mean heating on planetary scales. This model involves idealized thermally driven congestus synoptic-scale fluctuations in the eastern part of the moving wave envelope and convective superclusters in the western part of the envelope. The model self-consistently reproduces qualitatively many of the detailed structural features of the planetary circulation in the observations of the MJO, including the vertical structure in both the westerly onset region and the strong westerly wind burst region, as well as the horizontal quadrupole planetary vortex structure. The westerly midlevel inflow in the strong westerly region and the quadrupole vortex are largely produced in the model by the upscale transport of momentum to the planetary scales, while the midlevel easterly jet in the westerly onset region is substantially strengthened by this process. The role of wave trains of tilted organized synoptic-scale circulations is crucial for this fidelity with observations. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with many of the features of the observational record.

  7. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While thismore » air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.« less

  8. Curie-Montgolfiere Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Taylor, Chris Y.; Hansen, Jeremiah

    2007-01-01

    Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.

  9. Carbon-rich Giant Planets: Atmospheric Chemistry, Thermal Inversions, Spectra, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.

    2011-12-01

    The recent inference of a carbon-rich atmosphere, with C/O >= 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O >= 1, and T >~ 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H2O is depleted and CH4 is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of ~100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P ~ 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T <~ 30 K) for WASP-12b lead to a C/O ratio of 0.27 in accreted planetesimals, and, consequently, in the planet's envelope. In contrast, a C/O ratio of 1 in the envelope of WASP-12b requires a substantial depletion of oxygen in the disk, i.e., by a factor of ~0.41 for the same formation conditions. This scenario also satisfies the constraints on the C/H and O/H ratios reported for WASP-12b. If, alternatively, hotter conditions prevailed in a stellar composition disk such that only H2O is condensed, the remaining gas can potentially have a C/O ~ 1. However, a high C/O in WASP-12b caused predominantly by gas accretion would preclude superstellar C/H ratios which also fit the data.

  10. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  11. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  12. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  13. Quadrature-quadrature phase-shift keying

    NASA Astrophysics Data System (ADS)

    Saha, Debabrata; Birdsall, Theodore G.

    1989-05-01

    Quadrature-quadrature phase-shift keying (Q2PSK) is a spectrally efficient modulation scheme which utilizes available signal space dimensions in a more efficient way than two-dimensional schemes such as QPSK and MSK (minimum-shift keying). It uses two data shaping pulses and two carriers, which are pairwise quadrature in phase, to create a four-dimensional signal space and increases the transmission rate by a factor of two over QPSK and MSK. However, the bit error rate performance depends on the choice of pulse pair. With simple sinusoidal and cosinusoidal data pulses, the Eb/N0 requirement for Pb(E) = 10 to the -5 is approximately 1.6 dB higher than that of MSK. Without additional constraints, Q2PSK does not maintain constant envelope. However, a simple block coding provides a constant envelope. This coded signal substantially outperforms MSKS and TFM (time-frequency multiplexing) in bandwidth efficiency. Like MSK, Q2PSK also has self-clocking and self-synchronizing ability. An optimum class of pulse shapes for use in Q2PSK-format is presented. One suboptimum realization achieves the Nyquist rate of 2 bits/s/Hz using binary detection.

  14. A rule-based expert system applied to moisture durability of building envelopes

    DOE PAGES

    Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.; ...

    2018-01-09

    The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less

  15. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    PubMed

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-08

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  16. Information theory analysis of patterns of modulation in the advertisement call of the male bullfrog, Rana catesbeianaa)

    PubMed Central

    Suggs, Dianne N.; Simmons, Andrea Megela

    2005-01-01

    Male bullfrogs often amplitude modulate the envelopes of the individual notes (croaks) in their multinote advertisement calls. These amplitude modulations change the envelope of the note from smooth and unmodulated to one with varying numbers of modulations. A Markov analysis shows the pattern of change in the envelope to be highly ordered, but not completely so (semi-Markovian). Three simple rules govern the presence or absence of modulations in individual notes. These rules are (1) all calls begin with an unmodulated note; (2) the first note to be modulated will contain only one modulation; and (3) when a change in modulation occurs from one note to the next, it does so with an increase or a decrease of one modulation only. The addition of modulations is correlated with an increase in note duration. Physiologically, the presence of modulations might increase the precision of temporal coding of note periodicities in the central auditory system. PMID:15898673

  17. A rule-based expert system applied to moisture durability of building envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.

    The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less

  18. Immunomodulatory effects of exosomes produced by virus-infected cells.

    PubMed

    Petrik, Juraj

    2016-08-01

    Viruses have developed a spectrum of ways to modify cellular pathways to hijack the cell machinery for the synthesis of their nucleic acid and proteins. Similarly, they use intracellular vesicular mechanisms of trafficking for their assembly and eventual release, with a number of viruses acquiring their envelope from internal or plasma cell membranes. There is an increasing number of reports on viral exploitation of cell secretome pathways to avoid recognition and stimulation of the immune response. Extracellular vesicles (EV) containing viral particles have been shown to shield viruses after exiting the host cell, in some cases challenging the boundaries between viral groups traditionally characterised as enveloped and non-enveloped. Apart from viral particles, EV can spread the virus also carrying viral genome and can modify the target cells through their cargo of virus-coded miRNAs and proteins as well as selectively packaged cellular mRNAs, miRNAs, proteins and lipids, differing in composition and quantities from the cell of origin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Truss-Integrated Thermoformed Ductwork Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Winter; Dianne Griffiths; Ravi Gorthala

    2007-08-30

    This report summarizes a multi-year research effort to develop a leak-free duct system that can be readily installed within the thermal envelope. There are numerous efforts underway to improve duct system efficiency. Most of these involve modifications to current technology such as air sealing techniques like mastic and aeroseal, snap together duct connections, and greater levels of insulation. This project sought to make a more significant stride forward by introducing a duct system of a material that can be more readily sealed and can exhibit lower friction losses. The research focused on the use of smooth internal surface, low frictionmore » plastic ducts that could be easily installed with very low air leakage. The initial system concept that was proposed and researched in Phase I focused on the use of thermoformed plastic ducts installed in a recessed roof truss underneath the attic insulation. A bench top thermoformed system was developed and tested during Phase I of the project. In Phase II, a first generation duct system utilizing a resin impregnated fiberglass duct product was designed and specified. The system was installed and tested in an Atlanta area home. Following this installation research and correspondence with code officials was undertaken to alleviate the continued concern over the code acceptance of plastic ducts in above ground applications. A Committee Interpretation response was received from the International Code Council (ICC) stating that plastic ducts were allowed, but must be manufactured from materials complying with Class 0 or Class 1 rating. With assurance of code acceptance, a plastic duct system using rotomolded high density polyethylene ducts that had passed the material test requirements by impregnating the material with a fire retardant during the molding process was installed in the basement of a new ranch-style home in Madison, WI. A series of measurements to evaluate the performance benefits relative to a similar control house with a standard sheet metal installation were made.« less

  20. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  1. Efficient Modeling of Laser-Plasma Accelerators with INF and RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-11-04

    The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced 'inferno') is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations whilemore » still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  2. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  3. Extended envelopes around Galactic Cepheids. IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.; Chesneau, O.; Breitfelder, J.; Gieren, W.

    2013-10-01

    Aims: We study the close environment of nearby Cepheids using high spatial resolution observations in the mid-infrared with the VLTI/MIDI instrument, a two-beam interferometric recombiner. Methods: We obtained spectra and visibilities for the classical Cepheids X Sgr and T Mon. We fitted the MIDI measurements, supplemented by B,V,J,H,K literature photometry, with the numerical transfer code DUSTY to determine the dust shell parameters. We used a typical dust composition for circumstellar environments. Results: We detect an extended dusty environment in the spectra and visibilities for both stars, although T Mon might suffer from thermal background contamination. We attribute this to the presence of a circumstellar envelope (CSE) surrounding the Cepheids. This is optically thin for X Sgr (τ0.55 μm = 0.008), while it appears to be thicker for T Mon (τ0.55 μm = 0.15). They are located at about 15-20 stellar radii. Following our previous work, we derived a likely period-excess relation in the VISIR PAH1 filter, f8.6 μm[%]= 0.81(±0.04)P[day]. We argue that the impact of CSEs on the mid-IR period-luminosity (P - L) relation cannot be negligible because they can bias the Cepheid brightness by up to about 30%. For the K-band P - L relation, the CSE contribution seems to be lower (<5%), but the sample needs to be enlarged to firmly conclude that the impact of the CSEs is negligible in this band. Based on observations made with ESO telescopes at Paranal observatory under program ID 082.D-0066Table 3 is only available in electronic form at http://www.aanda.org

  4. Smart Building: Decision Making Architecture for Thermal Energy Management.

    PubMed

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  5. Comprehensive analysis of transport aircraft flight performance

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance, atmospheric effects, economic Mach number and noise trajectories at F.A.R. landing points.

  6. Can Binary Population Synthesis Models Be Tested With Hot Subdwarfs ?

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi Kumar; Wade, R. A.; O'Shaughnessy, R.

    2007-12-01

    Models of binary star interactions have been successful in explaining the origin of field hot subdwarf (sdB) stars in short period systems. The hydrogen envelopes around these core He-burning stars are removed in a "common envelope" evolutionary phase. Reasonably clean samples of short-period sdB+WD or sdB+dM systems exist, that allow the common envelope ejection efficiency to be estimated for wider use in binary population synthesis (BPS) codes. About one-third of known sdB stars, however, are found in longer-period systems with a cool G or K star companion. These systems may have formed through Roche-lobe overflow (RLOF) mass transfer from the present sdB to its companion. They have received less attention, because the existing catalogues are believed to have severe selection biases against these systems, and because their long, slow orbits are difficult to measure. Are these known sdB+cool systems worth intense observational effort? That is, can they be used to make a valid and useful test of the RLOF process in BPS codes? We use the Binary Stellar Evolution (BSE) code of Hurley et al. (2002), mapping sets of initial binaries into present-day binaries that include sdBs, and distinguishing "observable" sdBs from "hidden" ones. We aim to find out whether (1) the existing catalogues of sdBs are sufficiently fair samples of the kinds of sdB binaries that theory predicts, to allow testing or refinement of RLOF models; or instead whether (2) large predicted hidden populations mandate the construction of new catalogues, perhaps using wide-field imaging surveys such as 2MASS, SDSS, and Galex. This work has been partially supported by NASA grant NNG05GE11G and NSF grants PHY 03-26281, PHY 06-00953 and PHY 06-53462. This work is also supported by the Center for Gravitational Wave Physics, which is supported by the National Science Foundation under cooperative agreement PHY 01-14375.

  7. Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'

  8. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGES

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  9. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less

  10. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    PubMed

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  11. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  12. Thermal Standard for Small Rural Schools.

    ERIC Educational Resources Information Center

    Strandberg (J.S.) Consulting Engineering, Fairbanks, AK.

    The Standard's purpose is to provide design requirements that will improve energy utilization in new State of Alaska owned rural educational facilities ranging in size from 7,000 to 12,000 square feet. The Standard covers exterior envelopes and selection of heating, ventilating and air conditioning systems, service water systems, energy…

  13. The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33.

    PubMed

    Thöne, C C; de Ugarte Postigo, A; Fryer, C L; Page, K L; Gorosabel, J; Aloy, M A; Perley, D A; Kouveliotou, C; Janka, H T; Mimica, P; Racusin, J L; Krimm, H; Cummings, J; Oates, S R; Holland, S T; Siegel, M H; De Pasquale, M; Sonbas, E; Im, M; Park, W-K; Kann, D A; Guziy, S; García, L Hernández; Llorente, A; Bundy, K; Choi, C; Jeong, H; Korhonen, H; Kubànek, P; Lim, J; Moskvitin, A; Muñoz-Darias, T; Pak, S; Parrish, I

    2011-11-30

    Long γ-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae. They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the unusual GRB 101225A. Its γ-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy.

  14. Limited potential for adaptation to climate change in a broadly distributed marine crustacean.

    PubMed

    Kelly, Morgan W; Sanford, Eric; Grosberg, Richard K

    2012-01-22

    The extent to which acclimation and genetic adaptation might buffer natural populations against climate change is largely unknown. Most models predicting biological responses to environmental change assume that species' climatic envelopes are homogeneous both in space and time. Although recent discussions have questioned this assumption, few empirical studies have characterized intraspecific patterns of genetic variation in traits directly related to environmental tolerance limits. We test the extent of such variation in the broadly distributed tidepool copepod Tigriopus californicus using laboratory rearing and selection experiments to quantify thermal tolerance and scope for adaptation in eight populations spanning more than 17° of latitude. Tigriopus californicus exhibit striking local adaptation to temperature, with less than 1 per cent of the total quantitative variance for thermal tolerance partitioned within populations. Moreover, heat-tolerant phenotypes observed in low-latitude populations cannot be achieved in high-latitude populations, either through acclimation or 10 generations of strong selection. Finally, in four populations there was no increase in thermal tolerance between generations 5 and 10 of selection, suggesting that standing variation had already been depleted. Thus, plasticity and adaptation appear to have limited capacity to buffer these isolated populations against further increases in temperature. Our results suggest that models assuming a uniform climatic envelope may greatly underestimate extinction risk in species with strong local adaptation.

  15. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    PubMed

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  16. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    NASA Astrophysics Data System (ADS)

    Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.

  17. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    NASA Astrophysics Data System (ADS)

    Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    2004-01-01

    Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.

  18. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.; Morris, D.G.

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are usedmore » to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the buildingmore » envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, the Consortium for Advanced Residential Buildings team monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.« less

  20. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The codemore » has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  1. Russian Apartment Building Thermal Response Models for Retrofit Selection and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Dirks, James A.; Reilly, Raymond W.

    2000-08-21

    The Enterprise Housing Divestiture Project (EHDP) aims to identify cost-effective energy efficiency and conservation measures for Russian apartment buildings and to implement these measures in the entire stock of buildings undergoing divestiture in six cities. Short-term measurements of infiltration and exterior wall heat-loss coefficient were made in the cities of Cheropovets, Orenburg, Petrozavodsk, Ryazan, and Vladimir. Long-term monitoring equipment was installed in six or more buildings in the aforementioned and in the city of Volxhov. The results of these measurements will be used to calibrate models used to select optimal retrofit packages and to verify energy savings. The retrofit categoriesmore » representing the largest technical potential in these buildings are envelope, heat recovery, and heating/hot water system improvements. This paper describes efforts to establish a useful thermal model calibration process. The model structures and analytical methods for obtaining building parameters from time series weather, energy use, and thermal response data are developed. Our experience applying these methods to two, nominally identical 5-story apartment buildings in the city of Ryazan is presented. Building envelope UA?s inferred from measured whole-building thermal response data are compared with UA?s based on window and wall U-values (the latter obtained by ASTM in-situ measurements of 20 wall sections in various Ryazan panel buildings) as well. The UA's obtained by these completely independent measurements differ by less than 10%.« less

  2. Few Like it Hot: Coral Reef Reponses to Elevated Temperatures and CO2

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Gledhill, D. K.; Heron, S. F.; Skirving, W.; Christensen, T.; Morgan, J.; Liu, G.; Strong, A. E.

    2007-12-01

    Coral reefs live within a fairly narrow envelope of environmental conditions constrained by water temperatures, light, salinity, nutrients, bathymetry and the aragonite saturation state of seawater. As documented in numerous studies, the world's coral reefs are "in crisis" as a result of human impacts on their environment. While local stresses currently dominate, coral reefs are increasingly confronted with global-scale changes due to rising greenhouse gas concentrations. These changes are rapidly modifying the environmental envelope of coral reefs through both increased thermal stress and ocean acidification. In the former case, there is a well-documented relationship between thermal stress and the response of corals that include coral bleaching, disease, and mortality. Clear tolerance thresholds exist beyond which high temperature and accumulated thermal stress have deleterious effects. However, the synergistic effects of increasing temperature and ocean acidification are not yet fully understood. At this time, there is mounting concern that decreasing pH and aragonite saturation state will cause net reef accretion to cease or become negative. The threshold at which this could occur is likely to be reached much sooner than the pH drop necessary to induce carbonate dissolution. Both the thermal and chemical limits that control coral survival and reef growth will likely be passed before 2100 assuming even conservative projections reported in the 4th Assessment Report of the Intergovernmental Panel on Climate Change. This talk will discuss these thresholds and their ramifications for ecosystems and resource management.

  3. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris.

    PubMed

    Maercker, M; Mohamed, S; Vlemmings, W H T; Ramstedt, S; Groenewegen, M A T; Humphreys, E; Kerschbaum, F; Lindqvist, M; Olofsson, H; Paladini, C; Wittkowski, M; de Gregorio-Monsalvo, I; Nyman, L-A

    2012-10-11

    The asymptotic-giant-branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star underwent a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse--parameters that determine the lifetime of the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3″. What was previously thought to be only a thin, spherical shell with a clumpy structure is revealed to also contain a spiral structure. Spiral structures associated with circumstellar envelopes have been previously seen, leading to the conclusion that the systems must be binaries. Combining the observational data with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse about 1,800 years ago, lasting approximately 200 years. About 3 × 10(-3) solar masses of material were ejected at a velocity of 14.3 km s(-1) and at a rate around 30 times higher than the pre-pulse mass-loss rate. This shows that about three times more mass was returned to the interstellar medium during and immediately after the pulse than previously thought.

  4. Trends in shuttle entry heating from the correction of flight test maneuvers

    NASA Technical Reports Server (NTRS)

    Hodge, J. K.

    1983-01-01

    A new technique was developed to systematically expand the aerothermodynamic envelope of the Space Shuttle Protection System (TPS). The technique required transient flight test maneuvers which were performed on the second, fourth, and fifth Shuttle reentries. Kalman filtering and parameter estimation were used for the reduction of embedded thermocouple data to obtain best estimates of aerothermal parameters. Difficulties in reducing the data were overcome or minimized. Thermal parameters were estimated to minimize uncertainties, and heating rate parameters were estimated to correlate with angle of attack, sideslip, deflection angle, and Reynolds number changes. Heating trends from the maneuvers allow for rapid and safe envelope expansion needed for future missions, except for some local areas.

  5. Recent Simulations of the Late Stages Growth of Jupiter

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  6. PCM/wood composite to store thermal energy in passive building envelopes

    NASA Astrophysics Data System (ADS)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  7. NSEG: A segmented mission analysis program for low and high speed aircraft. Volume 3: Demonstration problems

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    Program NSEG is a rapid mission analysis code based on the use of approximate flight path equations of motion. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelope performance mapping capabilities. For example, rate-of-climb, turn rates, and energy maneuverability parameter values may be mapped in the Mach-altitude plane. Approximate take off and landing analyses are also performed. At high speeds, centrifugal lift effects are accounted for. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.

  8. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    NASA Astrophysics Data System (ADS)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  9. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  11. A Novel Subgenomic Murine Leukemia Virus RNA Transcript Results from Alternative Splicing

    PubMed Central

    Déjardin, Jérôme; Bompard-Maréchal, Guillaume; Audit, Muriel; Hope, Thomas J.; Sitbon, Marc; Mougel, Marylène

    2000-01-01

    Here we show the existence of a novel subgenomic 4.4-kb RNA in cells infected with the prototypic replication-competent Friend or Moloney murine leukemia viruses (MuLV). This RNA derives by splicing from an alternative donor site (SD′) within the capsid-coding region to the canonical envelope splice acceptor site. The position and the sequence of SD′ was highly conserved among mammalian type C and D oncoviruses. Point mutations used to inactivate SD′ without changing the capsid-coding ability affected viral RNA splicing and reduced viral replication in infected cells. PMID:10729146

  12. SHAPEMOL: a 3D code for calculating CO line emission in planetary and protoplanetary nebulae. Detailed model-fitting of the complex nebula NGC 6302

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Koning, N.; Steffen, W.

    2015-01-01

    Context. Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA has reached unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far-infrared ranges are only accessible from space) for probing molecular warm gas (~50-1000 K). On the other hand, the software SHAPE has emerged in the past few years as a standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Aims: Being aware of the growing importance of the development of tools for simplifying the analyses of molecular data from new-era observatories, we introduce the computer code shapemol, a complement to SHAPE, with which we intend to fill the so-far under-developed molecular niche. Methods: shapemol enables user-friendly, spatio-kinematic modelling with accurate non-LTE calculations of excitation and radiative transfer in CO lines. Currently, it allows radiative transfer solving in the 12CO and 13CO J = 1-0 to J = 17-16 lines, but its implementation permits easily extending the code to different transitions and other molecular species, either by the code developers or by the user. Used along SHAPE, shapemol allows easily generating synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations. Results: We give a full description of how shapemol works, and we discuss its limitations and the sources of uncertainty to be expected in the final synthetic profiles or maps. As an example of the power and versatility of shapemol, we build a model of the molecular envelope of the planetary nebula NGC 6302 and compare it with 12CO and 13CO J = 2-1 interferometric maps from SMA and high-J transitions from Herschel/HIFI. We find the molecular envelope to have a complex, broken ring-like structure with an inner, hotter region and several "fingers" and high-velocity blobs, emerging outwards from the plane of the ring. We derive a mass of 0.11 M⊙ for the molecular envelope. A copy of the code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A56

  13. Application of numerical methods to heat transfer and thermal stress analysis of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Wieting, A. R.

    1979-01-01

    The paper describes a thermal-structural design analysis study of a fuel-injection strut for a hydrogen-cooled scramjet engine for a supersonic transport, utilizing finite-element methodology. Applications of finite-element and finite-difference codes to the thermal-structural design-analysis of space transports and structures are discussed. The interaction between the thermal and structural analyses has led to development of finite-element thermal methodology to improve the integration between these two disciplines. The integrated thermal-structural analysis capability developed within the framework of a computer code is outlined.

  14. Coherent-state constellations and polar codes for thermal Gaussian channels

    NASA Astrophysics Data System (ADS)

    Lacerda, Felipe; Renes, Joseph M.; Scholz, Volkher B.

    2017-06-01

    Optical communication channels are ultimately quantum mechanical in nature, and we must therefore look beyond classical information theory to determine their communication capacity as well as to find efficient encoding and decoding schemes of the highest rates. Thermal channels, which arise from linear coupling of the field to a thermal environment, are of particular practical relevance; their classical capacity has been recently established, but their quantum capacity remains unknown. While the capacity sets the ultimate limit on reliable communication rates, it does not promise that such rates are achievable by practical means. Here we construct efficiently encodable codes for thermal channels which achieve the classical capacity and the so-called Gaussian coherent information for transmission of classical and quantum information, respectively. Our codes are based on combining polar codes with a discretization of the channel input into a finite "constellation" of coherent states. Encoding of classical information can be done using linear optics.

  15. Computer codes for thermal analysis of a solid rocket motor nozzle

    NASA Technical Reports Server (NTRS)

    Chauhan, Rajinder Singh

    1988-01-01

    A number of computer codes are available for performing thermal analysis of solid rocket motor nozzles. Aerotherm Chemical Equilibrium (ACE) computer program can be used to perform one-dimensional gas expansion to determine the state of the gas at each location of a nozzle. The ACE outputs can be used as input to a computer program called Momentum/Energy Integral Technique (MEIT) for predicting boundary layer development development, shear, and heating on the surface of the nozzle. The output from MEIT can be used as input to another computer program called Aerotherm Charring Material Thermal Response and Ablation Program (CMA). This program is used to calculate oblation or decomposition response of the nozzle material. A code called Failure Analysis Nonlinear Thermal and Structural Integrated Code (FANTASTIC) is also likely to be used for performing thermal analysis of solid rocket motor nozzles after the program is duly verified. A part of the verification work on FANTASTIC was done by using one and two dimension heat transfer examples with known answers. An attempt was made to prepare input for performing thermal analysis of the CCT nozzle using the FANTASTIC computer code. The CCT nozzle problem will first be solved by using ACE, MEIT, and CMA. The same problem will then be solved using FANTASTIC. These results will then be compared for verification of FANTASTIC.

  16. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1981-08-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors was achieved by integrating the reflector surface into the outer glass envelope. The design, fabrication and preliminary test results are described for a prototype collector based on this concept. Efficiencies above 40% up to nearly 300 C may be achieved.

  17. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  18. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  19. Termination unit

    DOEpatents

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  20. Building thermography as a tool in energy audits and building commissioning procedure

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  1. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed Central

    Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.

    2011-01-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

  2. Thermal envelope field measurements in an energy-efficient office and dormitory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.

    1983-04-01

    A 345-m/sup 2/ earth-covered structure located at Oak Ridge National Laboratory is the focus of a DOE-sponsored building envelope research project. Based on field-measured data, heating the office and dormitory building over the 1981-1982 heating season cost $1.70/m/sup 2/ ($0.16/ft/sup 2/), assuming the cost of electricity to be $0.057/kWh. The building's thermal integrity factor is 0.016 kWh/m/sup 2/ /sup 0/C (2.8 Btu/ft/sup 2/ /sup 0/F). A preliminary DOE-2 model estimates the monthly electric energy needs for heating to be within 5% of our field data-derived estimates. DOE-2 building simulations suggest that this earth-covered, passively solar heated office dormitory saves 30%more » of the space heating and 26% of the cooling costs of an energy-efficient above grade structure. A preliminary winter energy balance has been generated from data collected in February and March and provides a fractional breakdown of thermal losses and gains. Performances have been isolated for several of the energy-conserving components: the earth-covered roof, the bermed wall, and the nonvented Trombe wall. The earth-covered roof system showed an overall thermal transmittance of 0.18 W/m/sup 2/ /sup 0/C (R = 31 h ft/sup 2/ /sup 0/F Btu/sup -1/). The thermocouple wells in the earth surrounding the building indicate that burying a wall is more energy efficient than berming. During one week in February, the Trombe wall produced a 50% greater net thermal gain to the building than an equivalent area of south-facing windows.« less

  3. Energy performance of building fabric - Comparing two types of vernacular residential houses

    NASA Astrophysics Data System (ADS)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  4. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed

    Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J

    2011-10-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.

  5. Externally Induced Evaporation of Young Stellar Disks in Orion

    NASA Technical Reports Server (NTRS)

    Johnstone, D.; Hollenbach, D.; Shu, F.

    1996-01-01

    In this paper we propose a model for the evaporation of disks around young low-mass stars by external sources of high energy photons. Two evaporation techniques are possible. Lyman continuum radiation can ionize hydrogen at the disk surface powering a steady thermal ionized disk-wind, or FUV radiation can heat the disk through photo-electric grain processes powering a slower thermal neutral disk-wind. Applying these two models to the evaporating objects in the Trapezium produces a satisfactory solution to both the mass-loss rate and size of the ionized envelopes.

  6. Introduction to Building Systems Performance: Houses That Work II. Revised February 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  7. THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov

    2016-12-20

    The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less

  8. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  9. A Monte Carlo Analysis of the Thrust Imbalance for the RSRMV Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle

  10. A Monte Carlo Analysis of the Thrust Imbalance for the Space Launch System Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.

  11. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Yan, Da; An, Jingjing

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  12. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE PAGES

    Zhou, Xin; Yan, Da; An, Jingjing; ...

    2018-04-05

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  13. A Double Dwell High Sensitivity GPS Acquisition Scheme Using Binarized Convolution Neural Network

    PubMed Central

    Wang, Zhen; Zhuang, Yuan; Yang, Jun; Zhang, Hengfeng; Dong, Wei; Wang, Min; Hua, Luchi; Liu, Bo; Shi, Longxing

    2018-01-01

    Conventional GPS acquisition methods, such as Max selection and threshold crossing (MAX/TC), estimate GPS code/Doppler by its correlation peak. Different from MAX/TC, a multi-layer binarized convolution neural network (BCNN) is proposed to recognize the GPS acquisition correlation envelope in this article. The proposed method is a double dwell acquisition in which a short integration is adopted in the first dwell and a long integration is applied in the second one. To reduce the search space for parameters, BCNN detects the possible envelope which contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023. Although there is a long integration in the second dwell, the acquisition computation overhead is still low due to the compressed search space. Comprehensively, the total computation overhead of the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double dwell/correlation envelope identification (DD/CEI) neural network achieves 2 dB improvement when compared with the MAX/TC under the same specification. PMID:29747373

  14. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-07-26

    Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between themore » hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.« less

  15. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation toolsmore » is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.« less

  16. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA).

    PubMed

    Guo, Guangyu; Li, Ning

    2011-07-01

    In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906

  18. Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus.

    PubMed

    Kariithi, Henry M; van Lent, Jan W M; Boeren, Sjef; Abd-Alla, Adly M M; Ince, Ikbal Agah; van Oers, Monique M; Vlak, Just M

    2013-01-01

    The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.

  19. A comparison of TSS and TRASYS in form factor calculation

    NASA Technical Reports Server (NTRS)

    Golliher, Eric

    1993-01-01

    As the workstation and personal computer become more popular than a centralized mainframe to perform thermal analysis, the methods for space vehicle thermal analysis will change. Already, many thermal analysis codes are now available for workstations, which were not in existence just five years ago. As these changes occur, some organizations will adopt the new codes and analysis techniques, while others will not. This might lead to misunderstandings between thermal shops in different organizations. If thermal analysts make an effort to understand the major differences between the new and old methods, a smoother transition to a more efficient and more versatile thermal analysis environment will be realized.

  20. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Durisen, Richard H.; Boley, Aaron C.; Pickett, Megan K.; Mejía, Annie C.

    2008-02-01

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamic simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 M⊙ around a young star of 0.5 M⊙, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower order modes, and irradiation preferentially suppresses higher order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS 5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two- and three-armed modes.

  1. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, H.; Nakamoto, T., E-mail: kurokawa@nagoya-u.jp

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain theirmore » envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.« less

  2. Smart Building: Decision Making Architecture for Thermal Energy Management

    PubMed Central

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  3. The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A⋆⋆

    NASA Astrophysics Data System (ADS)

    Koumpia, E.; Semenov, D. A.; van der Tak, F. F. S.; Boogert, A. C. A.; Caux, E.

    2017-07-01

    Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims: We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in order to (I) investigate the influence of the outflows on the chemistry; (II) constrain the age of our studied object; (III) compare it with a typical high-mass protostellar envelope. Methods: In our analysis we use JCMT line mapping (360-373 GHz) and HIFI pointed spectra (626.01-721.48 GHz). To study the influence of the outflow on the degree of deuteration, we compare JCMT maps of HCO+ and DCO+ with non-LTE (RADEX) models in a region that spatially covers the outflow activity of IRAS 4A. To study the envelope chemistry, we derive empirical molecular abundance profiles for the observed species using the Monte Carlo radiative transfer code (RATRAN) and adopting a 1D dust density/temperature profile from the literature. We use a combination of constant abundance profiles and abundance profiles that include jumps at two radii (T 100 K or T 30 K) to fit our observations. We compare our best-fit observed abundance profiles with the predictions from the time dependent gas grain chemical code (ALCHEMIC). Results: We detect CO, 13CO, C18O, CS, HCN, HCO+, N2H+, H2CO, CH3OH, H2O, H2S, DCO+, HDCO, D2CO, SO, SO2, SiO, HNC, CN, C2H and OCS. We divide the detected lines in three groups based on their line profiles: a) broad emission (FWHM = 4-11 km s-1), b) narrow emission (FWHM< 4 km s-1), and c) showing absorption features. The broad component is indicative of outflow activity, the narrow component arises from dynamically quiescent gas (I.e. envelope) and the absorption is a result of infall motions or the presence of foreground material. Our maps provide information about the spatial and velocity structure of many of the molecules mentioned above, including the deuterated species, making it possible to distinguish between envelope and outflow structures also spatially. The derived abundance profiles are based only on the narrow component (envelope) of the species and are reproduced by a 1D pseudo-time-dependent gas-grain chemical model for the outer envelope, with the exceptions of HCN, HNC, CN. These species along with the CO abundance require an enhanced UV field which points towards an outflow cavity. The abundances with respect to H2 are 1 to 2 orders of magnitude lower than those observed in the high mass protostellar envelope (AFGL 2591), while they are found to be similar within factors of a few when they are estimated with respect to CO. Differences in UV radiation intensity may also be responsible for such chemical differentiation, but temperature differences seem a more plausible explanation, especially the absence of a freeze-out zone in the high mass case. The CH3OH modeled abundance profile points towards an age of ≥4 × 104 yr for IRAS 4A. The spatial distribution of H2D+ differs from that of other deuterated species (I.e. DCO+, HDCO and D2CO), indicating an origin from a colder layer (<20 K) in the foreground, which is not seen in any other tracer. Conclusions: The observed abundances can be explained by passive heating towards the high mass protostellar envelope, while the presence of UV cavity channels become more important toward the low mass protostellar envelope (e.g. CO, HCO+). Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Reduced data (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A88

  4. Telemetering and telecommunications research

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1991-01-01

    The research center activities during the reporting period have been focused in three areas: (1) developing the necessary equipment and test procedures to support the testing of 8PSK-TCM through TDRSS from the WSGT; (2) extending the theoretical decoder work to higher speeds with a design goal of 600MBPS at 2 bits/Hz; and (3) completing the initial phase of the CPFSK Multi-H research and determining what subsets (if any) of these coding schemes are useful in the TDRSS environment. The equipment for the WSGT TCM testing has been completed and is functioning in the lab at NMSU. Measured results to date indicate that the uncoded system with the modified HRD and NMSU symbol sync operates at 1 to 1.5 dB from theory when processing encoded 8PSK. The NMSU pragmatic decoder when combined with these units produces approximately 2.9 dB of coding gain at 10(exp -5) BER. Our study of CPFSK with Multi-H coding has reached a critical stage. The principal conclusions reached in this activity are: (1) no scheme using Multi-H alone investigated by us or found in the literature produces power/bandwidth trades that are as good as TCM with filtered 8PSK; (2) when Multi-H is combined with convolutional coding, one can obtain better coding gain than with Multi-H alone but still no better power/bandwidth performance than TCM and these gains are available only with complex receivers; (3) the only advantage we can find for the CPFSK schemes over filtered MPSK with TCM is that they are constant envelope (however, constant envelope is of no benefit in a multiple access channel and of questionable benefit in a single access channel since driving the TWT to saturation in this situation is generally acceptable); and (4) based upon these results the center's research program will focus on concluding the existing CPFSK studies.

  5. MHD simulations of coronal dark downflows considering thermal conduction

    NASA Astrophysics Data System (ADS)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  6. Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.

  7. Final analysis and design of a thermal protection system for 8-foot HTST combustor

    NASA Technical Reports Server (NTRS)

    Moskowitz, S.

    1973-01-01

    The cylindrical shell combustor with T-bar supports in the 8-foot HTST at the NASA-Langley Research Center encountered vibratory fatigue cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A preliminary design study provided several suitable thermal protection system designs for the combustor, one of which was a two-pass regenerative type air-cooled omega-shaped segment liner. A final design layout of the omega segment liner was prepared and analyzed for steady-state and transient conditions. The design of a support system for the fuel spray bar assembly was also included. Detail drawings suitable for fabrication purposes were also prepared. Liner design problems defined during the preliminary study included (1) the ingress of gas into the attachment bulb section of the omega segment, (2) the large thermal gradient along the leg of the omega bulb attachment section and, (3) the local peak metal temperature at the radius between the liner ID and the leg of the bulb attachment. These were resolved during the final design task. Analyses of the final design of the omega segment liner indicated that all design goals were met and the design provided the capability of operating over the required test envelope with a life expectancy substantially above the goal of 1500 cycles.

  8. Entry, Descent, and Landing Mission Design for the Crew Exploration Vehicle Thermal Protection System Qualification Flight Test

    NASA Technical Reports Server (NTRS)

    Ivanov, Mark; Strauss, William; Maddock, Robert

    2007-01-01

    The TORCH team was challenged to generate the lowest cost mission design solution that meets the CEV aerothermal test objectives on a sub-scale flight article. The test objectives resulted from producing representative lunar return missions and observing the aerothermal envelopes of select surface locations on the CEV. From these aerothermal envelopes, two test boxes were established: one for high shear and one for high radiation. The unique and challenging trajectory design objective for the flight test was to fly through these aerothermal boxes in shear, pressure, heat flux, and radiation while also not over testing. These test boxes, and the max aerothermal limits, became the driving requirements for defining the mission design.

  9. Thermal and thermomechanical calculations of deep-rock nuclear waste disposal with the enhanced SANGRE code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuze, F.E.

    1983-03-01

    An attempt to model the complex thermal and mechanical phenomena occurring in the disposal of high-level nuclear wastes in rock at high power loading is described. Such processes include melting of the rock, convection of the molten material, and very high stressing of the rock mass, leading to new fracturing. Because of the phase changes and the wide temperature ranges considered, realistic models must provide for coupling of the thermal and mechanical calculations, for large deformations, and for steady-state temperature-depenent creep of the rock mass. Explicit representation of convection would be desirable, as would the ability to show fracture developmentmore » and migration of fluids in cracks. Enhancements to SNAGRE consisted of: array modifications to accommodate complex variations of thermal and mechanical properties with temperature; introduction of the ability of calculate thermally induced stresses; improved management of the minimum time step and minimum temperature step to increase code efficiency; introduction of a variable heat-generation algorithm to accommodate heat decay of the nuclear materials; streamlining of the code by general editing and extensive deletion of coding used in mesh generation; and updating of the program users' manual. The enhanced LLNL version of the code was renamed LSANGRE. Phase changes were handled by introducing sharp variations in the specific heat of the rock in a narrow range about the melting point. The accuracy of this procedure was tested successfully on a melting slab problem. LSANGRE replicated the results of both the analytical solution and calculations with the finite difference TRUMP code. Following enhancement and verification, a purely thermal calculation was carried to 105 years. It went beyond the extent of maximum melt and into the beginning of the cooling phase.« less

  10. A study of the effect on a typical orbiter payload thermal environment resulting from specular reflections from the forward orbiter radiators

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Turner, L.; Littles, J. W.

    1979-01-01

    The orbiter radiator external coating is highly specular silverized Teflon. Solar energy specularly reflected from these radiators on a typical payload which, when deployed, extends above the payload bay envelope was studied. The flux levels are compared assuming both diffuse and specular radiators.

  11. Measuring Thermal Performance of Building Envelopes: Nine Case Studies,

    DTIC Science & Technology

    1985-03-01

    inch P/B = 11.36, present worth factor for an es- of expanded polystyrene insulation) to the build- calating series for a 15-year period ing exterior...inch of The one MCA building roof we measured was a expanded polystyrene at R-3.6 per inch. Where the cathedral system with a sloped built-up roofing

  12. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes

    DTIC Science & Technology

    2015-09-01

    materials of a PCM wall or ceiling panel. BioPCMat™ absorbs heat in the daytime and releases that heat during the night. The dimension of the typical...micrographs of Energain PCM samples showed evidence of melting and re- ERDC/CERL TR-15-23 32 crystallization ; however, there was no significant

  13. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980`s, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industrymore » efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology.« less

  14. A Constant Envelope OFDM Implementation on GNU Radio

    DTIC Science & Technology

    2015-02-02

    more advanced schemes like Decision Feedback Equalization or Turbo Equalization must be implemented to avoid the noise enhancement that all linear...block is coded in C++, and uses the phase unwrapping algorithm similar to MATLABs unwrap() function. To avoid false wraps propagating throughout the...outperform the real-time GNU radio implementation at higher SNR’s. While the unequalized experiment with the Matlab processor usually stayed within 5

  15. TOPAZ2D heat transfer code users manual and thermal property data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less

  16. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    NASA Astrophysics Data System (ADS)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  17. The Molecular and Dust Envelope of HD 56126

    NASA Astrophysics Data System (ADS)

    Meixner, M.; Zalucha, A.; Ueta, T.; Fong, D.; Justtanont, K.

    2004-10-01

    We present millimeter interferometry images of the CO J=1-0 line emission arising in the circumstellar envelope of HD 56126 (=IRAS 07134+1005), which is one of the best-studied 21 μm proto-planetary nebulae (PPNs). The CO emission extends from 1.2" to 7" in radius from the central star and appears consistent with a simple expanding envelope, as expected for a post-AGB star. The CO envelope is very clumpy with no apparent fast wind to explain these microstructures that must have arisen during the AGB mass loss. We quantitatively model the molecular envelope using a radiative transfer code that we have modified for detached shells. Our best-fit model reveals that two sequential winds created the circumstellar envelope of HD 56126: an AGB wind that lasted 6500 yr with a mass-loss rate of 5.1×10-6 Msolar yr-1 and a more intense superwind that lasted 840 yr with a mass-loss rate of 3×10-5 Msolar yr-1 and that ended the star's life on the AGB 1240 yr ago. The total mass of this envelope is 0.059 Msolar, which indicates a lower limit progenitor mass for the system of 0.66 Msolar, quite reasonable for this low-metallicity star that probably resides in the thick disk of the Galaxy. Comparison with images of the dust emission reveals a structure similar to that of the gas in the inner regions. Using 2-D UST, we model the dust emission of this source so that the model is consistent with the CO emission model and find a total dust mass of 7.8×10-4 Msolar, a superwind-dust mass-loss rate of 1.9×10-7 Msolar yr-1 and an AGB-dust mass-loss rate of 9.6×10-8 Msolar yr-1. We derive an average gas-to-dust mass ratio of 75, which is consistent with ISM values but low for what most consider for carbon stars. Our results indicate that TiC nanocrystals are probably not the carrier of the 21 μm feature.

  18. A cooling neutron star crust after recurrent outbursts: modelling the accretion outburst history of Aql X-1

    NASA Astrophysics Data System (ADS)

    Ootes, Laura S.; Wijnands, Rudy; Page, Dany; Degenaar, Nathalie

    2018-07-01

    With our neutron star crust cooling code NSCOOL, we track the thermal evolution of the neutron star in Aql X-1 over the full accretion outburst history from 1996 until 2015. For the first time, we model many outbursts (23 outbursts were detected) collectively and in great detail. This allows us to investigate the influence of previous outbursts on the internal temperature evolution and to test different neutron star crust cooling scenarios. Aql X-1 is an ideal test source for this purpose, because it shows frequent, short outbursts and thermally dominated quiescence spectra. The source goes into outburst roughly once a year for a few months. Assuming that the quiescent Swift/X-Ray Telescope observations of Aql X-1 can be explained within the crust cooling scenario, we find three main conclusions. First, the data are well reproduced by our model if the envelope composition and shallow heating parameters are allowed to change between outbursts. This is not the case if both shallow heating parameters (strength and depth) are tied throughout all accretion episodes, supporting earlier results that the properties of the shallow heating mechanism are not constant between outbursts. Secondly, from our models, shallow heating could not be connected to one specific spectral state during outburst. Thirdly, and most importantly, we find that the neutron star in Aql X-1 does not have enough time between outbursts to cool down to crust-core equilibrium and that heating during one outburst influences the cooling curves of the next.

  19. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analyticallymore » compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models.« less

  20. Two gimbal bearing case studies: Some lessons learned

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart H.

    1988-01-01

    Two troublesome, torque related problems associated with gimbal actuators are discussed. Large, thin section angular contact bearings can have a surprisingly high torque sensitivity to radial thermal gradients. A predictive thermal-mechanical bearing analysis, as described, was helpful in establishing a safe temperature operating envelope. In the second example, end-of-travel torque limits of an oscillatory gimbal bearing appoached motor stall during limit cycling life tests. Bearing modifications required to restore acceptable torque performance are described. The lessons learned from these case studies should benefit designers of precision gimbals where singular bearing torque related problems are not uncommon.

  1. Introduction to Building Systems Performance: Houses That Work II; Period of Performance: January 2003--December 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-04-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  2. Xenia Spacecraft Study

    NASA Technical Reports Server (NTRS)

    Hopkins, Randy

    2009-01-01

    This slide presentation reviews the proposed design for the Xenia mission spacecraft. The goal of this study is to perform a mission concept study for the mission. Included in this study are: the overall ground rules and assumptions (GR&A), a mission analysis, the configuration, the mass properties, the guidance, Navigation and control, the proposed avionics, the power system, the thermal protection system, the propulsion system, and the proposed structures. Conclusions from the study indicate that the observatory fits within the Falcon 9 mass and volume envelope for launching from Omelek, the pointing, slow slewing, and fast slewing requirements and the thermal requirements are met.

  3. Preliminary design of the thermal protection system for solar probe

    NASA Technical Reports Server (NTRS)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  4. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  5. Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.

    1999-01-01

    This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.

  6. Investigating TiC as the carrier of the 21-micron feature: HD 56126

    NASA Astrophysics Data System (ADS)

    Zalucha, A.; Meixner, M.; Fong, D.; Justtanont, K.; Ueta, T.

    2003-12-01

    A sub-class of proto-planetary nebulae (PPNs) are characterized by an unidentified infrared feature at 21 microns and have been dubbed the 21-micron PPNs. HD 56126 (a.k.a. IRAS 07134+1005) is one of the best studied 21-micron PPNs. Von Helden et al. have proposed nanocrystals of titanium carbide (TiC) to be the carrier of the 21-micron feature. However in order to create TiC, high densities are required in the circumstellar environment, meaning high mass loss rates on the order of 10-3 Msun yr-1. This value suggests that the entire circumstellar envelope was created in a singular catastrophic mass loss event. Here a detailed analysis is presented of the molecular envelope using BIMA data and of the dust envelope using the 2-Dust radiative transfer code to model dust images and the spectral energy distribution. Qualitative results from the BIMA channel maps reveal a molecular envelope expanding away from the star at 10 km s-1. The observations resolve a depression at the center of the envelope in the channels 67, 69, and 71 km s-1. The structure observed in the 67 km s-1 channel map bears a resemblance to the optical and mid-infrared images of HD 56126. However, the outer radius of the CO emission, 10'', is significantly larger than the mid-IR and optical emission. Assuming a distance of 3 kpc, this outer radius corresponds to a distance of 4.5 x 1017 cm and a time scale of 1.4 x 104 years. The size of this CO shell contradicts the catastrophic mass loss event required by von Helden et al.

  7. The effect of binding energy and resolution in simulations of the common envelope binary interaction

    NASA Astrophysics Data System (ADS)

    Iaconi, Roberto; De Marco, Orsola; Passy, Jean-Claude; Staff, Jan

    2018-06-01

    The common envelope binary interaction remains one of the least understood phases in the evolution of compact binaries, including those that result in Type Ia supernovae and in mergers that emit detectable gravitational waves. In this work, we continue the detailed and systematic analysis of 3D hydrodynamic simulations of the common envelope interaction aimed at understanding the reliability of the results. Our first set of simulations replicate the five simulations of Passy et al. (a 0.88 M⊙, 90 R⊙ red giant branch (RGB) primary with companions in the range 0.1-0.9 M⊙) using a new adaptive mesh refinement gravity solver implemented on our modified version of the hydrodynamic code ENZO. Despite smaller final separations obtained, these more resolved simulations do not alter the nature of the conclusions that are drawn. We also carry out five identical simulations but with a 2.0 M⊙ primary RGB star with the same core mass as the Passy et al. simulations, isolating the effect of the envelope binding energy. With a more bound envelope, all the companions in-spiral faster and deeper, though relatively less gas is unbound. Even at the highest resolution, the final separation attained by simulations with a heavier primary is similar to the size of the smoothed potential even if we account for the loss of some angular momentum by the simulation. As a result, we suggest that an ˜2.0 M⊙ RGB primary may possibly end in a merger with companions as massive as 0.6 M⊙, something that would not be deduced using analytical arguments based on energy conservation.

  8. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill; Blinnikov, Sergei; Sorokina, Elena

    2017-12-01

    We study the evolution and final outcome of long-lived (≈ {10}5 years) remnants from the merger of an He white dwarf (WD) with a more massive C/O or O/Ne WD. Using Modules for Experiments in Stellar Astrophysics ({\\mathtt{MESA}}), we show that these remnants have a red giant configuration supported by steady helium burning, adding mass to the WD core until it reaches {M}{core}≈ 1.12{--}1.20 {M}⊙ . At that point, the base of the surface convection zone extends into the burning layer, mixing the helium-burning products (primarily carbon and magnesium) throughout the convective envelope. Further evolution depletes the convective envelope of helium and dramatically slows the mass increase of the underlying WD core. The WD core mass growth re-initiates after helium depletion, as then an uncoupled carbon-burning shell is ignited and proceeds to burn the fuel from the remaining metal-rich extended envelope. For large enough initial total merger masses, O/Ne WD cores would experience electron-capture triggered collapse to neutron stars (NSs) after growing to near Chandrasekhar mass ({M}{Ch}). Massive C/O WD cores could suffer the same fate after a carbon-burning flame converts them to ONe. The NS formation would release ≈ {10}50 erg into the remaining extended low mass envelope. Using the STELLA radiative transfer code, we predict the resulting optical light curves from these exploded envelopes. Reaching absolute magnitudes of {M}V≈ -17, these transients are bright for about one week and have many features of the class of luminous, rapidly evolving transients studied by Drout and collaborators.

  10. The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Lun; Evans, Neal J., II; Green, Joel D.; Dunham, Michael M.; Jørgensen, Jes K.

    2017-02-01

    We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to provide new constraints on its physical properties. We detect 645 (non-unique) spectral lines among all spatial pixels. At least 61 different spectral lines originate from the central region. A CO rotational diagram analysis shows four excitation temperature components, 43, 197, 397, and 1057 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of {{{H}}}2{{O}} trace the large-scale outflow, while the high-excitation emission lines trace a small-scale distribution around the equatorial plane. We model the envelope structure using the dust radiative transfer code, hyperion, incorporating rotational collapse, an outer static envelope, outflow cavity, and disk. The evolution of a rotating collapsing envelope can be constrained by the far-infrared/millimeter spectral energy distribution along with the azimuthally averaged radial intensity profile, and the structure of the outflow cavity plays a critical role at shorter wavelengths. Emission at 20-40 μm requires a cavity with a constant-density inner region and a power-law density outer region. The best-fit model has an envelope mass of 19 {M}⊙ inside a radius of 0.315 pc and a central luminosity of 18.8 {L}⊙ . The time since collapse began is 24,630-44,000 years, most likely around 36,000 years. The corresponding mass infall rate in the envelope (1.2 × 10-5 {M}⊙ {{yr}}-1) is comparable to the stellar mass accretion rate, while the mass-loss rate estimated from the CO outflow is 20% of the stellar mass accretion rate. We find no evidence for episodic accretion.

  11. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  12. Simulation of the excitation of quasi-plane wake waves in a plasma by a resonant sequence of laser pulses with a variable envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinnikova, E. I.; Levchenko, V. D.

    2008-04-15

    Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during themore » first period of the plasma wave behind the pulse train.« less

  13. Numerical predictions of EML (electromagnetic launcher) system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for themore » rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.« less

  14. Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system.

    PubMed

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2016-07-01

    We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.

  15. Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.

    2004-01-01

    The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.

  16. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    NASA Astrophysics Data System (ADS)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  17. The Fate of Super-AGB Stars at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Decressin, T.; Siess, L.; Charbonnel, C.; Leclair, G.

    2005-11-01

    Super-AGBs are stars massive enough to ignite carbon off center and to climb the asymptotic giant branch (where they undergo thermal pulses) after core carbon exhaustion. The destiny of these stars, ONe white dwarfs or neutron stars, depends essentially on the ability of the mass loss to peel the stellar envelope before the core reaches the critical mass for electron captures to occur. Here, we focus on a super-AGB stars of 8.5 Msolar at Z=0.0001 and investigate the effects of various mass loss prescriptions. We study the interplay between mass loss and diffusive overshooting below the convective envelope. The former determines the duration of the AGB phase and the final state of the star; the latter affects the increase of the core mass and the nucleosynthesis as well.

  18. Effect of heat and moisture transport and storage properties of building stones on the hygrothermal performance of historical building envelopes

    NASA Astrophysics Data System (ADS)

    KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert

    2016-12-01

    The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.

  19. Performance Envelopes and Optimal Appropriateness Measurement.

    DTIC Science & Technology

    1984-12-01

    20370 Dr. Hans Crombag University of Leyden Mr. Raymond E. Christal Education Research Center AFHRL/MOE Boerhaavelaan 2 Brooks AFB, TX 78235 2334 EN... Leyden The NETHERLANDS Dr. Norman Cliff Department of Psychology CTB/McGraw-Hill Library Univ. of So. California 2500 Garden Road University Park...Psychology Dr William Montague University of Western Australia NPRDC Code 13 Nedlands W.A. 6009 San Diego, CA 92152 AUSTRALIA Ms. Kathleen Moreno Dr

  20. Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.

    2018-06-01

    To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.

  1. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  2. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Amber R., E-mail: engelam@mail.nih.go; Rumyantsev, Alexander A., E-mail: alexander.rumyantsev@sanofipasteur.co; Maximova, Olga A., E-mail: maximovao@mail.nih.go

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E{sub 315}) and NS5 (NS5{sub 654,655}) proteins, and into the 3' non-coding region ({Delta}30) of TBEV/DEN4.more » The variant that contained all three mutations (v{Delta}30/E{sub 315}/NS5{sub 654,655}) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that v{Delta}30/E{sub 315}/NS5{sub 654,655} should be further evaluated as a TBEV vaccine.« less

  3. Chemistry of Protostellar Envelopes and Disks

    NASA Astrophysics Data System (ADS)

    Flores Rivera, Lizxandra; Terebey, Susan; Willacy, Karen

    2018-06-01

    Molecule formation is dynamic during the protostar collapse phase, driven by changes in temperature, density, and UV radiation as gas and dust flows from the envelope onto the forming protoplanetary disk. In this work, we compare physical models based on two different collapse solutions. We modeled the chemistry (created by Karen Willacy) for C18O to see how its abundance changes over time using as primary input parameters the temperature and density profile that were produced by the dust Radiative Transfer (MCRT) model called HOCHUNK3D from Whitney (2003). Given this model, we produce synthetic line emission maps from L1527 IRS to simulate the Class 0/I protostar L1527 IRS using RADMC3D code and compare them with previous observations from ALMA. High concentrations of gas phase molecules of C18O are found within the 20 AU in areas in the envelope that are close to the surface of the disk. In the outermost part of the disk surface, the C18O freezes out beyond 400 AU, showing a much reduced abundance where the temperature profile drops down below 25 K. In cold regions, the radiation field plays an important role in the chemistry.

  4. Evolutionary Models of Red Supergiants: Evidence for A Metallicity-dependent Mixing Length and Implications for Type IIP Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Yoon, Sung-Chul; Jung, Moo-Keon; Kim, Dong Uk; Kim, Jihoon

    2018-01-01

    Recent studies on the temperatures of red supergiants (RSGs) in the local universe provide us with an excellent observational constraint on RSG models. We calibrate the mixing length parameter by comparing model predictions with the empirical RSG temperatures in Small and Large Magellanic Clouds, Milky Way, and M31, which are inferred from the TiO band and the spectral energy distribution (SED). Although our RSG models are computed with the MESA code, our result may be applied to other stellar evolution codes, including the BEC and TWIN codes. We find evidence that the mixing length increases with increasing metallicity for both cases where the TiO and SED temperatures of RSGs are used for the calibration. Together with the recent finding of a similar correlation in low-mass red giants by Tayar et al., this implies that the metallicity dependence of the mixing length is a universal feature in post-main sequence stars of both low and high masses. Our result implies that typical Type IIP supernova (SN IIP) progenitors with initial masses of ∼ 10{--}16 {M}ȯ have a radius range of 400 {R}ȯ ≲ R≲ 800 {R}ȯ regardless of metallicity. As an auxiliary result of this study, we find that the hydrogen-rich envelope mass of SN IIP progenitors for a given initial mass is predicted to be largely independent of metallicity if the Ledoux criterion with slow semiconvection is adopted, while the Schwarzschild models predict systematically more massive hydrogen-rich envelopes for lower metallicity.

  5. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brochard, J.; Charras, T.; Ghoudi, M.

    Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.

  7. Proceedings of the U.S. Army Symposium on Gun Dynamics (5th) Held in Rensselaerville, New York on 23-25 September 1987

    DTIC Science & Technology

    1987-09-01

    have shown that gun barrel heating, and hence thermal expansion , is both axially and circumferentially asymmetric. Circumferential, or cross-barrel...element code, which ended in the selection of ABAQUS . The code will perform static, dynamic, and thermal anal- ysis on a broad range of structures...analysis may be performed by a user supplied FORTRAN subroutine which is automatically linked to the code and supplements the stand- ard ABAQUS

  8. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracturemore » Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness.« less

  9. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.

    1993-04-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracturemore » Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness.« less

  10. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain

    PubMed Central

    Neilans, Erikson G.; Abrams, Kristina S.; Idrobo, Fabio; Carney, Laurel H.

    2016-01-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16–512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  11. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  12. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less

  13. Final Report Advanced Quasioptical Launcher System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality tomore » SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.« less

  14. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  15. Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    PubMed Central

    2014-01-01

    Background Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. Results and discussions We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. Conclusion We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future. PMID:24495489

  16. Feasibility of self-correcting quantum memory and thermal stability of topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Beni, E-mail: rouge@mit.edu

    2011-10-15

    Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that themore » model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: > We define a class of physically realizable quantum codes. > We determine their coding and physical properties completely. > We establish the connection between topological order and self-correcting memory. > We find they do not work as self-correcting quantum memory. > We find they do not have thermally stable topological order.« less

  17. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  18. Evaluating the interior thermal performance of mosques in the tropical environment

    NASA Astrophysics Data System (ADS)

    Nordin, N. I.; Misni, A.

    2018-02-01

    This study introduces the methodology applied in conducting data collection and data analysis. Data collection is the process of gathering and measuring information on targeted variables in an established systematic method. Qualitative and quantitative methods are combined in collecting data from government departments, site experiments and observation. Furthermore, analysing the indoor thermal performance data in the heritage and new mosques were used thermal monitoring tests, while validation will be made by meteorology data. Origin 8 version of the software is used to analyse all the data. Comparison techniques were applied to analyse several factors that influence the indoor thermal performance of mosques, namely building envelope include floor area, opening, and material used. Building orientation, location, surrounding vegetation and water elements are also recorded as supported building primary data. The comparison of primary data using these variables for four mosques include heritage and new buildings were revealed.

  19. A surrogate model for thermal characteristics of stratospheric airship

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Dongxu; Zhu, Ming

    2018-06-01

    A simple and accurate surrogate model is extremely needed to reduce the analysis complexity of thermal characteristics for a stratospheric airship. In this paper, a surrogate model based on the Least Squares Support Vector Regression (LSSVR) is proposed. The Gravitational Search Algorithm (GSA) is used to optimize hyper parameters. A novel framework consisting of a preprocessing classifier and two regression models is designed to train the surrogate model. Various temperature datasets of the airship envelope and the internal gas are obtained by a three-dimensional transient model for thermal characteristics. Using these thermal datasets, two-factor and multi-factor surrogate models are trained and several comparison simulations are conducted. Results illustrate that the surrogate models based on LSSVR-GSA have good fitting and generalization abilities. The pre-treated classification strategy proposed in this paper plays a significant role in improving the accuracy of the surrogate model.

  20. Free-cooling: A total HVAC design concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janeke, C.E.

    1982-01-01

    This paper discusses a total ''free cooling'' HVAC design concept in which mechanical refrigeration is practically obviated via the refined application of existing technological strategies and a new diffuser terminal. The principles being applied are as follows; Thermal Swing: This is the active contribution of programmed heat storage to overall HVAC system performance. Reverse Diffuser: This is a new air terminal design that facilitates manifesting the thermal storage gains. Developing the thermal storage equation system into a generalized simulation model, optimizing the thermal storage and operating strategies with a computer program and developing related algorithms are subsequently illustrated. Luminair Aspiration:more » This feature provides for exhausting all luminair heat totally out of the building envelope, via an exhaust duct system and insulated boots. Two/Three-Stage Evaporative Cooling: This concept comprises a system of air conditioning that entails a combination of closed and open loop evaporative cooling with standby refrigeration only.« less

  1. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  2. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  3. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  4. Next Generation Nuclear Plant Methods Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  5. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  6. Local Adaptation to Altitude Underlies Divergent Thermal Physiology in Tropical Killifishes of the Genus Aphyosemion

    PubMed Central

    McKenzie, David J.; Estivales, Guillan; Svendsen, Jon C.; Steffensen, John F.; Agnèse, Jean-François

    2013-01-01

    In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion) occur in discrete altitudinal ranges, low altitude species (LA, sea level to ∼350 m) or high altitude species (HA, 350 to 900 m). We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass ∼350 mg) were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation) were compared with animals raised in captivity at 25°C (F1 generation) to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA) response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required ∼14 h to complete the SDA, whereas the HA required only ∼7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another. PMID:23349857

  7. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae.

    PubMed

    Seal, Charlotte E; Daws, Matthew I; Flores, Joel; Ortega-Baes, Pablo; Galíndez, Guadalupe; León-Lobos, Pedro; Sandoval, Ana; Ceroni Stuva, Aldo; Ramírez Bullón, Natali; Dávila-Aranda, Patricia; Ordoñez-Salanueva, Cesar A; Yáñez-Espinosa, Laura; Ulian, Tiziana; Amosso, Cecilia; Zubani, Lino; Torres Bilbao, Alberto; Pritchard, Hugh W

    2017-12-01

    Recruitment from seeds is among the most vulnerable stage for plants as global temperatures change. While germination is the means by which the vast majority of the world's flora regenerate naturally, a framework for accurately predicting which species are at greatest risk of germination failure during environmental perturbation is lacking. Taking a physiological approach, we assess how one family, the Cactaceae, may respond to global temperature change based on the thermal buffering capacity of the germination phenotype. We selected 55 cactus species from the Americas, all geo-referenced seed collections, reflecting the broad environmental envelope of the family across 70° of latitude and 3700 m of altitude. We then generated empirical data of the thermal germination response from which we estimated the minimum (T b ), optimum (T o ) and ceiling (T c ) temperature for germination and the thermal time (θ 50 ) for each species based on the linearity of germination rate with temperature. Species with the highest T b and lowest T c germinated fastest, and the interspecific sensitivity of the germination rate to temperature, as assessed through θ 50 , varied tenfold. A left-skewed asymmetry in the germination rate with temperature was relatively common but the unimodal pattern typical of crop species failed for nearly half of the species due to insensitivity to temperature change at T o . For 32 fully characterized species, seed thermal parameters correlated strongly with the mean temperature of the wettest quarter of the seed collection sites. By projecting the mean temperature of the wettest quarter under two climate change scenarios, we predict under the least conservative scenario (+3.7°C) that 25% of cactus species will have reduced germination performance, whilst the remainder will have an efficiency gain, by the end of the 21st century. © 2017 John Wiley & Sons Ltd.

  8. Local adaptation to altitude underlies divergent thermal physiology in tropical killifishes of the genus Aphyosemion.

    PubMed

    McKenzie, David J; Estivales, Guillan; Svendsen, Jon C; Steffensen, John F; Agnèse, Jean-François

    2013-01-01

    In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion) occur in discrete altitudinal ranges, low altitude species (LA, sea level to ∼350 m) or high altitude species (HA, 350 to 900 m). We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass ∼350 mg) were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation) were compared with animals raised in captivity at 25°C (F1 generation) to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA) response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required ∼14 h to complete the SDA, whereas the HA required only ∼7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another.

  9. CAVE: A computer code for two-dimensional transient heating analysis of conceptual thermal protection systems for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.

    1977-01-01

    A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.

  10. Modified Laser and Thermos cell calculations on microcomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.

    1987-01-01

    In the course of designing and operating nuclear reactors, many fuel pin cell calculations are required to obtain homogenized cell cross sections as a function of burnup. In the interest of convenience and cost, it would be very desirable to be able to make such calculations on microcomputers. In addition, such a microcomputer code would be very helpful for educational course work in reactor computations. To establish the feasibility of making detailed cell calculations on a microcomputer, a mainframe cell code was compiled and run on a microcomputer. The computer code Laser, originally written in Fortran IV for the IBM-7090more » class of mainframe computers, is a cylindrical, one-dimensional, multigroup lattice cell program that includes burnup. It is based on the MUFT code for epithermal and fast group calculations, and Thermos for the thermal calculations. There are 50 fast and epithermal groups and 35 thermal groups. Resonances are calculated assuming a homogeneous system and then corrected for self-shielding, Dancoff, and Doppler by self-shielding factors. The Laser code was converted to run on a microcomputer. In addition, the Thermos portion of Laser was extracted and compiled separately to have available a stand alone thermal code.« less

  11. Thermal-mechanical performance modeling of thorium-plutonium oxide fuel and comparison with on-line irradiation data

    NASA Astrophysics Data System (ADS)

    Insulander Björk, Klara; Kekkonen, Laura

    2015-12-01

    Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.

  12. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dioszegi I.; Vanier P.E.; Salwen C.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less

  13. Method of bonding

    DOEpatents

    Saller, deceased, Henry A.; Hodge, Edwin S.; Paprocki, Stanley J.; Dayton, Russell W.

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  14. Towards a coherent view at infrared wavelengths of mass loss in Betelgeuse

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Perrin, G.; Montargès, M.; Haubois, X.

    2013-05-01

    The violent convective motions, low surface gravity, and high brightness of red supergiants combine to trigger an intense stellar wind. As the distance from the star increases, the standard scenario is that the ejected material forms molecules, then dust particles. But this general picture is still fragmentary. Our goal is to assemble a better understanding of mass loss in Betelgeuse, considered as a prototype for its class, from its photosphere to the interface of its wind with the interstellar medium. Thanks to its proximity ( ≈ 197 pc), it is ideally suited for such a detailed study. Over the past few years, our team obtained an extensive set of observations of Betelgeuse from high angular resolution instruments, probing a broad range of spatial scales: 1) interferometric imaging of its photosphere and close envelope in the near- and thermal-IR domains (IOTA/IONIC), 2) adaptive optics "lucky imaging" of its compact molecular envelope (VLT/NACO, 1.0-2.2 μm), and 3) diffraction-limited imaging of its dusty envelope (VLT/VISIR, 8-20 μm). From our interferometric data, we detect the presence of spots at the surface of the star, as well as CO and H2O molecules, and dust particles close to the star. Within 6 R⋆, the flux distribution of the envelope is compatible with the presence of the CN molecule. At a few arcseconds from the central star, we observe a complex dusty envelope probably containing O-rich dust (e.g. silicates, alumina). We present an overview of these recent observational results and ongoing work. They provide new hints on the physical and chemical mechanisms through which Betelgeuse interacts with its environment.

  15. Foam core shield (FCS) systems : a new dual - purpose technology for shielding against meteoroid strike damage and for thermal control of spacecrafts/satellite components

    NASA Technical Reports Server (NTRS)

    Adams, Marc A.; Zwissler, James G.; Hayes, Charles; Fabensky, Beth; Cornelison, Charles; Alexander, Lesley; Bishop, Karen

    2005-01-01

    A new technology is being developed that can protect spacecraft and satellite components against damage from meteoroid strikes and control the thermal environment of the protected components. This technology, called Foam Core Shield (FCS) systems, has the potential to replace the multi-layer insulation blankets (MLI) that have been used on spacecraft for decades. In order to be an attractive candidate for replacing MLI, FCS systems should not only provide superior protection against meteoroid strikes but also provide an equal or superior ability to control the temperature of the protected component. Properly designed FCS systems can provide these principal functions, meteoroid strike protection and thermal control, with lower system mass and a smaller system envelope than ML.

  16. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  17. Thermionic converter

    DOEpatents

    Fitzpatrick, G.O.

    1987-05-19

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  18. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  19. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  20. User's manual for the one-dimensional hypersonic experimental aero-thermodynamic (1DHEAT) data reduction code

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1995-01-01

    A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.

  1. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  2. Current and anticipated uses of the thermal hydraulics codes at the NRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, R.

    1997-07-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support thesemore » needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.« less

  3. Research on Influencing Factors and Generalized Power of Synthetic Artificial Seismic Wave

    NASA Astrophysics Data System (ADS)

    Jiang, Yanpei

    2018-05-01

    Start your abstract here… In this paper, according to the trigonometric series method, the author adopts different envelope functions and the acceleration design spectrum in Seismic Code For Urban Bridge Design to simulate the seismic acceleration time history which meets the engineering accuracy requirements by modifying and iterating the initial wave. Spectral analysis is carried out to find out the the distribution law of the changing frequencies of the energy of seismic time history and to determine the main factors that affect the acceleration amplitude spectrum and energy spectrum density. The generalized power formula of seismic time history is derived from the discrete energy integral formula and the author studied the changing characteristics of generalized power of the seismic time history under different envelop functions. Examples are analyzed to illustrate that generalized power can measure the seismic performance of bridges.

  4. On the Use of Hydrogen Recombination Energy during Common Envelope Events

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia

    2018-05-01

    In this Letter we discuss what happens to hydrogen recombination energy that is released during regular common envelope (CE) events as opposed to self-regulated CE events. We show that the amount of recombination energy that can be transferred away by either convection or radiation from the regions where recombination takes place is negligible. Instead, recombination energy is destined to be used either to help CE expansion, as a work term, or to accelerate local fluid elements. The exceptions are donors that initially have very high entropy material, S/(k B N A) > 37 mol g‑1. The analysis and conclusions are independent of specific stellar models or evolutionary codes, and rely on fundamental properties of stellar matter such as the equation of state, Saha equation, and opacities, as well as on stellar structure equations and the mixing length theory of convection.

  5. The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Jensen, Chris A.; Terry, John D.

    1997-01-01

    In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.

  6. The galactic luminous supersoft X-ray source RXJ0925.7-4758 / MR Vel

    NASA Astrophysics Data System (ADS)

    Prodhani, Nandita; Baruah, Monmoyuri

    2018-02-01

    A steady-state model has been considered to explain the observed properties of the LSSS RXJ0925.7-4748 / MR Vel. The steady-state models consist of a C-O core surrounded by a hydrogen-rich envelope of the solar abundances. At the bottom of the envelope, hydrogen is burned at the same rate as the star accreted it. Using the most recent proton capturing reaction rates and β -decay rates, the cyclic reactions have been studied. In the present work, effort has been made to explain the observed characteristics of the source RXJ0925.7-4758 / MR Vel considering the above mentioned model. The calculated values of luminosity (8.56 × 10^{37} erg s^{-1}) and effective temperature (94.19 eV) tally well with the observed one. Photoionisation code CLOUDY has been used to explain the observed absorption edges in the spectrum of RXJ0925.7-4758 / MR Vel.

  7. Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Meilland, Antony; Kanaan, Sameer; Fernandes, Marcelo Borges; Chesneau, Olivier; Millour, Florentin; Stee, Philippe; Lopez, Bruno

    2011-07-01

    HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circumstellar envelope in the mid-infrared using the VLTI/MIDI instrument. Using the radiative transfer code MC3D, we managed to model it as a dusty disk with an inner radius of 3.85 AU, an inclination angle of 60°, and a mass of 2 × 10-7Msolar. It is the first time that the dusty disk inner rim of a supergiant star exhibiting the B[e] phenomenon is significantly constrained. The inner gaseous envelope likely contributes up to 20% to the total N band flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar wind deceleration by the companion gravitational effect remains the most probable case since the bi-stability mechanism is not efficient for this star.

  8. Grid of Supergiant B[e] Models from HDUST Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Carciofi, A. C.

    2012-12-01

    By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.

  9. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and practical application of the code will allow carrying out in the nearest future the computations to analyze the safety of potential NPP projects at a qualitatively higher level.

  10. Ocean Engineering Studies Compiled 1991. Volume 6. Acrylic Windows - Typical Applications in Pressure Housings

    DTIC Science & Technology

    1991-01-01

    either the metallic or plastic composite pressure envelope. The ASME Boiler and Pressure Vessel Code Section 8 provides such design criteria, and the...fabricated of metallic or piastic composite materials. To preclude potential catastrophic failures of windows designed on the basis of inadequate data, in...pressure-resistant acrylic windows (reference 12). Acrylic windows are usually machined from Plexiglas G plate, which is limited in thickness to 4 inches

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, A. J.; Fanning, T. H.

    The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such asmore » SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.« less

  12. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  13. Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.

    2004-01-01

    A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.

  14. Gravitational Capture of Small Bodies by Gas Drag Developed Using Hydrodynamic Equations

    NASA Astrophysics Data System (ADS)

    Pereira de Lima, Nicole; Neto, E. V.

    2013-05-01

    Abstract (2,250 Maximum Characters): The giant planets of the Solar System have two kinds of satellites, the regular and the irregular ones. The irregular ones are supposed to come from other regions were captured by the planet. Using the dynamics of the three-body problem it is possible to explain the gravitational capture of these satellites except for the fact that these captures are only temporary. For this reason it is necessary an additional effect to turn these temporary captures into a permanent ones. In this work we will explore the gas drag mechanism. In the last stage of the giant planets formation a gas envelope formed around each one of them. During the flyby of the satellite this envelope can dissipate energy enough to make it a “prisoner” of the planet. We have made some simulations considering the classical case. In these simulations the classical gas was characterized by ordinary differential equations that describe the velocity and density of it. However this model is a simplified case. To make our model more realistic we use the hydrodynamic model. Thus some modification in the early code were required. One important code changes was the way used to describe the gas. In this new model a region (called cell) and not a point is used to characterize the gas. After making some adjusts we have checked the precision of cells and verified its correlation with other parameters. At this step we have to test the new code trying to reproduce and improve all results obtained before. Meanwhile we are using the software Fargo that creates the hydrodynamic gas to be used as input in the code. After this analysis we will let the gas evolve in time in order to acquire a higher level of realism in this study.

  15. Common Envelope Light Curves. I. Grid-code Module Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.

    The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been putmore » forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8  M {sub ⊙} red giant branch star interacts with a 0.6  M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.« less

  16. VizieR Online Data Catalog: Analytical model for irradiated atmospheres (Parmentier+, 2014)

    NASA Astrophysics Data System (ADS)

    Parmentier, V.; Guillot, G.

    2013-11-01

    The model have six parameters to describe the opacities: - Kappa(N) is the Rosseland mean opacity at each levels of the atmosphere it does not have to be constant with depth - Gp is the ratio of the thermal Plank mean opacity to the thermal Rosseland mean opacity - Beta is the width ratio of the two thermal bands in the frequency space - Gv1 is the ratio of the visible opacity in the first visible band to the thermal Rosseland mean opacity - Gv2 is the ratio of the visible opacity in the second visible band to the thermal Rosseland mean opacity - Betav is the width ratio of the two visible band in the frequency space Additional parameters describe the physical setting: - Tirr is the irradiation temperature, given by the stellar flux - mu is the angle between the vertical direction and the stellar direction - Tint is the internal temperature, given by the internal luminosity - P(i) are the pressure levels where the temperature is computed - grav is the gravity of the planet - N is the number of atmospheric levels The code and all the outputs uses SI units. Installation and use : to install the code use the command "make". The input parameters must be changed inside the file PaperI.f90. It is necessary to compile the code again each time. The subroutine Tprofile.f90 can be directly implemented into one's code. To launch the code, launch the executable file NonGrey. The output is in the file PTprofile.csv (4 data files).

  17. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validatedmore » using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.« less

  18. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures inmore » the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.« less

  19. A tenuous X-ray corona enveloping AE Aquarii

    NASA Astrophysics Data System (ADS)

    Venter, L. A.; Meintjes, P. J.

    2007-06-01

    In this paper we propose that the observed unpulsed X-ray emission in AE Aquarii is the result of a very tenuous hot corona associated with the secondary star, which is pumped magnetohydrodynamically by the propeller action of the fast rotating white dwarf. It is shown that the closed coronal field of the secondary star envelops a substantial portion of the binary system, including the fast rotating magnetized white dwarf. This implies that the propeller outflow of material in AE Aquarii is initiated inside an enveloping magnetic cavity. The outflow crossing the secondary dead-zone field constitutes a βgen = (8πρv2esc/B2) >> 1 plasma, acting as a magnetohydrodynamic generator resulting in the induction of field-aligned currents in these closed magnetospheric circuits where βcir = (8πnkT/B2) << 1. The Ohmic heating of the coronal circuit can readily account for a Tx >= 107 K plasma in the coronal flux tubes connecting the generator and the stellar surface. Further, the bremsstrahlung losses of the thermal electrons in the coronal circuit can readily drive the observed unpulsed X-ray luminosity of Lx ~ 1031 ergs -1, which correlates with the luminosity and relatively large source implied by recent XMM-Newton observations.

  20. Alignment error envelopes for single particle analysis.

    PubMed

    Jensen, G J

    2001-01-01

    To determine the structure of a biological particle to high resolution by electron microscopy, image averaging is required to combine information from different views and to increase the signal-to-noise ratio. Starting from the number of noiseless views necessary to resolve features of a given size, four general factors are considered that increase the number of images actually needed: (1) the physics of electron scattering introduces shot noise, (2) thermal motion and particle inhomogeneity cause the scattered electrons to describe a mixture of structures, (3) the microscope system fails to usefully record all the information carried by the scattered electrons, and (4) image misalignment leads to information loss through incoherent averaging. The compound effect of factors 2-4 is approximated by the product of envelope functions. The problem of incoherent image averaging is developed in detail through derivation of five envelope functions that account for small errors in 11 "alignment" parameters describing particle location, orientation, defocus, magnification, and beam tilt. The analysis provides target error tolerances for single particle analysis to near-atomic (3.5 A) resolution, and this prospect is shown to depend critically on image quality, defocus determination, and microscope alignment. Copyright 2001 Academic Press.

  1. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  2. How the Geothermal Community Upped the Game for Computer Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Geothermal Technologies Office Code Comparison Study brought 11 research institutions together to collaborate on coupled thermal, hydrologic, geomechanical, and geochemical numerical simulators. These codes have the potential to help facilitate widespread geothermal energy development.

  3. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  4. An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Herter, T. L.; Maercker, M.; Lau, R. M.; Sloan, G. C.

    2018-01-01

    The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell (M shell ∼ 7.3 × 10‑3 M ⊙) that is thought to have been produced during a thermal pulse event ∼2200 years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μm. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative-transfer code DUSTY, and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with n ∝ r α , where α ={0.75}-0.25+0.45 and a dust mass of {M}d={9.0}-4.1+2.3× {10}-6 {M}ȯ . The strong departure from an r ‑2 law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass loss that has been inferred from observations of the molecular gas.

  5. LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozova, Viktoriya; Renzo, Mathieu; Ott, Christian D.

    We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming blackbody emission. As a first application of SNEC, we consider the explosions of a grid of 15 M{sub ⊙} (at zero-age main sequence, ZAMS) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. Themore » resulting light curves exhibit plateaus with durations of ∼20–100 days if ≳1.5–2 M{sub ⊙} of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for SNe IIP in nature, it suggests that, at least for ZAMS masses ≲20 M{sub ⊙}, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for SNe IIL, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for SNe IIb, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ∼500 R{sub ⊙}.« less

  6. Predictions of Speech Chimaera Intelligibility Using Auditory Nerve Mean-Rate and Spike-Timing Neural Cues.

    PubMed

    Wirtzfeld, Michael R; Ibrahim, Rasha A; Bruce, Ian C

    2017-10-01

    Perceptual studies of speech intelligibility have shown that slow variations of acoustic envelope (ENV) in a small set of frequency bands provides adequate information for good perceptual performance in quiet, whereas acoustic temporal fine-structure (TFS) cues play a supporting role in background noise. However, the implications for neural coding are prone to misinterpretation because the mean-rate neural representation can contain recovered ENV cues from cochlear filtering of TFS. We investigated ENV recovery and spike-time TFS coding using objective measures of simulated mean-rate and spike-timing neural representations of chimaeric speech, in which either the ENV or the TFS is replaced by another signal. We (a) evaluated the levels of mean-rate and spike-timing neural information for two categories of chimaeric speech, one retaining ENV cues and the other TFS; (b) examined the level of recovered ENV from cochlear filtering of TFS speech; (c) examined and quantified the contribution to recovered ENV from spike-timing cues using a lateral inhibition network (LIN); and (d) constructed linear regression models with objective measures of mean-rate and spike-timing neural cues and subjective phoneme perception scores from normal-hearing listeners. The mean-rate neural cues from the original ENV and recovered ENV partially accounted for perceptual score variability, with additional variability explained by the recovered ENV from the LIN-processed TFS speech. The best model predictions of chimaeric speech intelligibility were found when both the mean-rate and spike-timing neural cues were included, providing further evidence that spike-time coding of TFS cues is important for intelligibility when the speech envelope is degraded.

  7. Summary of papers on current and anticipated uses of thermal-hydraulic codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, R.

    1997-07-01

    The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especiallymore » faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).« less

  8. Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1 1/2-Story Homes in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, C.

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 ½-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  9. Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1 1/2-Story Homes in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, C.

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  10. Analyzing and Improving Image Quality in Reflective Ghost Imaging

    DTIC Science & Technology

    2011-02-01

    photon quantum entanglement ," Phys. Rev. A 52, 3429 (1995). [2] A. Valencia, G. Scarcelli. M. D. Angelo, and Y. Shih. "Two- photon imaging with thermal...and reference fields, which were generated by spontaneous parametric downconversion (SPDC) and post- selection [1]. Because biphotons are entangled ...envelopes about center frequency we of linearly-polarized light fields normalized to have V/ photons /m 2s units as functions of their transverse

  11. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  12. Enhanced Thermal Performance of Mosques in Qatar

    NASA Astrophysics Data System (ADS)

    Touma, A. Al; Ouahrani, D.

    2017-12-01

    Qatar has an abundance of mosques that significantly contribute to the increasing energy consumption in the country. Little attention has been given to providing mitigation methods that limit the energy demands of mosques without violating the worshippers’ thermal comfort. Most of these researches dealt with enhancing the mosque envelope through the addition of insulation layers. Since most mosque walls in Qatar are mostly already insulated, this study proposes the installation of shading on the mosque roof that is anticipated to yield similar energy savings in comparison with insulated roofs. An actual mosque in Qatar, which is a combination of six different spaces consisting of men and women’s prayer rooms, ablutions and toilets, was simulated and yielded a total annual energy demand of 619.55 kWh/m2. The mosque, whose walls are already insulated, yielded 9.1% energy savings when an insulation layer was added to its roof whereas it produced 6.2% energy savings when a shading layer was added above this roof. As the reconstruction of the roof envelope is practically unrealistic in existing mosques, the addition of shading to the roof was found to produce comparable energy savings. Lastly, it was found that new mosques with thin-roof insulation and shading tend to be more energy-efficient than those with thick-roof insulation.

  13. Investigation of some possible changes in Am-Be neutron source configuration in order to increase the thermal neutron flux using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Basiri, H.; Tavakoli-Anbaran, H.

    2018-01-01

    Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.

  14. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  15. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, K.; Aksan, S. N.

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present,more » 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)« less

  16. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  17. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less

  18. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  19. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  20. New Method for calculating dynamical friction on a star moving through gas using Cartesian Simulations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Blackman, Eric

    2018-01-01

    Closely interacting binary stars can incur Common Envelope Evolution (CEE) when at least one of the stars enters a giant phase. The extent to which CEE leads to envelope ejection and how tight the binaries become after CEE as a function of the mass and type of the companion stars has a broad range of phenomenological implications for both low mass and high mass binary stellar systems. Global simulations of CEE are emerging, but to understand the underlying physics of CEE and make connections with analytic formalisms, it helpful to employ reduced numerical models. Here we present results and analyses from simulations of gravitational drag using a Cartesian approach. Using AstroBEAR, a parallelized hydrodynamic/MHD simulation code, we simulate a system in which a 0.1 MSun main sequence secondary star is embedded in gas characteristic of the Envelope of a 3 MSun AGB star. The relative motion of the secondary star against the stationary envelope is represented by a supersonic wind that immerses a point particle, which is initially at rest, yet gradually dragged by the wind. Our approach differs from previous related wind-tunnel work by MacLeod et al. (2015,2017) in that we allow the particle to be displaced, offering a direct measurement of the drag force from its motion. We verify the validity of our method, extract the accretion rate of material in the wake via numerical integration, and compare the results between our method and previous work. We also use the results to help constrain the efficiency parameter in widely used analytic parameterizations of CEE.

  1. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbuch, S.; Austregesilo, H.; Velkov, K.

    1997-07-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.

  2. MINIVER upgrade for the AVID system. Volume 2: LANMIN input guide

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Schmitz, C. P.

    1983-01-01

    In order to effectively incorporate MINIVER into the AVID system, several changes to MINIVER were made. The thermal conduction options in MINIVER were removed and a new Explicit Interactive Thermal Structures (EXITS) code was developed. Many upgrades to the MINIVER code were made and a new Langley version of MINIVER called LANMIN was created. A user input guide for LANMIN is provided.

  3. Simulation of energy- efficient building prototype using different insulating materials

    NASA Astrophysics Data System (ADS)

    Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed

    2018-05-01

    The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.

  4. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity

    NASA Astrophysics Data System (ADS)

    Götberg, Y.; de Mink, S. E.; Groh, J. H.

    2017-11-01

    Understanding ionizing fluxes of stellar populations is crucial for various astrophysical problems including the epoch of reionization. Short-lived massive stars are generally considered as the main stellar sources. We examine the potential role of less massive stars that lose their envelope through interaction with a binary companion. Here, we focus on the role of metallicity (Z). For this purpose we used the evolutionary code MESA and created tailored atmosphere models with the radiative transfer code CMFGEN. We show that typical progenitors, with initial masses of 12 M⊙, produce hot and compact stars ( 4 M⊙, 60-80 kK, 1 R⊙). These stripped stars copiously produce ionizing photons, emitting 60-85% and 30-60% of their energy as HI and HeI ionizing radiation, for Z = 0.0001-0.02, respectively. Their output is comparable to what massive stars emit during their Wolf-Rayet phase, if we account for their longer lifetimes and the favorable slope of the initial mass function. Their relative importance for reionization may be further favored since they emit their photons with a time delay ( 20 Myr after birth in our fiducial model). This allows time for the dispersal of the birth clouds, allowing the ionizing photons to escape into the intergalactic medium. At low Z, we find that Roche stripping fails to fully remove the H-rich envelope, because of the reduced opacity in the subsurface layers. This is in sharp contrast with the assumption of complete stripping that is made in rapid population synthesis simulations, which are widely used to simulate the binary progenitors of supernovae and gravitational waves. Finally, we discuss the urgency to increase the observed sample of stripped stars to test these models and we discuss how our predictions can help to design efficient observational campaigns.

  5. Tests in mice of a dengue vaccine candidate made of chimeric Junin virus-like particles and conserved dengue virus envelope sequences.

    PubMed

    Mareze, Vania Aparecida; Borio, Cristina Silvia; Bilen, Marcos F; Fleith, Renata; Mirazo, Santiago; Mansur, Daniel Santos; Arbiza, Juan; Lozano, Mario Enrique; Bruña-Romero, Oscar

    2016-01-01

    Two new vaccine candidates against dengue virus (DENV) infection were generated by fusing the coding sequences of the self-budding Z protein from Junin virus (Z-JUNV) to those of two cryptic peptides (Z/DENV-P1 and Z/DENV-P2) conserved on the envelope protein of all serotypes of DENV. The capacity of these chimeras to generate virus-like particles (VLPs) and to induce virus-neutralizing antibodies in mice was determined. First, recombinant proteins that displayed reactivity with a Z-JUNV-specific serum by immunofluorescence were detected in HEK-293 cells transfected with each of the two plasmids and VLP formation was also observed by transmission electron microscopy. Next, we determined the presence of antibodies against the envelope peptides of DENV in the sera of immunized C57BL/6 mice. Results showed that those animals that received Z/DENV-P2 DNA coding sequences followed by a boost with DENV-P2 synthetic peptides elicited significant specific antibody titers (≥6.400). Finally, DENV plaque-reduction neutralization tests (PRNT) were performed. Although no significant protective effect was observed when using sera of Z/DENV-P1-immunized animals, antibodies raised against vaccine candidate Z/DENV-P2 (diluted 1:320) were able to reduce in over 50 % the number of viral plaques generated by infectious DENV particles. This reduction was comparable to that of the 4G2 DENV-specific monoclonal cross-reactive (all serotypes) neutralizing antibody. We conclude that Z-JUNV-VLP is a valid carrier to induce antibody-mediated immune responses in mice and that Z/DENV-P2 is not only immunogenic but also protective in vitro against infection of cells with DENV, deserving further studies. On the other side, DENV's fusion peptide-derived chimera Z/DENV-P1 did not display similar protective properties.

  6. Supersonic throughflow fans for high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.; Moore, Royce D.

    1990-01-01

    A brief overview is provided of past supersonic throughflow fan activities; technology needs are discussed; the design is described of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser; and the results are presented from the analysis codes used in executing the design. Also presented is a unique engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.

  7. Improved Polyurethane Storage Tank Performance

    DTIC Science & Technology

    2014-06-30

    condition occurred if water overflowed from the tank vent prior to reaching 45 gallons. A spline curve was drawn around the perimeter of each image so...estimated footprint and height envelope was added for spatial reference. A spline color code key was developed, so that the progression of the tanks...Table 4.5.3). A standard flat plate platen was used for the double butt seams and some closing seams by one fabricator. The other utilized a “Slinky

  8. Predicting Group Performance Using Cohesion and Social Network Density: A Comparative Analysis

    DTIC Science & Technology

    2007-03-01

    that the researchers may be only addressing one of the facets of group cohesion in their instruments and are may not be capturing all three facets in...predictive nature of each instrument. -3- 2. Literature Review 2.1 Introduction Much of the earlier research on group performance relied on ...primary researcher created 48 envelope packets that consisted of one flight commander questionnaire, one coded number roster for group names to keep the

  9. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  10. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  11. Comparing contribution of flexural and planar modes to thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja; Jindal, V. K.

    2017-05-01

    Graphene, the most studied and explored 2D structure has unusual thermal properties such as negative thermal expansion, high thermal conductivity etc. We have already studied the thermal expansion behavior and various thermodynamic properties of pure graphene like heat capacity, entropy and free energy. The results of thermal expansion and various thermodynamic properties match well with available theoretical studies. For a deeper understanding of these properties, we analyzed the contribution of each phonon branch towards the total value of the individual property. To compute these properties, the dynamical matrix was calculated using VASP code where the density functional perturbation theory (DFPT) is employed under quasi-harmonic approximation in interface with phonopy code. It is noticed that transverse mode has major contribution to negative thermal expansion and all branches have almost same contribution towards the various thermodynamic properties with the contribution of ZA mode being the highest.

  12. Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Page, Arthur T.

    2007-01-01

    The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.

  13. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  14. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Kontar, E. P.

    2013-05-01

    Aims: The aim of this work is to determine the multi-thermal characteristics and plasma energetics of an eruptive plasmoid and occulted flare observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). Methods: We study a 2010 Nov. 3 event (peaking at 12:20 UT in GOES soft X-rays) of a coronal mass ejection and occulted flare that demonstrates the morphology of a classic erupting flux rope. The high spatial and time resolution and six coronal channels of the SDO/AIA images allows the dynamics of the multi-thermal emission during the initial phases of eruption to be studied in detail. The differential emission measure is calculated, using an optimized version of a regularized inversion method, for each pixel across the six channels at different times, resulting in emission measure maps and movies in a variety of temperature ranges. Results: We find that the core of the erupting plasmoid is hot (8-11, 11-14 MK) with a similarly hot filamentary "stem" structure connecting it to the lower atmosphere, which could be interpreted as the current sheet in the flux rope model, though is wider than these models suggest. The velocity of the leading edge of the eruption is 597-664 km s-1 in the temperature range ≥3-4 MK and between 1029-1246 km s-1 for ≤2-3 MK. We estimate the density (in 11-14 MK) of the erupting core and stem during the impulsive phase to be about 3 × 109 cm-3, 6 × 109 cm-3, 9 × 108 cm-3 in the plasmoid core, stem, and surrounding envelope of material. This gives thermal energy estimates of 5 × 1029 erg, 1 × 1029 erg, and 2 × 1030 erg. The kinetic energy for the core and envelope is slightly lower. The thermal energy of the core and current sheet grows during the eruption, suggesting continuous influx of energy presumably via reconnection. Conclusions: The combination of the optimized regularized inversion method and SDO/AIA data allows the multi-thermal characteristics (i.e. velocity, density, and thermal energies) of the plasmoid eruption to be determined. A movie is available in electronic form at http://www.aanda.org

  15. Development of high-fidelity multiphysics system for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining codes into a single executable, they are usually still developed and maintained separately. It should thus be a design objective to minimize the changes to those codes, and keep the changes to each code free of dependence on the details of the other codes. This will ease the incorporation of new versions of the code into the coupling, as well as re-use of parts of the coupling to couple with different codes. In order to fulfill this objective, an interface for each code was created in the form of an object-oriented abstract data type. Object-oriented programming is an effective method for enforcing a separation between different parts of a program, and clarifying the communication between them. The interfaces enable the main program to control the codes in terms of high-level functionality. This differs from the established practice of a master/slave relationship, in which the slave code is incorporated into the master code as a set of subroutines. While this PhD research continues previous work with a coupling between CTF and TORT-TD, it makes two major original contributions: (1) using a fuel-performance code, instead of a thermal-hydraulics code's simplified built-in models, to model the feedback from the fuel rods, and (2) the design of an object-oriented interface as an innovative method to interact with a coupled code in a high-level, easily-understandable manner. The resulting code system will serve as a tool to study the question of under what conditions, and to what extent, these higher-fidelity methods will provide benefits to reactor core analysis. (Abstract shortened by UMI.)

  16. A Thermal Management Systems Model for the NASA GTX RBCC Concept

    NASA Technical Reports Server (NTRS)

    Traci, Richard M.; Farr, John L., Jr.; Laganelli, Tony; Walker, James (Technical Monitor)

    2002-01-01

    The Vehicle Integrated Thermal Management Analysis Code (VITMAC) was further developed to aid the analysis, design, and optimization of propellant and thermal management concepts for advanced propulsion systems. The computational tool is based on engineering level principles and models. A graphical user interface (GUI) provides a simple and straightforward method to assess and evaluate multiple concepts before undertaking more rigorous analysis of candidate systems. The tool incorporates the Chemical Equilibrium and Applications (CEA) program and the RJPA code to permit heat transfer analysis of both rocket and air breathing propulsion systems. Key parts of the code have been validated with experimental data. The tool was specifically tailored to analyze rocket-based combined-cycle (RBCC) propulsion systems being considered for space transportation applications. This report describes the computational tool and its development and verification for NASA GTX RBCC propulsion system applications.

  17. The kinetics of aerosol particle formation and removal in NPP severe accidents

    NASA Astrophysics Data System (ADS)

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  18. Folding Elastic Thermal Surface - FETS

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Zhang, Burt X.; Thelen, Michael P.; Rodriquez, Jose I.; Pellegrino, Sergio

    2013-01-01

    The FETS is a light and compact thermal surface (sun shade, IR thermal shield, cover, and/or deployable radiator) that is mounted on a set of offset tape-spring hinges. The thermal surface is constrained during launch and activated in space by a thermomechanical latch such as a wax actuator. An application-specific embodiment of this technology developed for the MATMOS (Mars Atmospheric Trace Molecule Occultation Spectrometer) project serves as a deployable cover and thermal shield for its passive cooler. The FETS fits compactly against the instrument within the constrained launch envelope, and then unfolds into a larger area once in space. In this application, the FETS protects the passive cooler from thermal damage and contamination during ground operations, launch, and during orbit insertion. Once unfolded or deployed, the FETS serves as a heat shield, intercepting parasitic heat loads by blocking the passive cooler s view of the warm spacecraft. The technology significantly enhances the capabilities of instruments requiring either active or passive cooling of optical detectors. This can be particularly important for instruments where performance is limited by the available radiator area. Examples would be IR optical instruments on CubeSATs or those launched as hosted payloads because radiator area is limited and views are often undesirable. As a deployable radiator, the panels making up the FETS are linked thermally by thermal straps and heat pipes; the structural support and deployment energy is provided using tape-spring hinges. The FETS is a novel combination of existing technologies. Prior art for deployable heat shields uses rotating hinges that typically must be lubricated to avoid cold welding or static friction. By using tape-spring hinges, the FETS avoids the need for lubricants by avoiding friction altogether. This also eliminates the potential for contamination of nearby cooled optics by outgassing lubricants. Furthermore, the tape-spring design of the FETS is also self-locking so the panels stay in a rigid and extended configuration after deployment. This unexpected benefit makes the tape-spring hinge design of the FETS a light, simple, reliable, compact, non-outgassing hinge, spring, and latch. While tape-spring hinges are not novel, they have never been used to deploy passive unfolding thermal surfaces (radiator panels, covers, sun shades, or IR thermal shields). Furthermore, because this technology is compact, it has minimal impact on the launch envelope and mass specifications. FETS enhances the performance of hosted payload instruments where the science data is limited by dark noise. Incorporating FETS into a thermal control system increases radiator area, which lowers the optical detector temperature. This results in higher SNR (signal-to-noise ratio) and improved science data.

  19. Pushing the polymer envelope

    NASA Astrophysics Data System (ADS)

    Tolley, Paul R.

    2005-09-01

    The pressure to "push the polymer envelope" is clear, given the exploding range of demanding applications with optical components. There are two keys to success: 1. Expanded range of polymers with suitable optical properties. 2. Sophisticated manufacturing process options with an overall system perspective: -Tolerances and costs established relative to need (proof-of-concept, prototype, low to high volume production). -Designed to integrate into an assembly that meets all environmental constraints, not just size and weight, which are natural polymer advantages. (Withstanding extreme temperatures and chemical exposure is often critical, as are easy clean-up and general resistance to surface damage.) -Highly repeatable. The thesis of this paper is that systematically innovating processes we already understand on materials we already know can deliver big returns. To illustrate, we introduce HRDT1, High Refraction Diamond Turning, a patent-pending processing option to significantly reduce total costs for high index, high thermal applications.

  20. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Sparks, Warren, E-mail: edward.sion@villanova.edu, E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channelmore » in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.« less

  1. Low-Cost Phase Change Material for Building Envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhari, Ramin

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCMmore » thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.« less

  2. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  3. Dress codes and appearance policies: challenges under federal legislation, part 2: title VII of the civil rights act and gender.

    PubMed

    Mitchell, Michael S; Koen, Clifford M; Darden, Stephen M

    2014-01-01

    As more and more individuals express themselves with tattoos and body piercings and push the envelope on what is deemed appropriate in the workplace, employers have an increased need for creation and enforcement of reasonable dress codes and appearance policies. As with any employment policy or practice, an appearance policy must be implemented and enforced without regard to an individual's race, color, gender, national origin, religion, disability, age, or other protected status. A policy governing dress and appearance based on the business needs of an employer that is applied fairly and consistently and does not have a disproportionate effect on any protected class will generally be upheld if challenged in court. By examining some of the more common legal challenges to dress codes and how courts have resolved the disputes, health care managers can avoid many potential problems. This article, the second part of a 3-part examination of dress codes and appearance policies, focuses on the issue of gender under the Civil Rights Act of 1964. Pertinent court cases that provide guidance for employers are addressed.

  4. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  5. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code systemmore » ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)« less

  6. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  7. Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kang; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  8. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  9. Theoretical Thermal Evaluation of Energy Recovery Incinerators

    DTIC Science & Technology

    1985-12-01

    Army Logistics Mgt Center, Fort Lee , VA DTIC Alexandria, VA DTNSRDC Code 4111 (R. Gierich), Bethesda MD; Code 4120, Annapolis, MD; Code 522 (Library...Washington. DC: Code (I6H4. Washington. DC NAVSECGRUACT PWO (Code .’^O.’^). Winter Harbor. IVIE ; PWO (Code 4(1). Edzell. Scotland; PWO. Adak AK...NEW YORK Fort Schuyler. NY (Longobardi) TEXAS A&M UNIVERSITY W.B. Ledbetter College Station. TX UNIVERSITY OF CALIFORNIA Energy Engineer. Davis CA

  10. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less

  11. Configuration development study of the X-24C hypersonic research airplane, phase 1

    NASA Technical Reports Server (NTRS)

    Combs, H. G.

    1976-01-01

    Four hypersonic research airplane configurations found to be the most cost effective were selected for further refinement. The selection was based on a systematic analysis and evaluation of realistic designs, involving nine different configurations, evolving from three different structural/thermal concepts, coupled with existing rocket and sustainer engines. All configurations were constrained by the mission profiles, research requirements, aerodynamic envelope and maximum launch weight established by NASA.

  12. The Thermal Evaluation of Air-Cooled Electronic Equipment

    DTIC Science & Technology

    1952-09-01

    of Unit with Case-Envelope Heat Exchanger 233 VII-7 Storking Plot for Evaluation of Case Heat Transfer of Unit with Integrated or Separate... wing . 1. Case Cooled by Free Convection and Radiation Equipment of this type which depends on the natural heat dissipative capacity of the outer...described application, a tightly-fitting spring- clip is placed around the component, such as a tube, with the two thermocouple lead wires spot-welded

  13. Coding stimulus amplitude by correlated neural activity

    NASA Astrophysics Data System (ADS)

    Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  14. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  15. Computer code for analyzing the performance of aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.

    1985-05-01

    A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.

  16. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  17. Speech Envelope Normalization, a Method to Improve SNR and Suppress Noise in Present and Future Radio Systems.

    DTIC Science & Technology

    1982-12-01

    GRA&IT--4 I DTIC TAB U:.r.nnoincee Distr±iatic !/ KAvnilr,1.llty Codes AvRUJ and/or Dist S pecial 1 AN 𔄃 . .. ACKNOWLEDGEMENTS The success of the...evaluated. Two different approaches emerged, one employing cascaded active all-pass networks, and the other using a charged coupled device sampled data delay...Wideband 900 Phase-Shifters 38 * 5.2 Samples Data Direct Hilbert Transforms 43 5.3 Charge Coupled Device (CCD) Implementation 45 5.4 Digital

  18. Prediction of thermal cycling induced cracking in polmer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    The work done in the period August 1993 through February 1994 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program is summarized. Most of the work performed in this period, as well as the previous one, is described in detail in the attached Master's thesis, 'Analysis of Thermally Induced Damage in Composite Space Structures,' by Cecelia Hyun Seon Park. Work on a small thermal cycling and aging chamber was concluded in this period. The chamber was extensively tested and calibrated. Temperatures can be controlled very precisely, and are very uniform in the test chamber. Based on results obtained in the previous period of this program, further experimental progressive cracking studies were carried out. The laminates tested were selected to clarify the differences between the behaviors of thick and thin ply layers, and to explore other variables such as stacking sequence and scaling effects. Most specimens tested were made available from existing stock at Langley Research Center. One laminate type had to be constructed from available prepreg material at Langley Research Center. Specimens from this laminate were cut and prepared at MIT. Thermal conditioning was carried out at Langley Research Center, and at the newly constructed MIT facility. Specimens were examined by edge inspection and by crack configuration studies, in which specimens were sanded down in order to examine the distribution of cracks within the specimens. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate was implemented as a computer code. The code also predicts changes in properties due to the cracking. Extensive correlations between test results and code predictions were carried out. The computer code was documented and is ready for distribution.

  19. Thermal Face Protection Delays Finger Cooling and Improves Thermal Comfort during Cold Air Exposure

    DTIC Science & Technology

    2011-01-01

    code) 2011 Journal Article-Eur Journal of Applied Physiology Thermal face protection delays Fnger cooling and improves thermal comfort during cold air...remains exposed. Facial cooling can decrease finger blood flow, reducing finger temperature (Tf). This study examined whether thermal face protection...limits Wnger cooling and thereby improves thermal comfort and manual dexterity during prolonged cold exposure. Tf was measured in ten volunteers dressed

  20. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming.

    PubMed

    Tarling, Geraint A; Ward, Peter; Thorpe, Sally E

    2018-01-01

    The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It further demonstrates that this community is thermally resilient to present levels of sea surface warming. © 2017 John Wiley & Sons Ltd.

  1. An engineering code to analyze hypersonic thermal management systems

    NASA Technical Reports Server (NTRS)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  2. A thermal NO(x) prediction model - Scalar computation module for CFD codes with fluid and kinetic effects

    NASA Technical Reports Server (NTRS)

    Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue

    1993-01-01

    A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.

  3. Exceptional cost effectiveness of the Solarcrete construction system with hybrid solar for McCormick's piano showroom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, M.T.

    1980-01-01

    A new building was designed to house Northeast Indiana's largest keyboard instrument showroom, offices, and warehouse. The 7653 SF building faces 8/sup 0/ east of south in a climate of 41/sup 0/ NL, 6717 DD, and 49% of possible sunshine during the heating season. The energy system may be described as hybrid using an integration of passive direct gain, water thermal storage with earth contact, evaporative cooling, and water source heat pump. The thermal envelope of the building employs the Solarcrete method devised to render improved thermal performance and reduce labor time, skill, and effort resulting in both initial andmore » life-cycle savings. The initial cost savings on the building including the tax credit of $11,076 was 33% or $79,076 LESS than a conventional building. The owners have realized 84% energy savings on the annual usage for the first year of operation.« less

  4. BIPV: a real-time building performance study for a roof-integrated facility

    NASA Astrophysics Data System (ADS)

    Aaditya, Gayathri; Mani, Monto

    2018-03-01

    Building integrated photovoltaic system (BIPV) is a photovoltaic (PV) integration that generates energy and serves as a building envelope. A building element (e.g. roof and wall) is based on its functional performance, which could include structure, durability, maintenance, weathering, thermal insulation, acoustics, and so on. The present paper discusses the suitability of PV as a building element in terms of thermal performance based on a case study of a 5.25 kWp roof-integrated BIPV system in tropical regions. Performance of PV has been compared with conventional construction materials and various scenarios have been simulated to understand the impact on occupant comfort levels. In the current case study, PV as a roofing material has been shown to cause significant thermal discomfort to the occupants. The study has been based on real-time data monitoring supported by computer-based building simulation model.

  5. Measurements of observables during detonator function

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Remelius, Dennis

    Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.

  6. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  7. Advances in modelling of condensation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less

  8. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  9. Performance of a parallel thermal-hydraulics code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fann, G.I.; Trent, D.S.

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scalingmore » performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.« less

  10. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  11. pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott

    2016-10-01

    We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.

  12. Recent results from the SIMECA code and VLTI observations

    NASA Astrophysics Data System (ADS)

    Meilland, A.; Stee, Ph.

    We present recent results on active hot stars using the first VLTI/MIDI and VLTI/AMBER observations, and the SIMECA code developed by Stee (1994). α Arae was the first classical Be star observed with MIDI (June 2003) and AMBER (February 2005). The size of its circumstellar envelope was measured and thanks to the spectrally-resolved interferometric AMBER observations, we were able, for the first time to evidence the Keplerian rotation of the circumstellar disc. MWC 297 is one of the brightest Herbig Be star, and it was then observed during the first commissioning run of AMBER in May 2004. The data obtained were good enough to allow us to infer the accretion disc extension, as well as to put strong constraints on the stellar wind geometry and kinematics.

  13. Studying Tidal Effects In Planetary Systems With Posidonius. A N-Body Simulator Written In Rust.

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-10-01

    Planetary systems with several planets in compact orbital configurations such as TRAPPIST-1 are surely affected by tidal effects. Its study provides us with important insight about its evolution. We developed a second generation of a N-body code based on the tidal model used in Mercury-T, re-implementing and improving its functionalities using Rust as programming language (including a Python interface for easy use) and the WHFAST integrator. The new open source code ensures memory safety, reproducibility of numerical N-body experiments, it improves the spin integration compared to Mercury-T and allows to take into account a new prescription for the dissipation of tidal inertial waves in the convective envelope of stars. Posidonius is also suitable for binary system simulations with evolving stars.

  14. Asteroseismology of ZZ Ceti stars with full evolutionary white dwarf models. II. The impact of AGB thermal pulses on the asteroseismic inferences of ZZ Ceti stars

    NASA Astrophysics Data System (ADS)

    De Gerónimo, F. C.; Althaus, L. G.; Córsico, A. H.; Romero, A. D.; Kepler, S. O.

    2018-05-01

    Context. The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most low- and intermediate-mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf (WD) is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on a narrow instability strip at Teff 12 000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars; those found during the TP-AGB phase are the most relevant for the pulsational properties of ZZ Ceti stars. Aims: We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Methods: Our analysis is based on a set of carbon-oxygen core white dwarf models with masses from 0.534 to 0.6463 M⊙ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We computed evolutionary sequences that experience different number of thermal pulses (TP). Results: We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the asteroseimological effective temperature of ZZ Ceti stars of at most 8% and on the order of ≲5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. Hot and intermediate temperature ZZ Ceti stars show no differences in the hydrogen envelope mass in most cases. Conclusions: Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.

  15. The opto-mechanical design of the GMT-consortium large earth finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Baldwin, Daniel; Bean, Jacob; Bergner, Henry; Bigelow, Bruce; Chun, Moo-Young; Crane, Jeffrey; Foster, Jeff; Fżrész, Gabor; Gauron, Thomas; Guzman, Dani; Hertz, Edward; Jordán, Andrés.; Kim, Kang-Min; McCracken, Kenneth; Norton, Timothy; Ordway, Mark; Park, Chan; Park, Sang; Podgorski, William A.; Szentgyorgyi, Andrew; Uomoto, Alan; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT) currently under construction at the Las Campanas Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose echelle spectrograph with precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) precision goal of GCLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the habitable zone. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures. Stability in instruments of this type is typically affected by changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the previously listed considerations must be managed while ensuring that performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including technical choices made to minimize the system's sensitivity to thermal gradients. A more general treatment of the properties of G-CLEF can be found elsewhere in these proceedings1. We discuss the design of the vacuum chamber which houses the irregularly shaped optical bench and optics while conforming to a challenging space envelope on GMT's azimuth platform. We also discuss the design of G-CLEF's insulated enclosure and thermal control systems which maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting the maximum thermal emission into the telescope dome environment. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  16. Computational Simulation of Thermal and Spattering Phenomena and Microstructure in Selective Laser Melting of Inconel 625

    NASA Astrophysics Data System (ADS)

    Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.

    Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.

  17. 3D modelling of HCO+ and its isotopologues in the low-mass proto-star IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.; Wakelam, V.

    2018-07-01

    Ions and electrons play an important role in various stages of the star formation process. By following the magnetic field of their environment and interacting with neutral species, they slow down the gravitational collapse of the proto-star envelope. This process (known as ambipolar diffusion) depends on the ionization degree, which can be derived from the HCO+ abundance. We present a study of HCO+ and its isotopologues (H13CO+ , HC18O+ , DCO+ , and D13CO+) in the low-mass proto-star IRAS16293-2422. The structure of this object is complex, and the HCO+emission arises from the contribution of a young NW-SE outflow, the proto-stellar envelope, and the foreground cloud. We aim at constraining the physical parameters of these structures using all the observed transitions. For the young NW-SE outflow, we derive Tkin= 180-220 K and n(H2) = (4-7)× 106 cm-3 with an HCO+abundance of (3-5)× 10-9. Following previous studies, we demonstrate that the presence of a cold (Tkin≤ 30 K) and low density [n(H2) ≤ 1 × 104 cm-3] foreground cloud is also necessary to reproduce the observed line profiles. We have used the gas-grain chemical code NAUTILUS to derive the HCO+ abundance profile across the envelope and the external regions where X(HCO+) ≳ 1 × 10-9 dominate the envelope emission. From this, we derive an ionization degree of 10-8.9 ≲ x( e) ≲ 10-7.9. The ambipolar diffusion time-scale is ˜5 times the free-fall time-scale, indicating that the magnetic field starts to support the source against gravitational collapse and the magnetic field strength is estimated to be 6-46μG.

  18. Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions

    DOE PAGES

    Casanova, Jordi; José, Jordi; García-Berro, Enrique; ...

    2016-10-25

    Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 10 8 K. During these events, about 10 -3-10 -7 M ⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the high concentrations of metalsmore » spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. We performed three-dimensional simulations of mixing at the core-envelope interface during nova outbursts with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We also show that the presence of an ONe-rich substrate, as in “neon novae”, yields higher metallicity enhancements in the ejecta than CO-rich substrates (i.e., non-neon novae). Finally, a number of requirements and constraints for such 3D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.« less

  19. Adaptation in sound localization processing induced by interaural time difference in amplitude envelope at high frequencies.

    PubMed

    Kawashima, Takayuki; Sato, Takao

    2012-01-01

    When a second sound follows a long first sound, its location appears to be perceived away from the first one (the localization/lateralization aftereffect). This aftereffect has often been considered to reflect an efficient neural coding of sound locations in the auditory system. To understand determinants of the localization aftereffect, the current study examined whether it is induced by an interaural temporal difference (ITD) in the amplitude envelope of high frequency transposed tones (over 2 kHz), which is known to function as a sound localization cue. In Experiment 1, participants were required to adjust the position of a pointer to the perceived location of test stimuli before and after adaptation. Test and adapter stimuli were amplitude modulated (AM) sounds presented at high frequencies and their positional differences were manipulated solely by the envelope ITD. Results showed that the adapter's ITD systematically affected the perceived position of test sounds to the directions expected from the localization/lateralization aftereffect when the adapter was presented at ±600 µs ITD; a corresponding significant effect was not observed for a 0 µs ITD adapter. In Experiment 2, the observed adapter effect was confirmed using a forced-choice task. It was also found that adaptation to the AM sounds at high frequencies did not significantly change the perceived position of pure-tone test stimuli in the low frequency region (128 and 256 Hz). The findings in the current study indicate that ITD in the envelope at high frequencies induces the localization aftereffect. This suggests that ITD in the high frequency region is involved in adaptive plasticity of auditory localization processing.

  20. Mixing in classical novae: a 2-D sensitivity study

    NASA Astrophysics Data System (ADS)

    Casanova, J.; José, J.; García-Berro, E.; Calder, A.; Shore, S. N.

    2011-03-01

    Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass, main sequence star onto a white dwarf. The material piles up under degenerate conditions and a thermonuclear runaway ensues. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 108 K. During these events, about 10-4-10-5M⊙, enriched in CNO and other intermediate-mass elements, are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, a metallicity enhancement in the ejecta above solar values), numerical models assume mixing between the (solar-like) material transferred from the companion and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Aims: The nature of the mixing mechanism that operates at the core-envelope interface has puzzled stellar modelers for about 40 years. Here we investigate the role of Kelvin-Helmholtz instabilities as a natural mechanism for self-enrichment of the accreted envelope with core material. Methods: The feasibility of this mechanism is studied by means of the multidimensional code FLASH. Here, we present a series of 9 numerical simulations perfomed in two dimensions aimed at testing the possible influence of the initial perturbation (duration, strength, location, and size), the resolution adopted, or the size of the computational domain on the results. Results: We show that results do not depend substantially on the specific choice of these parameters, demonstrating that Kelvin-Helmholtz instabilities can naturally lead to self-enrichment of the accreted envelope with core material, at levels that agree with observations. Movie is only available in electronic form at http://www.aanda.org

  1. Cloning and expression of an envelope gene of West Nile virus and evaluation of the protein for use in an IgM ELISA.

    PubMed

    Saxena, Divyasha; Parida, Manmohan; Rao, Putcha Venkata L; Kumar, Jyoti S

    2013-04-01

    West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis. The early confirmatory diagnosis of WNV infections is important for timely clinical management and epidemiologic control in areas where multiple flaviviruses are endemic. The coexistence of WNV along with other members of flaviviruses like dengue and Japanese encephalitis in India has complicated the serodiagnosis due to cross-reactive antigens. In the present study, the development and evaluation of a highly sensitive and specific IgM enzyme-linked immunosorbent assay (ELISA) using the recombinant envelope protein (rWNV-Env) for rapid, early, and accurate diagnosis of WNV are reported. The gene coding for the envelope protein of WNV was cloned and expressed in pET 28a vector followed by purification of recombinant protein by affinity chromatography. An indirect IgM microplate ELISA using purified rWNV-Env protein was optimized having no cross reactivity with healthy human serum. Furthermore, the specificity of this assay was confirmed by cross checking with serum samples obtained from patients with dengue and Japanese encephalitis viruses. The comparative evaluation of this rWNV-Env protein-specific IgM ELISA with plaque reduction neutralization test assay using 105 acute phase of clinical samples revealed 95% concordance with sensitivity and specificity of 92% and 97%, respectively. The positive and negative predictive values of recombinant-based Env ELISA were 94% and 96%, respectively. The recombinant envelope protein-based WNV-specific ELISA reported in this study will be useful for rapid screening of large numbers of clinical samples in endemic areas during outbreaks. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 3D modelling of HCO+ and its isotopologues in the low-mass proto-star IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.; Wakelam, V.

    2018-04-01

    Ions and electrons play an important role in various stages of the star formation process. By following the magnetic field of their environment and interacting with neutral species, they slow down the gravitational collapse of the proto-star envelope. This process (known as ambipolar diffusion) depends on the ionisation degree, which can be derived from the HCO+abundance. We present a study of HCO+and its isotopologues (H13CO+, HC18O+, DCO+, and D13CO+) in the low-mass proto-star IRAS16293-2422. The structure of this object is complex, and the HCO+emission arises from the contribution of a young NW-SE outflow, the proto-stellar envelope and the foreground cloud. We aim at constraining the physical parameters of these structures using all the observed transitions. For the young NW-SE outflow, we derive Tkin = 180 - 220 K and n(H2) = (4 - 7) × 106 cm-3 with an HCO+abundance of (3 - 5) × 10-9. Following previous studies, we demonstrate that the presence of a cold (Tkin≤30 K) and low density (n(H2) ≤ 1 × 104 cm-3) foreground cloud is also necessary to reproduce the observed line profiles. We have used the gas-grain chemical code NAUTILUS to derive the HCO+abundance profile across the envelope and the external regions where X(HCO+)≳ 1 × 10-9 dominate the envelope emission. From this, we derive an ionisation degree of 10-8.9 ≲ x(e) ≲ 10-7.9. The ambipolar diffusion timescale is ˜5 times the free-fall timescale, indicating that the magnetic field starts to support the source against gravitational collapse and the magnetic field strength is estimated to be 6 - 46 μG.

  3. Electro-Thermal-Mechanical Simulation Capability Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There aremore » numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R&D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems such as magnetic flux compression generators and railguns. This project compliments ongoing DNT projects that have an experimental emphasis. Our research efforts have been encapsulated in the Diablo and ALE3D simulation codes. This new ETM capability already has both internal and external users, and has spawned additional research in plasma railgun technology. By developing this capability Engineering has become a world-leader in ETM design, analysis, and simulation. This research has positioned LLNL to be able to compete for new business opportunities with the DoD in the area of railgun design. We currently have a three-year $1.5M project with the Office of Naval Research to apply our ETM simulation capability to railgun bore life issues and we expect to be a key player in the railgun community.« less

  4. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study.

    PubMed

    Kyriakou, Adamos; Neufeld, Esra; Werner, Beat; Székely, Gábor; Kuster, Niels

    2015-01-01

    Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections. An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets. While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parameters. Simulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.

  5. Atomic-scale to Meso-scale Simulation Studies of Thermal Ageing and Irradiation Effects in Fe- Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Eugene; Liu, Li

    In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments

  6. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  7. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  8. A spread-spectrum modem using constant envelope BPSK for a mobile satellite communications terminal

    NASA Technical Reports Server (NTRS)

    Iizuka, N.; Yamashita, A.; Takenaka, S.; Morikawa, E.; Ikegami, T.

    1990-01-01

    This paper describes a 5-kilobit/s spread spectrum modem with a 1.275 mega-Hz chip rate for mobile satellite communications. We used a Viterbi decoder with a coding gain of 7.8 dB at a BER of 10(exp -5) to decrease the required receiver power. This reduces the cost of communication services. The spread spectrum technique makes the modem immune to terrestrial radio signals and keeps it from causing interference in terrestrial radio systems. A class C power amplifier reduces the modem's power consumption. To avoid nonlinear distortion caused by the amplifier, the envelope of the input signal is kept constant by adding quadrature channel signal to the BPSK signal. To simulate the worst case, we measured the modem's output spectrum using a limiting amplifier instead of the class C amplifier, and found that 99 percent of the spectral power was confined to the specified 2.55 mega-Hz bandwidth.

  9. Thermally Optimized Paradigm of Thermal Management (TOP-M)

    DTIC Science & Technology

    2017-07-18

    ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...19b. TELEPHONE NUMBER (Include area code) 18-07-2017 Final Technical Jul 2015 - Jul 2017 NICOP - Thermally Optimized Paradigm of Thermal Management ...The main goal of this research was to present a New Thermal Management Approach, which combines thermally aware Very/Ultra Large Scale Integration

  10. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.

    2004-07-01

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  11. Estimation of thermal transmittance based on temperature measurements with the application of perturbation numbers

    NASA Astrophysics Data System (ADS)

    Nowoświat, Artur; Skrzypczyk, Jerzy; Krause, Paweł; Steidl, Tomasz; Winkler-Skalna, Agnieszka

    2018-05-01

    Fast estimation of thermal transmittance based on temperature measurements is uncertain, and the obtained results can be burdened with a large error. Nevertheless, such attempts should be undertaken merely due to the fact that a precise measurement by means of heat flux measurements is not always possible in field conditions (resentment of the residents during the measurements carried out inside their living quarters), and the calculation methods do not allow for the nonlinearity of thermal insulation, heat bridges or other fragments of building envelope of diversified thermal conductivity. The present paper offers the estimation of thermal transmittance and internal surface resistance with the use of temperature measurements (in particular with the use of thermovision). The proposed method has been verified through tests carried out on a laboratory test stand built in the open space, subjected to the influence of real meteorological conditions. The present elaboration involves the estimation of thermal transmittance by means of temperature measurements. Basing on the mentioned estimation, the authors present correction coefficients which have impact on the estimation accuracy. Furthermore, in the final part of the paper, various types of disturbance were allowed for using perturbation numbers, and the introduced by the authors "credibility area of thermal transmittance estimation" was determined.

  12. Global thermal niche models of two European grasses show high invasion risks in Antarctica.

    PubMed

    Pertierra, Luis R; Aragón, Pedro; Shaw, Justine D; Bergstrom, Dana M; Terauds, Aleks; Olalla-Tárraga, Miguel Ángel

    2017-07-01

    The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species. © 2017 John Wiley & Sons Ltd.

  13. Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  14. Army Net Zero Prove Out. Army Net Zero Training Report

    DTIC Science & Technology

    2014-11-20

    existing reporting systems (e.g., Army Energy and Water Reporting System, Solid Waste Annual Reporting- web , Headquarters Army Environmental System). 3...Testing a wave energy converter  Harnesses the pressure of a wave on the ocean floor 22  Conduct thermal building envelope analysis  IR ...bathroom f ixtures, ai r handling units, Less than 3𔄃W i rrigat ion controls w ith EPA Water’Sense approved equipment 1% 0 . .279% Acqu ire lower water

  15. Thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.

    1987-05-19

    A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.

  16. The skin: The many functions of fish integument

    USGS Publications Warehouse

    Elliott, Diane G.; Farrell, Anthony P.

    2011-01-01

    The integument or skin is the envelope that not only separates and protects a fish from its environment, but also provides the means through which most contacts with the outer world are made. It is a large organ and is continuous with the linings of all body openings, and also covers the fins. Fish integument is a multifunctional organ, and its components may serve important roles in protection, communication, sensory perception, locomotion, respiration, ion regulation, excretion, and thermal regulation.

  17. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camous, F.; Jacq, F.; Chatelard, P.

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  18. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  19. An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei

    2006-01-01

    The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.

  20. Methodology, status and plans for development and assessment of the code ATHLET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teschendorff, V.; Austregesilo, H.; Lerchl, G.

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The codemore » has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.« less

  1. An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strizhov, V.; Kanukova, V.; Vinogradova, T.

    1996-09-01

    This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer frommore » melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.« less

  2. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    PubMed

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (<4 kHz) demonstrate good phase locking to TFS. For modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal fine structure cues. We also demonstrate a diversity of neural responses with different coding specializations. These results support the dual-coding scheme proposed by psychophysicists to account for FM sensitivity in humans and provide new insights on how this might be implemented in the early stages of the auditory pathway. Copyright © 2018 the authors 0270-6474/18/384123-15$15.00/0.

  3. Ab-initio study of thermal expansion in pure graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Sarita; Kumar, Ranjan; Jindal, V. K., E-mail: jindal@pu.ac.in

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPT and the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to bemore » strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of −1.44×10{sup −6}. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.« less

  4. The solar dynamic radiator with a historical perspective

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R. L.

    1988-01-01

    A historical perspective on pumped-fluid loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kW (electrical) each, are planned for growth in Station power requirements. The Brayton cycle SD module configuration incorporates a pumped-fluid loop radiator that must reject up to 99 kW (thermal). The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped-fluid loop radiator systems. Nevertheless, past program successes have demonstrated a technology base that can be applied to the SD radiator development program to ensure a low risk, low cost system.

  5. On a thermonuclear origin for the 1980-81 deep light minimum of the symbiotic nova PU Vul

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.

    1993-01-01

    The puzzling 1980-81 deep light minimum of the symbiotic nova PU Vul is discussed in terms of a sequence of quasi-static evolutionary models of a hot, 0.5 solar mass white dwarf accreting H-rich matter at a rate 1 x 10 exp -8 solar mass/yr. On the basis of the morphological behavior of the models, it is suggested that the deep light minimum of PU Vul could have been the result of two successive, closely spaced, hydrogen shell flashes on an accreting white dwarf whose core thermal structure and accreted H-rich envelope was not in a long-term thermal 'cycle-averaged' steady state with the rate of accretion.

  6. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M., E-mail: leiner@astro.wisc.edu

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolutionmore » code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.« less

  7. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  8. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  9. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapir, Nir; Halbertal, Dorri

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that themore » luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.« less

  10. Red River Waterway Thermal Studies. Report 2. Thermal Stress Analyses

    DTIC Science & Technology

    1991-12-01

    stress relaxation, q. Shrinkage of the concrete, and . Thermal properties of the concrete including coefficient of thermal expansion , specific heat...Finite-Element Code 12. The thermal stress analyses in this investigation was performed using ABAQUS , a general-purpose, heat-transfer and structural...model (the UMAT 9 subroutine discussed below) may be incorporated as an external subroutine linked to the ABAQUS library. 14. In order to model the

  11. Pressurized thermal shock: TEMPEST computer code simulation of thermal mixing in the cold leg and downcomer of a pressurized water reactor. [Creare 61 and 64

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L.L.; Trent, D.S.

    The TEMPEST computer program was used to simulate fluid and thermal mixing in the cold leg and downcomer of a pressurized water reactor under emergency core cooling high-pressure injection (HPI), which is of concern to the pressurized thermal shock (PTS) problem. Application of the code was made in performing an analysis simulation of a full-scale Westinghouse three-loop plant design cold leg and downcomer. Verification/assessment of the code was performed and analysis procedures developed using data from Creare 1/5-scale experimental tests. Results of three simulations are presented. The first is a no-loop-flow case with high-velocity, low-negative-buoyancy HPI in a 1/5-scale modelmore » of a cold leg and downcomer. The second is a no-loop-flow case with low-velocity, high-negative density (modeled with salt water) injection in a 1/5-scale model. Comparison of TEMPEST code predictions with experimental data for these two cases show good agreement. The third simulation is a three-dimensional model of one loop of a full size Westinghouse three-loop plant design. Included in this latter simulation are loop components extending from the steam generator to the reactor vessel and a one-third sector of the vessel downcomer and lower plenum. No data were available for this case. For the Westinghouse plant simulation, thermally coupled conduction heat transfer in structural materials is included. The cold leg pipe and fluid mixing volumes of the primary pump, the stillwell, and the riser to the steam generator are included in the model. In the reactor vessel, the thermal shield, pressure vessel cladding, and pressure vessel wall are thermally coupled to the fluid and thermal mixing in the downcomer. The inlet plenum mixing volume is included in the model. A 10-min (real time) transient beginning at the initiation of HPI is computed to determine temperatures at the beltline of the pressure vessel wall.« less

  12. Benchmarking study of the MCNP code against cold critical experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S.

    1991-01-01

    The purpose of this study was to benchmark the widely used Monte Carlo code MCNP against a set of cold critical experiments with a view to using the code as a means of independently verifying the performance of faster but less accurate Monte Carlo and deterministic codes. The experiments simulated consisted of both fast and thermal criticals as well as fuel in a variety of chemical forms. A standard set of benchmark cold critical experiments was modeled. These included the two fast experiments, GODIVA and JEZEBEL, the TRX metallic uranium thermal experiments, the Babcock and Wilcox oxide and mixed oxidemore » experiments, and the Oak Ridge National Laboratory (ORNL) and Pacific Northwest Laboratory (PNL) nitrate solution experiments. The principal case studied was a small critical experiment that was performed with boiling water reactor bundles.« less

  13. A detailed view of the gas shell around R Sculptoris with ALMA

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Vlemmings, W. H. T.; Brunner, M.; De Beck, E.; Humphreys, E. M.; Kerschbaum, F.; Lindqvist, M.; Olofsson, H.; Ramstedt, S.

    2016-02-01

    Context. During the asymptotic giant branch (AGB) phase, stars undergo thermal pulses - short-lived phases of explosive helium burning in a shell around the stellar core. Thermal pulses lead to the formation and mixing-up of new elements to the stellar surface. They are hence fundamental to the chemical evolution of the star and its circumstellar envelope. A further consequence of thermal pulses is the formation of detached shells of gas and dust around the star, several of which have been observed around carbon-rich AGB stars. Aims: We aim to determine the physical properties of the detached gas shell around R Sculptoris, in particular the shell mass and temperature, and to constrain the evolution of the mass-loss rate during and after a thermal pulse. Methods: We analyse 12CO(1-0), 12CO(2-1), and 12CO(3-2) emission, observed with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 0 and complemented by single-dish observations. The spatial resolution of the ALMA data allows us to separate the detached shell emission from the extended emission inside the shell. We perform radiative transfer modelling of both components to determine the shell properties and the post-pulse mass-loss properties. Results: The ALMA data show a gas shell with a radius of 19.̋5 expanding at 14.3 km s-1. The different scales probed by the ALMA Cycle 0 array show that the shell must be entirely filled with gas, contrary to the idea of a detached shell. The comparison to single-dish spectra and radiative transfer modelling confirms this. We derive a shell mass of 4.5 × 10-3 M⊙ with a temperature of 50 K. Typical timescales for thermal pulses imply a pulse mass-loss rate of 2.3 × 10-5 M⊙ yr-1. For the post-pulse mass-loss rate, we find evidence for a gradual decline of the mass-loss rate, with an average value of 1.6 × 10-5 M⊙ yr-1. The total amount of mass lost since the last thermal pulse is 0.03 M⊙, a factor four higher compared to classical models, with a sharp decline in mass-loss rate immediately after the pulse. Conclusions: We find that the mass-loss rate after a thermal pulse has to decline more slowly than generally expected from models of thermal pulses. This may cause the star to lose significantly more mass during a thermal pulse cycle, which affects the lifetime on the AGB and the chemical evolution of the star, its circumstellar envelope, and the interstellar medium.

  14. Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons.

    PubMed

    Ali, F; Atanackovic, J; Boyer, C; Festarini, A; Kildea, J; Paterson, L C; Rogge, R; Stuart, M; Richardson, R B

    2018-06-06

    Thermal neutrons are found in reactor, radiotherapy, aircraft, and space environments. The purpose of this study was to characterise the dosimetry and microdosimetry of thermal neutron exposures, using three simulation codes, as a precursor to quantitative radiobiological studies using blood samples. An irradiation line was designed employing a pyrolytic graphite crystal or-alternatively-a super mirror to expose blood samples to thermal neutrons from the National Research Universal reactor to determine radiobiological parameters. The crystal was used when assessing the relative biological effectiveness for dicentric chromosome aberrations, and other biomarkers, in lymphocytes over a low absorbed dose range of 1.2-14 mGy. Higher exposures using a super mirror will allow the additional quantification of mitochondrial responses. The physical size of the thermal neutron fields and their respective wavelength distribution was determined using the McStas Monte Carlo code. Spinning the blood samples produced a spatially uniform absorbed dose as determined from Monte Carlo N-Particle version 6 simulations. The major part (71%) of the total absorbed dose to blood was determined to be from the 14 N(n,p) 14 C reaction and the remainder from the 1 H(n,γ) 2 H reaction. Previous radiobiological experiments at Canadian Nuclear Laboratories involving thermal neutron irradiation of blood yielded a relative biological effectiveness of 26 ± 7. Using the Particle and Heavy Ion Transport Code System, a similar value of ∼19 for the quality factor of thermal neutrons initiating the 14 N(n,p) 14 C reaction in soft tissue was determined by microdosimetric simulations. This calculated quality factor is of similar high value to the experimentally-derived relative biological effectiveness, and indicates the potential of thermal neutrons to induce deleterious health effects in superficial organs such as cataracts of the eye lens.

  15. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernnat, W.; Buck, M.; Mattes, M.

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less

  16. Systems evaluation of thermal bus concepts

    NASA Technical Reports Server (NTRS)

    Stalmach, D. D.

    1982-01-01

    Thermal bus concepts, to provide a centralized thermal utility for large, multihundred kilowatt space platforms, were studied and the results are summarized. Concepts were generated, defined, and screened for inclusion in system level thermal bus trades. Parametric trade studies were conducted in order to define the operational envelope, performance, and physical characteristics of each. Two concepts were selected as offering the most promise for thermal bus development. All of four concepts involved two phase flow in order to meet the required isothermal nature of the thermal bus. Two of the concepts employ a mechanical means to circulate the working fluid, a liquid pump in one case and a vapor compressor in another. Another concept utilizes direct osmosis as the driving force of the thermal bus. The fourth concept was a high capacity monogroove heat pipe. After preliminary sizing and screening, three of these concepts were selected to carry into the trade studies. The monogroove heat pipe concept was deemed unsuitable for further consideration because of its heat transport limitations. One additional concept utilizing capillary forces to drive the working fluid was added. Parametric system level trade studies were performed. Sizing and weight calculations were performed for thermal bus sizes ranging from 5 to 350 kW and operating temperatures in the range of 4 to 120 C. System level considerations such as heat rejection and electrical power penalties and interface temperature losses were included in the weight calculations.

  17. SASS-1--SUBASSEMBLY STRESS SURVEY CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, C.M.

    1960-01-01

    SASS-1, an IBM-704 FORTRAN code, calculates pressure, thermal, and combined stresses in a nuclear reactor core subassembly. In addition to cross- section stresses, the code calculates axial shear stresses needed to keep plane cross sections plane under axial variations of temperature. The input and output nomenclature, arrangement, and formats are described. (B.O.G.)

  18. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  19. Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.

    2015-01-01

    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.

  20. The development of a thermal hydraulic feedback mechanism with a quasi-fixed point iteration scheme for control rod position modeling for the TRIGSIMS-TH application

    NASA Astrophysics Data System (ADS)

    Karriem, Veronica V.

    Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the heterogeneous temperature distribution throughout the core. Each of these codes is written in its own computer language performing its function and outputs a set of data. TRIGSIMS-TH provides an effective use and data manipulation and transfer between different codes. With the implementation of feedback and control- rod-position modeling methodologies, the TRIGSIMS-TH calculations are more accurate and in a better agreement with measured data. The PSBR is unique in many ways and there are no "off-the-shelf" codes, which can model this design in its entirety. In particular, PSBR has an open core design, which is cooled by natural convection. Combining several codes into a unique system brings many challenges. It also requires substantial knowledge of both operation and core design of the PSBR. This reactor is in operation decades and there is a fair amount of studies and developments in both PSBR thermal hydraulics and neutronics. Measured data is also available for various core loadings and can be used for validation activities. The previous studies and developments in PSBR modeling also aids as a guide to assess the findings of the work herein. In order to incorporate new methods and codes into exiting TRIGSIMS, a re-evaluation of various components of the code was performed to assure the accuracy and efficiency of the existing CTF/MCNP5/ADMARC-H multi-physics coupling. A new set of ADMARC-H diffusion coefficients and cross sections was generated using the SERPENT code. This was needed as the previous data was not generated with thermal hydraulic feedback and the ARO position was used as the critical rod position. The B4C was re-evaluated for this update. The data exchange between ADMARC-H and MCNP5 was modified. The basic core model is given a flexibility to allow for various changes within the core model, and this feature was implemented in TRIGSIMS-TH. The PSBR core in the new code model can be expanded and changed. This allows the new code to be used as a modeling tool for design and analyses of future code loadings.

Top