Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans
2015-02-01
The Department of Energy (DOE) has made significant progress developing simulation tools to predict the behavior of nuclear systems with greater accuracy and of increasing our capability to predict the behavior of these systems outside of the standard range of applications. These analytical tools require a more complex array of validation tests to accurately simulate the physics and multiple length and time scales. Results from modern simulations will allow experiment designers to narrow the range of conditions needed to bound system behavior and to optimize the deployment of instrumentation to limit the breadth and cost of the campaign. Modern validation,more » verification and uncertainty quantification (VVUQ) techniques enable analysts to extract information from experiments in a systematic manner and provide the users with a quantified uncertainty estimate. Unfortunately, the capability to perform experiments that would enable taking full advantage of the formalisms of these modern codes has progressed relatively little (with some notable exceptions in fuels and thermal-hydraulics); the majority of the experimental data available today is the "historic" data accumulated over the last decades of nuclear systems R&D. A validated code-model is a tool for users. An unvalidated code-model is useful for code developers to gain understanding, publish research results, attract funding, etc. As nuclear analysis codes have become more sophisticated, so have the measurement and validation methods and the challenges that confront them. A successful yet cost-effective validation effort requires expertise possessed only by a few, resources possessed only by the well-capitalized (or a willing collective), and a clear, well-defined objective (validating a code that is developed to satisfy the need(s) of an actual user). To that end, the Idaho National Laboratory established the Nuclear Energy Knowledge and Validation Center to address the challenges of modern code validation and to manage the knowledge from past, current, and future experimental campaigns. By pulling together the best minds involved in code development, experiment design, and validation to establish and disseminate best practices and new techniques, the Nuclear Energy Knowledge and Validation Center (NEKVaC or the ‘Center’) will be a resource for industry, DOE Programs, and academia validation efforts.« less
CFD Modeling of Free-Piston Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.
2001-01-01
NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, Paolo; Theiler, C.; Fasoli, A.
A methodology for plasma turbulence code validation is discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The present work extends the analysis carried out in a previous paper [P. Ricci et al., Phys. Plasmas 16, 055703 (2009)] where the validation observables were introduced. Here, it is discussed how to quantify the agreement between experiments and simulations with respect to each observable, how to define a metric to evaluate this agreement globally, and - finally - how to assess the quality of a validation procedure. The methodology is then applied to the simulation of the basic plasmamore » physics experiment TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulation models.« less
HBOI Underwater Imaging and Communication Research - Phase 1
2012-04-19
validation of one-way pulse stretching radiative transfer code The objective was to develop and validate time-resolved radiative transfer models that...and validation of one-way pulse stretching radiative transfer code The models were subjected to a series of validation experiments over 12.5 meter...about the theoretical basis of the model together with validation results can be found in Dalgleish et al., (20 1 0). Forward scattering Mueller
A Systematic Method for Verification and Validation of Gyrokinetic Microstability Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravenec, Ronald
My original proposal for the period Feb. 15, 2014 through Feb. 14, 2017 called for an integrated validation and verification effort carried out by myself with collaborators. The validation component would require experimental profile and power-balance analysis. In addition, it would require running the gyrokinetic codes varying the input profiles within experimental uncertainties to seek agreement with experiment before discounting a code as invalidated. Therefore, validation would require a major increase of effort over my previous grant periods which covered only code verification (code benchmarking). Consequently, I had requested full-time funding. Instead, I am being funded at somewhat less thanmore » half time (5 calendar months per year). As a consequence, I decided to forego the validation component and to only continue the verification efforts.« less
Supersonic Coaxial Jet Experiment for CFD Code Validation
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.
1999-01-01
A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.
A Comprehensive Validation Approach Using The RAVEN Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J
2015-06-01
The RAVEN computer code , developed at the Idaho National Laboratory, is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is a multi-purpose probabilistic and uncertainty quantification platform, capable to communicate with any system code. A natural extension of the RAVEN capabilities is the imple- mentation of an integrated validation methodology, involving several different metrics, that represent an evolution of the methods currently used in the field. The state-of-art vali- dation approaches use neither exploration of the input space through sampling strategies, nor a comprehensive variety of metrics neededmore » to interpret the code responses, with respect experimental data. The RAVEN code allows to address both these lacks. In the following sections, the employed methodology, and its application to the newer developed thermal-hydraulic code RELAP-7, is reported.The validation approach has been applied on an integral effect experiment, representing natu- ral circulation, based on the activities performed by EG&G Idaho. Four different experiment configurations have been considered and nodalized.« less
CFD validation experiments for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.
Validating the BISON fuel performance code to integral LWR experiments
Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...
2016-03-24
BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
The MCNP6 Analytic Criticality Benchmark Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
2016-06-16
Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, Dann A.; Blanchat, Thomas K.
It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisonmore » between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.« less
CFD Modeling Needs and What Makes a Good Supersonic Combustion Validation Experiment
NASA Technical Reports Server (NTRS)
Gaffney, Richard L., Jr.; Cutler, Andrew D.
2005-01-01
If a CFD code/model developer is asked what experimental data he wants to validate his code or numerical model, his answer will be: "Everything, everywhere, at all times." Since this is not possible, practical, or even reasonable, the developer must understand what can be measured within the limits imposed by the test article, the test location, the test environment and the available diagnostic equipment. At the same time, it is important for the expermentalist/diagnostician to understand what the CFD developer needs (as opposed to wants) in order to conduct a useful CFD validation experiment. If these needs are not known, it is possible to neglect easily measured quantities at locations needed by the developer, rendering the data set useless for validation purposes. It is also important for the experimentalist/diagnostician to understand what the developer is trying to validate so that the experiment can be designed to isolate (as much as possible) the effects of a particular physical phenomena that is associated with the model to be validated. The probability of a successful validation experiment can be greatly increased if the two groups work together, each understanding the needs and limitations of the other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, A.; Avramova, Maria; Ivanov, Kostadin
To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed bymore » data from hydrogen experiments and PIE data.« less
Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi
1996-01-01
Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.
Transport calculations and accelerator experiments needed for radiation risk assessment in space.
Sihver, Lembit
2008-01-01
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.
Study of premixing phase of steam explosion with JASMINE code in ALPHA program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu
Premixing phase of steam explosion has been studied in ALPHA Program at Japan Atomic Energy Research Institute (JAERI). An analytical model to simulate the premixing phase, JASMINE (JAERI Simulator for Multiphase Interaction and Explosion), has been developed based on a multi-dimensional multi-phase thermal hydraulics code MISTRAL (by Fuji Research Institute Co.). The original code was extended to simulate the physics in the premixing phenomena. The first stage of the code validation was performed by analyzing two mixing experiments with solid particles and water: the isothermal experiment by Gilbertson et al. (1992) and the hot particle experiment by Angelini et al.more » (1993) (MAGICO). The code predicted reasonably well the experiments. Effectiveness of the TVD scheme employed in the code was also demonstrated.« less
WEC3: Wave Energy Converter Code Comparison Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien
This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less
Experimental program for real gas flow code validation at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul
1989-01-01
The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1993-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
Toward Supersonic Retropropulsion CFD Validation
NASA Technical Reports Server (NTRS)
Kleb, Bil; Schauerhamer, D. Guy; Trumble, Kerry; Sozer, Emre; Barnhardt, Michael; Carlson, Jan-Renee; Edquist, Karl
2011-01-01
This paper begins the process of verifying and validating computational fluid dynamics (CFD) codes for supersonic retropropulsive flows. Four CFD codes (DPLR, FUN3D, OVERFLOW, and US3D) are used to perform various numerical and physical modeling studies toward the goal of comparing predictions with a wind tunnel experiment specifically designed to support CFD validation. Numerical studies run the gamut in rigor from code-to-code comparisons to observed order-of-accuracy tests. Results indicate that this complex flowfield, involving time-dependent shocks and vortex shedding, design order of accuracy is not clearly evident. Also explored is the extent of physical modeling necessary to predict the salient flowfield features found in high-speed Schlieren images and surface pressure measurements taken during the validation experiment. Physical modeling studies include geometric items such as wind tunnel wall and sting mount interference, as well as turbulence modeling that ranges from a RANS (Reynolds-Averaged Navier-Stokes) 2-equation model to DES (Detached Eddy Simulation) models. These studies indicate that tunnel wall interference is minimal for the cases investigated; model mounting hardware effects are confined to the aft end of the model; and sparse grid resolution and turbulence modeling can damp or entirely dissipate the unsteadiness of this self-excited flow.
DSMC Simulations of Hypersonic Flows and Comparison With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.; Markelov, Gennady N.
2004-01-01
This paper presents computational results obtained with the direct simulation Monte Carlo (DSMC) method for several biconic test cases in which shock interactions and flow separation-reattachment are key features of the flow. Recent ground-based experiments have been performed for several biconic configurations, and surface heating rate and pressure measurements have been proposed for code validation studies. The present focus is to expand on the current validating activities for a relatively new DSMC code called DS2V that Bird (second author) has developed. Comparisons with experiments and other computations help clarify the agreement currently being achieved between computations and experiments and to identify the range of measurement variability of the proposed validation data when benchmarked with respect to the current computations. For the test cases with significant vibrational nonequilibrium, the effect of the vibrational energy surface accommodation on heating and other quantities is demonstrated.
NASA Astrophysics Data System (ADS)
Class, G.; Meyder, R.; Stratmanns, E.
1985-12-01
The large data base for validation and development of computer codes for two-phase flow, generated at the COSIMA facility, is reviewed. The aim of COSIMA is to simulate the hydraulic, thermal, and mechanical conditions in the subchannel and the cladding of fuel rods in pressurized water reactors during the blowout phase of a loss of coolant accident. In terms of fuel rod behavior, it is found that during blowout under realistic conditions only small strains are reached. For cladding rupture extremely high rod internal pressures are necessary. The behavior of fuel rod simulators and the effect of thermocouples attached to the cladding outer surface are clarified. Calculations performed with the codes RELAP and DRUFAN show satisfactory agreement with experiments. This can be improved by updating the phase separation models in the codes.
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Artemieva, N.; Asphaug, E.; Baldwin, E. C.; Cazamias, J.; Coker, R.; Collins, G. S.; Crawford, D. A.; Davison, T.; Elbeshausen, D.; Holsapple, K. A.; Housen, K. R.; Korycansky, D. G.; Wünnemann, K.
2008-12-01
Over the last few decades, rapid improvement of computer capabilities has allowed impact cratering to be modeled with increasing complexity and realism, and has paved the way for a new era of numerical modeling of the impact process, including full, three-dimensional (3D) simulations. When properly benchmarked and validated against observation, computer models offer a powerful tool for understanding the mechanics of impact crater formation. This work presents results from the first phase of a project to benchmark and validate shock codes. A variety of 2D and 3D codes were used in this study, from commercial products like AUTODYN, to codes developed within the scientific community like SOVA, SPH, ZEUS-MP, iSALE, and codes developed at U.S. National Laboratories like CTH, SAGE/RAGE, and ALE3D. Benchmark calculations of shock wave propagation in aluminum-on-aluminum impacts were performed to examine the agreement between codes for simple idealized problems. The benchmark simulations show that variability in code results is to be expected due to differences in the underlying solution algorithm of each code, artificial stability parameters, spatial and temporal resolution, and material models. Overall, the inter-code variability in peak shock pressure as a function of distance is around 10 to 20%. In general, if the impactor is resolved by at least 20 cells across its radius, the underestimation of peak shock pressure due to spatial resolution is less than 10%. In addition to the benchmark tests, three validation tests were performed to examine the ability of the codes to reproduce the time evolution of crater radius and depth observed in vertical laboratory impacts in water and two well-characterized aluminum alloys. Results from these calculations are in good agreement with experiments. There appears to be a general tendency of shock physics codes to underestimate the radius of the forming crater. Overall, the discrepancy between the model and experiment results is between 10 and 20%, similar to the inter-code variability.
2013-01-01
experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a
Validation Results for LEWICE 2.0. [Supplement
NASA Technical Reports Server (NTRS)
Wright, William B.; Rutkowski, Adam
1999-01-01
Two CD-ROMs contain experimental ice shapes and code prediction used for validation of LEWICE 2.0 (see NASA/CR-1999-208690, CASI ID 19990021235). The data include ice shapes for both experiment and for LEWICE, all of the input and output files for the LEWICE cases, JPG files of all plots generated, an electronic copy of the text of the validation report, and a Microsoft Excel(R) spreadsheet containing all of the quantitative measurements taken. The LEWICE source code and executable are not contained on the discs.
Monte Carol-based validation of neutronic methodology for EBR-II analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, J.R.; Finck, P.J.
1993-01-01
The continuous-energy Monte Carlo code VIM (Ref. 1) has been validated extensively over the years against fast critical experiments and other neutronic analysis codes. A high degree of confidence in VIM for predicting reactor physics parameters has been firmly established. This paper presents a numerical validation of two conventional multigroup neutronic analysis codes, DIF3D (Ref. 4) and VARIANT (Ref. 5), against VIM for two Experimental Breeder Reactor II (EBR-II) core loadings in detailed three-dimensional hexagonal-z geometry. The DIF3D code is based on nodal diffusion theory, and it is used in calculations for day-today reactor operations, whereas the VARIANT code ismore » based on nodal transport theory and is used with increasing frequency for specific applications. Both DIF3D and VARIANT rely on multigroup cross sections generated from ENDF/B-V by the ETOE-2/MC[sup 2]-II/SDX (Ref. 6) code package. Hence, this study also validates the multigroup cross-section processing methodology against the continuous-energy approach used in VIM.« less
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
NASA Astrophysics Data System (ADS)
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
Simulating Small-Scale Experiments of In-Tunnel Airblast Using STUN and ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuscamman, Stephanie; Glenn, Lewis; Schebler, Gregory
2011-09-12
This report details continuing validation efforts for the Sphere and Tunnel (STUN) and ALE3D codes. STUN has been validated previously for blast propagation through tunnels using several sets of experimental data with varying charge sizes and tunnel configurations, including the MARVEL nuclear driven shock tube experiment (Glenn, 2001). The DHS-funded STUNTool version is compared to experimental data and the LLNL ALE3D hydrocode. In this particular study, we compare the performance of the STUN and ALE3D codes in modeling an in-tunnel airblast to experimental results obtained by Lunderman and Ohrt in a series of small-scale high explosive experiments (1997).
ESTEST: A Framework for the Verification and Validation of Electronic Structure Codes
NASA Astrophysics Data System (ADS)
Yuan, Gary; Gygi, Francois
2011-03-01
ESTEST is a verification and validation (V& V) framework for electronic structure codes that supports Qbox, Quantum Espresso, ABINIT, the Exciting Code and plans support for many more. We discuss various approaches to the electronic structure V& V problem implemented in ESTEST, that are related to parsing, formats, data management, search, comparison and analyses. Additionally, an early experiment in the distribution of V& V ESTEST servers among the electronic structure community will be presented. Supported by NSF-OCI 0749217 and DOE FC02-06ER25777.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di; Mo, Kun; Ye, Bei
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL). Two major accomplishments in FY 15 are summarized in this report: (1) implementation of the FASTGRASS module in the BISON code; and (2) a Xe implantation experiment for large-grained UO 2. Both BISON AND MARMOT codes have been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. To contribute to the development of the Moose-Bison-Marmot (MBM) code suite, we have implemented the FASTGRASS fission gas model as a module inmore » the BISON code. Based on rate theory formulations, the coupled FASTGRASS module in BISON is capable of modeling LWR oxide fuel fission gas behavior and fission gas release. In addition, we conducted a Xe implantation experiment at the Argonne Tandem Linac Accelerator System (ATLAS) in order to produce the needed UO 2 samples with desired bubble morphology. With these samples, further experiments to study the fission gas diffusivity are planned to provide validation data for the Fission Gas Release Model in MARMOT codes.« less
WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruehl, Kelley; Michelen, Carlos; Bosma, Bret
2016-08-01
The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is amore » follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.« less
NASA Astrophysics Data System (ADS)
Chan, V. S.; Wong, C. P. C.; McLean, A. G.; Luo, G. N.; Wirth, B. D.
2013-10-01
The Xolotl code under development by PSI-SciDAC will enhance predictive modeling capability of plasma-facing materials under burning plasma conditions. The availability and application of experimental data to compare to code-calculated observables are key requirements to validate the breadth and content of physics included in the model and ultimately gain confidence in its results. A dedicated effort has been in progress to collect and organize a) a database of relevant experiments and their publications as previously carried out at sample exposure facilities in US and Asian tokamaks (e.g., DIII-D DiMES, and EAST MAPES), b) diagnostic and surface analysis capabilities available at each device, and c) requirements for future experiments with code validation in mind. The content of this evolving database will serve as a significant resource for the plasma-material interaction (PMI) community. Work supported in part by the US Department of Energy under GA-DE-SC0008698, DE-AC52-07NA27344 and DE-AC05-00OR22725.
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
NASA Technical Reports Server (NTRS)
Clifton, Chandler W.; Cutler, Andrew D.
2007-01-01
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...
2018-06-14
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
NASA Astrophysics Data System (ADS)
Hilmy, N.; Febrida, A.; Basril, A.
2007-11-01
Problems of tissue allografts in using International Standard (ISO) 11137 for validation of radiation sterilization dose (RSD) are limited and low numbers of uniform samples per production batch, those are products obtained from one donor. Allograft is a graft transplanted between two different individuals of the same species. The minimum number of uniform samples needed for verification dose (VD) experiment at the selected sterility assurance level (SAL) per production batch according to the IAEA Code is 20, i.e., 10 for bio-burden determination and the remaining 10 for sterilization test. Three methods of the IAEA Code have been used for validation of RSD, i.e., method A1 that is a modification of method 1 of ISO 11137:1995, method B (ISO 13409:1996), and method C (AAMI TIR 27:2001). This paper describes VD experiments using uniform products obtained from one cadaver donor, i.e., cancellous bones, demineralized bone powders and amnion grafts from one life donor. Results of the verification dose experiments show that RSD is 15.4 kGy for cancellous and demineralized bone grafts and 19.2 kGy for amnion grafts according to method A1 and 25 kGy according to methods B and C.
TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.J.; Pruess
1992-11-01
The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for propermore » applications of TOUGH and related codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T; Marshall, William BJ J
In the course of criticality code validation, outlier cases are frequently encountered. Historically, the causes of these unexpected results could be diagnosed only through comparison with other similar cases or through the known presence of a unique component of the critical experiment. The sensitivity and uncertainty (S/U) analysis tools available in the SCALE 6.1 code system provide a much broader range of options to examine underlying causes of outlier cases. This paper presents some case studies performed as a part of the recent validation of the KENO codes in SCALE 6.1 using S/U tools to examine potential causes of biases.
Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability
NASA Technical Reports Server (NTRS)
Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian
2011-01-01
The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.
ERIC Educational Resources Information Center
Brandon, Paul R.; Harrison, George M.; Lawton, Brian E.
2013-01-01
When evaluators plan site-randomized experiments, they must conduct the appropriate statistical power analyses. These analyses are most likely to be valid when they are based on data from the jurisdictions in which the studies are to be conducted. In this method note, we provide software code, in the form of a SAS macro, for producing statistical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K
2006-04-05
Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less
Student perception of travel service learning experience in Morocco.
Puri, Aditi; Kaddoura, Mahmoud; Dominick, Christine
2013-08-01
This study explores the perceptions of health profession students participating in academic service learning in Morocco with respect to adapting health care practices to cultural diversity. Authors utilized semi-structured, open-ended interviews to explore the perceptions of health profession students. Nine dental hygiene and nursing students who traveled to Morocco to provide oral and general health services were interviewed. After interviews were recorded, they were transcribed verbatim to ascertain descriptive validity and to generate inductive and deductive codes that constitute the major themes of the data analysis. Thereafter, NVIVO 8 was used to rapidly determine the frequency of applied codes. The authors compared the codes and themes to establish interpretive validity. Codes and themes were initially determined independently by co-authors and applied to the data subsequently. The authors compared the applied codes to establish intra-rater reliability. International service learning experiences led to perceptions of growth as a health care provider among students. The application of knowledge and skills learned in academic programs and service learning settings were found to help in bridging the theory-practice gap. The specific experience enabled students to gain an understanding of diverse health care and cultural practices in Morocco. Students perceived that the experience gained in international service learning can heighten awareness of diverse cultural and health care practices to foster professional growth of health professionals.
Improvements in the simulation code of the SOX experiment
NASA Astrophysics Data System (ADS)
Caminata, A.; Agostini, M.; Altenmüeller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssiére, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.
2017-09-01
The aim of the SOX experiment is to test the hypothesis of existence of light sterile neutrinos trough a short baseline experiment. Electron antineutrinos will be produced by an high activity source and detected in the Borexino experiment. Both an oscillometry approach and a conventional disappearance analysis will be performed and, if combined, SOX will be able to investigate most of the anomaly region at 95% c.l. This paper focuses on the improvements performed on the simulation code and on the techniques (calibrations) used to validate the results.
F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Fischer, Michael C.
1999-01-01
The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.
Scale/TSUNAMI Sensitivity Data for ICSBEP Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T; Reed, Davis Allan; Lefebvre, Robert A
2011-01-01
The Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) software developed at Oak Ridge National Laboratory (ORNL) as part of the Scale code system provide unique methods for code validation, gap analysis, and experiment design. For TSUNAMI analysis, sensitivity data are generated for each application and each existing or proposed experiment used in the assessment. The validation of diverse sets of applications requires potentially thousands of data files to be maintained and organized by the user, and a growing number of these files are available through the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) distributed through themore » International Criticality Safety Benchmark Evaluation Program (ICSBEP). To facilitate the use of the IHECSBE benchmarks in rigorous TSUNAMI validation and gap analysis techniques, ORNL generated SCALE/TSUNAMI sensitivity data files (SDFs) for several hundred benchmarks for distribution with the IHECSBE. For the 2010 edition of IHECSBE, the sensitivity data were generated using 238-group cross-section data based on ENDF/B-VII.0 for 494 benchmark experiments. Additionally, ORNL has developed a quality assurance procedure to guide the generation of Scale inputs and sensitivity data, as well as a graphical user interface to facilitate the use of sensitivity data in identifying experiments and applying them in validation studies.« less
Examples of Use of SINBAD Database for Nuclear Data and Code Validation
NASA Astrophysics Data System (ADS)
Kodeli, Ivan; Žerovnik, Gašper; Milocco, Alberto
2017-09-01
The SINBAD database currently contains compilations and evaluations of over 100 shielding benchmark experiments. The SINBAD database is widely used for code and data validation. Materials covered include: Air, N. O, H2O, Al, Be, Cu, graphite, concrete, Fe, stainless steel, Pb, Li, Ni, Nb, SiC, Na, W, V and mixtures thereof. Over 40 organisations from 14 countries and 2 international organisations have contributed data and work in support of SINBAD. Examples of the use of the database in the scope of different international projects, such as the Working Party on Evaluation Cooperation of the OECD and the European Fusion Programme demonstrate the merit and possible usage of the database for the validation of modern nuclear data evaluations and new computer codes.
The Nuclear Energy Knowledge and Validation Center Summary of Activities Conducted in FY16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans David
The Nuclear Energy Knowledge and Validation Center (NEKVaC) is a new initiative by the Department of Energy (DOE) and Idaho National Laboratory (INL) to coordinate and focus the resources and expertise that exist with the DOE toward solving issues in modern nuclear code validation and knowledge management. In time, code owners, users, and developers will view the NEKVaC as a partner and essential resource for acquiring the best practices and latest techniques for validating codes, providing guidance in planning and executing experiments, facilitating access to and maximizing the usefulness of existing data, and preserving knowledge for continual use by nuclearmore » professionals and organizations for their own validation needs. The scope of the NEKVaC covers many interrelated activities that will need to be cultivated carefully in the near term and managed properly once the NEKVaC is fully functional. Three areas comprise the principal mission: (1) identify and prioritize projects that extend the field of validation science and its application to modern codes, (2) develop and disseminate best practices and guidelines for high-fidelity multiphysics/multiscale analysis code development and associated experiment design, and (3) define protocols for data acquisition and knowledge preservation and provide a portal for access to databases currently scattered among numerous organizations. These mission areas, while each having a unique focus, are interdependent and complementary. Likewise, all activities supported by the NEKVaC, both near term and long term, must possess elements supporting all three areas. This cross cutting nature is essential to ensuring that activities and supporting personnel do not become “stove piped” (i.e., focused a specific function that the activity itself becomes the objective rather than achieving the larger vision). This report begins with a description of the mission areas; specifically, the role played by each major committee and the types of activities for which they are responsible. It then lists and describes the proposed near term tasks upon which future efforts can build.« less
Zhou, Bailing; Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu; Yang, Yuedong; Zhou, Yaoqi; Wang, Jihua
2018-01-04
Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu
2018-01-01
Abstract Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. PMID:28985416
A verification and validation effort for high explosives at Los Alamos National Lab (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovel, Christina A; Menikoff, Ralph S
2009-01-01
We have started a project to verify and validate ASC codes used to simulate detonation waves in high explosives. Since there are no non-trivial analytic solutions, we are going to compare simulated results with experimental data that cover a wide range of explosive phenomena. The intent is to compare both different codes and different high explosives (HE) models. The first step is to test the products equation of state used for the HE models, For this purpose, the cylinder test, flyer plate and plate-push experiments are being used. These experiments sample different regimes in thermodynamic phase space: the CJ isentropemore » for the cylinder tests, the isentrope behind an overdriven detonation wave for the flyer plate experiment, and expansion following a reflected CJ detonation for the plate-push experiment, which is sensitive to the Gruneisen coefficient. The results of our findings for PBX 9501 are presented here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less
Ensuring the validity of calculated subcritical limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, H.K.
1977-01-01
The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionallymore » subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin.« less
Verification and Validation of the BISON Fuel Performance Code for PCMI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Novascone, Stephen Rhead; Gardner, Russell James
2016-06-01
BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described. Validation for application to light water reactor (LWR) PCMI problems is assessed by comparing predicted and measured rod diameter following base irradiation andmore » power ramps. Results indicate a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.
1992-01-01
Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less
Validation of OpenFoam for heavy gas dispersion applications.
Mack, A; Spruijt, M P N
2013-11-15
In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Smith, Derrick; Rosenblum, L. Penny
2013-01-01
Introduction: The purpose of the study presented here was the initial validation of a comprehensive set of competencies focused solely on the Nemeth code. Methods: Using the Delphi method, 20 expert panelists were recruited to participate in the study on the basis of their past experience in teaching a university-level course in the Nemeth code.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atamturktur, Sez; Unal, Cetin; Hemez, Francois
The project proposed to provide a Predictive Maturity Framework with its companion metrics that (1) introduce a formalized, quantitative means to communicate information between interested parties, (2) provide scientifically dependable means to claim completion of Validation and Uncertainty Quantification (VU) activities, and (3) guide the decision makers in the allocation of Nuclear Energy’s resources for code development and physical experiments. The project team proposed to develop this framework based on two complimentary criteria: (1) the extent of experimental evidence available for the calibration of simulation models and (2) the sophistication of the physics incorporated in simulation models. The proposed frameworkmore » is capable of quantifying the interaction between the required number of physical experiments and degree of physics sophistication. The project team has developed this framework and implemented it with a multi-scale model for simulating creep of a core reactor cladding. The multi-scale model is composed of the viscoplastic self-consistent (VPSC) code at the meso-scale, which represents the visco-plastic behavior and changing properties of a highly anisotropic material and a Finite Element (FE) code at the macro-scale to represent the elastic behavior and apply the loading. The framework developed takes advantage of the transparency provided by partitioned analysis, where independent constituent codes are coupled in an iterative manner. This transparency allows model developers to better understand and remedy the source of biases and uncertainties, whether they stem from the constituents or the coupling interface by exploiting separate-effect experiments conducted within the constituent domain and integral-effect experiments conducted within the full-system domain. The project team has implemented this procedure with the multi- scale VPSC-FE model and demonstrated its ability to improve the predictive capability of the model. Within this framework, the project team has focused on optimizing resource allocation for improving numerical models through further code development and experimentation. Related to further code development, we have developed a code prioritization index (CPI) for coupled numerical models. CPI is implemented to effectively improve the predictive capability of the coupled model by increasing the sophistication of constituent codes. In relation to designing new experiments, we investigated the information gained by the addition of each new experiment used for calibration and bias correction of a simulation model. Additionally, the variability of ‘information gain’ through the design domain has been investigated in order to identify the experiment settings where maximum information gain occurs and thus guide the experimenters in the selection of the experiment settings. This idea was extended to evaluate the information gain from each experiment can be improved by intelligently selecting the experiments, leading to the development of the Batch Sequential Design (BSD) technique. Additionally, we evaluated the importance of sufficiently exploring the domain of applicability in experiment-based validation of high-consequence modeling and simulation by developing a new metric to quantify coverage. This metric has also been incorporated into the design of new experiments. Finally, we have proposed a data-aware calibration approach for the calibration of numerical models. This new method considers the complexity of a numerical model (the number of parameters to be calibrated, parameter uncertainty, and form of the model) and seeks to identify the number of experiments necessary to calibrate the model based on the level of sophistication of the physics. The final component in the project team’s work to improve model calibration and validation methods is the incorporation of robustness to non-probabilistic uncertainty in the input parameters. This is an improvement to model validation and uncertainty quantification stemming beyond the originally proposed scope of the project. We have introduced a new metric for incorporating the concept of robustness into experiment-based validation of numerical models. This project has accounted for the graduation of two Ph.D. students (Kendra Van Buren and Josh Hegenderfer) and two M.S. students (Matthew Egeberg and Parker Shields). One of the doctoral students is now working in the nuclear engineering field and the other one is a post-doctoral fellow at the Los Alamos National Laboratory. Additionally, two more Ph.D. students (Garrison Stevens and Tunc Kulaksiz) who are working towards graduation have been supported by this project.« less
Fuel-Air Mixing and Combustion in Scramjets
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.
2002-01-01
Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.
Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.L.; Wilson, J.H.; Arwood, P.C.
The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) andmore » ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak, Misbah; Ross, Robert B.
This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).
CFD Validation Studies for Hypersonic Flow Prediction
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2001-01-01
A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30 degree flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 degrees and aft-cone angle of 55 degrees. Both sets of experiments involve 30 degree compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.
CFD Validation Studies for Hypersonic Flow Prediction
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2001-01-01
A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N, flow over a hollow cylinder-flare with 30 deg flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 deg and aft-cone angle of 55 deg. Both sets of experiments involve 30 deg compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.
NASA Astrophysics Data System (ADS)
Dartevelle, S.
2006-12-01
Large-scale volcanic eruptions are inherently hazardous events, hence cannot be described by detailed and accurate in situ measurements; hence, volcanic explosive phenomenology is inadequately constrained in terms of initial and inflow conditions. Consequently, little to no real-time data exist to Verify and Validate computer codes developed to model these geophysical events as a whole. However, code Verification and Validation remains a necessary step, particularly when volcanologists use numerical data for mitigation of volcanic hazards as more often performed nowadays. The Verification and Validation (V&V) process formally assesses the level of 'credibility' of numerical results produced within a range of specific applications. The first step, Verification, is 'the process of determining that a model implementation accurately represents the conceptual description of the model', which requires either exact analytical solutions or highly accurate simplified experimental data. The second step, Validation, is 'the process of determining the degree to which a model is an accurate representation of the real world', which requires complex experimental data of the 'real world' physics. The Verification step is rather simple to formally achieve, while, in the 'real world' explosive volcanism context, the second step, Validation, is about impossible. Hence, instead of validating computer code against the whole large-scale unconstrained volcanic phenomenology, we rather suggest to focus on the key physics which control these volcanic clouds, viz., momentum-driven supersonic jets and multiphase turbulence. We propose to compare numerical results against a set of simple but well-constrained analog experiments, which uniquely and unambiguously represent these two key-phenomenology separately. Herewith, we use GMFIX (Geophysical Multiphase Flow with Interphase eXchange, v1.62), a set of multiphase- CFD FORTRAN codes, which have been recently redeveloped to meet the strict Quality Assurance, verification, and validation requirements from the Office of Civilian Radioactive Waste Management of the US Dept of Energy. GMFIX solves Navier-Stokes and energy partial differential equations for each phase with appropriate turbulence and interfacial coupling between phases. For momentum-driven single- to multi-phase underexpanded jets, the position of the first Mach disk is known empirically as a function of both the pressure ratio, K, and the particle mass fraction, Phi at the nozzle. Namely, the higher K, the further downstream the Mach disk and the higher Phi, the further upstream the first Mach disk. We show that GMFIX captures these two essential features. In addition, GMFIX displays all the properties found in these jets, such as expansion fans, incident and reflected shocks, and subsequent downstream mach discs, which make this code ideal for further investigations of equivalent volcanological phenomena. One of the other most challenging aspects of volcanic phenomenology is the multiphase nature of turbulence. We also validated GMFIX in comparing the velocity profiles and turbulence quantities against well constrained analog experiments. The velocity profiles agree with the analog ones as well as these of production of turbulent quantities. Overall, the Verification and the Validation experiments although inherently challenging suggest GMFIX captures the most essential dynamical properties of multiphase and supersonic flows and jets.
Neutron streaming studies along JET shielding penetrations
NASA Astrophysics Data System (ADS)
Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan
2017-09-01
Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.
PARC Navier-Stokes code upgrade and validation for high speed aeroheating predictions
NASA Technical Reports Server (NTRS)
Liver, Peter A.; Praharaj, Sarat C.; Seaford, C. Mark
1990-01-01
Applications of the PARC full Navier-Stokes code for hypersonic flowfield and aeroheating predictions around blunt bodies such as the Aeroassist Flight Experiment (AFE) and Aeroassisted Orbital Transfer Vehicle (AOTV) are evaluated. Two-dimensional/axisymmetric and three-dimensional perfect gas versions of the code were upgraded and tested against benchmark wind tunnel cases of hemisphere-cylinder, three-dimensional AFE forebody, and axisymmetric AFE and AOTV aerobrake/wake flowfields. PARC calculations are in good agreement with experimental data and results of similar computer codes. Difficulties encountered in flowfield and heat transfer predictions due to effects of grid density, boundary conditions such as singular stagnation line axis and artificial dissipation terms are presented together with subsequent improvements made to the code. The experience gained with the perfect gas code is being currently utilized in applications of an equilibrium air real gas PARC version developed at REMTECH.
Advances in modelling of condensation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Zaltsgendler, E.; Hanna, B.
1997-07-01
The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less
Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.
2017-10-01
Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.
Uncertainty Quantification Techniques of SCALE/TSUNAMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T; Mueller, Don
2011-01-01
The Standardized Computer Analysis for Licensing Evaluation (SCALE) code system developed at Oak Ridge National Laboratory (ORNL) includes Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI). The TSUNAMI code suite can quantify the predicted change in system responses, such as k{sub eff}, reactivity differences, or ratios of fluxes or reaction rates, due to changes in the energy-dependent, nuclide-reaction-specific cross-section data. Where uncertainties in the neutron cross-section data are available, the sensitivity of the system to the cross-section data can be applied to propagate the uncertainties in the cross-section data to an uncertainty in the system response. Uncertainty quantification ismore » useful for identifying potential sources of computational biases and highlighting parameters important to code validation. Traditional validation techniques often examine one or more average physical parameters to characterize a system and identify applicable benchmark experiments. However, with TSUNAMI correlation coefficients are developed by propagating the uncertainties in neutron cross-section data to uncertainties in the computed responses for experiments and safety applications through sensitivity coefficients. The bias in the experiments, as a function of their correlation coefficient with the intended application, is extrapolated to predict the bias and bias uncertainty in the application through trending analysis or generalized linear least squares techniques, often referred to as 'data adjustment.' Even with advanced tools to identify benchmark experiments, analysts occasionally find that the application models include some feature or material for which adequately similar benchmark experiments do not exist to support validation. For example, a criticality safety analyst may want to take credit for the presence of fission products in spent nuclear fuel. In such cases, analysts sometimes rely on 'expert judgment' to select an additional administrative margin to account for gap in the validation data or to conclude that the impact on the calculated bias and bias uncertainty is negligible. As a result of advances in computer programs and the evolution of cross-section covariance data, analysts can use the sensitivity and uncertainty analysis tools in the TSUNAMI codes to estimate the potential impact on the application-specific bias and bias uncertainty resulting from nuclides not represented in available benchmark experiments. This paper presents the application of methods described in a companion paper.« less
Validation of a multi-layer Green's function code for ion beam transport
NASA Astrophysics Data System (ADS)
Walker, Steven; Tweed, John; Tripathi, Ram; Badavi, Francis F.; Miller, Jack; Zeitlin, Cary; Heilbronn, Lawrence
To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. In consequence, a new version of the HZETRN code capable of simulating high charge and energy (HZE) ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. The computational model consists of the lowest order asymptotic approximation followed by a Neumann series expansion with non-perturbative corrections. The physical description includes energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shift. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments with multi-layer targets. In order to validate the code with space boundary conditions, measured particle fluences are propagated through several thicknesses of shielding using both GRNTRN and the current version of HZETRN. The excellent agreement obtained indicates that GRNTRN accurately models the propagation of HZE ions in the space environment as well as in laboratory settings and also provides verification of the HZETRN propagator.
Methodology, status and plans for development and assessment of Cathare code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bestion, D.; Barre, F.; Faydide, B.
1997-07-01
This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests ormore » integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Jamison, Laura M.
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-basedmore » materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO 2; (2) investigation of surface morphology in micrograined UO 2; (3) Nano-indentation experiments on nano- and micro-grained UO 2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO 2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dartevelle, Sebastian
2007-10-01
Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less
PSI-Center Simulations of Validation Platform Experiments
NASA Astrophysics Data System (ADS)
Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.
2013-10-01
The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with extended MHD simulations. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), FRX-L (Los Alamos National Laboratory), HIT-SI (U Wash - UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), PHD/ELF (UW/MSNW), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). Modifications have been made to the NIMROD, HiFi, and PSI-Tet codes to specifically model these experiments, including mesh generation/refinement, non-local closures, appropriate boundary conditions (external fields, insulating BCs, etc.), and kinetic and neutral particle interactions. The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition is proving to be a powerful method to compare global temporal and spatial structures for validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.
Methodology, status and plans for development and assessment of HEXTRAN, TRAB and APROS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanttola, T.; Rajamaeki, M.; Tiihonen, O.
1997-07-01
A number of transient and accident analysis codes have been developed in Finland during the past twenty years mainly for the needs of their own power plants, but some of the codes have also been utilized elsewhere. The continuous validation, simultaneous development and experiences obtained in commercial applications have considerably improved the performance and range of application of the codes. At present, the methods allow fairly covering accident analysis of the Finnish nuclear power plants.
BCM-2.0 - The new version of computer code ;Basic Channeling with Mathematica©;
NASA Astrophysics Data System (ADS)
Abdrashitov, S. V.; Bogdanov, O. V.; Korotchenko, K. B.; Pivovarov, Yu. L.; Rozhkova, E. I.; Tukhfatullin, T. A.; Eikhorn, Yu. L.
2017-07-01
The new symbolic-numerical code devoted to investigation of the channeling phenomena in periodic potential of a crystal has been developed. The code has been written in Wolfram Language taking advantage of analytical programming method. Newly developed different packages were successfully applied to simulate scattering, radiation, electron-positron pair production and other effects connected with channeling of relativistic particles in aligned crystal. The result of the simulation has been validated against data from channeling experiments carried out at SAGA LS.
Importance of inlet boundary conditions for numerical simulation of combustor flows
NASA Technical Reports Server (NTRS)
Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.
1983-01-01
Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Pelloni, S.; Grimm, P.
1991-04-01
This paper analyzes the capability of various code systems and JEF-1-based nuclear data libraries to compute light water reactor lattices by comparing calculations with results from thermal reactor benchmark experiments TRX and BAPL and with previously published values. With the JEF-1 evaluation, eigenvalues are generally well predicted within 8 mk (1 mk = 0.001) or less by all code systems, and all methods give reasonable results for the measured reaction rate ratios within, or not too far from, the experimental uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, J. C.; Bourdot, P.; Eschbach, R.
2012-07-01
A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)
NASA Technical Reports Server (NTRS)
Chen, C. P.
1990-01-01
An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, David; Leconte, Pierre; Destouches, Christophe
2015-07-01
Two recent papers justified a new experimental program to give a new basis for the validation of {sup 238}U nuclear data, namely neutron induced inelastic scattering and transport codes at neutron fission energies. The general idea is to perform a neutron transmission experiment through natural uranium material. As shown by Hans Bethe, neutron transmissions measured by dosimetric responses are linked to inelastic cross sections. This paper describes the principle and the results of such an experience called EXCALIBUR performed recently (January and October 2014) at the CALIBAN reactor facility. (authors)
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
The evolution of the genetic code: Impasses and challenges.
Kun, Ádám; Radványi, Ádám
2018-02-01
The origin of the genetic code and translation is a "notoriously difficult problem". In this survey we present a list of questions that a full theory of the genetic code needs to answer. We assess the leading hypotheses according to these criteria. The stereochemical, the coding coenzyme handle, the coevolution, the four-column theory, the error minimization and the frozen accident hypotheses are discussed. The integration of these hypotheses can account for the origin of the genetic code. But experiments are badly needed. Thus we suggest a host of experiments that could (in)validate some of the models. We focus especially on the coding coenzyme handle hypothesis (CCH). The CCH suggests that amino acids attached to RNA handles enhanced catalytic activities of ribozymes. Alternatively, amino acids without handles or with a handle consisting of a single adenine, like in contemporary coenzymes could have been employed. All three scenarios can be tested in in vitro compartmentalized systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David
2002-01-01
A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this
The Design of PSB-VVER Experiments Relevant to Accident Management
NASA Astrophysics Data System (ADS)
Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander
Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.
Residual Effects on Students of a College Poverty Immersion Experience
ERIC Educational Resources Information Center
Firmin, Michael W.; Markham, Ruth Lowrie; Stultz, Kurt J.; Johnson, Heidi J.; Garland, Elizabeth P.
2016-01-01
The authors report the results of a phenomenological, qualitative research study involving 20 students who participated in a weekend poverty immersion experience. Analysis of the tape-recorded interviews included coding, checks for internal validity, and the generation of themes common to most of the research participants. Two overall results were…
Additional extensions to the NASCAP computer code, volume 2
NASA Technical Reports Server (NTRS)
Stannard, P. R.; Katz, I.; Mandell, M. J.
1982-01-01
Particular attention is given to comparison of the actural response of the SCATHA (Spacecraft Charging AT High Altitudes) P78-2 satellite with theoretical (NASCAP) predictions. Extensive comparisons for a variety of environmental conditions confirm the validity of the NASCAP model. A summary of the capabilities and range of validity of NASCAP is presented, with extensive reference to previously published applications. It is shown that NASCAP is capable of providing quantitatively accurate results when the object and environment are adequately represented and fall within the range of conditions for which NASCAP was intended. Three dimensional electric field affects play an important role in determining the potential of dielectric surfaces and electrically isolated conducting surfaces, particularly in the presence of artificially imposed high voltages. A theory for such phenomena is presented and applied to the active control experiments carried out in SCATHA, as well as other space and laboratory experiments. Finally, some preliminary work toward modeling large spacecraft in polar Earth orbit is presented. An initial physical model is presented including charge emission. A simple code based upon the model is described along with code test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, C., E-mail: hansec@uw.edu; Columbia University, New York, New York 10027; Victor, B.
We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numericalmore » validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.« less
Development and Validation of a Supersonic Helium-Air Coannular Jet Facility
NASA Technical Reports Server (NTRS)
Carty, Atherton A.; Cutler, Andrew D.
1999-01-01
Data are acquired in a simple coannular He/air supersonic jet suitable for validation of CFD (Computational Fluid Dynamics) codes for high speed propulsion. Helium is employed as a non-reacting hydrogen fuel simulant, constituting the core of the coannular flow while the coflow is composed of air. The mixing layer interface between the two flows in the near field and the plume region which develops further downstream constitute the primary regions of interest, similar to those present in all hypersonic air breathing propulsion systems. A computational code has been implemented from the experiment's inception, serving as a tool for model design during the development phase.
45 CFR 162.1011 - Valid code sets.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...
45 CFR 162.1011 - Valid code sets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...
45 CFR 162.1011 - Valid code sets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...
45 CFR 162.1011 - Valid code sets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare Department of Health and Human Services ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...
45 CFR 162.1011 - Valid code sets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Valid code sets. 162.1011 Section 162.1011 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Code Sets § 162.1011 Valid code sets. Each code set is valid within the dates...
Validation and Intercomparison Studies Within GODAE
2009-09-01
unlimited. 13. SUPPLEMENTARY NOTES 20091228154 14. ABSTRACT During the Global Ocean Data Assimilation Experiment (GODAE), seven international... global -ocean and basin-scale forecasting systems of different countries in routine interaction and continuous operation, (2) to assess the quality and... Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7o30 4 Division, Code ^VtcV Vs-Jc \\ -Vi<-’/c ••>’ 3^v’.-:5, w. 3Uo|eri 1
Synchrotron characterization of nanograined UO 2 grain growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kun; Miao, Yinbin; Yun, Di
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less
Supplying materials needed for grain growth characterizations of nano-grained UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kun; Miao, Yinbin; Yun, Di
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
Transport methods and interactions for space radiations
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.
1991-01-01
A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.
Physics of neutral gas jet interaction with magnetized plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhanhui; Xu, Xueqiao; Diamond, Patrick; Xu, Min; Duan, Xuru; Yu, Deliang; Zhou, Yulin; Shi, Yongfu; Nie, Lin; Ke, Rui; Zhong, Wulv; Shi, Zhongbing; Sun, Aiping; Li, Jiquan; Yao, Lianghua
2017-10-01
It is critical to understand the physics and transport dynamics during the plasma fuelling process. Plasma and neutral interactions involve the transfer of charge, momentum, and energy in ion-neutral and electron-neutral collisions. Thus, a seven field fluid model of neutral gas jet injection (NGJI) is obtained, which couples plasma density, heat, and momentum transport equations together with neutrals density and momentum transport equations of both molecules and atoms. Transport dynamics of plasma and neutrals are simulated for a complete range of discharge times, including steady state before NGJI, transport during NGJI, and relaxation after NGJI. With the trans-neut module of BOUT + + code, the simulations of mean profile variations and fueling depths during fueling have been benchmarked well with other codes and also validated with HL-2A experiment results. Both fast component (FC) and slow component (SC) of NGJI are simulated and validated with the HL-2A experimental measurements. The plasma blocking effect on the FC penetration is also simulated and validated well with the experiment. This work is supported by the National Natural Science Foundation of China under Grant No. 11575055.
NASA Astrophysics Data System (ADS)
Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Sutherland, D. A.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.
2014-10-01
The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with 3D extended MHD simulations using the NIMROD, HiFi, and PSI-TET codes. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), HBT-EP (Columbia), HIT-SI (U Wash-UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition (BOD) is used to compare experiments with simulations. BOD separates data sets into spatial and temporal structures, giving greater weight to dominant structures. Several BOD metrics are being formulated with the goal of quantitive validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.
Development of Eulerian Code Modeling for ICF Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul A.
2014-02-27
One of the most pressing unexplained phenomena standing in the way of ICF ignition is understanding mix and how it interacts with burn. Experiments were being designed and fielded as part of the Defect-Induced Mix Experiment (DIME) project to obtain data about the extent of material mix and how this mix influenced burn. Experiments on the Omega laser and National Ignition Facility (NIF) provided detailed data for comparison to the Eulerian code RAGE1. The Omega experiments were able to resolve the mix and provide “proof of principle” support for subsequent NIF experiments, which were fielded from July 2012 through Junemore » 2013. The Omega shots were fired at least once per year between 2009 and 2012. RAGE was not originally designed to model inertial confinement fusion (ICF) implosions. It still lacks lasers, so the code has been validated using an energy source. To test RAGE, the simulation output is compared to data and by means of postprocessing tools that were developed. Here, the various postprocessing tools are described with illustrative examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Robert Cameron; Steiner, Don
2004-06-15
The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate themore » interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully.« less
Modeling interfacial fracture in Sierra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang
2013-09-01
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conductedmore » with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.« less
Eulerian and Lagrangian Plasma Jet Modeling for the Plasma Liner Experiment
NASA Astrophysics Data System (ADS)
Hatcher, Richard; Cassibry, Jason; Stanic, Milos; Loverich, John; Hakim, Ammar
2011-10-01
The Plasma Liner Experiment (PLX) aims to demonstrate the feasibility of using spherically-convergent plasma jets to from an imploding plasma liner. Our group has modified two hydrodynamic simulation codes to include radiative loss, tabular equations of state (EOS), and thermal transport. Nautilus, created by TechX Corporation, is a finite-difference Eulerian code which solves the MHD equations formulated as systems of hyperbolic conservation laws. The other is SPHC, a smoothed particle hydrodynamics code produced by Stellingwerf Consulting. Use of the Lagrangian fluid particle approach of SPH is motivated by the ability to accurately track jet interfaces, the plasma vacuum boundary, and mixing of various layers, but Eulerian codes have been in development for much longer and have better shock capturing. We validate these codes against experimental measurements of jet propagation, expansion, and merging of two jets. Precursor jets are observed to form at the jet interface. Conditions that govern evolution of two and more merging jets are explored.
Data Assimilation - Advances and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian J.
2014-07-30
This presentation provides an overview of data assimilation (model calibration) for complex computer experiments. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Utilization of surrogate models and empirical adjustment for model form error in code calibration form the basis for the statistical methodology considered. The role of probabilistic code calibration in supporting code validation is discussed. Incorporation of model form uncertainty in rigorous uncertainty quantification (UQ) analyses is also addressed. Design criteria used within a batchmore » sequential design algorithm are introduced for efficiently achieving predictive maturity and improved code calibration. Predictive maturity refers to obtaining stable predictive inference with calibrated computer codes. These approaches allow for augmentation of initial experiment designs for collecting new physical data. A standard framework for data assimilation is presented and techniques for updating the posterior distribution of the state variables based on particle filtering and the ensemble Kalman filter are introduced.« less
NASA Astrophysics Data System (ADS)
Dixon, David A.; Hughes, H. Grady
2017-09-01
This paper presents a validation test comparing angular distributions from an electron multiple-scattering experiment with those generated using the MCNP6 Monte Carlo code system. In this experiment, a 13- and 20-MeV electron pencil beam is deflected by thin foils with atomic numbers from 4 to 79. To determine the angular distribution, the fluence is measured down range of the scattering foil at various radii orthogonal to the beam line. The characteristic angle (the angle for which the max of the distribution is reduced by 1/e) is then determined from the angular distribution and compared with experiment. Multiple scattering foils tested herein include beryllium, carbon, aluminum, copper, and gold. For the default electron-photon transport settings, the calculated characteristic angle was statistically distinguishable from measurement and generally broader than the measured distributions. The average relative difference ranged from 5.8% to 12.2% over all of the foils, source energies, and physics settings tested. This validation illuminated a deficiency in the computation of the underlying angular distributions that is well understood. As a result, code enhancements were made to stabilize the angular distributions in the presence of very small substeps. However, the enhancement only marginally improved results indicating that additional algorithmic details should be studied.
Optical observables in stars with non-stationary atmospheres. [fireballs and cepheid models
NASA Technical Reports Server (NTRS)
Hillendahl, R. W.
1980-01-01
Experience gained by use of Cepheid modeling codes to predict the dimensional and photometric behavior of nuclear fireballs is used as a means of validating various computational techniques used in the Cepheid codes. Predicted results from Cepheid models are compared with observations of the continuum and lines in an effort to demonstrate that the atmospheric phenomena in Cepheids are quite complex but that they can be quantitatively modeled.
DualSPHysics: A numerical tool to simulate real breakwaters
NASA Astrophysics Data System (ADS)
Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho
2018-02-01
The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1994-01-01
Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.
2013-01-01
A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.
Remarks on CFD validation: A Boeing Commercial Airplane Company perspective
NASA Technical Reports Server (NTRS)
Rubbert, Paul E.
1987-01-01
Requirements and meaning of validation of computational fluid dynamics codes are discussed. Topics covered include: validating a code, validating a user, and calibrating a code. All results are presented in viewgraph format.
NASA Astrophysics Data System (ADS)
Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro
We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.
Polarization of Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Buzzelli, A.; Cabella, P.; de Gasperis, G.; Vittorio, N.
2016-02-01
In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross- correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales.
Comparison of OpenFOAM and EllipSys3D actuator line methods with (NEW) MEXICO results
NASA Astrophysics Data System (ADS)
Nathan, J.; Meyer Forsting, A. R.; Troldborg, N.; Masson, C.
2017-05-01
The Actuator Line Method exists for more than a decade and has become a well established choice for simulating wind rotors in computational fluid dynamics. Numerous implementations exist and are used in the wind energy research community. These codes were verified by experimental data such as the MEXICO experiment. Often the verification against other codes were made on a very broad scale. Therefore this study attempts first a validation by comparing two different implementations, namely an adapted version of SOWFA/OpenFOAM and EllipSys3D and also a verification by comparing against experimental results from the MEXICO and NEW MEXICO experiments.
Numerical and Experimental Investigations of the Flow in a Stationary Pelton Bucket
NASA Astrophysics Data System (ADS)
Nakanishi, Yuji; Fujii, Tsuneaki; Kawaguchi, Sho
A numerical code based on one of mesh-free particle methods, a Moving-Particle Semi-implicit (MPS) Method has been used for the simulation of free surface flows in a bucket of Pelton turbines so far. In this study, the flow in a stationary bucket is investigated by MPS simulation and experiment to validate the numerical code. The free surface flow dependent on the angular position of the bucket and the corresponding pressure distribution on the bucket computed by the numerical code are compared with that obtained experimentally. The comparison shows that numerical code based on MPS method is useful as a tool to gain an insight into the free surface flows in Pelton turbines.
Benchmarking of Neutron Production of Heavy-Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
Benchmarking of Heavy Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
NASA Technical Reports Server (NTRS)
Kiris, Cetin
1995-01-01
Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.
CFD Code Validation of Wall Heat Fluxes for a G02/GH2 Single Element Combustor
NASA Technical Reports Server (NTRS)
Lin, Jeff; West, Jeff S.; Williams, Robert W.; Tucker, P. Kevin
2005-01-01
This paper puts forth the case for the need for improved injector design tools to meet NASA s Vision for Space Exploration goals. Requirements for this improved tool are outlined and discussed. The potential for Computational Fluid Dynamics (CFD) to meet these requirements is noted along with its current shortcomings, especially relative to demonstrated solution accuracy. The concept of verification and validation is introduced as the primary process for building and quantifying the confidence necessary for CFD to be useful as an injector design tool. The verification and validation process is considered in the context of the Marshall Space Flight Center (MSFC) Combustion Devices CFD Simulation Capability Roadmap via the Simulation Readiness Level (SRL) concept. The portion of the validation process which demonstrates the ability of a CFD code to simulate heat fluxes to a rocket engine combustor wall is the focus of the current effort. The FDNS and Loci-CHEM codes are used to simulate a shear coaxial single element G02/GH2 injector experiment. The experiment was conducted a t a chamber pressure of 750 psia using hot propellants from preburners. A measured wall temperature profile is used as a boundary condition to facilitate the calculations. Converged solutions, obtained from both codes by using wall functions with the K-E turbulence model and integrating to the wall using Mentor s baseline turbulence model, are compared to the experimental data. The initial solutions from both codes revealed significant issues with the wall function implementation associated with the recirculation zone between the shear coaxial jet and the chamber wall. The FDNS solution with a corrected implementation shows marked improvement in overall character and level of comparison to the data. With the FDNS code, integrating to the wall with Mentor s baseline turbulence model actually produce a degraded solution when compared to the wall function solution with the K--E model. The Loci-CHEM solution, produced by integrating to the wall with Mentor s baseline turbulence model, matches both the heat flux rise rate in the near injector region and the peak heat flux level very well. However, it moderately over predicts the heat fluxes downstream of the reattachment point. The Loci-CHEM solution achieved by integrating to the wall with Mentor s baseline turbulence model was clearly superior to the other solutions produced in this effort.
Dynamic gene expression response to altered gravity in human T cells.
Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver
2017-07-12
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Challenges in validating the sterilisation dose for processed human amniotic membranes
NASA Astrophysics Data System (ADS)
Yusof, Norimah; Hassan, Asnah; Firdaus Abd Rahman, M. N.; Hamid, Suzina A.
2007-11-01
Most of the tissue banks in the Asia Pacific region have been using ionising radiation at 25 kGy to sterilise human tissues for save clinical usage. Under tissue banking quality system, any dose employed for sterilisation has to be validated and the validation exercise has to be a part of quality document. Tissue grafts, unlike medical items, are not produced in large number per each processing batch and tissues relatively have a different microbial population. A Code of Practice established by the International Atomic Energy Agency (IAEA) in 2004 offers several validation methods using smaller number of samples compared to ISO 11137 (1995), which is meant for medical products. The methods emphasise on bioburden determination, followed by sterility test on samples after they were exposed to verification dose for attaining of sterility assurance level (SAL) of 10 -1. This paper describes our experience in using the IAEA Code of Practice in conducting the validation exercise for substantiating 25 kGy as sterilisation dose for both air-dried amnion and those preserved in 99% glycerol.
A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle
Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less
Computer Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pronskikh, V. S.
2014-05-09
Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossiblemore » to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes« less
Methodology, status and plans for development and assessment of TUF and CATHENA codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luxat, J.C.; Liu, W.S.; Leung, R.K.
1997-07-01
An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically onmore » CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.« less
FY2017 Pilot Project Plan for the Nuclear Energy Knowledge and Validation Center Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju
To prepare for technical development of computational code validation under the Nuclear Energy Knowledge and Validation Center (NEKVAC) initiative, several meetings were held by a group of experts of the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory (ORNL) to develop requirements of, and formulate a structure for, a transient fuel database through leveraging existing resources. It was concluded in discussions of these meetings that a pilot project is needed to address the most fundamental issues that can generate immediate stimulus to near-future validation developments as well as long-lasting benefits to NEKVAC operation. The present project is proposedmore » based on the consensus of these discussions. Analysis of common scenarios in code validation indicates that the incapability of acquiring satisfactory validation data is often a showstopper that must first be tackled before any confident validation developments can be carried out. Validation data are usually found scattered in different places most likely with interrelationships among the data not well documented, incomplete with information for some parameters missing, nonexistent, or unrealistic to experimentally generate. Furthermore, with very different technical backgrounds, the modeler, the experimentalist, and the knowledgebase developer that must be involved in validation data development often cannot communicate effectively without a data package template that is representative of the data structure for the information domain of interest to the desired code validation. This pilot project is proposed to use the legendary TREAT Experiments Database to provide core elements for creating an ideal validation data package. Data gaps and missing data interrelationships will be identified from these core elements. All the identified missing elements will then be filled in with experimental data if available from other existing sources or with dummy data if nonexistent. The resulting hybrid validation data package (composed of experimental and dummy data) will provide a clear and complete instance delineating the structure of the desired validation data and enabling effective communication among the modeler, the experimentalist, and the knowledgebase developer. With a good common understanding of the desired data structure by the three parties of subject matter experts, further existing data hunting will be effectively conducted, new experimental data generation will be realistically pursued, knowledgebase schema will be practically designed; and code validation will be confidently planned.« less
Validation of Extended MHD Models using MST RFP Plasmas
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.
2016-10-01
Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.
Shielding from space radiations
NASA Technical Reports Server (NTRS)
Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.
1993-01-01
This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.
Cars Thermometry in a Supersonic Combustor for CFD Code Validation
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Danehy, P. M.; Springer, R. R.; DeLoach, R.; Capriotti, D. P.
2002-01-01
An experiment has been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The primary measurement technique is coherent anti-Stokes Raman spectroscopy (CARS), although surface pressures and temperatures have also been acquired. Modern- design- of-experiment techniques have been used to maximize the quality of the data set (for the given level of effort) and minimize systematic errors. The combustor consists of a diverging duct with single downstream- angled wall injector. Nominal entrance Mach number is 2 and enthalpy nominally corresponds to Mach 7 flight. Temperature maps are obtained at several planes in the flow for two cases: in one case the combustor is piloted by injecting fuel upstream of the main injector, the second is not. Boundary conditions and uncertainties are adequately characterized. Accurate CFD calculation of the flow will ultimately require accurate modeling of the chemical kinetics and turbulence-chemistry interactions as well as accurate modeling of the turbulent mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, David A.; Hughes, Henry Grady
In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented bymore » simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).« less
High-speed inlet research program and supporting analysis
NASA Technical Reports Server (NTRS)
Coltrin, Robert E.
1990-01-01
The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.
Modeling of impulsive propellant reorientation
NASA Technical Reports Server (NTRS)
Hochstein, John I.; Patag, Alfredo E.; Chato, David J.
1988-01-01
The impulsive propellant reorientation process is modeled using the (Energy Calculations for Liquid Propellants in a Space Environment (ECLIPSE) code. A brief description of the process and the computational model is presented. Code validation is documented via comparison to experimentally derived data for small scale tanks. Predictions of reorientation performance are presented for two tanks designed for use in flight experiments and for a proposed full scale OTV tank. A new dimensionless parameter is developed to correlate reorientation performance in geometrically similar tanks. Its success is demonstrated.
Validation and Performance Comparison of Numerical Codes for Tsunami Inundation
NASA Astrophysics Data System (ADS)
Velioglu, D.; Kian, R.; Yalciner, A. C.; Zaytsev, A.
2015-12-01
In inundation zones, tsunami motion turns from wave motion to flow of water. Modelling of this phenomenon is a complex problem since there are many parameters affecting the tsunami flow. In this respect, the performance of numerical codes that analyze tsunami inundation patterns becomes important. The computation of water surface elevation is not sufficient for proper analysis of tsunami behaviour in shallow water zones and on land and hence for the development of mitigation strategies. Velocity and velocity patterns are also crucial parameters and have to be computed at the highest accuracy. There are numerous numerical codes to be used for simulating tsunami inundation. In this study, FLOW 3D and NAMI DANCE codes are selected for validation and performance comparison. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. FLOW 3D is used specificaly for flood problems. NAMI DANCE uses finite difference computational method to solve linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In this study, these codes are validated and their performances are compared using two benchmark problems which are discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. One of the problems is an experiment of a single long-period wave propagating up a piecewise linear slope and onto a small-scale model of the town of Seaside, Oregon. Other benchmark problem is an experiment of a single solitary wave propagating up a triangular shaped shelf with an island feature located at the offshore point of the shelf. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. All results are presented with discussions and comparisons. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)
Verification of the predictive capabilities of the 4C code cryogenic circuit model
NASA Astrophysics Data System (ADS)
Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi
2014-01-01
The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.
NASA Technical Reports Server (NTRS)
Bertelrud, Arild; Johnson, Sherylene; Anders, J. B. (Technical Monitor)
2002-01-01
A 2-D (two dimensional) high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD (computational fluid dynamics) code validation studies. A transition database has been created using the data from this experiment. The present report details how the hot-film data and the related pressure data are organized in the database. Data processing codes to access the data in an efficient and reliable manner are described and limited examples are given on how to access the database and store acquired information.
Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Thomas, J. L.
2008-01-01
Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap.
A Mercury Model of Atmospheric Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Alex B.; Chodash, Perry A.; Procassini, R. J.
Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.
Benchmarking of neutron production of heavy-ion transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, I.; Ronningen, R. M.; Heilbronn, L.
Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less
C code generation from Petri-net-based logic controller specification
NASA Astrophysics Data System (ADS)
Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei
2017-08-01
The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.
NASA Astrophysics Data System (ADS)
Banica, M. C.; Chun, J.; Scheuermann, T.; Weigand, B.; Wolfersdorf, J. v.
2009-01-01
Scramjet powered vehicles can decrease costs for access to space but substantial obstacles still exist in their realization. For example, experiments in the relevant Mach number regime are difficult to perform and flight testing is expensive. Therefore, numerical methods are often employed for system layout but they require validation against experimental data. Here, we validate the commercial code CFD++ against experimental results for hydrogen combustion in the supersonic combustion facility of the Institute of Aerospace Thermodynamics (ITLR) at the Universität Stuttgart. Fuel is injected through a lobed a strut injector, which provides rapid mixing. Our numerical data shows reasonable agreement with experiments. We further investigate effects of varying equivalence ratios on several important performance parameters.
A methodology for the rigorous verification of plasma simulation codes
NASA Astrophysics Data System (ADS)
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
NASA Technical Reports Server (NTRS)
Wey, Thomas
2017-01-01
This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).
Bock, Astrid; Huber, Eva; Peham, Doris; Benecke, Cord
2015-01-01
The development (Study 1) and validation (Study 2) of a categorical system for the attribution of facial expressions of negative emotions to specific functions. The facial expressions observed inOPDinterviews (OPD-Task-Force 2009) are coded according to the Facial Action Coding System (FACS; Ekman et al. 2002) and attributed to categories of basic emotional displays using EmFACS (Friesen & Ekman 1984). In Study 1 we analyze a partial sample of 20 interviews and postulate 10 categories of functions that can be arranged into three main categories (interactive, self and object). In Study 2 we rate the facial expressions (n=2320) from the OPD interviews (10 minutes each interview) of 80 female subjects (16 healthy, 64 with DSM-IV diagnosis; age: 18-57 years) according to the categorical system and correlate them with problematic relationship experiences (measured with IIP,Horowitz et al. 2000). Functions of negative facial expressions can be attributed reliably and validly with the RFE-Coding System. The attribution of interactive, self-related and object-related functions allows for a deeper understanding of the emotional facial expressions of patients with mental disorders.
Preliminary Assessment of Turbomachinery Codes
NASA Technical Reports Server (NTRS)
Mazumder, Quamrul H.
2007-01-01
This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.
Validation of CESAR Thermal-hydraulic Module of ASTEC V1.2 Code on BETHSY Experiments
NASA Astrophysics Data System (ADS)
Tregoures, Nicolas; Bandini, Giacomino; Foucher, Laurent; Fleurot, Joëlle; Meloni, Paride
The ASTEC V1 system code is being jointly developed by the French Institut de Radioprotection et Sûreté Nucléaire (IRSN) and the German Gesellschaft für Anlagen und ReaktorSicherheit (GRS) to address severe accident sequences in a nuclear power plant. Thermal-hydraulics in primary and secondary system is addressed by the CESAR module. The aim of this paper is to present the validation of the CESAR module, from the ASTEC V1.2 version, on the basis of well instrumented and qualified integral experiments carried out in the BETHSY facility (CEA, France), which simulates a French 900 MWe PWR reactor. Three tests have been thoroughly investigated with CESAR: the loss of coolant 9.1b test (OECD ISP N° 27), the loss of feedwater 5.2e test, and the multiple steam generator tube rupture 4.3b test. In the present paper, the results of the code for the three analyzed tests are presented in comparison with the experimental data. The thermal-hydraulic behavior of the BETHSY facility during the transient phase is well reproduced by CESAR: the occurrence of major events and the time evolution of main thermal-hydraulic parameters of both primary and secondary circuits are well predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, N. V.; Kakurin, A. M.
2014-10-15
Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEARmore » code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.« less
Overview of HIT-SI3 experiment: Simulations, Diagnostics, and Summary of Current Results
NASA Astrophysics Data System (ADS)
Penna, James; Jarboe, Thomas; Nelson, Brian; Hossack, Aaron; Sutherland, Derek; Morgan, Kyle; Hansen, Chris; Benedett, Thomas; Everson, Chris; Victor, Brian
2016-10-01
The Helicity Injected Torus - Steady Inductive 3(HIT-SI3)experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI). Three injector units allow for continuous injection of helicity into a copper flux conserver in order to sustain a spheromak. Firing of the injectors with a phase difference allows finite rotation of the plasma to provide a stabilizing effect. Simulations in the MHD code NIMROD and the fluid-model code PSI-TET provide validation and a basis for interpretation of the observed experimental data. Thompson Scattering (TS) and Far Infrared (FIR) Interferometer systems allow temperature and line-averaged density measurements to be taken. An Ion Doppler Spectroscopy (IDS) system allows measurement of the plasma rotation and velocity. HIT-SI3 data has been used for validation of IDCD predictions, in particular the projected impedance of helicity injectors according to the theory. The experimental impedances have been calculated here for the first time for different HIT-SI3 regimes. Such experimental evidence will contribute to the design of future experiments employing IDCD as a current-drive mechanism. Work supported by the D.O.E., Office of Science, Office of Fusion Science.
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
The pros and cons of code validation
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1988-01-01
Computational and wind tunnel error sources are examined and quantified using specific calculations of experimental data, and a substantial comparison of theoretical and experimental results, or a code validation, is discussed. Wind tunnel error sources considered include wall interference, sting effects, Reynolds number effects, flow quality and transition, and instrumentation such as strain gage balances, electronically scanned pressure systems, hot film gages, hot wire anemometers, and laser velocimeters. Computational error sources include math model equation sets, the solution algorithm, artificial viscosity/dissipation, boundary conditions, the uniqueness of solutions, grid resolution, turbulence modeling, and Reynolds number effects. It is concluded that, although improvements in theory are being made more quickly than in experiments, wind tunnel research has the advantage of the more realistic transition process of a right turbulence model in a free-transition test.
INL Experimental Program Roadmap for Thermal Hydraulic Code Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn McCreery; Hugh McIlroy
2007-09-01
Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less
Peng, Mingkai; Southern, Danielle A; Williamson, Tyler; Quan, Hude
2017-12-01
This study examined the coding validity of hypertension, diabetes, obesity and depression related to the presence of their co-existing conditions, death status and the number of diagnosis codes in hospital discharge abstract database. We randomly selected 4007 discharge abstract database records from four teaching hospitals in Alberta, Canada and reviewed their charts to extract 31 conditions listed in Charlson and Elixhauser comorbidity indices. Conditions associated with the four study conditions were identified through multivariable logistic regression. Coding validity (i.e. sensitivity, positive predictive value) of the four conditions was related to the presence of their associated conditions. Sensitivity increased with increasing number of diagnosis code. Impact of death on coding validity is minimal. Coding validity of conditions is closely related to its clinical importance and complexity of patients' case mix. We recommend mandatory coding of certain secondary diagnosis to meet the need of health research based on administrative health data.
Development of code evaluation criteria for assessing predictive capability and performance
NASA Technical Reports Server (NTRS)
Lin, Shyi-Jang; Barson, S. L.; Sindir, M. M.; Prueger, G. H.
1993-01-01
Computational Fluid Dynamics (CFD), because of its unique ability to predict complex three-dimensional flows, is being applied with increasing frequency in the aerospace industry. Currently, no consistent code validation procedure is applied within the industry. Such a procedure is needed to increase confidence in CFD and reduce risk in the use of these codes as a design and analysis tool. This final contract report defines classifications for three levels of code validation, directly relating the use of CFD codes to the engineering design cycle. Evaluation criteria by which codes are measured and classified are recommended and discussed. Criteria for selecting experimental data against which CFD results can be compared are outlined. A four phase CFD code validation procedure is described in detail. Finally, the code validation procedure is demonstrated through application of the REACT CFD code to a series of cases culminating in a code to data comparison on the Space Shuttle Main Engine High Pressure Fuel Turbopump Impeller.
Introduction to the internal fluid mechanics research session
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Povinelli, Louis A.
1990-01-01
Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
NASA Technical Reports Server (NTRS)
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
NASA Astrophysics Data System (ADS)
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-12-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
Replicating the Z iron opacity experiments on the NIF
NASA Astrophysics Data System (ADS)
Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Ross, P. W.; Kline, J. L.; Flippo, K. A.; Sherrill, M. E.; Dodd, E. S.; DeVolder, B. G.; Cardenas, T.; Archuleta, T. N.; Craxton, R. S.; Zhang, R.; McKenty, P. W.; Garcia, E. M.; Huffman, E. J.; King, J. A.; Ahmed, M. F.; Emig, J. A.; Ayers, S. L.; Barrios, M. A.; May, M. J.; Schneider, M. B.; Liedahl, D. A.; Wilson, B. G.; Urbatsch, T. J.; Iglesias, C. A.; Bailey, J. E.; Rochau, G. A.
2017-06-01
X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity of iron at a temperature of ∼160 eV and an electron density of ∼7 × 1021 cm-3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.
NASA Astrophysics Data System (ADS)
Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.
2017-12-01
The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Jongeward, G. A.; Cooke, D. L.
1992-01-01
Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented.
Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.
Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius
2016-11-07
The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design and operation.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.
1995-01-01
NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.
NASA low speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
1990-01-01
The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
Aerothermal Assment Of The Expert Flap In The SCIROCCO Wind Tunnel
NASA Astrophysics Data System (ADS)
Walpot, L.; Di Clemente, M.; Vos, J.; Etchells, J.; Trifoni, E.; Thoemel, J.; Gavira, J.
2011-05-01
In the frame of the “In-Flight Test Measurement Techniques for Aerothermodynamics” activity of the EXPERT Program, the EXPERT Instrumented Open Flap Assembly experiment has the objective to verify the design/sensor integration and validate the CFD tools. Ground based measurements were made in Europe’s largest high enthalpy plasma facility, Scirocco in Italy. Two EXPERT flaps of the flight article, instrumented with 14 thermocouples, 5 pressure ports, a pyrometer and an IR camera mounted in the cavity instrumented flap will collect in-flight data. During the Scirocco experiment, an EXPERT flap model identical to the flight article was mounted at 45 deg on a holder including cavity and was subjected to a hot plasma flow at an enthalpy up to 11MJ/kg at a stagnation pressure of 7 bar. The test model sports the same pressure sensors as the flight article. Hypersonic state-of-the-art codes were then be used to perform code-to-code and wind tunnel-to-code comparisons, including thermal response of the flap as collected during the tests by the sensors and camera.
NASA Astrophysics Data System (ADS)
Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad
2018-04-01
Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.
STRING: A new drifter for HF radar validation.
NASA Astrophysics Data System (ADS)
Rammou, Anna-Maria; Zervakis, Vassilis; Bellomo, Lucio; Kokkini, Zoi; Quentin, Celine; Mantovani, Carlo; Kalampokis, Alkiviadis
2015-04-01
High-Frequency radars (HFR) are an effective mean of remotely monitoring sea-surface currents, based on recording the Doppler-shift of radio-waves backscattered on the sea surface. Validation of HFRs' measurements takes place via comparisons either with in-situ Eulerian velocity data (usually obtained by surface current-meters attached on moorings) or to Lagrangian velocity fields (recorded by surface drifters). The most common surface drifter used for this purpose is the CODE-type drifter (Davis, 1985), an industry-standard design to record the vertical average velocity of the upper 1 m layer of the water column. In this work we claim that the observed differences between the HFR-derived velocities and Lagrangian measurements can be attributed not just to the different spatial scales recorded by the above instruments but also due to the fact that while the HFR-derived velocity corresponds to exponentially weighted vertical average of the velocity field from the surface to 1 m depth (Stewart and Joy, 1974) the velocity estimated by the CODE drifters corresponds to boxcar-type weighted vertical average due to the orthogonal shape of the CODE drifters' sails. After analyzing the theoretical behavior of a drifter under the influence of wind and current, we proceed to propose a new design of exponentially-shaped sails for the drogues of CODE-based drifters, so that the HFR-derived velocities and the drifter-based velocities will be directly comparable, regarding the way of vertically averaging the velocity field.The new drifter, codenamed STRING, exhibits identical behavior to the classical CODE design under relatively homogeneous conditions in the upper 1 m layer, however it is expected to follow a significantly different track in conditions of high vertical shear and stratification. Thus, we suggest that the new design is the instrument of choice for validation of HFR installations, as it can be used in all conditions and behaves identically to CODEs when vertical shear is insignificant. Finally, we present results from three experiments using both drifter types in HFR-covered regions of the Eastern Mediterranean. More experiments are planned, incorporating design improvements dictated by the results of the preliminary field tests. This work was held in the framework of the project "Specifically Targeted for Radars INnovative Gauge (STRING)", funded by the Greek-French collaboration programme "Plato".
NASA Technical Reports Server (NTRS)
Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)
2001-01-01
In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing between groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for SOFIA, the SIRTF planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, defacto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA - both successes and failures - and offer some lessons learned that may promote further successes in collaboration and re-use.
NASA Technical Reports Server (NTRS)
Korathkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy; Li, Connie; Mackey, Jennifer; Neher, Ken; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing among groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for the SIRTF (Space Infrared Telescope Facility) planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, de facto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA--both successes and failures, and offer some lessons learned that might promote further successes in collaboration and re-use.
NASA Astrophysics Data System (ADS)
La Tessa, Chiara; Mancusi, Davide; Rinaldi, Adele; di Fino, Luca; Zaconte, Veronica; Larosa, Marianna; Narici, Livio; Gustafsson, Katarina; Sihver, Lembit
ALTEA-Space is the principal in-space experiment of an international and multidisciplinary project called ALTEA (Anomalus Long Term Effects on Astronauts). The measurements were performed on the International Space Station between August 2006 and July 2007 and aimed at characterising the space radiation environment inside the station. The analysis of the collected data provided the abundances of elements with charge 5 ≤ Z ≤ 26 and energy above 100 MeV/nucleon. The same results have been obtained by simulating the experiment with the three-dimensional Monte Carlo code PHITS (Particle and Heavy Ion Transport System). The simulation reproduces accurately the composition of the space radiation environment as well as the geometry of the experimental apparatus; moreover the presence of several materials, e.g. the spacecraft hull and the shielding, that surround the device has been taken into account. An estimate of the abundances has also been calculated with the help of experimental fragmentation cross sections taken from literature and predictions of the deterministic codes GNAC, SihverCC and Tripathi97. The comparison between the experimental and simulated data has two important aspects: it validates the codes giving possible hints how to benchmark them; it helps to interpret the measurements and therefore have a better understanding of the results.
Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.
2013-01-01
A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Moder, Jeffery P.
2010-01-01
Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling
Lareo, Angel; Forlim, Caroline G.; Pinto, Reynaldo D.; Varona, Pablo; Rodriguez, Francisco de Borja
2016-01-01
Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox. PMID:27766078
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.
Lareo, Angel; Forlim, Caroline G; Pinto, Reynaldo D; Varona, Pablo; Rodriguez, Francisco de Borja
2016-01-01
Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox.
Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2005-10-01
We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaglione, John M; Mueller, Don; Wagner, John C
2011-01-01
One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only ismore » based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available fission product LCE data to predict and verify individual biases for relevant minor actinides and fission products. This paper (1) provides a detailed description of the approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias results based on the prerelease SCALE 6.1 code package and ENDF/B-VII nuclear cross-section data, and (4) provides recommendations for application of the results and methods to other code and data packages.« less
2014-03-27
VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR... PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR MEASUREMENTS OF AN IRON BOX THESIS Presented to the Faculty Department of Engineering...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED iv AFIT-ENP-14-M-05 VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6
A test of the validity of the motivational interviewing treatment integrity code.
Forsberg, Lars; Berman, Anne H; Kallmén, Håkan; Hermansson, Ulric; Helgason, Asgeir R
2008-01-01
To evaluate the Swedish version of the Motivational Interviewing Treatment Code (MITI), MITI coding was applied to tape-recorded counseling sessions. Construct validity was assessed using factor analysis on 120 MITI-coded sessions. Discriminant validity was assessed by comparing MITI coding of motivational interviewing (MI) sessions with information- and advice-giving sessions as well as by comparing MI-trained practitioners with untrained practitioners. A principal-axis factoring analysis yielded some evidence for MITI construct validity. MITI differentiated between practitioners with different levels of MI training as well as between MI practitioners and advice-giving counselors, thus supporting discriminant validity. MITI may be used as a training tool together with supervision to confirm and enhance MI practice in clinical settings. MITI can also serve as a tool for evaluating MI integrity in clinical research.
Methodology, status and plans for development and assessment of the code ATHLET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teschendorff, V.; Austregesilo, H.; Lerchl, G.
1997-07-01
The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The codemore » has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.« less
Statistical inference of static analysis rules
NASA Technical Reports Server (NTRS)
Engler, Dawson Richards (Inventor)
2009-01-01
Various apparatus and methods are disclosed for identifying errors in program code. Respective numbers of observances of at least one correctness rule by different code instances that relate to the at least one correctness rule are counted in the program code. Each code instance has an associated counted number of observances of the correctness rule by the code instance. Also counted are respective numbers of violations of the correctness rule by different code instances that relate to the correctness rule. Each code instance has an associated counted number of violations of the correctness rule by the code instance. A respective likelihood of the validity is determined for each code instance as a function of the counted number of observances and counted number of violations. The likelihood of validity indicates a relative likelihood that a related code instance is required to observe the correctness rule. The violations may be output in order of the likelihood of validity of a violated correctness rule.
NASA Astrophysics Data System (ADS)
Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain
2017-09-01
DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.
Validation and Continued Development of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2017-10-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.
Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images
2009-12-01
Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design
Scaled experiments of explosions in cavities
Grun, J.; Cranch, G. A.; Lunsford, R.; ...
2016-05-11
Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt 1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less
Overview of ICE Project: Integration of Computational Fluid Dynamics and Experiments
NASA Technical Reports Server (NTRS)
Stegeman, James D.; Blech, Richard A.; Babrauckas, Theresa L.; Jones, William H.
2001-01-01
Researchers at the NASA Glenn Research Center have developed a prototype integrated environment for interactively exploring, analyzing, and validating information from computational fluid dynamics (CFD) computations and experiments. The Integrated CFD and Experiments (ICE) project is a first attempt at providing a researcher with a common user interface for control, manipulation, analysis, and data storage for both experiments and simulation. ICE can be used as a live, on-tine system that displays and archives data as they are gathered; as a postprocessing system for dataset manipulation and analysis; and as a control interface or "steering mechanism" for simulation codes while visualizing the results. Although the full capabilities of ICE have not been completely demonstrated, this report documents the current system. Various applications of ICE are discussed: a low-speed compressor, a supersonic inlet, real-time data visualization, and a parallel-processing simulation code interface. A detailed data model for the compressor application is included in the appendix.
Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2016-10-01
Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
Springate, David A; Kontopantelis, Evangelos; Ashcroft, Darren M; Olier, Ivan; Parisi, Rosa; Chamapiwa, Edmore; Reeves, David
2014-01-01
Lists of clinical codes are the foundation for research undertaken using electronic medical records (EMRs). If clinical code lists are not available, reviewers are unable to determine the validity of research, full study replication is impossible, researchers are unable to make effective comparisons between studies, and the construction of new code lists is subject to much duplication of effort. Despite this, the publication of clinical codes is rarely if ever a requirement for obtaining grants, validating protocols, or publishing research. In a representative sample of 450 EMR primary research articles indexed on PubMed, we found that only 19 (5.1%) were accompanied by a full set of published clinical codes and 32 (8.6%) stated that code lists were available on request. To help address these problems, we have built an online repository where researchers using EMRs can upload and download lists of clinical codes. The repository will enable clinical researchers to better validate EMR studies, build on previous code lists and compare disease definitions across studies. It will also assist health informaticians in replicating database studies, tracking changes in disease definitions or clinical coding practice through time and sharing clinical code information across platforms and data sources as research objects.
Springate, David A.; Kontopantelis, Evangelos; Ashcroft, Darren M.; Olier, Ivan; Parisi, Rosa; Chamapiwa, Edmore; Reeves, David
2014-01-01
Lists of clinical codes are the foundation for research undertaken using electronic medical records (EMRs). If clinical code lists are not available, reviewers are unable to determine the validity of research, full study replication is impossible, researchers are unable to make effective comparisons between studies, and the construction of new code lists is subject to much duplication of effort. Despite this, the publication of clinical codes is rarely if ever a requirement for obtaining grants, validating protocols, or publishing research. In a representative sample of 450 EMR primary research articles indexed on PubMed, we found that only 19 (5.1%) were accompanied by a full set of published clinical codes and 32 (8.6%) stated that code lists were available on request. To help address these problems, we have built an online repository where researchers using EMRs can upload and download lists of clinical codes. The repository will enable clinical researchers to better validate EMR studies, build on previous code lists and compare disease definitions across studies. It will also assist health informaticians in replicating database studies, tracking changes in disease definitions or clinical coding practice through time and sharing clinical code information across platforms and data sources as research objects. PMID:24941260
Integral experiments on thorium assemblies with D-T neutron source
NASA Astrophysics Data System (ADS)
Liu, Rong; Yang, Yiwei; Feng, Song; Zheng, Lei; Lai, Caifeng; Lu, Xinxin; Wang, Mei; Jiang, Li
2017-09-01
To validate nuclear data and code in the neutronics design of a hybrid reactor with thorium, integral experiments in two kinds of benchmark thorium assemblies with a D-T fusion neutron source have been performed. The one kind of 1D assemblies consists of polyethylene and depleted uranium shells. The other kind of 2D assemblies consists of three thorium oxide cylinders. The capture reaction rates, fission reaction rates, and (n, 2n) reaction rates in 232Th in the assemblies are measured by ThO2 foils. The leakage neutron spectra from the ThO2 cylinders are measured by a liquid scintillation detector. The experimental uncertainties in all the results are analyzed. The measured results are compared to the calculated ones with MCNP code and ENDF/B-VII.0 library data.
Komeda, Masao; Kawasaki, Kozo; Obara, Toru
2013-04-01
We studied a new silicon irradiation holder with a neutron filter designed to make the vertical neutron flux profile uniform. Since an irradiation holder has to be made of a low activation material, we applied aluminum blended with B4C as the holder material. Irradiation methods to achieve uniform flux with a filter are discussed using Monte-Carlo calculation code MVP. Validation of the use of the MVP code for the holder's analyses is also discussed via characteristic experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Supersonic Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
The Nuclear Energy Knowledge and Validation Center – Summary of Activities Conducted in FY15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans David; Hong, Bonnie Colleen
2016-05-01
The Nuclear Energy Knowledge and Validation Center (NEKVaC) is a new initiative by the Department of Energy and the Idaho National Laboratory to coordinate and focus the resources and expertise that exist with the DOE Complex toward solving issues in modern nuclear code validation. In time, code owners, users, and developers will view the Center as a partner and essential resource for acquiring the best practices and latest techniques for validating codes, for guidance in planning and executing experiments, for facilitating access to, and maximizing the usefulness of, existing data, and for preserving knowledge for continual use by nuclear professionalsmore » and organizations for their own validation needs. The scope of the center covers many inter-related activities which will need to be cultivated carefully in the near-term and managed properly once the Center is fully functional. Three areas comprise the principal mission: 1) identification and prioritization of projects that extend the field of validation science and its application to modern codes, 2) adapt or develop best practices and guidelines for high fidelity multiphysics/multiscale analysis code development and associated experiment design, and 3) define protocols for data acquisition and knowledge preservation and provide a portal for access to databases currently scattered among numerous organizations. These mission areas, while each having a unique focus, are inter-dependent and complementary. Likewise, all activities supported by the NEKVaC, both near-term and long-term), must possess elements supporting all three. This cross-cutting nature is essential to ensuring that activities and supporting personnel do not become ‘stove-piped’, i.e. focused so much on a specific function that the activity itself becomes the objective rather than the achieving the larger vision. Achieving the broader vision will require a healthy and accountable level of activity in each of the areas. This will take time and significant DOE support. Growing too fast (budget-wise) will not allow ideas to mature, lessons to be learned, and taxpayer money to be spent responsibly. The process should be initiated with a small set of tasks, executed over a short but reasonable term, that will exercise most if not all aspects of the Center’s potential operation. The initial activities described in this report have a high potential for near-term success in demonstrating Center objectives but also to work out some of the issues in task execution, communication between functional elements, and the ability to raise awareness of the Center and cement stakeholder buy-in. This report begins with a description of the Mission areas; specifically the role played by each and the types of activities for which they are responsible. It then lists and describes the proposed near-term tasks upon which future efforts can build.« less
CTF (Subchannel) Calculations and Validation L3:VVI.H2L.P15.01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Natalie
The goal of the Verification and Validation Implementation (VVI) High to Low (Hi2Lo) process is utilizing a validated model in a high resolution code to generate synthetic data for improvement of the same model in a lower resolution code. This process is useful in circumstances where experimental data does not exist or it is not sufficient in quantity or resolution. Data from the high-fidelity code is treated as calibration data (with appropriate uncertainties and error bounds) which can be used to train parameters that affect solution accuracy in the lower-fidelity code model, thereby reducing uncertainty. This milestone presents a demonstrationmore » of the Hi2Lo process derived in the VVI focus area. The majority of the work performed herein describes the steps of the low-fidelity code used in the process with references to the work detailed in the companion high-fidelity code milestone (Reference 1). The CASL low-fidelity code used to perform this work was Cobra Thermal Fluid (CTF) and the high-fidelity code was STAR-CCM+ (STAR). The master branch version of CTF (pulled May 5, 2017 – Reference 2) was utilized for all CTF analyses performed as part of this milestone. The statistical and VVUQ components of the Hi2Lo framework were performed using Dakota version 6.6 (release date May 15, 2017 – Reference 3). Experimental data from Westinghouse Electric Company (WEC – Reference 4) was used throughout the demonstrated process to compare with the high-fidelity STAR results. A CTF parameter called Beta was chosen as the calibration parameter for this work. By default, Beta is defined as a constant mixing coefficient in CTF and is essentially a tuning parameter for mixing between subchannels. Since CTF does not have turbulence models like STAR, Beta is the parameter that performs the most similar function to the turbulence models in STAR. The purpose of the work performed in this milestone is to tune Beta to an optimal value that brings the CTF results closer to those measured in the WEC experiments.« less
Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping
2009-01-01
Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.
Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.; Flores, Jolen
1989-01-01
Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1994-01-01
A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.
Replicating the Z iron opacity experiments on the NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, T. S.; Heeter, R. F.; Opachich, Y. P.
Here, X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity ofmore » iron at a temperature of ~160 eV and an electron density of ~7 x 10 21 cm -3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.« less
Replicating the Z iron opacity experiments on the NIF
Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; ...
2017-05-12
Here, X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity ofmore » iron at a temperature of ~160 eV and an electron density of ~7 x 10 21 cm -3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, D.
1997-07-01
This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less
A combinatorial code for pattern formation in Drosophila oogenesis.
Yakoby, Nir; Bristow, Christopher A; Gong, Danielle; Schafer, Xenia; Lembong, Jessica; Zartman, Jeremiah J; Halfon, Marc S; Schüpbach, Trudi; Shvartsman, Stanislav Y
2008-11-01
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
Fundamental Mixing and Combustion Experiments for Propelled Hypersonic Flight
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Diskin, G. S.; Danehy, P. M.; Drummond, J. P.
2002-01-01
Two experiments have been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The first experiment is a study of a supersonic coaxial jet into stagnant air in which the center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with Pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow. The second experiment is a study of a supersonic combustor consisting of a diverging duct with single downstream-angled wall injector. Entrance Mach number is 2 and enthalpy is nominally that of Mach 7 flight. Coherent anti-Stokes Raman spectroscopy (CARS) has been used to obtain nitrogen temperature in planes of the flow, and surface pressures and temperatures have also been acquired. Modern-design-of-experiment techniques have been used to maximize the quality of the data set.
Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications
NASA Astrophysics Data System (ADS)
Angelone, M.; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villar, R.; Klix, A.; Fischer, U.; Kodeli, I.; Perel, R. L.; Pohorecky, W.
2017-09-01
A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries.
NASA Astrophysics Data System (ADS)
Tang, S.; Thome, K.; Pace, D.; Heidbrink, W. W.; Carter, T. A.; Crocker, N. A.; NSTX-U Collaboration; DIII-D Collaboration
2017-10-01
An experimental investigation of the stability of Doppler-shifted cyclotron resonant compressional Alfvén eigenmodes (CAE) using the flexible DIII-D neutral beams has begun to validate a theoretical understanding and realize the CAE's diagnostic potential. CAEs are excited by energetic ions from neutral beams [Heidbrink, NF 2006], with frequencies and toroidal mode numbers sensitive to the fast-ion phase space distribution, making them a potentially powerful passive diagnostic. The experiment also contributes to a predictive capability for spherical tokamak temperature profiles, where CAEs may play a role in energy transport [Crocker, NF 2013]. CAE activity was observed using the recently developed Ion Cyclotron Emission diagnostic-high bandwidth edge magnetic sensors sampled at 200 MS/s. Preliminary results show CAEs become unstable in BT ramp discharges below a critical threshold in the range 1.7 - 1.9 T, with the exact value increasing as density increases. The experiment will be used to validate simulations from relevant codes such as the Hybrid MHD code [Belova, PRL 2015]. This work was supported by US DOE Grants DE-SC0011810 and DE-FC02-04ER54698.
Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamarina, A.; Bernard, D.; Blaise, P.
2013-07-01
This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency ofmore » Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)« less
Alarcon, Gene M; Gamble, Rose F; Ryan, Tyler J; Walter, Charles; Jessup, Sarah A; Wood, David W; Capiola, August
2018-07-01
Computer programs are a ubiquitous part of modern society, yet little is known about the psychological processes that underlie reviewing code. We applied the heuristic-systematic model (HSM) to investigate the influence of computer code comments on perceptions of code trustworthiness. The study explored the influence of validity, placement, and style of comments in code on trustworthiness perceptions and time spent on code. Results indicated valid comments led to higher trust assessments and more time spent on the code. Properly placed comments led to lower trust assessments and had a marginal effect on time spent on code; however, the effect was no longer significant after controlling for effects of the source code. Low style comments led to marginally higher trustworthiness assessments, but high style comments led to longer time spent on the code. Several interactions were also found. Our findings suggest the relationship between code comments and perceptions of code trustworthiness is not as straightforward as previously thought. Additionally, the current paper extends the HSM to the programming literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
TRANSURANUS: a fuel rod analysis code ready for use
NASA Astrophysics Data System (ADS)
Lassmann, K.
1992-06-01
TRANSURANUS is a computer program for the thermal and mechanical analysis of fuel rods in nuclear reactors and was developed at the European Institute for Transuranium Elements (TUI). The TRANSURANUS code consists of a clearly defined mechanical-mathematical framework into which physical models can easily be incorporated. Besides its flexibility for different fuel rod designs the TRANSURANUS code can deal with very different situations, as given for instance in an experiment, under normal, off-normal and accident conditions. The time scale of the problems to be treated may range from milliseconds to years. The code has a comprehensive material data bank for oxide, mixed oxide, carbide and nitride fuels, Zircaloy and steel claddings and different coolants. During its development great effort was spent on obtaining an extremely flexible tool which is easy to handle, exhibiting very fast running times. The total development effort is approximately 40 man-years. In recent years the interest to use this code grew and the code is in use in several organisations, both research and private industry. The code is now available to all interested parties. The paper outlines the main features and capabilities of the TRANSURANUS code, its validation and treats also some practical aspects.
Continued Development and Validation of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2015-11-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.
Validation and Continued Development of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2016-10-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.
NASA F-16XL supersonic laminar flow control program overview
NASA Technical Reports Server (NTRS)
Fischer, Michael C.
1992-01-01
The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.
Computation of transonic flow about helicopter rotor blades
NASA Technical Reports Server (NTRS)
Arieli, R.; Tauber, M. E.; Saunders, D. A.; Caughey, D. A.
1986-01-01
An inviscid, nonconservative, three-dimensional full-potential flow code, ROT22, has been developed for computing the quasi-steady flow about a lifting rotor blade. The code is valid throughout the subsonic and transonic regime. Calculations from the code are compared with detailed laser velocimeter measurements made in the tip region of a nonlifting rotor at a tip Mach number of 0.95 and zero advance ratio. In addition, comparisons are made with chordwise surface pressure measurements obtained in a wind tunnel for a nonlifting rotor blade at transonic tip speeds at advance ratios from 0.40 to 0.50. The overall agreement between theoretical calculations and experiment is very good. A typical run on a CRAY X-MP computer requires about 30 CPU seconds for one rotor position at transonic tip speed.
HSR combustion analytical research
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee
1992-01-01
Increasing the pressure and temperature of the engines of a new generation of supersonic airliners increases the emissions of nitrogen oxides (NO(x)) to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of evolving and implementing low emissions combustor technologies, NASA LeRC has pursued a combustion analysis code program to guide combustor design processes, to identify potential concepts of the greatest promise, and to optimize them at low cost, with short turnaround time. The computational analyses are evaluated at actual engine operating conditions. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts were made in further improving the code capabilities for modeling the physics and the numerical methods of solution. Then test cases and measurements from experiments are used for code validation.
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
Woon, Yuan-Liang; Lee, Keng-Yee; Mohd Anuar, Siti Fatimah Zahra; Goh, Pik-Pin; Lim, Teck-Onn
2018-04-20
Hospitalization due to dengue illness is an important measure of dengue morbidity. However, limited studies are based on administrative database because the validity of the diagnosis codes is unknown. We validated the International Classification of Diseases, 10th revision (ICD) diagnosis coding for dengue infections in the Malaysian Ministry of Health's (MOH) hospital discharge database. This validation study involves retrospective review of available hospital discharge records and hand-search medical records for years 2010 and 2013. We randomly selected 3219 hospital discharge records coded with dengue and non-dengue infections as their discharge diagnoses from the national hospital discharge database. We then randomly sampled 216 and 144 records for patients with and without codes for dengue respectively, in keeping with their relative frequency in the MOH database, for chart review. The ICD codes for dengue were validated against lab-based diagnostic standard (NS1 or IgM). The ICD-10-CM codes for dengue had a sensitivity of 94%, modest specificity of 83%, positive predictive value of 87% and negative predictive value 92%. These results were stable between 2010 and 2013. However, its specificity decreased substantially when patients manifested with bleeding or low platelet count. The diagnostic performance of the ICD codes for dengue in the MOH's hospital discharge database is adequate for use in health services research on dengue.
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Low-temperature plasma simulations with the LSP PIC code
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goupee, A.; Kimball, R.; de Ridder, E. J.
2015-04-02
In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.
Tan, Edwin T.; Martin, Sarah R.; Fortier, Michelle A.; Kain, Zeev N.
2012-01-01
Objective To develop and validate a behavioral coding measure, the Children's Behavior Coding System-PACU (CBCS-P), for children's distress and nondistress behaviors while in the postanesthesia recovery unit. Methods A multidisciplinary team examined videotapes of children in the PACU and developed a coding scheme that subsequently underwent a refinement process (CBCS-P). To examine the reliability and validity of the coding system, 121 children and their parents were videotaped during their stay in the PACU. Participants were healthy children undergoing elective, outpatient surgery and general anesthesia. The CBCS-P was utilized and objective data from medical charts (analgesic consumption and pain scores) were extracted to establish validity. Results Kappa values indicated good-to-excellent (κ's > .65) interrater reliability of the individual codes. The CBCS-P had good criterion validity when compared to children's analgesic consumption and pain scores. Conclusions The CBCS-P is a reliable, observational coding method that captures children's distress and nondistress postoperative behaviors. These findings highlight the importance of considering context in both the development and application of observational coding schemes. PMID:22167123
Jones, B E; South, B R; Shao, Y; Lu, C C; Leng, J; Sauer, B C; Gundlapalli, A V; Samore, M H; Zeng, Q
2018-01-01
Identifying pneumonia using diagnosis codes alone may be insufficient for research on clinical decision making. Natural language processing (NLP) may enable the inclusion of cases missed by diagnosis codes. This article (1) develops a NLP tool that identifies the clinical assertion of pneumonia from physician emergency department (ED) notes, and (2) compares classification methods using diagnosis codes versus NLP against a gold standard of manual chart review to identify patients initially treated for pneumonia. Among a national population of ED visits occurring between 2006 and 2012 across the Veterans Affairs health system, we extracted 811 physician documents containing search terms for pneumonia for training, and 100 random documents for validation. Two reviewers annotated span- and document-level classifications of the clinical assertion of pneumonia. An NLP tool using a support vector machine was trained on the enriched documents. We extracted diagnosis codes assigned in the ED and upon hospital discharge and calculated performance characteristics for diagnosis codes, NLP, and NLP plus diagnosis codes against manual review in training and validation sets. Among the training documents, 51% contained clinical assertions of pneumonia; in the validation set, 9% were classified with pneumonia, of which 100% contained pneumonia search terms. After enriching with search terms, the NLP system alone demonstrated a recall/sensitivity of 0.72 (training) and 0.55 (validation), and a precision/positive predictive value (PPV) of 0.89 (training) and 0.71 (validation). ED-assigned diagnostic codes demonstrated lower recall/sensitivity (0.48 and 0.44) but higher precision/PPV (0.95 in training, 1.0 in validation); the NLP system identified more "possible-treated" cases than diagnostic coding. An approach combining NLP and ED-assigned diagnostic coding classification achieved the best performance (sensitivity 0.89 and PPV 0.80). System-wide application of NLP to clinical text can increase capture of initial diagnostic hypotheses, an important inclusion when studying diagnosis and clinical decision-making under uncertainty. Schattauer GmbH Stuttgart.
An Experimental and CFD Study of a Supersonic Coaxial Jet
NASA Technical Reports Server (NTRS)
Cutler, A. D.; White, J. A.
2001-01-01
A supersonic coaxial jet facility is designed and experimental data are acquired suitable for the validation of CFD codes employed in the analysis of high-speed air-breathing engines. The center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow, and the results are compared to the experiment for several variations of the kappa - omega turbulence model
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
Physics and biophysics experiments needed for improved risk assessment in space
NASA Astrophysics Data System (ADS)
Sihver, L.
To improve the risk assessment of radiation carcinogenesis, late degenerative tissue effects, acute syndromes, synergistic effects of radiation and microgravity or other spacecraft factors, and hereditary effects, on future LEO and interplanetary space missions, the radiobiological effects of cosmic radiation before and after shielding must be well understood. However, cosmic radiation is very complex and includes low and high LET components of many different neutral and charged particles. The understanding of the radiobiology of the heavy ions, from GCRs and SPEs, is still a subject of great concern due to the complicated dependence of their biological effects on the type of ion and energy, and its interaction with various targets both outside and within the spacecraft and the human body. In order to estimate the biological effects of cosmic radiation, accurate knowledge of the physics of the interactions of both charged and non-charged high-LET particles is necessary. Since it is practically impossible to measure all primary and secondary particles from all projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes might be a helpful instrument to overcome those difficulties. These codes have to be carefully validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground-based accelerator experiments are needed. In this paper current and future physics and biophysics experiments needed for improved risk assessment in space will be discussed. The cyclotron HIRFL (heavy ion research facility in Lanzhou) and the new synchrotron CSR (cooling storage ring), which can be used to provide ion beams for space related experiments at the Institute of Modern Physics, Chinese Academy of Sciences (IMP-CAS), will be presented together with the physical and biomedical research performed at IMP-CAS.
Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview
NASA Technical Reports Server (NTRS)
Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard
1996-01-01
The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'
NASA Astrophysics Data System (ADS)
Zhou, Abel; White, Graeme L.; Davidson, Rob
2018-02-01
Anti-scatter grids are commonly used in x-ray imaging systems to reduce scatter radiation reaching the image receptor. Anti-scatter grid performance and validation can be simulated through use of Monte Carlo (MC) methods. Our recently reported work has modified existing MC codes resulting in improved performance when simulating x-ray imaging. The aim of this work is to validate the transmission of x-ray photons in grids from the recently reported new MC codes against experimental results and results previously reported in other literature. The results of this work show that the scatter-to-primary ratio (SPR), the transmissions of primary (T p), scatter (T s), and total (T t) radiation determined using this new MC code system have strong agreement with the experimental results and the results reported in the literature. T p, T s, T t, and SPR determined in this new MC simulation code system are valid. These results also show that the interference effect on Rayleigh scattering should not be neglected in both mammographic and general grids’ evaluation. Our new MC simulation code system has been shown to be valid and can be used for analysing and evaluating the designs of grids.
Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code
NASA Technical Reports Server (NTRS)
Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William
2006-01-01
The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.
CFD validation needs for advanced concepts at Northrop Corporation
NASA Technical Reports Server (NTRS)
George, Michael W.
1987-01-01
Information is given in viewgraph form on the Computational Fluid Dynamics (CFD) Workshop held July 14 - 16, 1987. Topics covered include the philosophy of CFD validation, current validation efforts, the wing-body-tail Euler code, F-20 Euler simulated oil flow, and Euler Navier-Stokes code validation for 2D and 3D nozzle afterbody applications.
Digital multishaker modal testing
NASA Technical Reports Server (NTRS)
Blair, M.; Craig, R. R., Jr.
1983-01-01
A review of several modal testing techniques is made, along with brief discussions of their advantages and limitations. A new technique is presented which overcomes many of the previous limitations. Several simulated experiments are included to verify the validity and accuracy of the new method. Conclusions are drawn from the simulation studies and recommendations for further work are presented. The complete computer code configured for the simulation study is presented.
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968
The Modified Cognitive Constructions Coding System: Reliability and Validity Assessments
ERIC Educational Resources Information Center
Moran, Galia S.; Diamond, Gary M.
2006-01-01
The cognitive constructions coding system (CCCS) was designed for coding client's expressed problem constructions on four dimensions: intrapersonal-interpersonal, internal-external, responsible-not responsible, and linear-circular. This study introduces, and examines the reliability and validity of, a modified version of the CCCS--a version that…
Spray combustion experiments and numerical predictions
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey
1993-01-01
The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.
Whole Device Modeling of Compact Tori: Stability and Transport Modeling of C-2W
NASA Astrophysics Data System (ADS)
Dettrick, Sean; Fulton, Daniel; Lau, Calvin; Lin, Zhihong; Ceccherini, Francesco; Galeotti, Laura; Gupta, Sangeeta; Onofri, Marco; Tajima, Toshiki; TAE Team
2017-10-01
Recent experimental evidence from the C-2U FRC experiment shows that the confinement of energy improves with inverse collisionality, similar to other high beta toroidal devices, NSTX and MAST. This motivated the construction of a new FRC experiment, C-2W, to study the energy confinement scaling at higher electron temperature. Tri Alpha Energy is working towards catalysing a community-wide collaboration to develop a Whole Device Model (WDM) of Compact Tori. One application of the WDM is the study of stability and transport properties of C-2W using two particle-in-cell codes, ANC and FPIC. These codes can be used to find new stable operating points, and to make predictions of the turbulent transport at those points. They will be used in collaboration with the C-2W experimental program to validate the codes against C-2W, mitigate experimental risk inherent in the exploration of new parameter regimes, accelerate the optimization of experimental operating scenarios, and to find operating points for future FRC reactor designs.
NASA Astrophysics Data System (ADS)
Maschio, Lorenzo; Kirtman, Bernard; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto
2013-10-01
In this work, we validate a new, fully analytical method for calculating Raman intensities of periodic systems, developed and presented in Paper I [L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi, J. Chem. Phys. 139, 164101 (2013)]. Our validation of this method and its implementation in the CRYSTAL code is done through several internal checks as well as comparison with experiment. The internal checks include consistency of results when increasing the number of periodic directions (from 0D to 1D, 2D, 3D), comparison with numerical differentiation, and a test of the sum rule for derivatives of the polarizability tensor. The choice of basis set as well as the Hamiltonian is also studied. Simulated Raman spectra of α-quartz and of the UiO-66 Metal-Organic Framework are compared with the experimental data.
Fission yield and criticality excursion code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
2000-06-30
The ANSI/ANS 8.3 standard allows a maximum yield not to exceed 2 x 10 fissions to calculate requiring the alarm system to be effective. It is common practice to use this allowance or to develop some other yield based on past criticality accident history or excursion experiments. The literature on the subject of yields discusses maximum yields larger and somewhat smaller than the ANS 8.3 permissive value. The ability to model criticality excursions and vary the various parameters to determine a credible maximum yield for operational specific cases has been available for some time but is not in common usemore » by criticality safety specialists. The topic of yields for various solution, metal, oxide powders, etc. in various geometry's and containers has been published by laboratory specialists or university staff and students for many decades but have not been available to practitioners. The need for best-estimate calculations of fission yields with a well-validated criticality excursion code has long been recognized. But no coordinated effort has been made so far to develop a generalized and well-validated excursion code for different types of systems. In this paper, the current practices to estimate fission yields are summarized along with its shortcomings for the 12-Rad zone (at SRS) and Criticality Alarm System (CAS) calculations. Finally the need for a user-friendly excursion code is reemphasized.« less
Study of steam condensation at sub-atmospheric pressure: setting a basic research using MELCOR code
NASA Astrophysics Data System (ADS)
Manfredini, A.; Mazzini, M.
2017-11-01
One of the most serious accidents that can occur in the experimental nuclear fusion reactor ITER is the break of one of the headers of the refrigeration system of the first wall of the Tokamak. This results in water-steam mixture discharge in vacuum vessel (VV), with consequent pressurization of this container. To prevent the pressure in the VV exceeds 150 KPa absolute, a system discharges the steam inside a suppression pool, at an absolute pressure of 4.2 kPa. The computer codes used to analyze such incident (eg. RELAP 5 or MELCOR) are not validated experimentally for such conditions. Therefore, we planned a basic research, in order to have experimental data useful to validate the heat transfer correlations used in these codes. After a thorough literature search on this topic, ACTA, in collaboration with the staff of ITER, defined the experimental matrix and performed the design of the experimental apparatus. For the thermal-hydraulic design of the experiments, we executed a series of calculations by MELCOR. This code, however, was used in an unconventional mode, with the development of models suited respectively to low and high steam flow-rate tests. The article concludes with a discussion of the placement of experimental data within the map featuring the phenomenon characteristics, showing the importance of the new knowledge acquired, particularly in the case of chugging.
NASA Astrophysics Data System (ADS)
Frisoni, Manuela
2017-09-01
ANITA-IEAF is an activation package (code and libraries) developed in the past in ENEA-Bologna in order to assess the activation of materials exposed to neutrons with energies greater than 20 MeV. An updated version of the ANITA-IEAF activation code package has been developed. It is suitable to be applied to the study of the irradiation effects on materials in facilities like the International Fusion Materials Irradiation Facility (IFMIF) and the DEMO Oriented Neutron Source (DONES), in which a considerable amount of neutrons with energies above 20 MeV is produced. The present paper summarizes the main characteristics of the updated version of ANITA-IEAF, able to use decay and cross section data based on more recent evaluated nuclear data libraries, i.e. the JEFF-3.1.1 Radioactive Decay Data Library and the EAF-2010 neutron activation cross section library. In this paper the validation effort related to the comparison between the code predictions and the activity measurements obtained from the Karlsruhe Isochronous Cyclotron is presented. In this integral experiment samples of two different steels, SS-316 and F82H, pure vanadium and a vanadium alloy, structural materials of interest in fusion technology, were activated in a neutron spectrum similar to the IFMIF neutron field.
Development and Assessment of CTF for Pin-resolved BWR Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salko, Robert K; Wysocki, Aaron J; Collins, Benjamin S
2017-01-01
CTF is the modernized and improved version of the subchannel code, COBRA-TF. It has been adopted by the Consortium for Advanced Simulation for Light Water Reactors (CASL) for subchannel analysis applications and thermal hydraulic feedback calculations in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). CTF is now jointly developed by Oak Ridge National Laboratory and North Carolina State University. Until now, CTF has been used for pressurized water reactor modeling and simulation in CASL, but in the future it will be extended to boiling water reactor designs. This required development activities to integrate the code into the VERA-CSmore » workflow and to make it more ecient for full-core, pin resolved simulations. Additionally, there is a significant emphasis on producing high quality tools that follow a regimented software quality assurance plan in CASL. Part of this plan involves performing validation and verification assessments on the code that are easily repeatable and tied to specific code versions. This work has resulted in the CTF validation and verification matrix being expanded to include several two-phase flow experiments, including the General Electric 3 3 facility and the BWR Full-Size Fine Mesh Bundle Tests (BFBT). Comparisons with both experimental databases is reasonable, but the BFBT analysis reveals a tendency of CTF to overpredict void, especially in the slug flow regime. The execution of these tests is fully automated, analysis is documented in the CTF Validation and Verification manual, and the tests have become part of CASL continuous regression testing system. This paper will summarize these recent developments and some of the two-phase assessments that have been performed on CTF.« less
Modification and Validation of Conceptual Design Aerodynamic Prediction Method HASC95 With VTXCHN
NASA Technical Reports Server (NTRS)
Albright, Alan E.; Dixon, Charles J.; Hegedus, Martin C.
1996-01-01
A conceptual/preliminary design level subsonic aerodynamic prediction code HASC (High Angle of Attack Stability and Control) has been improved in several areas, validated, and documented. The improved code includes improved methodologies for increased accuracy and robustness, and simplified input/output files. An engineering method called VTXCHN (Vortex Chine) for prediciting nose vortex shedding from circular and non-circular forebodies with sharp chine edges has been improved and integrated into the HASC code. This report contains a summary of modifications, description of the code, user's guide, and validation of HASC. Appendices include discussion of a new HASC utility code, listings of sample input and output files, and a discussion of the application of HASC to buffet analysis.
Supersonic and hypersonic shock/boundary-layer interaction database
NASA Technical Reports Server (NTRS)
Settles, Gary S.; Dodson, Lori J.
1994-01-01
An assessment is given of existing shock wave/tubulent boundary-layer interaction experiments having sufficient quality to guide turbulence modeling and code validation efforts. Although the focus of this work is hypersonic, experiments at Mach numbers as low as 3 were considered. The principal means of identifying candidate studies was a computerized search of the AIAA Aerospace Database. Several hundred candidate studies were examined and over 100 of these were subjected to a rigorous set of acceptance criteria for inclusion in the data-base. Nineteen experiments were found to meet these criteria, of which only seven were in the hypersonic regime (M is greater than 5).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirrung, Georg; Madsen, Helge; Schreck, Scott
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less
Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still
Pirrung, Georg; Madsen, Helge; Schreck, Scott
2016-10-03
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less
PCC Framework for Program-Generators
NASA Technical Reports Server (NTRS)
Kong, Soonho; Choi, Wontae; Yi, Kwangkeun
2009-01-01
In this paper, we propose a proof-carrying code framework for program-generators. The enabling technique is abstract parsing, a static string analysis technique, which is used as a component for generating and validating certificates. Our framework provides an efficient solution for certifying program-generators whose safety properties are expressed in terms of the grammar representing the generated program. The fixed-point solution of the analysis is generated and attached with the program-generator on the code producer side. The consumer receives the code with a fixed-point solution and validates that the received fixed point is indeed a fixed point of the received code. This validation can be done in a single pass.
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.
2016-01-01
With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.
NASA Astrophysics Data System (ADS)
Belfort, Benjamin; Weill, Sylvain; Lehmann, François
2017-07-01
A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.
NASA Astrophysics Data System (ADS)
Dobson, P. F.; Kneafsey, T. J.
2001-12-01
As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used to evaluate larger-scale silica sealing observed in a portion of the Yellowstone geothermal system, a natural analog for the precipitation-experiment processes.
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.
Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...
2015-10-30
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less
MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, G.; Novascone, S. R.; Williamson, R. L.
2015-09-01
This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Optical images, such as experimental interferograms, schlieren, and shadowgraphs, are routinely used to identify and locate features in experimental flow fields and for validating computational fluid dynamics (CFD) codes. Interferograms can also be used for comparing experimental and computed integrated densities. By constructing these optical images from flow-field simulations, one-to-one comparisons of computation and experiment are possible. During the period from February 1, 1992, to November 30, 1992, work has continued on the development of CISS (Constructed Interferograms, Schlieren, and Shadowgraphs), a code that constructs images from ideal- and real-gas flow-field simulations. In addition, research connected with the automated film-reading system and the proposed reactivation of the radiation facility has continued.
The Facial Expression Coding System (FACES): Development, Validation, and Utility
ERIC Educational Resources Information Center
Kring, Ann M.; Sloan, Denise M.
2007-01-01
This article presents information on the development and validation of the Facial Expression Coding System (FACES; A. M. Kring & D. Sloan, 1991). Grounded in a dimensional model of emotion, FACES provides information on the valence (positive, negative) of facial expressive behavior. In 5 studies, reliability and validity data from 13 diverse…
Prediction of plant lncRNA by ensemble machine learning classifiers.
Simopoulos, Caitlin M A; Weretilnyk, Elizabeth A; Golding, G Brian
2018-05-02
In plants, long non-protein coding RNAs are believed to have essential roles in development and stress responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate long non-protein coding gene products for future functional validation. Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the model can be updated as new long non-protein coding transcripts are identified and functionally verified. This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding RNA function.
Lee, Jin Hee; Hong, Ki Jeong; Kim, Do Kyun; Kwak, Young Ho; Jang, Hye Young; Kim, Hahn Bom; Noh, Hyun; Park, Jungho; Song, Bongkyu; Jung, Jae Yun
2013-12-01
A clinically sensible diagnosis grouping system (DGS) is needed for describing pediatric emergency diagnoses for research, medical resource preparedness, and making national policy for pediatric emergency medical care. The Pediatric Emergency Care Applied Research Network (PECARN) developed the DGS successfully. We developed the modified PECARN DGS based on the different pediatric population of South Korea and validated the system to obtain the accurate and comparable epidemiologic data of pediatric emergent conditions of the selected population. The data source used to develop and validate the modified PECARN DGS was the National Emergency Department Information System of South Korea, which was coded by the International Classification of Diseases, 10th Revision (ICD-10) code system. To develop the modified DGS based on ICD-10 code, we matched the selected ICD-10 codes with those of the PECARN DGS by the General Equivalence Mappings (GEMs). After converting ICD-10 codes to ICD-9 codes by GEMs, we matched ICD-9 codes into PECARN DGS categories using the matrix developed by PECARN group. Lastly, we conducted the expert panel survey using Delphi method for the remaining diagnosis codes that were not matched. A total of 1879 ICD-10 codes were used in development of the modified DGS. After 1078 (57.4%) of 1879 ICD-10 codes were assigned to the modified DGS by GEM and PECARN conversion tools, investigators assigned each of the remaining 801 codes (42.6%) to DGS subgroups by 2 rounds of electronic Delphi surveys. And we assigned the remaining 29 codes (4%) into the modified DGS at the second expert consensus meeting. The modified DGS accounts for 98.7% and 95.2% of diagnoses of the 2008 and 2009 National Emergency Department Information System data set. This modified DGS also exhibited strong construct validity using the concepts of age, sex, site of care, and seasons. This also reflected the 2009 outbreak of H1N1 influenza in Korea. We developed and validated clinically feasible and sensible DGS system for describing pediatric emergent conditions in Korea. The modified PECARN DGS showed good comprehensiveness and demonstrated reliable construct validity. This modified DGS based on PECARN DGS framework may be effectively implemented for research, reporting, and resource planning in pediatric emergency system of South Korea.
NASA Astrophysics Data System (ADS)
Insulander Björk, Klara; Kekkonen, Laura
2015-12-01
Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilkenny, J.; Richau, G.; Sangster, C.
A major goal of the Stockpile Stewardship Program (SSP) is to deliver validated numerical models, benchmarked against experiments that address relevant and important issues and provide data that stress the codes and our understanding. DOENNSA has made significant investments in major facilities and high-performance computing to successfully execute the SSP. The more information obtained about the physical state of the plasmas produced, the more stringent the test of theories, models, and codes can be, leading to increased confidence in our predictive capability. To fully exploit the world-leading capabilities of the ICF program, a multi-year program to develop and deploy advancedmore » diagnostics has been developed by the expert scientific community. To formalize these activities NNSA’s Acting Director for the Inertial Confinement Fusion Program directed the formation and duties of the National Diagnostics Working Group (NDWG) in a Memorandum 11/3/16 (Appendix A). The NDWG identified eight transformational diagnostics, shown in Table 1, that will provide unprecedented information from experiments in support of the SSP at NIF, Z and OMEGA. Table 1 shows how the missions of the SSP experiments including materials, complex hydrodynamics, radiation flow and effects and thermo-nuclear burn and boost will produce new observables, which will be measured using a variety of largely new diagnostic technologies used in the eight transformational diagnostics. The data provided by these diagnostics will validate and improve the physics contained within the SSP’s simulations and both uncover and quantify important phenomena that lie beyond our present understanding.« less
Further Validation of a CFD Code for Calculating the Performance of Two-Stage Light Gas Guns
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
2017-01-01
Earlier validations of a higher-order Godunov code for modeling the performance of two-stage light gas guns are reviewed. These validation comparisons were made between code predictions and experimental data from the NASA Ames 1.5" and 0.28" guns and covered muzzle velocities of 6.5 to 7.2 km/s. In the present report, five more series of code validation comparisons involving experimental data from the Ames 0.22" (1.28" pump tube diameter), 0.28", 0.50", 1.00" and 1.50" guns are presented. The total muzzle velocity range of the validation data presented herein is 3 to 11.3 km/s. The agreement between the experimental data and CFD results is judged to be very good. Muzzle velocities were predicted within 0.35 km/s for 74% of the cases studied with maximum differences being 0.5 km/s and for 4 out of 50 cases, 0.5 - 0.7 km/s.
NASA Astrophysics Data System (ADS)
Leclaire, N.; Cochet, B.; Le Dauphin, F. X.; Haeck, W.; Jacquet, O.
2014-06-01
The present paper aims at providing experimental validation for the use of the MORET 5 code for advanced concepts of reactor involving thorium and heavy water. It therefore constitutes an opportunity to test and improve the thermal-scattering data of heavy water and also to test the recent implementation of probability tables in the MORET 5 code.
Criticality Calculations with MCNP6 - Practical Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
2016-11-29
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input modelmore » for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.« less
Context-aware and locality-constrained coding for image categorization.
Xiao, Wenhua; Wang, Bin; Liu, Yu; Bao, Weidong; Zhang, Maojun
2014-01-01
Improving the coding strategy for BOF (Bag-of-Features) based feature design has drawn increasing attention in recent image categorization works. However, the ambiguity in coding procedure still impedes its further development. In this paper, we introduce a context-aware and locality-constrained Coding (CALC) approach with context information for describing objects in a discriminative way. It is generally achieved by learning a word-to-word cooccurrence prior to imposing context information over locality-constrained coding. Firstly, the local context of each category is evaluated by learning a word-to-word cooccurrence matrix representing the spatial distribution of local features in neighbor region. Then, the learned cooccurrence matrix is used for measuring the context distance between local features and code words. Finally, a coding strategy simultaneously considers locality in feature space and context space, while introducing the weight of feature is proposed. This novel coding strategy not only semantically preserves the information in coding, but also has the ability to alleviate the noise distortion of each class. Extensive experiments on several available datasets (Scene-15, Caltech101, and Caltech256) are conducted to validate the superiority of our algorithm by comparing it with baselines and recent published methods. Experimental results show that our method significantly improves the performance of baselines and achieves comparable and even better performance with the state of the arts.
Macleod, Emily; Woolford, June; Hobbs, Linda; Gross, Julien; Hayne, Harlene; Patterson, Tess
2017-04-01
To obtain a child's perspective during a mental health assessment, he or she is usually interviewed. Although researchers and clinicians generally agree that it is beneficial to hear a child's account of his or her presenting issues, there is debate about whether children provide reliable or valid clinical information during these interviews. Here, we examined whether children provide clinically and diagnostically relevant information in a clinical setting. In all, 31 children aged 5-12-years undergoing mental health assessments were asked open-ended questions about their presenting problems during a semi-structured interview. We coded the information that children reported to determine whether it was clinically relevant and could be used to diagnose their problems and to formulate and plan treatment. We also coded children's information to determine whether it was congruent with the children's presenting problems and their eventual clinical diagnoses. Most of the information that children reported was clinically relevant and included information about behaviour, affect, temporal details, thoughts, people, the environment, and the child's physical experiences. The information that children reported was also clinically valid; it was congruent with the problems that were discussed (84%) and also with the eventual diagnosis that the child received after a complete assessment (74%). We conclude that children can contribute relevant, clinically useful, valid information during clinical psychological assessments.
Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, N D; Kaiser, T B; Anderson, R W
2009-09-28
ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.
Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment
NASA Technical Reports Server (NTRS)
Cambier, Jean-Luc
1991-01-01
A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.
Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui
2015-02-23
PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.
Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H
2015-12-01
Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organizational Effectiveness Information System (OEIS) User’s Manual
1986-09-01
SUBJECT CODES B-l C. LISTING OF VALID RESOURCE SYSTEM CODES C-l »TflerÄ*w»fi*%f*fc**v.nft; ^’.A/.V. A y.A/.AAA«•.*-A/. AAV ...the valid codes used la the Implementation and Design System. MACOM 01 COE 02 DARCOM 03 EUSA 04 FORSCOM 05 HSC 06 HQDA 07 INSCOM 08 MDW 09
Failure Mode and Effects Analysis: views of hospital staff in the UK.
Shebl, Nada; Franklin, Bryony; Barber, Nick; Burnett, Susan; Parand, Anam
2012-01-01
To explore health care professionals' experiences and perceptions of Failure Mode and Effects Analysis (FMEA), a team-based, prospective risk analysis technique. Semi-structured interviews were conducted with 21 operational leads (20 pharmacists, one nurse) in medicines management teams of hospitals participating in a national quality improvement programme. Interviews were transcribed, coded and emergent themes identified using framework analysis. Themes identified included perceptions and experiences of participants with FMEA, validity and reliability issues, and FMEA's use in practice. FMEA was considered to be a structured but subjective process that helps health care professionals get together to identify high risk areas of care. Both positive and negative opinions were expressed, with the majority of interviewees expressing positive views towards FMEA in relation to its structured nature and the use of a multidisciplinary team. Other participants criticised FMEA for being subjective and lacking validity. Most likely to restrict its widespread use were its time consuming nature and its perceived lack of validity and reliability. FMEA is a subjective but systematic tool that helps identify high risk areas, but its time consuming nature, difficulty with the scores and perceived lack of validity and reliability may limit its widespread use.
Sparse representation-based image restoration via nonlocal supervised coding
NASA Astrophysics Data System (ADS)
Li, Ao; Chen, Deyun; Sun, Guanglu; Lin, Kezheng
2016-10-01
Sparse representation (SR) and nonlocal technique (NLT) have shown great potential in low-level image processing. However, due to the degradation of the observed image, SR and NLT may not be accurate enough to obtain a faithful restoration results when they are used independently. To improve the performance, in this paper, a nonlocal supervised coding strategy-based NLT for image restoration is proposed. The novel method has three main contributions. First, to exploit the useful nonlocal patches, a nonnegative sparse representation is introduced, whose coefficients can be utilized as the supervised weights among patches. Second, a novel objective function is proposed, which integrated the supervised weights learning and the nonlocal sparse coding to guarantee a more promising solution. Finally, to make the minimization tractable and convergence, a numerical scheme based on iterative shrinkage thresholding is developed to solve the above underdetermined inverse problem. The extensive experiments validate the effectiveness of the proposed method.
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang
2007-10-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
VICTORIA: A mechanistic model for radionuclide behavior in the reactor coolant system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaperow, J.H.; Bixler, N.E.
1996-12-31
VICTORIA is the U.S. Nuclear Regulatory Commission`s (NRC`s) mechanistic, best-estimate code for analysis of fission product release from the core and subsequent transport in the reactor vessel and reactor coolant system. VICTORIA requires thermal-hydraulic data (i.e., temperatures, pressures, and velocities) as input. In the past, these data have been taken from the results of calculations from thermal-hydraulic codes such as SCDAP/RELAP5, MELCOR, and MAAP. Validation and assessment of VICTORIA 1.0 have been completed. An independent peer review of VICTORIA, directed by Brookhaven National Laboratory and supported by experts in the areas of fuel release, fission product chemistry, and aerosol physics,more » has been undertaken. This peer review, which will independently assess the code`s capabilities, is nearing completion with the peer review committee`s final report expected in Dec 1996. A limited amount of additional development is expected as a result of the peer review. Following this additional development, the NRC plans to release VICTORIA 1.1 and an updated and improved code manual. Future plans mainly involve use of the code for plant calculations to investigate specific safety issues as they arise. Also, the code will continue to be used in support of the Phebus experiments.« less
Dessimoz, Christophe; Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro
2011-09-01
Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references.
Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro
2011-01-01
Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references. PMID:21712341
A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Mikellides, Ioannis G.
2014-01-01
We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.
Validation of the NCC Code for Staged Transverse Injection and Computations for a RBCC Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Liu, Nan-Suey
2005-01-01
The NCC code was validated for a case involving staged transverse injection into Mach 2 flow behind a rearward facing step. Comparisons with experimental data and with solutions from the FPVortex code was then used to perform computations to study fuel-air mixing for the combustor of a candidate rocket based combined cycle engine geometry. Comparisons with a one-dimensional analysis and a three-dimensional code (VULCAN) were performed to assess the qualitative and quantitative performance of the NCC solver.
Sukanya, Chongthawonsatid
2017-10-01
This study examined the validity of the principal diagnoses on discharge summaries and coding assessments. Data were collected from the National Health Security Office (NHSO) of Thailand in 2015. In total, 118,971 medical records were audited. The sample was drawn from government hospitals and private hospitals covered by the Universal Coverage Scheme in Thailand. Hospitals and cases were selected using NHSO criteria. The validity of the principal diagnoses listed in the "Summary and Coding Assessment" forms was established by comparing data from the discharge summaries with data obtained from medical record reviews, and additionally, by comparing data from the coding assessments with data in the computerized ICD (the data base used for reimbursement-purposes). The summary assessments had low sensitivities (7.3%-37.9%), high specificities (97.2%-99.8%), low positive predictive values (9.2%-60.7%), and high negative predictive values (95.9%-99.3%). The coding assessments had low sensitivities (31.1%-69.4%), high specificities (99.0%-99.9%), moderate positive predictive values (43.8%-89.0%), and high negative predictive values (97.3%-99.5%). The discharge summaries and codings often contained mistakes, particularly the categories "Endocrine, nutritional, and metabolic diseases", "Symptoms, signs, and abnormal clinical and laboratory findings not elsewhere classified", "Factors influencing health status and contact with health services", and "Injury, poisoning, and certain other consequences of external causes". The validity of the principal diagnoses on the summary and coding assessment forms was found to be low. The training of physicians and coders must be strengthened to improve the validity of discharge summaries and codings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Lei
Magnetic confinement fusion is one of the most promising approaches to achieve fusion energy. With the rapid increase of the computational power over the past decades, numerical simulation have become an important tool to study the fusion plasmas. Eventually, the numerical models will be used to predict the performance of future devices, such as the International Thermonuclear Experiment Reactor (ITER) or DEMO. However, the reliability of these models needs to be carefully validated against experiments before the results can be trusted. The validation between simulations and measurements is hard particularly because the quantities directly available from both sides are different.more » While the simulations have the information of the plasma quantities calculated explicitly, the measurements are usually in forms of diagnostic signals. The traditional way of making the comparison relies on the diagnosticians to interpret the measured signals as plasma quantities. The interpretation is in general very complicated and sometimes not even unique. In contrast, given the plasma quantities from the plasma simulations, we can unambiguously calculate the generation and propagation of the diagnostic signals. These calculations are called synthetic diagnostics, and they enable an alternate way to compare the simulation results with the measurements. In this dissertation, we present a platform for developing and applying synthetic diagnostic codes. Three diagnostics on the platform are introduced. The reflectometry and beam emission spectroscopy diagnostics measure the electron density, and the electron cyclotron emission diagnostic measures the electron temperature. The theoretical derivation and numerical implementation of a new two dimensional Electron cyclotron Emission Imaging code is discussed in detail. This new code has shown the potential to address many challenging aspects of the present ECE measurements, such as runaway electron effects, and detection of the cross phase between the electron temperature and density fluctuations.« less
CFD Simulation of Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.
Extension, validation and application of the NASCAP code
NASA Technical Reports Server (NTRS)
Katz, I.; Cassidy, J. J., III; Mandell, M. J.; Schnuelle, G. W.; Steen, P. G.; Parks, D. E.; Rotenberg, M.; Alexander, J. H.
1979-01-01
Numerous extensions were made in the NASCAP code. They fall into three categories: a greater range of definable objects, a more sophisticated computational model, and simplified code structure and usage. An important validation of NASCAP was performed using a new two dimensional computer code (TWOD). An interactive code (MATCHG) was written to compare material parameter inputs with charging results. The first major application of NASCAP was performed on the SCATHA satellite. Shadowing and charging calculation were completed. NASCAP was installed at the Air Force Geophysics Laboratory, where researchers plan to use it to interpret SCATHA data.
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
NASA Astrophysics Data System (ADS)
Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.
2016-03-01
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.
Modeling fission product vapor transport in the Falcon facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepherd, I.M.; Drossinos, Y.; Benson, C.G.
1995-05-01
An extensive database of aerosol Experiments exists and has been used for checking aerosol transport codes. Data for fission product vapor transport are harder to find. Some qualitative data are available, but the Falcon thermal gradient tube tests carried out at AEA Technology`s laboratories in Winfrith, England, mark the first serious attempt to provide a set of experiments suitable for the validation of codes that predict the transport and condensation of realistic mixtures of fission product vapors. Four of these have been analyzed to check how well the computer code VICTORIA can predict the most important phenomena. Of the fourmore » experiments studied, two are reference cases (FAL-17 and FAL-19), one is a case without boric acid (FAL-18), and the other is run in a reducing atmosphere (FAL-20). The results show that once the vapors condense onto aerosols, VICTORIA can predict their deposition rather well. The dominant mechanism is thermophoresis, and each element deposits with more or less the same deposition velocity. The behavior of the vapors is harder to interpret. Essentially, it is important to know the temperature at which each element condenses. It is clear from the measurements that this temperature changed from test to test-caused mostly by the different speciation as the composition of the carrier gas and the relative concentration of other fission products changed. Only in the test with a steam atmosphere and without boric acid was the assumption valid that most of the iodine is cesium iodide and most of the cesium is cesium hydroxide. In general, VICTORIA predicts that, with the exception of cesium, there will be less variation in the speciation-and, hence, variation in the deposition-between tests than is in fact observed. VICTORIA underpredicts the volatility of most elements, and this is partly a consequence of the ideal solution assumption and partly an overestimation of vapor/aerosol interactions.« less
NASA Astrophysics Data System (ADS)
Betti, R.
2017-10-01
The 1-D campaign on OMEGA is aimed at validating a novel approach to design cryogenic implosion experiments and provide valuable data to improve the accuracy of 1-D physics models. This new design methodology is being tested first on low-convergence, high-adiabat (α 6 to 7) implosions and will subsequently be applied to implosions with increasing convergence up to the level required for a hydro-equivalent demonstration of ignition. This design procedure assumes that the hydrodynamic codes used in implosion designs lack the necessary physics and that measurements of implosion properties are imperfect. It also assumes that while the measurements may have significant systematic errors, the shot-to-shot variations are small and that cryogenic implosion data are reproducible as observed on OMEGA. One of the goals of the 1-D campaign is to find a mapping of the data to the code results and use the mapping relations to design future implosions. In the 1-D campaign, this predictive methodology was used to design eight implosions using a simple two-shock pulse design, leading to pre-shot predictions of yields within 5% and ion temperatures within 4% of the experimental values. These implosions have also produced the highest neutron yield of 1014 in OMEGA cryogenic implosion experiments with an areal density of 100 mg/cm2. Furthermore, the results from this campaign have been used to test the validity of the 1-D physics models used in the radiation-hydrodynamics codes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DENA0001944 and LLNL under Contract DE-AC52-07NA27344. * In collaboration with J.P. Knauer, V. Gopalaswamy, D. Patel, K.M. Woo, K.S. Anderson, A. Bose, A.R. Christopherson, V.Yu. Glebov, F.J. Marshall, S.P. Regan, P.B. Radha, C. Stoeckl, and E.M. Campbell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.
2005-09-15
The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less
Hadden, Kellie L; LeFort, Sandra; O'Brien, Michelle; Coyte, Peter C; Guerriere, Denise N
2016-04-01
The purpose of the current study was to examine the concurrent and discriminant validity of the Child Facial Coding System for children with cerebral palsy. Eighty-five children (mean = 8.35 years, SD = 4.72 years) were videotaped during a passive joint stretch with their physiotherapist and during 3 time segments: baseline, passive joint stretch, and recovery. Children's pain responses were rated from videotape using the Numerical Rating Scale and Child Facial Coding System. Results indicated that Child Facial Coding System scores during the passive joint stretch significantly correlated with Numerical Rating Scale scores (r = .72, P < .01). Child Facial Coding System scores were also significantly higher during the passive joint stretch than the baseline and recovery segments (P < .001). Facial activity was not significantly correlated with the developmental measures. These findings suggest that the Child Facial Coding System is a valid method of identifying pain in children with cerebral palsy. © The Author(s) 2015.
Challenges in using medicaid claims to ascertain child maltreatment.
Raghavan, Ramesh; Brown, Derek S; Allaire, Benjamin T; Garfield, Lauren D; Ross, Raven E; Hedeker, Donald
2015-05-01
Medicaid data contain International Classification of Diseases, Clinical Modification (ICD-9-CM) codes indicating maltreatment, yet there is a little information on how valid these codes are for the purposes of identifying maltreatment from health, as opposed to child welfare, data. This study assessed the validity of Medicaid codes in identifying maltreatment. Participants (n = 2,136) in the first National Survey of Child and Adolescent Well-Being were linked to their Medicaid claims obtained from 36 states. Caseworker determinations of maltreatment were compared with eight sets of ICD-9-CM codes. Of the 1,921 children identified by caseworkers as being maltreated, 15.2% had any relevant ICD-9-CM code in any of their Medicaid files across 4 years of observation. Maltreated boys and those of African American race had lower odds of displaying a maltreatment code. Using only Medicaid claims to identify maltreated children creates validity problems. Medicaid data linkage with other types of administrative data is required to better identify maltreated children. © The Author(s) 2014.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)
2001-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugfer, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Experimental Validation of an Ion Beam Optics Code with a Visualized Ion Thruster
NASA Astrophysics Data System (ADS)
Nakayama, Yoshinori; Nakano, Masakatsu
For validation of an ion beam optics code, the behavior of ion beam optics was experimentally observed and evaluated with a two-dimensional visualized ion thruster (VIT). Since the observed beam focus positions, sheath positions and measured ion beam currents were in good agreement with the numerical results, it was confirmed that the numerical model of this code was appropriated. In addition, it was also confirmed that the beam focus position was moved on center axis of grid hole according to the applied grid potentials, which differs from conventional understanding/assumption. The VIT operations may be useful not only for the validation of ion beam optics codes but also for the fundamental and intuitive understanding of the Child Law Sheath theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Brooks, J. N.; Elder, J. D.
2015-03-29
We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 10 19 m –3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. Themore » tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.« less
Verification and Validation: High Charge and Energy (HZE) Transport Codes and Future Development
NASA Technical Reports Server (NTRS)
Wilson, John W.; Tripathi, Ram K.; Mertens, Christopher J.; Blattnig, Steve R.; Clowdsley, Martha S.; Cucinotta, Francis A.; Tweed, John; Heinbockel, John H.; Walker, Steven A.; Nealy, John E.
2005-01-01
In the present paper, we give the formalism for further developing a fully three-dimensional HZETRN code using marching procedures but also development of a new Green's function code is discussed. The final Green's function code is capable of not only validation in the space environment but also in ground based laboratories with directed beams of ions of specific energy and characterized with detailed diagnostic particle spectrometer devices. Special emphasis is given to verification of the computational procedures and validation of the resultant computational model using laboratory and spaceflight measurements. Due to historical requirements, two parallel development paths for computational model implementation using marching procedures and Green s function techniques are followed. A new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is under development. Validation of computational models at this time is particularly important for President Bush s Initiative to develop infrastructure for human exploration with first target demonstration of the Crew Exploration Vehicle (CEV) in low Earth orbit in 2008.
Adams, Derk; Schreuder, Astrid B; Salottolo, Kristin; Settell, April; Goss, J Richard
2011-07-01
There are significant changes in the abbreviated injury scale (AIS) 2005 system, which make it impractical to compare patients coded in AIS version 98 with patients coded in AIS version 2005. Harborview Medical Center created a computer algorithm "Harborview AIS Mapping Program (HAMP)" to automatically convert AIS 2005 to AIS 98 injury codes. The mapping was validated using 6 months of double-coded patient injury records from a Level I Trauma Center. HAMP was used to determine how closely individual AIS and injury severity scores (ISS) were converted from AIS 2005 to AIS 98 versions. The kappa statistic was used to measure the agreement between manually determined codes and HAMP-derived codes. Seven hundred forty-nine patient records were used for validation. For the conversion of AIS codes, the measure of agreement between HAMP and manually determined codes was [kappa] = 0.84 (95% confidence interval, 0.82-0.86). The algorithm errors were smaller in magnitude than the manually determined coding errors. For the conversion of ISS, the agreement between HAMP versus manually determined ISS was [kappa] = 0.81 (95% confidence interval, 0.78-0.84). The HAMP algorithm successfully converted injuries coded in AIS 2005 to AIS 98. This algorithm will be useful when comparing trauma patient clinical data across populations coded in different versions, especially for longitudinal studies.
Jones, Natalie; Schneider, Gary; Kachroo, Sumesh; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W
2012-01-01
The Food and Drug Administration's (FDA) Mini-Sentinel pilot program initially aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest (HOIs) from administrative and claims data. This paper summarizes the process and findings of the algorithm review of acute respiratory failure (ARF). PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the anaphylaxis HOI. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify ARF, including validation estimates of the coding algorithms. Our search revealed a deficiency of literature focusing on ARF algorithms and validation estimates. Only two studies provided codes for ARF, each using related yet different ICD-9 codes (i.e., ICD-9 codes 518.8, "other diseases of lung," and 518.81, "acute respiratory failure"). Neither study provided validation estimates. Research needs to be conducted on designing validation studies to test ARF algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.
Verification and Validation Strategy for LWRS Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl M. Stoots; Richard R. Schultz; Hans D. Gougar
2012-09-01
One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verifiedmore » and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.« less
Benchmarking the ATLAS software through the Kit Validation engine
NASA Astrophysics Data System (ADS)
De Salvo, Alessandro; Brasolin, Franco
2010-04-01
The measurement of the experiment software performance is a very important metric in order to choose the most effective resources to be used and to discover the bottlenecks of the code implementation. In this work we present the benchmark techniques used to measure the ATLAS software performance through the ATLAS offline testing engine Kit Validation and the online portal Global Kit Validation. The performance measurements, the data collection, the online analysis and display of the results will be presented. The results of the measurement on different platforms and architectures will be shown, giving a full report on the CPU power and memory consumption of the Monte Carlo generation, simulation, digitization and reconstruction of the most CPU-intensive channels. The impact of the multi-core computing on the ATLAS software performance will also be presented, comparing the behavior of different architectures when increasing the number of concurrent processes. The benchmark techniques described in this paper have been used in the HEPiX group since the beginning of 2008 to help defining the performance metrics for the High Energy Physics applications, based on the real experiment software.
Verification and validation of RADMODL Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimball, K.D.
1993-03-01
RADMODL is a system of linked computer codes designed to calculate the radiation environment following an accident in which nuclear materials are released. The RADMODL code and the corresponding Verification and Validation (V&V) calculations (Appendix A), were developed for Westinghouse Savannah River Company (WSRC) by EGS Corporation (EGS). Each module of RADMODL is an independent code and was verified separately. The full system was validated by comparing the output of the various modules with the corresponding output of a previously verified version of the modules. The results of the verification and validation tests show that RADMODL correctly calculates the transportmore » of radionuclides and radiation doses. As a result of this verification and validation effort, RADMODL Version 1.0 is certified for use in calculating the radiation environment following an accident.« less
WEC-SIM Validation Testing Plan FY14 Q4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruehl, Kelley Michelle
2016-02-01
The WEC-Sim project is currently on track, having met both the SNL and NREL FY14 Milestones, as shown in Table 1 and Table 2. This is also reflected in the Gantt chart uploaded to the WEC-Sim SharePoint site in the FY14 Q4 Deliverables folder. The work completed in FY14 includes code verification through code-to-code comparison (FY14 Q1 and Q2), preliminary code validation through comparison to experimental data (FY14 Q2 and Q3), presentation and publication of the WEC-Sim project at OMAE 2014 [1], [2], [3] and GMREC/METS 2014 [4] (FY14 Q3), WEC-Sim code development and public open-source release (FY14 Q3), andmore » development of a preliminary WEC-Sim validation test plan (FY14 Q4). This report presents the preliminary Validation Testing Plan developed in FY14 Q4. The validation test effort started in FY14 Q4 and will go on through FY15. Thus far the team has developed a device selection method, selected a device, and placed a contract with the testing facility, established several collaborations including industry contacts, and have working ideas on the testing details such as scaling, device design, and test conditions.« less
NASA Astrophysics Data System (ADS)
Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.
2013-08-01
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.
Dynamics of Exploding Plasma Within a Magnetized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimonte, G; Dipeso, G; Hewett, D
2002-02-01
This memo describes several possible laboratory experiments on the dynamics of an exploding plasma in a background magnetized plasma. These are interesting scientifically and the results are applicable to energetic explosions in the earth's ionosphere (DOE Campaign 7 at LLNL). These proposed experiments are difficult and can only be performed in the new LAPD device at UCLA. The purpose of these experiments would be to test numerical simulations, theory and reduced models for systems performance codes. The experiments are designed to investigate the affect of the background plasma on (1) the maximum diamagnetic bubble radius given by Eq. 9; andmore » (2) the Alfven wave radiation efficiency produced by the induced current J{sub A} (Eqs. 10-12) These experiments involve measuring the bubble radius using a fast gated optical imager as in Ref [1] and the Alfven wave profile and intensity as in Ref [2] for different values of the exploding plasma energy, background plasma density and temperature, and background magnetic field. These experiments extend the previously successful experiments [2] on Alfven wave coupling. We anticipate that the proposed experiments would require 1-2 weeks of time on the LAPD. We would perform PIC simulations in support of these experiments in order to validate the codes. Once validated, the PIC simulations would then be able to be extended to realistic ionospheric conditions with various size explosions and altitudes. In addition to the Alfven wave coupling, we are interested in the magnetic containment and transport of the exploding ''debris'' plasma to see if the shorting of the radial electric field in the magnetic bubble would allow the ions to propagate further. This has important implications in an ionospheric explosion because it defines the satellite damage region. In these experiments, we would field fast gated optical cameras to obtain images of the plasma expansion, which could then be correlated with magnetic probe measurements. In this regard, it would be most helpful to have a more powerful laser more than 10J in order to increase the extent of the magnetic bubble.« less
NASA Astrophysics Data System (ADS)
Terashima, Atsunori; Nilsson, Mikael; Ozawa, Masaki; Chiba, Satoshi
2017-09-01
The Aprés ORIENT research program, as a concept of advanced nuclear fuel cycle, was initiated in FY2011 aiming at creating stable, highly-valuable elements by nuclear transmutation from ↓ssion products. In order to simulate creation of such elements by (n, γ) reaction succeeded by β- decay in reactors, a continuous-energy Monte Carlo burnup calculation code MVP-BURN was employed. Then, it is one of the most important tasks to con↓rm the reliability of MVP-BURN code and evaluated neutron cross section library. In this study, both an experiment of neutron activation analysis in TRIGA Mark I reactor at University of California, Irvine and the corresponding burnup calculation using MVP-BURN code were performed for validation of the simulation on transmutation of light platinum group elements. Especially, some neutron capture reactions such as 102Ru(n, γ)103Ru, 104Ru(n, γ)105Ru, and 108Pd(n, γ)109Pd were dealt with in this study. From a comparison between the calculation (C) and the experiment (E) about 102Ru(n, γ)103Ru, the deviation (C/E-1) was signi↓cantly large. Then, it is strongly suspected that not MVP-BURN code but the neutron capture cross section of 102Ru belonging to JENDL-4.0 used in this simulation have made the big di↑erence as (C/E-1) >20%.
Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.
2007-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.
An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strizhov, V.; Kanukova, V.; Vinogradova, T.
1996-09-01
This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer frommore » melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.« less
Rudmik, Luke; Xu, Yuan; Kukec, Edward; Liu, Mingfu; Dean, Stafford; Quan, Hude
2016-11-01
Pharmacoepidemiological research using administrative databases has become increasingly popular for chronic rhinosinusitis (CRS); however, without a validated case definition the cohort evaluated may be inaccurate resulting in biased and incorrect outcomes. The objective of this study was to develop and validate a generalizable administrative database case definition for CRS using International Classification of Diseases, 9th edition (ICD-9)-coded claims. A random sample of 100 patients with a guideline-based diagnosis of CRS and 100 control patients were selected and then linked to a Canadian physician claims database from March 31, 2010, to March 31, 2015. The proportion of CRS ICD-9-coded claims (473.x and 471.x) for each of these 200 patients were reviewed and the validity of 7 different ICD-9-based coding algorithms was evaluated. The CRS case definition of ≥2 claims with a CRS ICD-9 code (471.x or 473.x) within 2 years of the reference case provides a balanced validity with a sensitivity of 77% and specificity of 79%. Applying this CRS case definition to the claims database produced a CRS cohort of 51,000 patients with characteristics that were consistent with published demographics and rates of comorbid asthma, allergic rhinitis, and depression. This study has validated several coding algorithms; based on the results a case definition of ≥2 physician claims of CRS (ICD-9 of 471.x or 473.x) within 2 years provides an optimal level of validity. Future studies will need to validate this administrative case definition from different health system perspectives and using larger retrospective chart reviews from multiple providers. © 2016 ARS-AAOA, LLC.
Flowfield computation of entry vehicles
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
1990-01-01
The equations governing the multidimensional flow of a reacting mixture of thermally perfect gasses were derived. The modeling procedures for the various terms of the conservation laws are discussed. A numerical algorithm, based on the finite-volume approach, to solve these conservation equations was developed. The advantages and disadvantages of the present numerical scheme are discussed from the point of view of accuracy, computer time, and memory requirements. A simple one-dimensional model problem was solved to prove the feasibility and accuracy of the algorithm. A computer code implementing the above algorithm was developed and is presently being applied to simple geometries and conditions. Once the code is completely debugged and validated, it will be used to compute the complete unsteady flow field around the Aeroassist Flight Experiment (AFE) body.
The Proteus Navier-Stokes code
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Bui, Trong T.; Cavicchi, Richard H.; Conley, Julianne M.; Molls, Frank B.; Schwab, John R.
1992-01-01
An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes.
Development and validation of an Argentine set of facial expressions of emotion.
Vaiman, Marcelo; Wagner, Mónica Anna; Caicedo, Estefanía; Pereno, Germán Leandro
2017-02-01
Pictures of facial expressions of emotion are used in a wide range of experiments. The last decade has seen an increase in the number of studies presenting local sets of emotion stimuli. However, only a few existing sets contain pictures of Latin Americans, despite the growing attention emotion research is receiving in this region. Here we present the development and validation of the Universidad Nacional de Cordoba, Expresiones de Emociones Faciales (UNCEEF), a Facial Action Coding System (FACS)-verified set of pictures of Argentineans expressing the six basic emotions, plus neutral expressions. FACS scores, recognition rates, Hu scores, and discrimination indices are reported. Evidence of convergent validity was obtained using the Pictures of Facial Affect in an Argentine sample. However, recognition accuracy was greater for UNCEEF. The importance of local sets of emotion pictures is discussed.
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
González-de Paz, Luis; Devant-Altimir, Meritxell; Kostov, Belchin; Mitjavila-López, Joan; Navarro-Rubio, M Dolors; Sisó-Almirall, Antoni
2013-12-01
Assessing ethical endorsement is crucial to the study of professional performance and moral conduct. There are no specific instruments that verify patients and professional experiences of ethical practice in the specific area of primary health care (PHC). To study the psychometric properties of two questionnaires to identify professional and patient endorsement of normative ethics. A methodological study conducted in PHC centres from an urban area (Barcelona). A group of items from an ethical code were generated using a qualitative study with focus groups. Items underwent expert validation, item refinement and test-retest reliability. Two groups of items for PHC professionals and patients were validated. The structure of the constructs and the internal consistency were studied after participants completed the questionnaires. Principal component analysis with supplementary variables showed the utility of the validated questionnaires. The patients' questionnaire consisted of 17 general items plus 11 additional items on specific conditions, and the health professional's contained 24 general and 9 specific items. The construct of the questionnaires comprised a three-factor solution for patients and a five-factor solution for professionals. Principal component analysis with supplementary variables showed that patients with higher scores on ethical perception were associated with better opinions on health care quality and more confidence in professionals. In PHC professionals, higher scores were associated with effective knowledge of the code. Both questionnaires showed good psychometric properties and are valid to screen ethical attitudes. The instrument warrants further testing and use with culturally diverse patients and PHC professionals.
Investigating Cognitive Rhythms as a New Modality for Continuous Authentication
2013-12-01
authorship studies. One of the major accomplishments of this effort is the development and subsequent validation of software codes and methods that are...collection effort was financed by Co-PI Dr. Vir Phoha’s various grants. 3.1.1 Subject Population Characteristics Gender : Male (569), female (427...participant: a) typing experience, b) age, c) gender , d) right- or left-handed, e) native language, f) business language, and g) average number of hours a
Early Results from the Advanced Radiation Protection Thick GCR Shielding Project
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Clowdsley, Martha; Slaba, Tony; Heilbronn, Lawrence; Zeitlin, Cary; Kenny, Sean; Crespo, Luis; Giesy, Daniel; Warner, James; McGirl, Natalie;
2017-01-01
The Advanced Radiation Protection Thick Galactic Cosmic Ray (GCR) Shielding Project leverages experimental and modeling approaches to validate a predicted minimum in the radiation exposure versus shielding depth curve. Preliminary results of space radiation models indicate that a minimum in the dose equivalent versus aluminum shielding thickness may exist in the 20-30 g/cm2 region. For greater shield thickness, dose equivalent increases due to secondary neutron and light particle production. This result goes against the long held belief in the space radiation shielding community that increasing shielding thickness will decrease risk to crew health. A comprehensive modeling effort was undertaken to verify the preliminary modeling results using multiple Monte Carlo and deterministic space radiation transport codes. These results verified the preliminary findings of a minimum and helped drive the design of the experimental component of the project. In first-of-their-kind experiments performed at the NASA Space Radiation Laboratory, neutrons and light ions were measured between large thicknesses of aluminum shielding. Both an upstream and a downstream shield were incorporated into the experiment to represent the radiation environment inside a spacecraft. These measurements are used to validate the Monte Carlo codes and derive uncertainty distributions for exposure estimates behind thick shielding similar to that provided by spacecraft on a Mars mission. Preliminary results for all aspects of the project will be presented.
Systematic Review of Measures Used in Pictorial Cigarette Pack Warning Experiments.
Francis, Diane B; Hall, Marissa G; Noar, Seth M; Ribisl, Kurt M; Brewer, Noel T
2017-10-01
We sought to describe characteristics and psychometric properties of measures used in pictorial cigarette pack warning experiments and provide recommendations for future studies. Our systematic review identified 68 pictorial cigarette pack warning experiments conducted between 2000 and 2016 in 22 countries. Two independent coders coded all studies on study features, including sample characteristics, theoretical framework, and constructs assessed. We also coded measurement characteristics, including construct, number of items, source, reliability, and validity. We identified 278 measures representing 61 constructs. The most commonly assessed construct categories were warning reactions (62% of studies) and perceived effectiveness (60%). The most commonly used outcomes were affective reactions (35%), perceived likelihood of harm (22%), intention to quit smoking (22%), perceptions that warnings motivate people to quit smoking (18%), and credibility (16%). Only 4 studies assessed smoking behavior. More than half (54%) of all measures were single items. For multi-item measures, studies reported reliability data 68% of the time (mean α = 0.88, range α = 0.68-0.98). Studies reported sources of measures only 33% of the time and rarely reported validity data. Of 68 studies, 37 (54%) mentioned a theory as informing the study. Our review found great variability in constructs and measures used to evaluate the impact of cigarette pack pictorial warnings. Many measures were single items with unknown psychometric properties. Recommendations for future studies include a greater emphasis on theoretical models that inform measurement, use of reliable and validated (preferably multi-item) measures, and better reporting of measure sources. Robust and consistent measurement is important for building a strong, cumulative evidence base to support pictorial cigarette pack warning policies. This systematic review of experimental studies of pictorial cigarette warnings demonstrates the need for standardized, theory-based measures. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barani, T.; Bruschi, E.; Pizzocri, D.
The modelling of fission gas behaviour is a crucial aspect of nuclear fuel analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. Experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of burst release in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which ismore » applied as an extension of diffusion-based models to allow for the burst release effect. The concept and governing equations of the model are presented, and the effect of the newly introduced parameters is evaluated through an analytic sensitivity analysis. Then, the model is assessed for application to integral fuel rod analysis. The approach that we take for model assessment involves implementation in two structurally different fuel performance codes, namely, BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D semi-analytic code). The model is validated against 19 Light Water Reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the qualitative representation of the FGR kinetics and the quantitative predictions of integral fuel rod FGR, relative to the canonical, purely diffusion-based models, with both codes. The overall quantitative improvement of the FGR predictions in the two codes is comparable. Furthermore, calculated radial profiles of xenon concentration are investigated and compared to experimental data, demonstrating the representation of the underlying mechanisms of burst release by the new model.« less
Non-local electron transport validation using 2D DRACO simulations
NASA Astrophysics Data System (ADS)
Cao, Duc; Chenhall, Jeff; Moll, Eli; Prochaska, Alex; Moses, Gregory; Delettrez, Jacques; Collins, Tim
2012-10-01
Comparison of 2D DRACO simulations, using a modified versionfootnotetextprivate communications with M. Marinak and G. Zimmerman, LLNL. of the Schurtz, Nicolai and Busquet (SNB) algorithmfootnotetextSchurtz, Nicolai and Busquet, ``A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,'' Phys. Plasmas 7, 4238(2000). for non-local electron transport, with direct drive shock timing experimentsfootnotetextT. Boehly, et. al., ``Multiple spherically converging shock waves in liquid deuterium,'' Phys. Plasmas 18, 092706(2011). and with the Goncharov non-local modelfootnotetextV. Goncharov, et. al., ``Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,'' Phys. Plasmas 13, 012702(2006). in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser Energetics.
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Rumsey, Christopher L.; Huang, George P.
2015-01-01
Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa - omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark
2011-06-01
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.
Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2007-01-01
A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.
Vařeková, Radka Svobodová; Jaiswal, Deepti; Sehnal, David; Ionescu, Crina-Maria; Geidl, Stanislav; Pravda, Lukáš; Horský, Vladimír; Wimmerová, Michaela; Koča, Jaroslav
2014-07-01
Structure validation has become a major issue in the structural biology community, and an essential step is checking the ligand structure. This paper introduces MotiveValidator, a web-based application for the validation of ligands and residues in PDB or PDBx/mmCIF format files provided by the user. Specifically, MotiveValidator is able to evaluate in a straightforward manner whether the ligand or residue being studied has a correct annotation (3-letter code), i.e. if it has the same topology and stereochemistry as the model ligand or residue with this annotation. If not, MotiveValidator explicitly describes the differences. MotiveValidator offers a user-friendly, interactive and platform-independent environment for validating structures obtained by any type of experiment. The results of the validation are presented in both tabular and graphical form, facilitating their interpretation. MotiveValidator can process thousands of ligands or residues in a single validation run that takes no more than a few minutes. MotiveValidator can be used for testing single structures, or the analysis of large sets of ligands or fragments prepared for binding site analysis, docking or virtual screening. MotiveValidator is freely available via the Internet at http://ncbr.muni.cz/MotiveValidator. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Carnahan, Ryan M; Kee, Vicki R
2012-01-01
This paper aimed to systematically review algorithms to identify transfusion-related ABO incompatibility reactions in administrative data, with a focus on studies that have examined the validity of the algorithms. A literature search was conducted using PubMed, Iowa Drug Information Service database, and Embase. A Google Scholar search was also conducted because of the difficulty identifying relevant studies. Reviews were conducted by two investigators to identify studies using data sources from the USA or Canada because these data sources were most likely to reflect the coding practices of Mini-Sentinel data sources. One study was found that validated International Classification of Diseases (ICD-9-CM) codes representing transfusion reactions. None of these cases were ABO incompatibility reactions. Several studies consistently used ICD-9-CM code 999.6, which represents ABO incompatibility reactions, and a technical report identified the ICD-10 code for these reactions. One study included the E-code E8760 for mismatched blood in transfusion in the algorithm. Another study reported finding no ABO incompatibility reaction codes in the Healthcare Cost and Utilization Project Nationwide Inpatient Sample database, which contains data of 2.23 million patients who received transfusions, raising questions about the sensitivity of administrative data for identifying such reactions. Two studies reported perfect specificity, with sensitivity ranging from 21% to 83%, for the code identifying allogeneic red blood cell transfusions in hospitalized patients. There is no information to assess the validity of algorithms to identify transfusion-related ABO incompatibility reactions. Further information on the validity of algorithms to identify transfusions would also be useful. Copyright © 2012 John Wiley & Sons, Ltd.
Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.
2017-10-01
KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.
Status of the Space Radiation Monte Carlos Simulation Based on FLUKA and ROOT
NASA Technical Reports Server (NTRS)
Andersen, Victor; Carminati, Federico; Empl, Anton; Ferrari, Alfredo; Pinsky, Lawrence; Sala, Paola; Wilson, Thomas L.
2002-01-01
The NASA-funded project reported on at the first IWSSRR in Arona to develop a Monte-Carlo simulation program for use in simulating the space radiation environment based on the FLUKA and ROOT codes is well into its second year of development, and considerable progress has been made. The general tasks required to achieve the final goals include the addition of heavy-ion interactions into the FLUKA code and the provision of a ROOT-based interface to FLUKA. The most significant progress to date includes the incorporation of the DPMJET event generator code within FLUKA to handle heavy-ion interactions for incident projectile energies greater than 3GeV/A. The ongoing effort intends to extend the treatment of these interactions down to 10 MeV, and at present two alternative approaches are being explored. The ROOT interface is being pursued in conjunction with the CERN LHC ALICE software team through an adaptation of their existing AliROOT software. As a check on the validity of the code, a simulation of the recent data taken by the ATIC experiment is underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy
Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importancemore » as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.« less
CFD Code Development for Combustor Flows
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
During the lifetime of this grant, work has been performed in the areas of model development, code development, code validation and code application. For model development, this has included the PDF combustion module, chemical kinetics based on thermodynamics, neural network storage of chemical kinetics, ILDM chemical kinetics and assumed PDF work. Many of these models were then implemented in the code, and in addition many improvements were made to the code, including the addition of new chemistry integrators, property evaluation schemes, new chemistry models and turbulence-chemistry interaction methodology. Validation of all new models and code improvements were also performed, while application of the code to the ZCET program and also the NPSS GEW combustor program were also performed. Several important items remain under development, including the NOx post processing, assumed PDF model development and chemical kinetic development. It is expected that this work will continue under the new grant.
Validity of the coding for herpes simplex encephalitis in the Danish National Patient Registry.
Jørgensen, Laura Krogh; Dalgaard, Lars Skov; Østergaard, Lars Jørgen; Andersen, Nanna Skaarup; Nørgaard, Mette; Mogensen, Trine Hyrup
2016-01-01
Large health care databases are a valuable source of infectious disease epidemiology if diagnoses are valid. The aim of this study was to investigate the accuracy of the recorded diagnosis coding of herpes simplex encephalitis (HSE) in the Danish National Patient Registry (DNPR). The DNPR was used to identify all hospitalized patients, aged ≥15 years, with a first-time diagnosis of HSE according to the International Classification of Diseases, tenth revision (ICD-10), from 2004 to 2014. To validate the coding of HSE, we collected data from the Danish Microbiology Database, from departments of clinical microbiology, and from patient medical records. Cases were classified as confirmed, probable, or no evidence of HSE. We estimated the positive predictive value (PPV) of the HSE diagnosis coding stratified by diagnosis type, study period, and department type. Furthermore, we estimated the proportion of HSE cases coded with nonspecific ICD-10 codes of viral encephalitis and also the sensitivity of the HSE diagnosis coding. We were able to validate 398 (94.3%) of the 422 HSE diagnoses identified via the DNPR. Hereof, 202 (50.8%) were classified as confirmed cases and 29 (7.3%) as probable cases providing an overall PPV of 58.0% (95% confidence interval [CI]: 53.0-62.9). For "Encephalitis due to herpes simplex virus" (ICD-10 code B00.4), the PPV was 56.6% (95% CI: 51.1-62.0). Similarly, the PPV for "Meningoencephalitis due to herpes simplex virus" (ICD-10 code B00.4A) was 56.8% (95% CI: 39.5-72.9). "Herpes viral encephalitis" (ICD-10 code G05.1E) had a PPV of 75.9% (95% CI: 56.5-89.7), thereby representing the highest PPV. The estimated sensitivity was 95.5%. The PPVs of the ICD-10 diagnosis coding for adult HSE in the DNPR were relatively low. Hence, the DNPR should be used with caution when studying patients with encephalitis caused by herpes simplex virus.
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.; Park, Young-Keun
2004-01-01
A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.
Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Malcolm J.; Livescu, Daniel; Youngs, David L.
2012-08-14
The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chaptermore » include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details, boundary conditions (and alternative set-ups), initial conditions, and acceleration history (and ways to treat the acceleration ramp at the start of the experiment). This is followed by a section that defines data to be collected from the simulations, with results from the experiments and DNS from Livescu using the CFDNS code, and ILES simulations from Youngs using the compressible TURMOIL code and Andrews using the incompressible RTI3D code. We close the TP with concluding remarks, and Appendices that includes details of the sister Case 115, initial condition specifications for density and pressure fields. The Tilted-Rig Test Problem is intended to serve as a validation problem for RANS models, and as such we have provided ILES and DNS simulations in support of the test problem definition. The generally good agreement between experiment, ILES and DNS supports our assertion that the Tilted-Rig is useful, and the only 2-D TP that can be used to validate RANS models.« less
Martin, Caroline J Hollins; Kenney, Laurence; Pratt, Thomas; Granat, Malcolm H
2015-01-01
There is limited understanding of the type and extent of maternal postures that midwives should encourage or support during labor. The aims of this study were to identify a set of postures and movements commonly seen during labor, to develop an activity monitoring system for use during labor, and to validate this system design. Volunteer student midwives simulated maternal activity during labor in a laboratory setting. Participants (N = 15) wore monitors adhered to the left thigh and left shank, and adopted 13 common postures of laboring women for 3 minutes each. Simulated activities were recorded using a video camera. Postures and movements were coded from the video, and statistical analysis conducted of agreement between coded video data and outputs of the activity monitoring system. Excellent agreement between the 2 raters of the video recordings was found (Cohen's κ = 0.95). Both sensitivity and specificity of the activity monitoring system were greater than 80% for standing, lying, kneeling, and sitting (legs dangling). This validated system can be used to measure elected activity of laboring women and report on effects of postures on length of first stage, pain experience, birth satisfaction, and neonatal condition. This validated maternal posture-monitoring system is available as a reference-and for use by researchers who wish to develop research in this area. © 2015 by the American College of Nurse-Midwives.
Li, Tingwen; Rogers, William A.; Syamlal, Madhava; ...
2016-07-29
Here, the MFiX suite of multiphase computational fluid dynamics (CFD) codes is being developed at U.S. Department of Energy's National Energy Technology Laboratory (NETL). It includes several different approaches to multiphase simulation: MFiX-TFM, a two-fluid (Eulerian–Eulerian) model; MFiX-DEM, an Eulerian fluid model with a Lagrangian Discrete Element Model for the solids phase; and MFiX-PIC, Eulerian fluid model with Lagrangian particle ‘parcels’ representing particle groups. These models are undergoing continuous development and application, with verification, validation, and uncertainty quantification (VV&UQ) as integrated activities. After a brief summary of recent progress in the verification, validation and uncertainty quantification (VV&UQ), this article highlightsmore » two recent accomplishments in the application of MFiX-TFM to fossil energy technology development. First, recent application of MFiX to the pilot-scale KBR TRIG™ Transport Gasifier located at DOE's National Carbon Capture Center (NCCC) is described. Gasifier performance over a range of operating conditions was modeled and compared to NCCC operational data to validate the ability of the model to predict parametric behavior. Second, comparison of code predictions at a detailed fundamental scale is presented studying solid sorbents for the post-combustion capture of CO 2 from flue gas. Specifically designed NETL experiments are being used to validate hydrodynamics and chemical kinetics for the sorbent-based carbon capture process.« less
ERIC Educational Resources Information Center
Arffman, Inga
2016-01-01
Open-ended (OE) items are widely used to gather data on student performance in international achievement studies. However, several factors may threaten validity when using such items. This study examined Finnish coders' opinions about threats to validity when coding responses to OE items in the PISA 2012 problem-solving test. A total of 6…
Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing
NASA Astrophysics Data System (ADS)
Salamone, Joseph A., III
Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.
Validation of Design and Analysis Techniques of Tailored Composite Structures
NASA Technical Reports Server (NTRS)
Jegley, Dawn C. (Technical Monitor); Wijayratne, Dulnath D.
2004-01-01
Aeroelasticity is the relationship between the elasticity of an aircraft structure and its aerodynamics. This relationship can cause instabilities such as flutter in a wing. Engineers have long studied aeroelasticity to ensure such instabilities do not become a problem within normal operating conditions. In recent decades structural tailoring has been used to take advantage of aeroelasticity. It is possible to tailor an aircraft structure to respond favorably to multiple different flight regimes such as takeoff, landing, cruise, 2-g pull up, etc. Structures can be designed so that these responses provide an aerodynamic advantage. This research investigates the ability to design and analyze tailored structures made from filamentary composites. Specifically the accuracy of tailored composite analysis must be verified if this design technique is to become feasible. To pursue this idea, a validation experiment has been performed on a small-scale filamentary composite wing box. The box is tailored such that its cover panels induce a global bend-twist coupling under an applied load. Two types of analysis were chosen for the experiment. The first is a closed form analysis based on a theoretical model of a single cell tailored box beam and the second is a finite element analysis. The predicted results are compared with the measured data to validate the analyses. The comparison of results show that the finite element analysis is capable of predicting displacements and strains to within 10% on the small-scale structure. The closed form code is consistently able to predict the wing box bending to 25% of the measured value. This error is expected due to simplifying assumptions in the closed form analysis. Differences between the closed form code representation and the wing box specimen caused large errors in the twist prediction. The closed form analysis prediction of twist has not been validated from this test.
Validation of NASA Thermal Ice Protection Computer Codes Part 2 - LEWICE/Thermal
DOT National Transportation Integrated Search
1996-01-01
The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center: LEWICE/Thermal 1 (electrothermal de-icing and anti-icing), and ANTICE 2 (hot gas and el...
Scaglione, John M.; Mueller, Don E.; Wagner, John C.
2014-12-01
One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (k eff) evaluations based on best-available data andmore » methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate k eff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the application model. Finally, this paper provides a detailed description of the approach and its technical bases, describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models, and provides reference bias results based on the prerelease SCALE 6.1 code package and ENDF/B-VII nuclear cross-section data.« less
NASA Technical Reports Server (NTRS)
Simon, Terrence W.; Adolfson, David
2006-01-01
The work to be presented herein was motivated largely by a desire to improve the understanding of oscillatory fluid mechanics inside a Stirling engine. To this end, a CFD project was undertaken at Cleveland State University with the goal of accurately predicting the fluid dynamics within an engine or engine component. Along with the CFD efforts, a code validation project was undertaken at the University of Minnesota. The material covered herein consists of four main parts. In section 1, an experimental investigation of a small aspect ratio impinging jet is discussed. Included in this discussion is a description of the test facilities and instrumentation. A presentation of the collected data is given and comments are made. Next, in section 2, a parallel experimental investigation is presented in which the same geometry as that of section 1 is used, but the flow conditions are changed from steady unidirectional flow to sinusoidally oscillating flow. In section Two, collected data are presented and comments are made. In section 3, a comparison is made between the results of sections 1 and 2, namely, sinusoidally oscillating flow results are compared to steady, unidirectional flow results from the same geometry. Finally, in section 4, a comparison is made between experimentally collected data (the main subject of this work) and CFD generated results. Furthermore, in appendix A, an introductory description of the primary measurement tool used in the experimental process the hot wire anemometer is given for the unfamiliar. The anemometer calibration procedure is described in appendix B. A portfolio of data reduction and data processing codes is provided in appendix C and lastly, a DVD and a roadmap of its contents is provided in an appendix D. 1.0 Unidirectional Flow Investigations 1.1 Introduction This unidirectional experimental program was undertaken to complement an oscillatory flow investigation conducted at the University of Minnesota. The oscillatory investigation is discussed thoroughly in section 2. We defer the description of the motivation behind these experiments until the introduction of section 2. The work that is discussed in this thesis began (chronologically) with oscillatory flow visualization experiments. It was decided that it would be valuable and important to investigate the flow under unidirectional conditions in the same geometry as that of the oscillatory experiments. The thought was that the unidirectional case would be less complicated to model with a CFD program (a moving boundary would be replaced with a steady state boundary condition). Thus, a series of unidirectional experiments were carried out to capture the important features of the flow within the test section. The purpose of these experiments was to provide a data set for comparison to CFD generated velocity fields. Hot-wire anemometry data were taken and flow visualization was conducted as a standard for code validation. The flow geometry was simple, such that it could be easily gridded in a CFD program. However, the geometry provided separation and transition zones, shear layers and recirculation zones. These characteristics made the flow complex and challenging for CFD computation. We comment that the order of experiments that produced this report is as follows: experimental flow visualization under oscillatory flow conditions was carried out; this was followed by unidirectional flow visualization and hot wire anemometry; finally, oscillatory hot wire anemometry was conducted. We present the results out of chronological order for the following reason: the unidirectional results are easier
New Gear Transmission Error Measurement System Designed
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2001-01-01
The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
THRSTER: A THRee-STream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
THRSTER: A Three-Stream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.; Komar, D. R. (Technical Monitor)
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
Validation of Ray Tracing Code Refraction Effects
NASA Technical Reports Server (NTRS)
Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.
2008-01-01
NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.
Validation of a Communication Process Measure for Coding Control in Counseling.
ERIC Educational Resources Information Center
Heatherington, Laurie
The increasingly popular view of the counseling process from an interactional perspective necessitates the development of new measurement instruments which are suitable to the study of the reciprocal interaction between people. The validity of the Relational Communication Coding System, an instrument which operationalizes the constructs of…
McNamee, J P; Bellier, P V
2015-07-01
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), our laboratory examined ampicillin trihydrate (AMP), 1,2-dimethylhydrazine dihydrochloride (DMH), and N-nitrosodimethylamine (NDA) using a standard comet assay validation protocol (v14.2) developed by the JaCVAM validation management team (VMT). Coded samples were received by our laboratory along with basic MSDS information. Solubility analysis and range-finding experiments of the coded test compounds were conducted for dose selection. Animal dosing schedules, the comet assay processing and analysis, and statistical analysis were conducted in accordance with the standard protocol. Based upon our blinded evaluation, AMP was not found to exhibit evidence of genotoxicity in either the rat liver or stomach. However, both NDA and DMH were observed to cause a significant increase in % tail DNA in the rat liver at all dose levels tested. While acute hepatoxicity was observed for these compounds in the high dose group, in the investigators opinion there were a sufficient number of consistently damaged/measurable cells at the medium and low dose groups to judge these compounds as genotoxic. There was no evidence of genotoxicity from either NDA or DMH in the rat stomach. In conclusion, our laboratory observed increased DNA damage from two blinded test compounds in rat liver (later identified as genotoxic carcinogens), while no evidence of genotoxicity was observed for the third blinded test compound (later identified as a non-genotoxic, non-carcinogen). This data supports the use of a standardized protocol of the in vivo comet assay as a cost-effective alternative genotoxicity assay for regulatory testing purposes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1996-01-01
The objectives of the last six months were: (1) Complete sensitivity analysis of fluorescence; line height algorithms (2) Deliver fluorescence algorithm code and test data to the University of Miami for integration; (3) Complete analysis of bio-optical data from Southern Ocean cruise; (4) Conduct laboratory experiments based on analyses of field data; (5) Analyze data from bio-optical mooring off Hawaii; (6) Develop calibration/validation plan for MODIS fluorescence data; (7) Respond to the Japanese Research Announcement for GLI; and (8) Continue to review plans for EOSDIS and assist ECS contractor.
CERT TST November 2016 Visit Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, Robert Currier; Bailey, Teresa S.; Kahler, III, Albert Comstock
2017-04-27
The dozen plus presentations covered the span of the Center’s activities, including experimental progress, simulations of the experiments (both for calibration and validation), UQ analysis, nuclear data impacts, status of simulation codes, methods development, computational science progress, and plans for upcoming priorities. All three institutions comprising the Center (Texas A&M, University of Colorado Boulder, and Simon Fraser University) were represented. Center-supported students not only gave two of the oral presentations, but also highlighted their research in a number of excellent posters.
Swept shock/boundary layer interaction experiments in support of CFD code validation
NASA Technical Reports Server (NTRS)
Settles, G. S.; Lee, Y.
1990-01-01
Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.
Rapid Trust Establishment for Transient Use of Unmanaged Hardware
2006-12-01
unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: Establishing...Validate OS Trusted Host OS (From Disk) Validate App 1 Untrusted code Trusted code (a) Boot with trust initiator ( b ) Boot trusted Host OS (c) Launch...be validated. Execution of process with Id 3535 has been blocked to minimize security risks. ( b ) Notification to the user from the trust alerter
The 2014 Sandia Verification and Validation Challenge: Problem statement
Hu, Kenneth; Orient, George
2016-01-18
This paper presents a case study in utilizing information from experiments, models, and verification and validation (V&V) to support a decision. It consists of a simple system with data and models provided, plus a safety requirement to assess. The goal is to pose a problem that is flexible enough to allow challengers to demonstrate a variety of approaches, but constrained enough to focus attention on a theme. This was accomplished by providing a good deal of background information in addition to the data, models, and code, but directing the participants' activities with specific deliverables. In this challenge, the theme ismore » how to gather and present evidence about the quality of model predictions, in order to support a decision. This case study formed the basis of the 2014 Sandia V&V Challenge Workshop and this resulting special edition of the ASME Journal of Verification, Validation, and Uncertainty Quantification.« less
Computation of H2/air reacting flowfields in drag-reduction external combustion
NASA Technical Reports Server (NTRS)
Lai, H. T.
1992-01-01
Numerical simulation and analysis of the solution are presented for a laminar reacting flowfield of air and hydrogen in the case of external combustion employed to reduce base drag in hypersonic vehicles operating at transonic speeds. The flowfield consists of a transonic air stream at a Mach number of 1.26 and a sonic transverse hydrogen injection along a row of 26 orifices. Self-sustained combustion is computed over an expansion ramp downstream of the injection and a flameholder, using the recently developed RPLUS code. Measured data is available only for surface pressure distributions and is used for validation of the code in practical 3D reacting flowfields. Pressure comparison shows generally good agreements, and the main effects of combustion are also qualitatively consistent with experiment.
Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data
NASA Technical Reports Server (NTRS)
Ruf, J. H.
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.
A Novel Motion Compensation Method for Random Stepped Frequency Radar with M-sequence
NASA Astrophysics Data System (ADS)
Liao, Zhikun; Hu, Jiemin; Lu, Dawei; Zhang, Jun
2018-01-01
The random stepped frequency radar is a new kind of synthetic wideband radar. In the research, it has been found that it possesses a thumbtack-like ambiguity function which is considered to be the ideal one. This also means that only a precise motion compensation could result in the correct high resolution range profile. In this paper, we will introduce the random stepped frequency radar coded by M-sequence firstly and briefly analyse the effect of relative motion between target and radar on the distance imaging, which is called defocusing problem. Then, a novel motion compensation method, named complementary code cancellation, will be put forward to solve this problem. Finally, the simulated experiments will demonstrate its validity and the computational analysis will show up its efficiency.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1992-01-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Astrophysics Data System (ADS)
Chitsomboon, Tawit
1992-02-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Evaluation in industry of a draft code of practice for manual handling.
Ashby, Liz; Tappin, David; Bentley, Tim
2004-05-01
This paper reports findings from a study which evaluated the draft New Zealand Code of Practice for Manual Handling. The evaluation assessed the ease of use, applicability and validity of the Code and in particular the associated manual handling hazard assessment tools, within New Zealand industry. The Code was studied in a sample of eight companies from four sectors of industry. Subjective feedback and objective findings indicated that the Code was useful, applicable and informative. The manual handling hazard assessment tools incorporated in the Code could be adequately applied by most users, with risk assessment outcomes largely consistent with the findings of researchers using more specific ergonomics methodologies. However, some changes were recommended to the risk assessment tools to improve usability and validity. The evaluation concluded that both the Code and the tools within it would benefit from simplification, improved typography and layout, and industry-specific information on manual handling hazards.
Validation of Living Donor Nephrectomy Codes
Lam, Ngan N.; Lentine, Krista L.; Klarenbach, Scott; Sood, Manish M.; Kuwornu, Paul J.; Naylor, Kyla L.; Knoll, Gregory A.; Kim, S. Joseph; Young, Ann; Garg, Amit X.
2018-01-01
Background: Use of administrative data for outcomes assessment in living kidney donors is increasing given the rarity of complications and challenges with loss to follow-up. Objective: To assess the validity of living donor nephrectomy in health care administrative databases compared with the reference standard of manual chart review. Design: Retrospective cohort study. Setting: 5 major transplant centers in Ontario, Canada. Patients: Living kidney donors between 2003 and 2010. Measurements: Sensitivity and positive predictive value (PPV). Methods: Using administrative databases, we conducted a retrospective study to determine the validity of diagnostic and procedural codes for living donor nephrectomies. The reference standard was living donor nephrectomies identified through the province’s tissue and organ procurement agency, with verification by manual chart review. Operating characteristics (sensitivity and PPV) of various algorithms using diagnostic, procedural, and physician billing codes were calculated. Results: During the study period, there were a total of 1199 living donor nephrectomies. Overall, the best algorithm for identifying living kidney donors was the presence of 1 diagnostic code for kidney donor (ICD-10 Z52.4) and 1 procedural code for kidney procurement/excision (1PC58, 1PC89, 1PC91). Compared with the reference standard, this algorithm had a sensitivity of 97% and a PPV of 90%. The diagnostic and procedural codes performed better than the physician billing codes (sensitivity 60%, PPV 78%). Limitations: The donor chart review and validation study was performed in Ontario and may not be generalizable to other regions. Conclusions: An algorithm consisting of 1 diagnostic and 1 procedural code can be reliably used to conduct health services research that requires the accurate determination of living kidney donors at the population level. PMID:29662679
Billing code algorithms to identify cases of peripheral artery disease from administrative data
Fan, Jin; Arruda-Olson, Adelaide M; Leibson, Cynthia L; Smith, Carin; Liu, Guanghui; Bailey, Kent R; Kullo, Iftikhar J
2013-01-01
Objective To construct and validate billing code algorithms for identifying patients with peripheral arterial disease (PAD). Methods We extracted all encounters and line item details including PAD-related billing codes at Mayo Clinic Rochester, Minnesota, between July 1, 1997 and June 30, 2008; 22 712 patients evaluated in the vascular laboratory were divided into training and validation sets. Multiple logistic regression analysis was used to create an integer code score from the training dataset, and this was tested in the validation set. We applied a model-based code algorithm to patients evaluated in the vascular laboratory and compared this with a simpler algorithm (presence of at least one of the ICD-9 PAD codes 440.20–440.29). We also applied both algorithms to a community-based sample (n=4420), followed by a manual review. Results The logistic regression model performed well in both training and validation datasets (c statistic=0.91). In patients evaluated in the vascular laboratory, the model-based code algorithm provided better negative predictive value. The simpler algorithm was reasonably accurate for identification of PAD status, with lesser sensitivity and greater specificity. In the community-based sample, the sensitivity (38.7% vs 68.0%) of the simpler algorithm was much lower, whereas the specificity (92.0% vs 87.6%) was higher than the model-based algorithm. Conclusions A model-based billing code algorithm had reasonable accuracy in identifying PAD cases from the community, and in patients referred to the non-invasive vascular laboratory. The simpler algorithm had reasonable accuracy for identification of PAD in patients referred to the vascular laboratory but was significantly less sensitive in a community-based sample. PMID:24166724
DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.
2004-01-01
The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.
2004-01-01
The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
Model for intensity calculation in electron guns
NASA Astrophysics Data System (ADS)
Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.
2007-04-01
The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marelle, V.; Dubois, S.; Ripert, M.
2008-07-15
MAIA is a thermo-mechanical code dedicated to the modeling of MTR fuel plates. The main physical phenomena modeled in the code are the cladding oxidation, the interaction between fuel and Al-matrix, the swelling due to fission products and the Al/fuel particles interaction. The creeping of the plate can be modeled in the mechanical calculation. MAIA has been validated on U-Mo dispersion fuel experiments such as IRIS 1 and 2 and FUTURE. The results are in rather good agreement with post-irradiation examinations. MAIA can also be used to calculate in-pile behavior of U{sub 3}Si{sub 2} plates as in the SHARE experimentmore » irradiated in the SCK/Mol BR2 reactor. The main outputs given by MAIA throughout the irradiation are temperatures, cladding oxidation thickness, interaction thickness, volume fraction of meat constituents, swelling, displacements, strains and stresses. MAIA is originally a two-dimensional code but a three-dimensional version is currently under development. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Lindsay
This milestone presents a demonstration of the High-to-Low (Hi2Lo) process in the VVI focus area. Validation and additional calculations with the commercial computational fluid dynamics code, STAR-CCM+, were performed using a 5x5 fuel assembly with non-mixing geometry and spacer grids. This geometry was based on the benchmark experiment provided by Westinghouse. Results from the simulations were compared to existing experimental data and to the subchannel thermal-hydraulics code COBRA-TF (CTF). An uncertainty quantification (UQ) process was developed for the STAR-CCM+ model and results of the STAR UQ were communicated to CTF. Results from STAR-CCM+ simulations were used as experimental design pointsmore » in CTF to calibrate the mixing parameter β and compared to results obtained using experimental data points. This demonstrated that CTF’s β parameter can be calibrated to match existing experimental data more closely. The Hi2Lo process for the STAR-CCM+/CTF code coupling was documented in this milestone and closely linked L3:VVI.H2LP15.01 milestone report.« less
Validation Data and Model Development for Fuel Assembly Response to Seismic Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardet, Philippe; Ricciardi, Guillaume
2016-01-31
Vibrations are inherently present in nuclear reactors, especially in cores and steam generators of pressurized water reactors (PWR). They can have significant effects on local heat transfer and wear and tear in the reactor and often set safety margins. The simulation of these multiphysics phenomena from first principles requires the coupling of several codes, which is one the most challenging tasks in modern computer simulation. Here an ambitious multiphysics multidisciplinary validation campaign is conducted. It relied on an integrated team of experimentalists and code developers to acquire benchmark and validation data for fluid-structure interaction codes. Data are focused on PWRmore » fuel bundle behavior during seismic transients.« less
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
Woman's experiences of applying for a divorce
Zandiyeh, Zahra; Yousefi, Hojatollah
2014-01-01
Background: Divorce is one of the most controversial and damaging social issues. Since the divorce rates are increasing rapidly, the current study evaluated the effects of factors leading to divorce application. Materials and Methods: This qualitative content analysis used purposive sampling to select 10 female divorce applicants at Isfahan Department of Justice (Isfahan, Iran). In-depth interviews were used for data collection. The contents of the interviews were transcribed verbatim and analyzed using a phenomenological method. The reliability and validity, i.e. real values, applicability, stability, and fact-based results, were ensured through relevant measures. Results: Overall, 110 codes were extracted from the interviews. The codes were organized in 18 subthemes and seven main themes. The main themes included experiences of violence, cultural factors, family factors, financial factors, safety factors, experiences of promiscuity, and social factors. Conclusion: Different individual, social, and cultural factors may lead to divorce. The first step in reducing divorce rates is to identify the most important and influential risk factors for divorce. Community health nurses will then be able to help the families solve their problems. In general, eliminating the causes of divorce can prevent its severe consequences at individual, family, and social levels. PMID:24834086
Multi-GNSS precise point positioning (MGPPP) using raw observations
NASA Astrophysics Data System (ADS)
Liu, Teng; Yuan, Yunbin; Zhang, Baocheng; Wang, Ningbo; Tan, Bingfeng; Chen, Yongchang
2017-03-01
A joint-processing model for multi-GNSS (GPS, GLONASS, BDS and GALILEO) precise point positioning (PPP) is proposed, in which raw code and phase observations are used. In the proposed model, inter-system biases (ISBs) and GLONASS code inter-frequency biases (IFBs) are carefully considered, among which GLONASS code IFBs are modeled as a linear function of frequency numbers. To get the full rank function model, the unknowns are re-parameterized and the estimable slant ionospheric delays and ISBs/IFBs are derived and estimated simultaneously. One month of data in April, 2015 from 32 stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) tracking network have been used to validate the proposed model. Preliminary results show that RMS values of the positioning errors (with respect to external double-difference solutions) for static/kinematic solutions (four systems) are 6.2 mm/2.1 cm (north), 6.0 mm/2.2 cm (east) and 9.3 mm/4.9 cm (up). One-day stabilities of the estimated ISBs described by STD values are 0.36 and 0.38 ns, for GLONASS and BDS, respectively. Significant ISB jumps are identified between adjacent days for all stations, which are caused by the different satellite clock datums in different days and for different systems. Unlike ISBs, the estimated GLONASS code IFBs are quite stable for all stations, with an average STD of 0.04 ns over a month. Single-difference experiment of short baseline shows that PPP ionospheric delays are more precise than traditional leveling ionospheric delays.
Validation: Codes to compare simulation data to various observations
NASA Astrophysics Data System (ADS)
Cohn, J. D.
2017-02-01
Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.
Barnado, April; Casey, Carolyn; Carroll, Robert J; Wheless, Lee; Denny, Joshua C; Crofford, Leslie J
2017-05-01
To study systemic lupus erythematosus (SLE) in the electronic health record (EHR), we must accurately identify patients with SLE. Our objective was to develop and validate novel EHR algorithms that use International Classification of Diseases, Ninth Revision (ICD-9), Clinical Modification codes, laboratory testing, and medications to identify SLE patients. We used Vanderbilt's Synthetic Derivative, a de-identified version of the EHR, with 2.5 million subjects. We selected all individuals with at least 1 SLE ICD-9 code (710.0), yielding 5,959 individuals. To create a training set, 200 subjects were randomly selected for chart review. A subject was defined as a case if diagnosed with SLE by a rheumatologist, nephrologist, or dermatologist. Positive predictive values (PPVs) and sensitivity were calculated for combinations of code counts of the SLE ICD-9 code, a positive antinuclear antibody (ANA), ever use of medications, and a keyword of "lupus" in the problem list. The algorithms with the highest PPV were each internally validated using a random set of 100 individuals from the remaining 5,759 subjects. The algorithm with the highest PPV at 95% in the training set and 91% in the validation set was 3 or more counts of the SLE ICD-9 code, ANA positive (≥1:40), and ever use of both disease-modifying antirheumatic drugs and steroids, while excluding individuals with systemic sclerosis and dermatomyositis ICD-9 codes. We developed and validated the first EHR algorithm that incorporates laboratory values and medications with the SLE ICD-9 code to identify patients with SLE accurately. © 2016, American College of Rheumatology.
VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.
2015-12-01
A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
NASA Rotor 37 CFD Code Validation: Glenn-HT Code
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2010-01-01
In order to advance the goals of NASA aeronautics programs, it is necessary to continuously evaluate and improve the computational tools used for research and design at NASA. One such code is the Glenn-HT code which is used at NASA Glenn Research Center (GRC) for turbomachinery computations. Although the code has been thoroughly validated for turbine heat transfer computations, it has not been utilized for compressors. In this work, Glenn-HT was used to compute the flow in a transonic compressor and comparisons were made to experimental data. The results presented here are in good agreement with this data. Most of the measures of performance are well within the measurement uncertainties and the exit profiles of interest agree with the experimental measurements.
Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests
NASA Astrophysics Data System (ADS)
Stewart, Gordon; Muskulus, Michael
2016-09-01
Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica
2013-01-01
Background Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC ICD-9 codes, and evaluated whether natural language processing (NLP) by the Automated Retrieval Console (ARC) for document classification improves HCC identification. Methods We identified a cohort of patients with ICD-9 codes for HCC during 2005–2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared to manual classification. PPV, sensitivity, and specificity of ARC were calculated. Results 1138 patients with HCC were identified by ICD-9 codes. Based on manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. Conclusion A combined approach of ICD-9 codes and NLP of pathology and radiology reports improves HCC case identification in automated data. PMID:23929403
Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica
2016-02-01
Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC International Classification of Diseases, 9th Revision (ICD-9) codes, and evaluated whether natural language processing by the Automated Retrieval Console (ARC) for document classification improves HCC identification. We identified a cohort of patients with ICD-9 codes for HCC during 2005-2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared with manual classification. PPV, sensitivity, and specificity of ARC were calculated. A total of 1138 patients with HCC were identified by ICD-9 codes. On the basis of manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. A combined approach of ICD-9 codes and natural language processing of pathology and radiology reports improves HCC case identification in automated data.
Gupta, Sumit; Nathan, Paul C; Baxter, Nancy N; Lau, Cindy; Daly, Corinne; Pole, Jason D
2018-06-01
Despite the importance of estimating population level cancer outcomes, most registries do not collect critical events such as relapse. Attempts to use health administrative data to identify these events have focused on older adults and have been mostly unsuccessful. We developed and tested administrative data-based algorithms in a population-based cohort of adolescents and young adults with cancer. We identified all Ontario adolescents and young adults 15-21 years old diagnosed with leukemia, lymphoma, sarcoma, or testicular cancer between 1992-2012. Chart abstraction determined the end of initial treatment (EOIT) date and subsequent cancer-related events (progression, relapse, second cancer). Linkage to population-based administrative databases identified fee and procedure codes indicating cancer treatment or palliative care. Algorithms determining EOIT based on a time interval free of treatment-associated codes, and new cancer-related events based on billing codes, were compared with chart-abstracted data. The cohort comprised 1404 patients. Time periods free of treatment-associated codes did not validly identify EOIT dates; using subsequent codes to identify new cancer events was thus associated with low sensitivity (56.2%). However, using administrative data codes that occurred after the EOIT date based on chart abstraction, the first cancer-related event was identified with excellent validity (sensitivity, 87.0%; specificity, 93.3%; positive predictive value, 81.5%; negative predictive value, 95.5%). Although administrative data alone did not validly identify cancer-related events, administrative data in combination with chart collected EOIT dates was associated with excellent validity. The collection of EOIT dates by cancer registries would significantly expand the potential of administrative data linkage to assess cancer outcomes.
Damping in Space Constructions
NASA Astrophysics Data System (ADS)
de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik
2014-06-01
Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.
Bhattacharya, Moumita; Jurkovitz, Claudine; Shatkay, Hagit
2018-04-12
Patients associated with multiple co-occurring health conditions often face aggravated complications and less favorable outcomes. Co-occurring conditions are especially prevalent among individuals suffering from kidney disease, an increasingly widespread condition affecting 13% of the general population in the US. This study aims to identify and characterize patterns of co-occurring medical conditions in patients employing a probabilistic framework. Specifically, we apply topic modeling in a non-traditional way to find associations across SNOMED-CT codes assigned and recorded in the EHRs of >13,000 patients diagnosed with kidney disease. Unlike most prior work on topic modeling, we apply the method to codes rather than to natural language. Moreover, we quantitatively evaluate the topics, assessing their tightness and distinctiveness, and also assess the medical validity of our results. Our experiments show that each topic is succinctly characterized by a few highly probable and unique disease codes, indicating that the topics are tight. Furthermore, inter-topic distance between each pair of topics is typically high, illustrating distinctiveness. Last, most coded conditions grouped together within a topic, are indeed reported to co-occur in the medical literature. Notably, our results uncover a few indirect associations among conditions that have hitherto not been reported as correlated in the medical literature. Copyright © 2018. Published by Elsevier Inc.
Prediction of Turbulence-Generated Noise in Unheated Jets. Part 2; JeNo Users' Manual (Version 1.0)
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Wolter, John D.; Koch, L. Danielle
2009-01-01
JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.
Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel
NASA Astrophysics Data System (ADS)
Edelmann, Paul G.
There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.
HEVC for high dynamic range services
NASA Astrophysics Data System (ADS)
Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew
2015-09-01
Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.
2010-01-01
Background In recent years, several primary care databases recording information from computerized medical records have been established and used for quality assessment of medical care and research. However, to be useful for research purposes, the data generated routinely from every day practice require registration of high quality. In this study we aimed to investigate (i) the frequency and validity of ICD code and drug prescription registration in the new Skaraborg primary care database (SPCD) and (ii) to investigate the sources of variation in this registration. Methods SPCD contains anonymous electronic medical records (ProfDoc III) automatically retrieved from all 24 public health care centres (HCC) in Skaraborg, Sweden. The frequencies of ICD code registration for the selected diagnoses diabetes mellitus, hypertension and chronic cardiovascular disease and the relevant drug prescriptions in the time period between May 2002 and October 2003 were analysed. The validity of data registration in the SPCD was assessed in a random sample of 50 medical records from each HCC (n = 1200 records) using the medical record text as gold standard. The variance of ICD code registration was studied with multi-level logistic regression analysis and expressed as median odds ratio (MOR). Results For diabetes mellitus and hypertension ICD codes were registered in 80-90% of cases, while for congestive heart failure and ischemic heart disease ICD codes were registered more seldom (60-70%). Drug prescription registration was overall high (88%). A correlation between the frequency of ICD coded visits and the sensitivity of the ICD code registration was found for hypertension and congestive heart failure but not for diabetes or ischemic heart disease. The frequency of ICD code registration varied from 42 to 90% between HCCs, and the greatest variation was found at the physician level (MORPHYSICIAN = 4.2 and MORHCC = 2.3). Conclusions Since the frequency of ICD code registration varies between different diagnoses, each diagnosis must be separately validated. Improved frequency and quality of ICD code registration might be achieved by interventions directed towards the physicians where the greatest amount of variation was found. PMID:20416069
Hjerpe, Per; Merlo, Juan; Ohlsson, Henrik; Bengtsson Boström, Kristina; Lindblad, Ulf
2010-04-23
In recent years, several primary care databases recording information from computerized medical records have been established and used for quality assessment of medical care and research. However, to be useful for research purposes, the data generated routinely from every day practice require registration of high quality. In this study we aimed to investigate (i) the frequency and validity of ICD code and drug prescription registration in the new Skaraborg primary care database (SPCD) and (ii) to investigate the sources of variation in this registration. SPCD contains anonymous electronic medical records (ProfDoc III) automatically retrieved from all 24 public health care centres (HCC) in Skaraborg, Sweden. The frequencies of ICD code registration for the selected diagnoses diabetes mellitus, hypertension and chronic cardiovascular disease and the relevant drug prescriptions in the time period between May 2002 and October 2003 were analysed. The validity of data registration in the SPCD was assessed in a random sample of 50 medical records from each HCC (n = 1200 records) using the medical record text as gold standard. The variance of ICD code registration was studied with multi-level logistic regression analysis and expressed as median odds ratio (MOR). For diabetes mellitus and hypertension ICD codes were registered in 80-90% of cases, while for congestive heart failure and ischemic heart disease ICD codes were registered more seldom (60-70%). Drug prescription registration was overall high (88%). A correlation between the frequency of ICD coded visits and the sensitivity of the ICD code registration was found for hypertension and congestive heart failure but not for diabetes or ischemic heart disease.The frequency of ICD code registration varied from 42 to 90% between HCCs, and the greatest variation was found at the physician level (MORPHYSICIAN = 4.2 and MORHCC = 2.3). Since the frequency of ICD code registration varies between different diagnoses, each diagnosis must be separately validated. Improved frequency and quality of ICD code registration might be achieved by interventions directed towards the physicians where the greatest amount of variation was found.
Validity of the coding for herpes simplex encephalitis in the Danish National Patient Registry
Jørgensen, Laura Krogh; Dalgaard, Lars Skov; Østergaard, Lars Jørgen; Andersen, Nanna Skaarup; Nørgaard, Mette; Mogensen, Trine Hyrup
2016-01-01
Background Large health care databases are a valuable source of infectious disease epidemiology if diagnoses are valid. The aim of this study was to investigate the accuracy of the recorded diagnosis coding of herpes simplex encephalitis (HSE) in the Danish National Patient Registry (DNPR). Methods The DNPR was used to identify all hospitalized patients, aged ≥15 years, with a first-time diagnosis of HSE according to the International Classification of Diseases, tenth revision (ICD-10), from 2004 to 2014. To validate the coding of HSE, we collected data from the Danish Microbiology Database, from departments of clinical microbiology, and from patient medical records. Cases were classified as confirmed, probable, or no evidence of HSE. We estimated the positive predictive value (PPV) of the HSE diagnosis coding stratified by diagnosis type, study period, and department type. Furthermore, we estimated the proportion of HSE cases coded with nonspecific ICD-10 codes of viral encephalitis and also the sensitivity of the HSE diagnosis coding. Results We were able to validate 398 (94.3%) of the 422 HSE diagnoses identified via the DNPR. Hereof, 202 (50.8%) were classified as confirmed cases and 29 (7.3%) as probable cases providing an overall PPV of 58.0% (95% confidence interval [CI]: 53.0–62.9). For “Encephalitis due to herpes simplex virus” (ICD-10 code B00.4), the PPV was 56.6% (95% CI: 51.1–62.0). Similarly, the PPV for “Meningoencephalitis due to herpes simplex virus” (ICD-10 code B00.4A) was 56.8% (95% CI: 39.5–72.9). “Herpes viral encephalitis” (ICD-10 code G05.1E) had a PPV of 75.9% (95% CI: 56.5–89.7), thereby representing the highest PPV. The estimated sensitivity was 95.5%. Conclusion The PPVs of the ICD-10 diagnosis coding for adult HSE in the DNPR were relatively low. Hence, the DNPR should be used with caution when studying patients with encephalitis caused by herpes simplex virus. PMID:27330328
Working group summary report on effects of pulsed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, T.A.; Ni, L.
1996-06-01
In a short pulsed spallation neutron source, extremely high energy ({approx_gt}1 GeV) proton beam pulses are injected into a liquid metal target in a very short period of time ({approximately}1 {mu}sec) at a high repetition rate ({approximately}50 Hertz). The beam energy will be deposited in the target materials (such as mercury or lead) and converted into heat. It causes a sudden temperature rise and resulting pressure wave. This pressure wave travels through the liquid, reaches the steel container wall and may possibly lead to material damage due to induced stress. Almost all participants agreed that the shock problem due tomore » the short pulse operation in the liquid metal target could be serious and could present a challenging problem. It was determined that the following points need to be addressed: (1) equation of state for mercury (2) code validation and benchmark experiments (3) shock effects on the entire target system (4) two phase flow by gas injection. All these investigations should be carried out in the framework of international cooperation. Two small scaled Hg pressure pulse tests are planned at ORNL to provide insight into the pressure wave propagation and thermal shock effects. One experiment will use exploding wires to generate the pulse pressure, the other the electron beam at ORELA. Also PSI, LANL, CERN (ISOLDE facility), INR and IPPE could contribute to the experimental methods for producing shock. The necessary R&D for bubble injection might be performed at PSI, RIGA, ORNL or Ben-Gurion University. All of the above experiments can possibly yield benchmarking data which is absolutely necessary for code validation.« less
SAGE Validations of Volcanic Jet Simulations
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G.; Glatzmaier, G.
2006-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. Preliminary eruption simulations demonstrate its ability to resolve multi-material flows over large domains where dynamics are concentrated in small regions. In order to validate further application of this code to numerical simulation of explosive eruption phenomena, we focus on one of the fundamental physical processes important to the problem, namely the dynamics of an underexpanded jet. Observations of volcanic eruption plumes and laboratory experiments on analog systems document the eruption of overpressured fluid in a supersonic jet that is governed by vent diameter and level of overpressure. The jet is dominated by inertia (very high Reynolds number) and feeds a thermally convective plume controlled by turbulent admixture of the atmosphere. The height above the vent at which the jet looses its inertia is important to know for convective plume predictions that are used to calculate atmospheric dispersal of volcanic products. We simulate a set of well documented laboratory experiments that provide detail on underexpanded jet structure by gas density contours, showing the shape and size of the Mach stem. SAGE results are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. The simulations also resolve vorticity at the jet margins near the Mach disk, showing turbulent velocity fields down to a scale of 30 micrometers. Benchmarking these results with those of CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), shows close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.
Cadieux, Geneviève; Tamblyn, Robyn; Buckeridge, David L; Dendukuri, Nandini
2017-08-01
Valid measurement of outcomes such as disease prevalence using health care utilization data is fundamental to the implementation of a "learning health system." Definitions of such outcomes can be complex, based on multiple diagnostic codes. The literature on validating such data demonstrates a lack of awareness of the need for a stratified sampling design and corresponding statistical methods. We propose a method for validating the measurement of diagnostic groups that have: (1) different prevalences of diagnostic codes within the group; and (2) low prevalence. We describe an estimation method whereby: (1) low-prevalence diagnostic codes are oversampled, and the positive predictive value (PPV) of the diagnostic group is estimated as a weighted average of the PPV of each diagnostic code; and (2) claims that fall within a low-prevalence diagnostic group are oversampled relative to claims that are not, and bias-adjusted estimators of sensitivity and specificity are generated. We illustrate our proposed method using an example from population health surveillance in which diagnostic groups are applied to physician claims to identify cases of acute respiratory illness. Failure to account for the prevalence of each diagnostic code within a diagnostic group leads to the underestimation of the PPV, because low-prevalence diagnostic codes are more likely to be false positives. Failure to adjust for oversampling of claims that fall within the low-prevalence diagnostic group relative to those that do not leads to the overestimation of sensitivity and underestimation of specificity.
Abraham, N S; Cohen, D C; Rivers, B; Richardson, P
2006-07-15
To validate veterans affairs (VA) administrative data for the diagnosis of nonsteroidal anti-inflammatory drug (NSAID)-related upper gastrointestinal events (UGIE) and to develop a diagnostic algorithm. A retrospective study of veterans prescribed an NSAID as identified from the national pharmacy database merged with in-patient and out-patient data, followed by primary chart abstraction. Contingency tables were constructed to allow comparison with a random sample of patients prescribed an NSAID, but without UGIE. Multivariable logistic regression analysis was used to derive a predictive algorithm. Once derived, the algorithm was validated in a separate cohort of veterans. Of 906 patients, 606 had a diagnostic code for UGIE; 300 were a random subsample of 11 744 patients (control). Only 161 had a confirmed UGIE. The positive predictive value (PPV) of diagnostic codes was poor, but improved from 27% to 51% with the addition of endoscopic procedural codes. The strongest predictors of UGIE were an in-patient ICD-9 code for gastric ulcer, duodenal ulcer and haemorrhage combined with upper endoscopy. This algorithm had a PPV of 73% when limited to patients >or=65 years (c-statistic 0.79). Validation of the algorithm revealed a PPV of 80% among patients with an overlapping NSAID prescription. NSAID-related UGIE can be assessed using VA administrative data. The optimal algorithm includes an in-patient ICD-9 code for gastric or duodenal ulcer and gastrointestinal bleeding combined with a procedural code for upper endoscopy.
Overview of hypersonic CFD code calibration studies
NASA Technical Reports Server (NTRS)
Miller, Charles G.
1987-01-01
The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.
Baiao, R; Baptista, J; Carneiro, A; Pinto, R; Toscano, C; Fearon, P; Soares, I; Mesquita, A R
2018-07-01
The preschool years are a period of great developmental achievements, which impact critically on a child's interactive skills. Having valid and reliable measures to assess interactive behaviour at this stage is therefore crucial. The aim of this study was to describe the adaptation and validation of the child coding of the Coding System for Mother-Child Interactions and discuss its applications and implications in future research and practice. Two hundred twenty Portuguese preschoolers and their mothers were videotaped during a structured task. Child and mother interactive behaviours were coded based on the task. Maternal reports on the child's temperament and emotional and behaviour problems were also collected, along with family psychosocial information. Interrater agreement was confirmed. The use of child Cooperation, Enthusiasm, and Negativity as subscales was supported by their correlations across tasks. Moreover, these subscales were correlated with each other, which supports the use of a global child interactive behaviour score. Convergent validity with a measure of emotional and behavioural problems (Child Behaviour Checklist 1 ½-5) was established, as well as divergent validity with a measure of temperament (Children's Behaviour Questionnaire-Short Form). Regarding associations with family variables, child interactive behaviour was only associated with maternal behaviour. Findings suggest that this coding system is a valid and reliable measure for assessing child interactive behaviour in preschool age children. It therefore represents an important alternative to this area of research and practice, with reduced costs and with more flexible training requirements. Attention should be given in future research to expanding this work to clinical populations and different age groups. © 2018 John Wiley & Sons Ltd.
Mertz, Marcel; Sofaer, Neema; Strech, Daniel
2014-09-27
The systematic review of reasons is a new way to obtain comprehensive information about specific ethical topics. One such review was carried out for the question of why post-trial access to trial drugs should or need not be provided. The objective of this study was to empirically validate this review using an author check method. The article also reports on methodological challenges faced by our study. We emailed a questionnaire to the 64 corresponding authors of those papers that were assessed in the review of reasons on post-trial access. The questionnaire consisted of all quotations ("reason mentions") that were identified by the review to represent a reason in a given author's publication, together with a set of codings for the quotations. The authors were asked to rate the correctness of the codings. We received 19 responses, from which only 13 were completed questionnaires. In total, 98 quotations and their related codes in the 13 questionnaires were checked by the addressees. For 77 quotations (79%), all codings were deemed correct, for 21 quotations (21%), some codings were deemed to need correction. Most corrections were minor and did not imply a complete misunderstanding of the citation. This first attempt to validate a review of reasons leads to four crucial methodological questions relevant to the future conduct of such validation studies: 1) How can a description of a reason be deemed incorrect? 2) Do the limited findings of this author check study enable us to determine whether the core results of the analysed SRR are valid? 3) Why did the majority of surveyed authors refrain from commenting on our understanding of their reasoning? 4) How can the method for validating reviews of reasons be improved?
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
Procedures and methods for veri.cation of coding algebra and for validations of models and calculations used in the aerospace computational fluid dynamics (CFD) community would be ef.cacious if used by the glacier dynamics modeling community. This paper presents some of those methods, and how they might be applied to uncertainty management supporting code veri.cation and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modeling are discussed. After establishing sources of uncertainty and methods for code veri.cation, the paper looks at a representative sampling of veri.cation and validation efforts that are underway in the glacier modeling community, and establishes a context for these within an overall solution quality assessment. Finally, a vision of a new information architecture and interactive scienti.c interface is introduced and advocated.
CASL Verification and Validation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousseau, Vincent Andrew; Dinh, Nam
2016-06-30
This report documents the Consortium for Advanced Simulation of LWRs (CASL) verification and validation plan. The document builds upon input from CASL subject matter experts, most notably the CASL Challenge Problem Product Integrators, CASL Focus Area leaders, and CASL code development and assessment teams. This document will be a living document that will track progress on CASL to do verification and validation for both the CASL codes (including MPACT, CTF, BISON, MAMBA) and for the CASL challenge problems (CIPS, PCI, DNB). The CASL codes and the CASL challenge problems are at differing levels of maturity with respect to validation andmore » verification. The gap analysis will summarize additional work that needs to be done. Additional VVUQ work will be done as resources permit. This report is prepared for the Department of Energy’s (DOE’s) CASL program in support of milestone CASL.P13.02.« less
Zhang, Zhi; Sun, Liwei; Zhang, Yixuan; Lu, Guanming; Li, Yongqiang; Wei, Zhongheng
2018-05-24
Long non-coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1-AS1 on breast cancer-stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1-AS1 was up-regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1-AS1 was significantly over-expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss-of-functional indicated that, in BCSC cells (MDA-MB-231 CSC, MCF-7 CSC), FEZF1-AS1 knockdown reduced the CD44 + /CD24 - rate, the mammosphere-forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1-AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1-AS1 modulated BCSC and Nanog expression through sponging miR-30a, suggesting the regulation of FEZF1-AS1/miR-30a/Nanog. In summary, our study validate the important role of FEZF1-AS1/miR-30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer. © 2018 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.
2015-11-01
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.
A class of ejecta transport test problems
NASA Astrophysics Data System (ADS)
Oro, David M.; Hammerberg, J. E.; Buttler, William T.; Mariam, Fesseha G.; Morris, Christopher L.; Rousculp, Chris; Stone, Joseph B.
2012-03-01
Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function of particulate masses and velocities, f0(m,u;t). Some properties of this source distribution function have been determined from Taylor- and supported-shockwave experiments. Such experiments measure the mass moment of f0 under vacuum conditions assuming weak particle-particle interactions and, usually, fully inelastic scattering (capture) of ejecta particles from piezoelectric diagnostic probes. Recently, planar ejection of W particles into vacuum, Ar, and Xe gas atmospheres have been carried out to provide benchmark transport data for transport model development and validation. We present those experimental results and compare them with modeled transport of the W-ejecta particles in Ar and Xe.
Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh
2015-12-21
The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spotsmore » in the VHTR core.« less
Colour cyclic code for Brillouin distributed sensors
NASA Astrophysics Data System (ADS)
Le Floch, Sébastien; Sauser, Florian; Llera, Miguel; Rochat, Etienne
2015-09-01
For the first time, a colour cyclic coding (CCC) is theoretically and experimentally demonstrated for Brillouin optical time-domain analysis (BOTDA) distributed sensors. Compared to traditional intensity-modulated cyclic codes, the code presents an additional gain of √2 while keeping the same number of sequences as for a colour coding. A comparison with a standard BOTDA sensor is realized and validates the theoretical coding gain.
Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.
2001-01-01
An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.
Thanh, Tran Thien; Vuong, Le Quang; Ho, Phan Long; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tao, Chau Van
2018-04-01
In this work, an advanced analytical procedure was applied to calculate radioactivity in spiked water samples in a close geometry gamma spectroscopy. It included MCNP-CP code in order to calculate the coincidence summing correction factor (CSF). The CSF results were validated by a deterministic method using ETNA code for both p-type HPGe detectors. It showed that a good agreement for both codes. Finally, the validity of the developed procedure was confirmed by a proficiency test to calculate the activities of various radionuclides. The results of the radioactivity measurement with both detectors using the advanced analytical procedure were received the ''Accepted'' statuses following the proficiency test. Copyright © 2018 Elsevier Ltd. All rights reserved.
NIMROD simulations of the IPA FRC experiment
NASA Astrophysics Data System (ADS)
Milroy, Richard
2015-11-01
The IPA experiment created a high temperature plasma by merging and compressing supersonic θ-pinch formed FRCs. The NIMROD code has been used to simulate this process. These calculations include the θ-pinch formation and acceleration of two FRC's using the dynamic formation methodology, and their translation to a central compression chamber where they merge and are magnetically compressed. Transport coefficients have been tuned so simulation results agree well with experimental observation. The inclusion of the Hall term is essential for the FRCs merge quickly, as observed experimentally through the excluded flux profiles. The inclusion of a significant anisotropic viscosity is required for the excluded flux profiles to agree well with the experiment. We plan to extend this validation work using the new ARPA-E funded Venti experiment at Helion Energy in Redmond WA. This will be a very well diagnosed experiment where two FRCs merge (like the IPA experiment) and are then compressed to near-fusion conditions. Preliminary calculations with parameters relevant to this experiment have been made, and some numerical issues identified.
Summary of papers on current and anticipated uses of thermal-hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, R.
1997-07-01
The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especiallymore » faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).« less
Initial verification and validation of RAZORBACK - A research reactor transient analysis code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talley, Darren G.
2015-09-01
This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actualmore » ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.« less
NASA Astrophysics Data System (ADS)
Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.
2018-02-01
One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict dosage-based parameters from the puff release of an airborne material from a point source in the atmospheric boundary layer inside the built-up area. The present work addresses the question of whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict ensemble-average dosage-based parameters that are related with the puff dispersion. RANS simulations with the ADREA-HF code were, therefore, performed, where a single puff was released in each case. The present method is validated against the data sets from two wind-tunnel experiments. In each experiment, more than 200 puffs were released from which ensemble-averaged dosage-based parameters were calculated and compared to the model's predictions. The performance of the model was evaluated using scatter plots and three validation metrics: fractional bias, normalized mean square error, and factor of two. The model presented a better performance for the temporal parameters (i.e., ensemble-average times of puff arrival, peak, leaving, duration, ascent, and descent) than for the ensemble-average dosage and peak concentration. The majority of the obtained values of validation metrics were inside established acceptance limits. Based on the obtained model performance indices, the CFD-RANS methodology as implemented in the code ADREA-HF is able to predict the ensemble-average temporal quantities related to transient emissions of airborne material in urban areas within the range of the model performance acceptance criteria established in the literature. The CFD-RANS methodology as implemented in the code ADREA-HF is also able to predict the ensemble-average dosage, but the dosage results should be treated with some caution; as in one case, the observed ensemble-average dosage was under-estimated slightly more than the acceptance criteria. Ensemble-average peak concentration was systematically underpredicted by the model to a degree higher than the allowable by the acceptance criteria, in 1 of the 2 wind-tunnel experiments. The model performance depended on the positions of the examined sensors in relation to the emission source and the buildings configuration. The work presented in this paper was carried out (partly) within the scope of COST Action ES1006 "Evaluation, improvement, and guidance for the use of local-scale emergency prediction and response tools for airborne hazards in built environments".
NASA Astrophysics Data System (ADS)
Wünnemann, Kai; Zhu, Meng-Hua; Stöffler, Dieter
2016-10-01
We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.
Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method
NASA Astrophysics Data System (ADS)
Yuan, Zhe; Zhang, Yiming; Zheng, Qijia
2018-02-01
An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamek, Julian; Daverio, David; Durrer, Ruth
We present a new N-body code, gevolution , for the evolution of large scale structure in the Universe. Our code is based on a weak field expansion of General Relativity and calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation which we write in terms of a canonical momentum such that it remains valid also for relativistic particles. We validate the code by considering the Schwarzschild solution and, in the Newtonian limit, by comparing with the Newtonian N-body codes Gadget-2 and RAMSES . We then proceed with a simulation ofmore » large scale structure in a Universe with massive neutrinos where we study the gravitational slip induced by the neutrino shear stress. The code can be extended to include different kinds of dark energy or modified gravity models and going beyond the usually adopted quasi-static approximation. Our code is publicly available.« less
Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Garg Vijay; Ameri, Ali
2005-01-01
The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.
Gene-Auto: Automatic Software Code Generation for Real-Time Embedded Systems
NASA Astrophysics Data System (ADS)
Rugina, A.-E.; Thomas, D.; Olive, X.; Veran, G.
2008-08-01
This paper gives an overview of the Gene-Auto ITEA European project, which aims at building a qualified C code generator from mathematical models under Matlab-Simulink and Scilab-Scicos. The project is driven by major European industry partners, active in the real-time embedded systems domains. The Gene- Auto code generator will significantly improve the current development processes in such domains by shortening the time to market and by guaranteeing the quality of the generated code through the use of formal methods. The first version of the Gene-Auto code generator has already been released and has gone thought a validation phase on real-life case studies defined by each project partner. The validation results are taken into account in the implementation of the second version of the code generator. The partners aim at introducing the Gene-Auto results into industrial development by 2010.
NASA Astrophysics Data System (ADS)
Tinti, S.; Tonini, R.
2013-07-01
Nowadays numerical models are a powerful tool in tsunami research since they can be used (i) to reconstruct modern and historical events, (ii) to cast new light on tsunami sources by inverting tsunami data and observations, (iii) to build scenarios in the frame of tsunami mitigation plans, and (iv) to produce forecasts of tsunami impact and inundation in systems of early warning. In parallel with the general recognition of the importance of numerical tsunami simulations, the demand has grown for reliable tsunami codes, validated through tests agreed upon by the tsunami community. This paper presents the tsunami code UBO-TSUFD that has been developed at the University of Bologna, Italy, and that solves the non-linear shallow water (NSW) equations in a Cartesian frame, with inclusion of bottom friction and exclusion of the Coriolis force, by means of a leapfrog (LF) finite-difference scheme on a staggered grid and that accounts for moving boundaries to compute sea inundation and withdrawal at the coast. Results of UBO-TSUFD applied to four classical benchmark problems are shown: two benchmarks are based on analytical solutions, one on a plane wave propagating on a flat channel with a constant slope beach; and one on a laboratory experiment. The code is proven to perform very satisfactorily since it reproduces quite well the benchmark theoretical and experimental data. Further, the code is applied to a realistic tsunami case: a scenario of a tsunami threatening the coasts of eastern Sicily, Italy, is defined and discussed based on the historical tsunami of 11 January 1693, i.e. one of the most severe events in the Italian history.
GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation
Li, Hong; Lu, Mingquan
2017-01-01
Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks. PMID:28665318
Containment Sodium Chemistry Models in MELCOR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louie, David; Humphries, Larry L.; Denman, Matthew R
To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRCmore » code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.« less
GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation.
Wang, Fei; Li, Hong; Lu, Mingquan
2017-06-30
Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks.
Greenberg, Jacob K; Ladner, Travis R; Olsen, Margaret A; Shannon, Chevis N; Liu, Jingxia; Yarbrough, Chester K; Piccirillo, Jay F; Wellons, John C; Smyth, Matthew D; Park, Tae Sung; Limbrick, David D
2015-08-01
The use of administrative billing data may enable large-scale assessments of treatment outcomes for Chiari Malformation type I (CM-1). However, to utilize such data sets, validated International Classification of Diseases, Ninth Revision (ICD-9-CM) code algorithms for identifying CM-1 surgery are needed. To validate 2 ICD-9-CM code algorithms identifying patients undergoing CM-1 decompression surgery. We retrospectively analyzed the validity of 2 ICD-9-CM code algorithms for identifying adult CM-1 decompression surgery performed at 2 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-1), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression, or laminectomy). Algorithm 2 restricted this group to patients with a primary diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated. Among 340 first-time admissions identified by Algorithm 1, the overall PPV for CM-1 decompression was 65%. Among the 214 admissions identified by Algorithm 2, the overall PPV was 99.5%. The PPV for Algorithm 1 was lower in the Vanderbilt (59%) cohort, males (40%), and patients treated between 2009 and 2013 (57%), whereas the PPV of Algorithm 2 remained high (≥99%) across subgroups. The sensitivity of Algorithms 1 (86%) and 2 (83%) were above 75% in all subgroups. ICD-9-CM code Algorithm 2 has excellent PPV and good sensitivity to identify adult CM-1 decompression surgery. These results lay the foundation for studying CM-1 treatment outcomes by using large administrative databases.
Accuracy of external cause-of-injury coding in VA polytrauma patient discharge records.
Carlson, Kathleen F; Nugent, Sean M; Grill, Joseph; Sayer, Nina A
2010-01-01
Valid and efficient methods of identifying the etiology of treated injuries are critical for characterizing patient populations and developing prevention and rehabilitation strategies. We examined the accuracy of external cause-of-injury codes (E-codes) in Veterans Health Administration (VHA) administrative data for a population of injured patients. Chart notes and E-codes were extracted for 566 patients treated at any one of four VHA Polytrauma Rehabilitation Center sites between 2001 and 2006. Two expert coders, blinded to VHA E-codes, used chart notes to assign "gold standard" E-codes to injured patients. The accuracy of VHA E-coding was examined based on these gold standard E-codes. Only 382 of 517 (74%) injured patients were assigned E-codes in VHA records. Sensitivity of VHA E-codes varied significantly by site (range: 59%-91%, p < 0.001). Sensitivity was highest for combat-related injuries (81%) and lowest for fall-related injuries (60%). Overall specificity of E-codes was high (92%). E-coding accuracy was markedly higher when we restricted analyses to records that had been assigned VHA E-codes. E-codes may not be valid for ascertaining source-of-injury data for all injuries among VHA rehabilitation inpatients at this time. Enhanced training and policies may ensure more widespread, standardized use and accuracy of E-codes for injured veterans treated in the VHA.
Modelling of Divertor Detachment in MAST Upgrade
NASA Astrophysics Data System (ADS)
Moulton, David; Carr, Matthew; Harrison, James; Meakins, Alex
2017-10-01
MAST Upgrade will have extensive capabilities to explore the benefits of alternative divertor configurations such as the conventional, Super-X, x divertor, snowflake and variants in a single device with closed divertors. Initial experiments will concentrate on exploring the Super-X and conventional configurations, in terms of power and particle loads to divertor surfaces, access to detachment and its control. Simulations have been carried out with the SOLPS5.0 code validated against MAST experiments. The simulations predict that the Super-X configuration has significant advantages over the conventional, such as lower detachment threshold (2-3x lower in terms of upstream density and 4x higher in terms of PSOL). Synthetic spectroscopy diagnostics from these simulations have been created using the Raysect ray tracing code to produce synthetic filtered camera images, spectra and foil bolometer data. Forward modelling of the current set of divertor diagnostics will be presented, together with a discussion of future diagnostics and analysis to improve estimates of the plasma conditions. Work supported by the RCUK Energy Programme [Grant Number EP/P012450/1] and EURATOM.
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...
2016-03-11
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
NASA Technical Reports Server (NTRS)
Brown, James L.
2014-01-01
Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.
Simulation of beam-induced plasma in gas-filled rf cavities
Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...
2017-03-07
Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less
A validation of well-being and happiness surveys for administration via the Internet.
Howell, Ryan T; Rodzon, Katrina S; Kurai, Mark; Sanchez, Amy H
2010-08-01
Internet research is appealing because it is a cost- and time-efficient way to access a large number of participants; however, the validity of Internet research for important subjective well-being (SWB) surveys has not been adequately assessed. The goal of the present study was to validate the Satisfaction With Life Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985), the Positive and Negative Affect Schedule (PANAS-X; Watson & Clark, 1994), and the Subjective Happiness Scale (SHS; Lyubomirsky & Lepper, 1999) for use on the Internet. This study compared the quality of data collected using paper-based (paper-and-pencil version in a lab setting), computer-based (Web-based version in a lab setting), and Internet (Web-based version on a computer of the participant's choosing) surveys for these three measures of SWB. The paper-based and computer-based experiment recruited two college student samples; the Internet experiments recruited a college student sample and an adult sample responding to ads on different social-networking Web sites. This study provides support for the reliability, validity, and generalizability of the Internet format of the SWLS, PANAS-X, and SHS. Across the three experiments, the results indicate that the computer-based and Internet surveys had means, standard deviations, reliabilities, and factor structures that were similar to those of the paper-based versions. The discussion examines the difficulty of higher attrition for the Internet version, the need to examine reverse-coded items in the future, and the possibility that unhappy individuals are more likely to participate in Internet surveys of SWB.
NASA Radiation Protection Research for Exploration Missions
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Heinbockel, John H.; Tweed, John; Mertens, Christopher J.; Walker, Steve A.; Blattnig, Steven R.; Zeitlin, Cary J.
2006-01-01
The HZETRN code was used in recent trade studies for renewed lunar exploration and currently used in engineering development of the next generation of space vehicles, habitats, and EVA equipment. A new version of the HZETRN code capable of simulating high charge and energy (HZE) ions, light-ions and neutrons with either laboratory or space boundary conditions with enhanced neutron and light-ion propagation is under development. Atomic and nuclear model requirements to support that development will be discussed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. We discuss limitations of code validation due to the currently available data and recommend priorities for new data sets.
Validation of Multitemperature Nozzle Flow Code
NASA Technical Reports Server (NTRS)
Park, Chul; Lee, Seung -Ho.
1994-01-01
A computer code nozzle in n-temperatures (NOZNT), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against three existing sets of experimental data taken in arcjet wind tunnels. The code accounts for the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, and the effects of impurities. The experimental data considered are (1) the spectroscopic emission data; (2) electron beam data on vibrational temperature; and (3) mass-spectrometric species concentration data. It is shown that the impurities are inconsequential for the arcjet flows, and the NOZNT code is validated by numerically reproducing the experimental data.
Mahajan, Anubha; Wessel, Jennifer; Willems, Sara M; Zhao, Wei; Robertson, Neil R; Chu, Audrey Y; Gan, Wei; Kitajima, Hidetoshi; Taliun, Daniel; Rayner, N William; Guo, Xiuqing; Lu, Yingchang; Li, Man; Jensen, Richard A; Hu, Yao; Huo, Shaofeng; Lohman, Kurt K; Zhang, Weihua; Cook, James P; Prins, Bram Peter; Flannick, Jason; Grarup, Niels; Trubetskoy, Vassily Vladimirovich; Kravic, Jasmina; Kim, Young Jin; Rybin, Denis V; Yaghootkar, Hanieh; Müller-Nurasyid, Martina; Meidtner, Karina; Li-Gao, Ruifang; Varga, Tibor V; Marten, Jonathan; Li, Jin; Smith, Albert Vernon; An, Ping; Ligthart, Symen; Gustafsson, Stefan; Malerba, Giovanni; Demirkan, Ayse; Tajes, Juan Fernandez; Steinthorsdottir, Valgerdur; Wuttke, Matthias; Lecoeur, Cécile; Preuss, Michael; Bielak, Lawrence F; Graff, Marielisa; Highland, Heather M; Justice, Anne E; Liu, Dajiang J; Marouli, Eirini; Peloso, Gina Marie; Warren, Helen R; Afaq, Saima; Afzal, Shoaib; Ahlqvist, Emma; Almgren, Peter; Amin, Najaf; Bang, Lia B; Bertoni, Alain G; Bombieri, Cristina; Bork-Jensen, Jette; Brandslund, Ivan; Brody, Jennifer A; Burtt, Noël P; Canouil, Mickaël; Chen, Yii-Der Ida; Cho, Yoon Shin; Christensen, Cramer; Eastwood, Sophie V; Eckardt, Kai-Uwe; Fischer, Krista; Gambaro, Giovanni; Giedraitis, Vilmantas; Grove, Megan L; de Haan, Hugoline G; Hackinger, Sophie; Hai, Yang; Han, Sohee; Tybjærg-Hansen, Anne; Hivert, Marie-France; Isomaa, Bo; Jäger, Susanne; Jørgensen, Marit E; Jørgensen, Torben; Käräjämäki, Annemari; Kim, Bong-Jo; Kim, Sung Soo; Koistinen, Heikki A; Kovacs, Peter; Kriebel, Jennifer; Kronenberg, Florian; Läll, Kristi; Lange, Leslie A; Lee, Jung-Jin; Lehne, Benjamin; Li, Huaixing; Lin, Keng-Hung; Linneberg, Allan; Liu, Ching-Ti; Liu, Jun; Loh, Marie; Mägi, Reedik; Mamakou, Vasiliki; McKean-Cowdin, Roberta; Nadkarni, Girish; Neville, Matt; Nielsen, Sune F; Ntalla, Ioanna; Peyser, Patricia A; Rathmann, Wolfgang; Rice, Kenneth; Rich, Stephen S; Rode, Line; Rolandsson, Olov; Schönherr, Sebastian; Selvin, Elizabeth; Small, Kerrin S; Stančáková, Alena; Surendran, Praveen; Taylor, Kent D; Teslovich, Tanya M; Thorand, Barbara; Thorleifsson, Gudmar; Tin, Adrienne; Tönjes, Anke; Varbo, Anette; Witte, Daniel R; Wood, Andrew R; Yajnik, Pranav; Yao, Jie; Yengo, Loïc; Young, Robin; Amouyel, Philippe; Boeing, Heiner; Boerwinkle, Eric; Bottinger, Erwin P; Chowdhury, Rajiv; Collins, Francis S; Dedoussis, George; Dehghan, Abbas; Deloukas, Panos; Ferrario, Marco M; Ferrières, Jean; Florez, Jose C; Frossard, Philippe; Gudnason, Vilmundur; Harris, Tamara B; Heckbert, Susan R; Howson, Joanna M M; Ingelsson, Martin; Kathiresan, Sekar; Kee, Frank; Kuusisto, Johanna; Langenberg, Claudia; Launer, Lenore J; Lindgren, Cecilia M; Männistö, Satu; Meitinger, Thomas; Melander, Olle; Mohlke, Karen L; Moitry, Marie; Morris, Andrew D; Murray, Alison D; de Mutsert, Renée; Orho-Melander, Marju; Owen, Katharine R; Perola, Markus; Peters, Annette; Province, Michael A; Rasheed, Asif; Ridker, Paul M; Rivadineira, Fernando; Rosendaal, Frits R; Rosengren, Anders H; Salomaa, Veikko; Sheu, Wayne H-H; Sladek, Rob; Smith, Blair H; Strauch, Konstantin; Uitterlinden, André G; Varma, Rohit; Willer, Cristen J; Blüher, Matthias; Butterworth, Adam S; Chambers, John Campbell; Chasman, Daniel I; Danesh, John; van Duijn, Cornelia; Dupuis, Josée; Franco, Oscar H; Franks, Paul W; Froguel, Philippe; Grallert, Harald; Groop, Leif; Han, Bok-Ghee; Hansen, Torben; Hattersley, Andrew T; Hayward, Caroline; Ingelsson, Erik; Kardia, Sharon L R; Karpe, Fredrik; Kooner, Jaspal Singh; Köttgen, Anna; Kuulasmaa, Kari; Laakso, Markku; Lin, Xu; Lind, Lars; Liu, Yongmei; Loos, Ruth J F; Marchini, Jonathan; Metspalu, Andres; Mook-Kanamori, Dennis; Nordestgaard, Børge G; Palmer, Colin N A; Pankow, James S; Pedersen, Oluf; Psaty, Bruce M; Rauramaa, Rainer; Sattar, Naveed; Schulze, Matthias B; Soranzo, Nicole; Spector, Timothy D; Stefansson, Kari; Stumvoll, Michael; Thorsteinsdottir, Unnur; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Wareham, Nicholas J; Wilson, James G; Zeggini, Eleftheria; Scott, Robert A; Barroso, Inês; Frayling, Timothy M; Goodarzi, Mark O; Meigs, James B; Boehnke, Michael; Saleheen, Danish; Morris, Andrew P; Rotter, Jerome I; McCarthy, Mark I
2018-04-01
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10 -7 ); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth
In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less
Computational experience with a three-dimensional rotary engine combustion model
NASA Astrophysics Data System (ADS)
Raju, M. S.; Willis, E. A.
1990-04-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Computational experience with a three-dimensional rotary engine combustion model
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.
2018-05-01
In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.
Analysis of electrophoresis performance
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.
Simulation of ion-temperature-gradient turbulence in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, B I; Dimits, A M; Kim, C
Results are presented from nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) turbulence and transport. The gyrokinetic simulations are found to yield values of the thermal diffusivity significantly lower than gyrofluid or IFS-PPPL-model predictions. A new phenomenon of nonlinear effective critical gradients larger than the linear instability threshold gradients is observed, and is associated with undamped flux-surface-averaged shear flows. The nonlinear gyrokineic codes have passed extensive validity tests which include comparison against independent linear calculations, a series of nonlinear convergence tests, and a comparison between two independent nonlinear gyrokinetic codes. Our most realistic simulations to date have actual reconstructedmore » equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the need for still more physics to be included in the simulations« less
Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne
2017-05-01
Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.
Statistical Methodologies to Integrate Experimental and Computational Research
NASA Technical Reports Server (NTRS)
Parker, P. A.; Johnson, R. T.; Montgomery, D. C.
2008-01-01
Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less
Experimental Evaluation of Verification and Validation Tools on Martian Rover Software
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Giannakopoulou, Dimitra; Goldberg, Allen; Havelund, Klaus; Lowry, Mike; Pasareani, Corina; Venet, Arnaud; Visser, Willem; Washington, Rich
2003-01-01
We report on a study to determine the maturity of different verification and validation technologies (V&V) on a representative example of NASA flight software. The study consisted of a controlled experiment where three technologies (static analysis, runtime analysis and model checking) were compared to traditional testing with respect to their ability to find seeded errors in a prototype Mars Rover. What makes this study unique is that it is the first (to the best of our knowledge) to do a controlled experiment to compare formal methods based tools to testing on a realistic industrial-size example where the emphasis was on collecting as much data on the performance of the tools and the participants as possible. The paper includes a description of the Rover code that was analyzed, the tools used as well as a detailed description of the experimental setup and the results. Due to the complexity of setting up the experiment, our results can not be generalized, but we believe it can still serve as a valuable point of reference for future studies of this kind. It did confirm the belief we had that advanced tools can outperform testing when trying to locate concurrency errors. Furthermore the results of the experiment inspired a novel framework for testing the next generation of the Rover.
Bayesian Inference in the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2008-01-01
This paper provides an elementary tutorial overview of Bayesian inference and its potential for application in aerospace experimentation in general and wind tunnel testing in particular. Bayes Theorem is reviewed and examples are provided to illustrate how it can be applied to objectively revise prior knowledge by incorporating insights subsequently obtained from additional observations, resulting in new (posterior) knowledge that combines information from both sources. A logical merger of Bayesian methods and certain aspects of Response Surface Modeling is explored. Specific applications to wind tunnel testing, computational code validation, and instrumentation calibration are discussed.
El-Damanhoury, Hatem M.; Fakhruddin, Kausar Sadia; Awad, Manal A.
2014-01-01
Objective: To assess the feasibility of teaching International Caries Detection and Assessment System (ICDAS) II and its e-learning program as tools for occlusal caries detection to freshmen dental students in comparison to dental graduates with 2 years of experience. Materials and Methods: Eighty-four freshmen and 32 dental graduates examined occlusal surfaces of molars/premolars (n = 72) after a lecture and a hands-on workshop. The same procedure was repeated after 1 month following the training with ICDAS II e-learning program. Validation of ICDAS II codes was done histologically. Intra- and inter-examiner reproducibility of ICDAS II severity scores were assessed before and after e-learning using (Fleiss's kappa). Results: The kappa values showed inter-examiner reproducibility ranged from 0.53 (ICDAS II code cut off ≥ 1) to 0.70 (ICDAS II code cut off ≥ 3) by undergraduates and 0.69 (ICDAS II code cut off ≥ 1) to 0.95 (ICDAS II code cut off ≥ 3) by graduates. The inter-examiner reproducibility ranged from 0.64 (ICDAS II code cut off ≥ 1) to 0.89 (ICDAS II code cut off ≥ 3). No statistically significant difference was found between both groups in intra-examiner agreements for assessing ICDAS II codes. A high statistically significant difference (P ≤ 0.01) in correct identification of codes 1, 2, and 4 from before to after e-learning were observed in both groups. The bias indices for the undergraduate group were higher than those of the graduate group. Conclusions: Early exposure of students to ICDAS II is a valuable method of teaching caries detection and its e-learning program significantly improves their caries diagnostic skills. PMID:25512730
NASA Astrophysics Data System (ADS)
Leconte, Pierre; Bernard, David
2017-09-01
EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France). Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5-3% (1σ). The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.
Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS
Barani, T.; Bruschi, E.; Pizzocri, D.; ...
2017-01-03
The modelling of fission gas behaviour is a crucial aspect of nuclear fuel analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. Experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of burst release in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which ismore » applied as an extension of diffusion-based models to allow for the burst release effect. The concept and governing equations of the model are presented, and the effect of the newly introduced parameters is evaluated through an analytic sensitivity analysis. Then, the model is assessed for application to integral fuel rod analysis. The approach that we take for model assessment involves implementation in two structurally different fuel performance codes, namely, BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D semi-analytic code). The model is validated against 19 Light Water Reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the qualitative representation of the FGR kinetics and the quantitative predictions of integral fuel rod FGR, relative to the canonical, purely diffusion-based models, with both codes. The overall quantitative improvement of the FGR predictions in the two codes is comparable. Furthermore, calculated radial profiles of xenon concentration are investigated and compared to experimental data, demonstrating the representation of the underlying mechanisms of burst release by the new model.« less
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.
2009-01-01
In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina
2011-01-01
The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address themore » issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.« less
Language Recognition via Sparse Coding
2016-09-08
a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector
Tan, Michael; Wilson, Ian; Braganza, Vanessa; Ignatiadis, Sophia; Boston, Ray; Sundararajan, Vijaya; Cook, Mark J; D'Souza, Wendyl J
2015-10-01
We report the diagnostic validity of a selection algorithm for identifying epilepsy cases. Retrospective validation study of International Classification of Diseases 10th Revision Australian Modification (ICD-10AM)-coded hospital records and pharmaceutical data sampled from 300 consecutive potential epilepsy-coded cases and 300 randomly chosen cases without epilepsy from 3/7/2012 to 10/7/2013. Two epilepsy specialists independently validated the diagnosis of epilepsy. A multivariable logistic regression model was fitted to identify the optimum coding algorithm for epilepsy and was internally validated. One hundred fifty-eight out of three hundred (52.6%) epilepsy-coded records and 0/300 (0%) nonepilepsy records were confirmed to have epilepsy. The kappa for interrater agreement was 0.89 (95% CI=0.81-0.97). The model utilizing epilepsy (G40), status epilepticus (G41) and ≥1 antiepileptic drug (AED) conferred the highest positive predictive value of 81.4% (95% CI=73.1-87.9) and a specificity of 99.9% (95% CI=99.9-100.0). The area under the receiver operating curve was 0.90 (95% CI=0.88-0.93). When combined with pharmaceutical data, the precision of case identification for epilepsy data linkage design was considerably improved and could provide considerable potential for efficient and reasonably accurate case ascertainment in epidemiological studies. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2014-01-01
The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2014-01-01
The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (1) mode blockage, (2) liner insertion loss, (3) short ducts, and (4) mode reflection.
Summary of EASM Turbulence Models in CFL3D With Validation Test Cases
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2003-01-01
This paper summarizes the Explicit Algebraic Stress Model in k-omega form (EASM-ko) and in k-epsilon form (EASM-ke) in the Reynolds-averaged Navier-Stokes code CFL3D. These models have been actively used over the last several years in CFL3D, and have undergone some minor modifications during that time. Details of the equations and method for coding the latest versions of the models are given, and numerous validation cases are presented. This paper serves as a validation archive for these models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.
Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER
NASA Astrophysics Data System (ADS)
Landman, I. S.; Pestchanyi, S. E.; Safronov, V. M.; Bazylev, B. N.; Garkusha, I. E.
The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 102 MJ/m 2 on a time scale Ïä of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q âe 1/4 3 MJ/m2 and Ïä âe 1/4 0.3 ms, deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q = 10–30 MJ/m2 and Ïä = 0.03–0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.
Experience with code-switching modulates the use of grammatical gender during sentence processing
Valdés Kroff, Jorge R.; Dussias, Paola E.; Gerfen, Chip; Perrotti, Lauren; Bajo, M. Teresa
2016-01-01
Using code-switching as a tool to illustrate how language experience modulates comprehension, the visual world paradigm was employed to examine the extent to which gender-marked Spanish determiners facilitate upcoming target nouns in a group of Spanish-English bilingual code-switchers. The first experiment tested target Spanish nouns embedded in a carrier phrase (Experiment 1b) and included a control Spanish monolingual group (Experiment 1a). The second set of experiments included critical trials in which participants heard code-switches from Spanish determiners into English nouns (e.g., la house) either in a fixed carrier phrase (Experiment 2a) or in variable and complex sentences (Experiment 2b). Across the experiments, bilinguals revealed an asymmetric gender effect in processing, showing facilitation only for feminine target items. These results reflect the asymmetric use of gender in the production of code-switched speech. The extension of the asymmetric effect into Spanish (Experiment 1b) underscores the permeability between language modes in bilingual code-switchers. PMID:28663771
Analysis of GEANT4 Physics List Properties in the 12 GeV MOLLER Simulation Framework
NASA Astrophysics Data System (ADS)
Haufe, Christopher; Moller Collaboration
2013-10-01
To determine the validity of new physics beyond the scope of the electroweak theory, nuclear physicists across the globe have been collaborating on future endeavors that will provide the precision needed to confirm these speculations. One of these is the MOLLER experiment - a low-energy particle experiment that will utilize the 12 GeV upgrade of Jefferson Lab's CEBAF accelerator. The motivation of this experiment is to measure the parity-violating asymmetry of scattered polarized electrons off unpolarized electrons in a liquid hydrogen target. This measurement would allow for a more precise determination of the electron's weak charge and weak mixing angle. While still in its planning stages, the MOLLER experiment requires a detailed simulation framework in order to determine how the project should be run in the future. The simulation framework for MOLLER, called ``remoll'', is written in GEANT4 code. As a result, the simulation can utilize a number of GEANT4 coded physics lists that provide the simulation with a number of particle interaction constraints based off of different particle physics models. By comparing these lists with one another using the data-analysis application ROOT, the most optimal physics list for the MOLLER simulation can be determined and implemented. This material is based upon work supported by the National Science Foundation under Grant No. 714001.
Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Lebedev, S. V.; Niasse, N.
A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by amore » dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.« less
Towards seamless workflows in agile data science
NASA Astrophysics Data System (ADS)
Klump, J. F.; Robertson, J.
2017-12-01
Agile workflows are a response to projects with requirements that may change over time. They prioritise rapid and flexible responses to change, preferring to adapt to changes in requirements rather than predict them before a project starts. This suits the needs of research very well because research is inherently agile in its methodology. The adoption of agile methods has made collaborative data analysis much easier in a research environment fragmented across institutional data stores, HPC, personal and lab computers and more recently cloud environments. Agile workflows use tools that share a common worldview: in an agile environment, there may be more that one valid version of data, code or environment in play at any given time. All of these versions need references and identifiers. For example, a team of developers following the git-flow conventions (github.com/nvie/gitflow) may have several active branches, one for each strand of development. These workflows allow rapid and parallel iteration while maintaining identifiers pointing to individual snapshots of data and code and allowing rapid switching between strands. In contrast, the current focus of versioning in research data management is geared towards managing data for reproducibility and long-term preservation of the record of science. While both are important goals in the persistent curation domain of the institutional research data infrastructure, current tools emphasise planning over adaptation and can introduce unwanted rigidity by insisting on a single valid version or point of truth. In the collaborative curation domain of a research project, things are more fluid. However, there is no equivalent to the "versioning iso-surface" of the git protocol for the management and versioning of research data. At CSIRO we are developing concepts and tools for the agile management of software code and research data for virtual research environments, based on our experiences of actual data analytics projects in the geosciences. We use code management that allows researchers to interact with the code through tools like Jupyter Notebooks while data are held in an object store. Our aim is an architecture allowing seamless integration of code development, data management, and data processing in virtual research environments.
Comparative Modelling of the Spectra of Cool Giants
NASA Technical Reports Server (NTRS)
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
Experimental Evaluation of Verification and Validation Tools on Martian Rover Software
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Giannakopoulou, Dimitra; Goldberg, Allen; Havelund, Klaus; Lowry, Mike; Pasareanu, Corina; Venet, Arnaud; Visser, Willem
2003-01-01
To achieve its science objectives in deep space exploration, NASA has a need for science platform vehicles to autonomously make control decisions in a time frame that excludes intervention from Earth-based controllers. Round-trip light-time is one significant factor motivating autonomy capability, another factor is the need to reduce ground support operations cost. An unsolved problem potentially impeding the adoption of autonomy capability is the verification and validation of such software systems, which exhibit far more behaviors (and hence distinct execution paths in the software) than is typical in current deepspace platforms. Hence the need for a study to benchmark advanced Verification and Validation (V&V) tools on representative autonomy software. The objective of the study was to access the maturity of different technologies, to provide data indicative of potential synergies between them, and to identify gaps in the technologies with respect to the challenge of autonomy V&V. The study consisted of two parts: first, a set of relatively independent case studies of different tools on the same autonomy code, second a carefully controlled experiment with human participants on a subset of these technologies. This paper describes the second part of the study. Overall, nearly four hundred hours of data on human use of three different advanced V&V tools were accumulated, with a control group that used conventional testing methods. The experiment simulated four independent V&V teams debugging three successive versions of an executive controller for a Martian Rover. Defects were carefully seeded into the three versions based on a profile of defects from CVS logs that occurred in the actual development of the executive controller. The rest of the document is structured a s follows. In section 2 and 3, we respectively describe the tools used in the study and the rover software that was analyzed. In section 4 the methodology for the experiment is described; this includes the code preparation, seeding of defects, participant training and experimental setup. Next we give a qualitative overview of how the experiment went from the point of view of each technology; model checking (section 5), static analysis (section 6), runtime analysis (section 7) and testing (section 8). The find section gives some preliminary quantitative results on how the tools compared.
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
Feasibility study for wax deposition imaging in oil pipelines by PGNAA technique.
Cheng, Can; Jia, Wenbao; Hei, Daqian; Wei, Zhiyong; Wang, Hongtao
2017-10-01
Wax deposition in pipelines is a crucial problem in the oil industry. A method based on the prompt gamma-ray neutron activation analysis technique was applied to reconstruct the image of wax deposition in oil pipelines. The 2.223MeV hydrogen capture gamma rays were used to reconstruct the wax deposition image. To validate the method, both MCNP simulation and experiments were performed for wax deposited with a maximum thickness of 20cm. The performance of the method was simulated using the MCNP code. The experiment was conducted with a 252 Cf neutron source and a LaBr 3 : Ce detector. A good correspondence between the simulations and the experiments was observed. The results obtained indicate that the present approach is efficient for wax deposition imaging in oil pipelines. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, Brian; Jackson, R. Brian
2017-03-08
The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less
Development and validation of a registry-based definition of eosinophilic esophagitis in Denmark
Dellon, Evan S; Erichsen, Rune; Pedersen, Lars; Shaheen, Nicholas J; Baron, John A; Sørensen, Henrik T; Vyberg, Mogens
2013-01-01
AIM: To develop and validate a case definition of eosinophilic esophagitis (EoE) in the linked Danish health registries. METHODS: For case definition development, we queried the Danish medical registries from 2006-2007 to identify candidate cases of EoE in Northern Denmark. All International Classification of Diseases-10 (ICD-10) and prescription codes were obtained, and archived pathology slides were obtained and re-reviewed to determine case status. We used an iterative process to select inclusion/exclusion codes, refine the case definition, and optimize sensitivity and specificity. We then re-queried the registries from 2008-2009 to yield a validation set. The case definition algorithm was applied, and sensitivity and specificity were calculated. RESULTS: Of the 51 and 49 candidate cases identified in both the development and validation sets, 21 and 24 had EoE, respectively. Characteristics of EoE cases in the development set [mean age 35 years; 76% male; 86% dysphagia; 103 eosinophils per high-power field (eos/hpf)] were similar to those in the validation set (mean age 42 years; 83% male; 67% dysphagia; 77 eos/hpf). Re-review of archived slides confirmed that the pathology coding for esophageal eosinophilia was correct in greater than 90% of cases. Two registry-based case algorithms based on pathology, ICD-10, and pharmacy codes were successfully generated in the development set, one that was sensitive (90%) and one that was specific (97%). When these algorithms were applied to the validation set, they remained sensitive (88%) and specific (96%). CONCLUSION: Two registry-based definitions, one highly sensitive and one highly specific, were developed and validated for the linked Danish national health databases, making future population-based studies feasible. PMID:23382628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talley, Darren G.
2017-04-01
This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less
Computational Modeling and Validation for Hypersonic Inlets
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1996-01-01
Hypersonic inlet research activity at NASA is reviewed. The basis for the paper is the experimental tests performed with three inlets: the NASA Lewis Research Center Mach 5, the McDonnell Douglas Mach 12, and the NASA Langley Mach 18. Both three-dimensional PNS and NS codes have been used to compute the flow within the three inlets. Modeling assumptions in the codes involve the turbulence model, the nature of the boundary layer, shock wave-boundary layer interaction, and the flow spilled to the outside of the inlet. Use of the codes and the experimental data are helping to develop a clearer understanding of the inlet flow physics and to focus on the modeling improvements required in order to arrive at validated codes.
Reliability and Validity of the Dyadic Observed Communication Scale (DOCS).
Hadley, Wendy; Stewart, Angela; Hunter, Heather L; Affleck, Katelyn; Donenberg, Geri; Diclemente, Ralph; Brown, Larry K
2013-02-01
We evaluated the reliability and validity of the Dyadic Observed Communication Scale (DOCS) coding scheme, which was developed to capture a range of communication components between parents and adolescents. Adolescents and their caregivers were recruited from mental health facilities for participation in a large, multi-site family-based HIV prevention intervention study. Seventy-one dyads were randomly selected from the larger study sample and coded using the DOCS at baseline. Preliminary validity and reliability of the DOCS was examined using various methods, such as comparing results to self-report measures and examining interrater reliability. Results suggest that the DOCS is a reliable and valid measure of observed communication among parent-adolescent dyads that captures both verbal and nonverbal communication behaviors that are typical intervention targets. The DOCS is a viable coding scheme for use by researchers and clinicians examining parent-adolescent communication. Coders can be trained to reliably capture individual and dyadic components of communication for parents and adolescents and this complex information can be obtained relatively quickly.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
Resonance Parameter Adjustment Based on Integral Experiments
Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...
2016-06-02
Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less
Validity of administrative coding in identifying patients with upper urinary tract calculi.
Semins, Michelle J; Trock, Bruce J; Matlaga, Brian R
2010-07-01
Administrative databases are increasingly used for epidemiological investigations. We performed a study to assess the validity of ICD-9 codes for upper urinary tract stone disease in an administrative database. We retrieved the records of all inpatients and outpatients at Johns Hopkins Hospital between November 2007 and October 2008 with an ICD-9 code of 592, 592.0, 592.1 or 592.9 as one of the first 3 diagnosis codes. A random number generator selected 100 encounters for further review. We considered a patient to have a true diagnosis of an upper tract stone if the medical records specifically referenced a kidney stone event, or included current or past treatment for a kidney stone. Descriptive and comparative analyses were performed. A total of 8,245 encounters coded as upper tract calculus were identified and 100 were randomly selected for review. Two patients could not be identified within the electronic medical record and were excluded from the study. The positive predictive value of using all ICD-9 codes for an upper tract calculus (592, 592.0, 592.1) to identify subjects with renal or ureteral stones was 95.9%. For 592.0 only the positive predictive value was 85%. However, although the positive predictive value for 592.1 only was 100%, 26 subjects (76%) with a ureteral stone were not appropriately billed with this code. ICD-9 coding for urinary calculi is likely to be sufficiently valid to be useful in studies using administrative data to analyze stone disease. However, ICD-9 coding is not a reliable means to distinguish between subjects with renal and ureteral calculi. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Pang, Jack X Q; Ross, Erin; Borman, Meredith A; Zimmer, Scott; Kaplan, Gilaad G; Heitman, Steven J; Swain, Mark G; Burak, Kelly W; Quan, Hude; Myers, Robert P
2015-09-11
Epidemiologic studies of alcoholic hepatitis (AH) have been hindered by the lack of a validated International Classification of Disease (ICD) coding algorithm for use with administrative data. Our objective was to validate coding algorithms for AH using a hospitalization database. The Hospital Discharge Abstract Database (DAD) was used to identify consecutive adults (≥18 years) hospitalized in the Calgary region with a diagnosis code for AH (ICD-10, K70.1) between 01/2008 and 08/2012. Medical records were reviewed to confirm the diagnosis of AH, defined as a history of heavy alcohol consumption, elevated AST and/or ALT (<300 U/L), serum bilirubin >34 μmol/L, and elevated INR. Subgroup analyses were performed according to the diagnosis field in which the code was recorded (primary vs. secondary) and AH severity. Algorithms that incorporated ICD-10 codes for cirrhosis and its complications were also examined. Of 228 potential AH cases, 122 patients had confirmed AH, corresponding to a positive predictive value (PPV) of 54% (95% CI 47-60%). PPV improved when AH was the primary versus a secondary diagnosis (67% vs. 21%; P < 0.001). Algorithms that included diagnosis codes for ascites (PPV 75%; 95% CI 63-86%), cirrhosis (PPV 60%; 47-73%), and gastrointestinal hemorrhage (PPV 62%; 51-73%) had improved performance, however, the prevalence of these diagnoses in confirmed AH cases was low (29-39%). In conclusion the low PPV of the diagnosis code for AH suggests that caution is necessary if this hospitalization database is used in large-scale epidemiologic studies of this condition.
An Upgrade of the Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software
NASA Technical Reports Server (NTRS)
Mason, Michelle L.; Rufer, Shann J.
2015-01-01
The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) code is used at NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used to design thermal protection systems to mitigate the risks due to the aeroheating loads on hypersonic vehicles, such as re-entry vehicles during descent and landing procedures. This code was originally written in the PV-WAVE programming language to analyze phosphor thermography data from the two-color, relativeintensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the code was migrated to MATLAB syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to batch process all of the data from a wind tunnel run, to map the two-dimensional heating distribution to a three-dimensional computer-aided design model of the vehicle to be viewed in Tecplot, and to extract data from a segmented line that follows an interesting feature in the data. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy code to validate the program. The differences between the two codes were on the order of 10-5 to 10-7. IHEAT 4.0 replaces the PV-WAVE version as the production code for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.
Reduced gravity multibody dynamics testing
NASA Technical Reports Server (NTRS)
Sillanpaa, Meija
1993-01-01
The Final Report on reduced gravity multibody dynamics testing is presented. Tests were conducted on board the NASA KC-135 RGA in Houston, Texas. The objective was to analyze the effects of large angle rotations on flexible, multi-segmented structures. The flight experiment was conducted to provide data which will be compared to the data gathered from ground tests of the same configurations. The flight and ground tested data will be used to validate the TREETOPS software, software which models dynamic multibody systems, and other multibody codes. The flight experiment consisted of seven complete flights on board the KC-135 RGA during two one-week periods. The first period of testing was 4-9 Apr. 1993. The second period of testing was 13-18 Jun. 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John
Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less
Experimental validation of a direct simulation by Monte Carlo molecular gas flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shufflebotham, P.K.; Bartel, T.J.; Berney, B.
1995-07-01
The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less
Ability of thermochemical calculation to treat organic peroxides
NASA Astrophysics Data System (ADS)
Osmont, Antoine; Baudin, Gérard; Genetier, Marc
2017-06-01
Since 3 years, the CEA Gramat is developing a new thermochemical code, called SIAME, funded by DGA to help French defense industry at conceiving new explosives compositions. It enables the calculation of CJ detonation and deflagration points and combustion of explosives. The accuracy of the code has been checked on several compositions containing PETN, RDX, HMX, TNT, NTO. The error on the velocity of detonation is 3%. To enlarge the domain of validity of the code, organic peroxides have been considered. It is known that thermochemical simulation is in failure regarding compounds as simple as hydrogen peroxide. The computed velocity of detonation is 5720 m/s when shock planar impact gives 6150 m/s. The same discrepancy is found for TATP, with a calculated value at 5870 m/s when 5290 has been measured. Detonation velocity of TATP has been measured at two different densities. These velocities agree with other published values. A closer look at the enthalpy of formation of TATP has revealed that it comes from an article of 1932. Ab initio computations have given a totally different value, leading to better agreement with experiment.
Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.
2011-01-01
Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185
CFD Validation with Experiment and Verification with Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
This paper will document our effort in validating a coupled fluid-structure interaction CFD tool in predicting a damping device performance in the laboratory condition. Consistently good comparisons of "blind" CFD predictions against experimental data under various operation conditions, design parameters, and cryogenic environment will be presented. The power of the coupled CFD-structures interaction code in explaining some unexpected phenomena of the device observed during the technology development will be illustrated. The evolution of the damper device design inside the LOX tank will be used to demonstrate the contribution of the tool in understanding, optimization and implementation of LOX damper in Ares I vehicle. It is due to the present validation effort, the LOX damper technology has matured to TRL 5. The present effort has also contributed to the transition of the technology from an early conceptual observation to the baseline design of thrust oscillation mitigation for the Ares I within a 10 month period.
Scherr, Karen A.; Fagerlin, Angela; Williamson, Lillie D.; Davis, J. Kelly; Fridman, Ilona; Atyeo, Natalie; Ubel, Peter A.
2016-01-01
Background Physicians’ recommendations affect patients’ treatment choices. However, most research relies on physicians’ or patients’ retrospective reports of recommendations, which offer a limited perspective and have limitations such as recall bias. Objective To develop a reliable and valid method to measure the strength of physician recommendations using direct observation of clinical encounters. Methods Clinical encounters (n = 257) were recorded as part of a larger study of prostate cancer decision making. We used an iterative process to create the 5-point Physician Recommendation Coding System (PhyReCS). To determine reliability, research assistants double-coded 50 transcripts. To establish content validity, we used one-way ANOVAs to determine whether relative treatment recommendation scores differed as a function of which treatment patients received. To establish concurrent validity, we examined whether patients’ perceived treatment recommendations matched our coded recommendations. Results The PhyReCS was highly reliable (Krippendorf’s alpha =. 89, 95% CI [.86, .91]). The average relative treatment recommendation score for each treatment was higher for individuals who received that particular treatment. For example, the average relative surgery recommendation score was higher for individuals who received surgery versus radiation (mean difference = .98, SE = .18, p < .001) or active surveillance (mean difference = 1.10, SE = .14, p < .001). Patients’ perceived recommendations matched coded recommendations 81% of the time. Conclusion The PhyReCS is a reliable and valid way to capture the strength of physician recommendations. We believe that the PhyReCS would be helpful for other researchers who wish to study physician recommendations, an important part of patient decision making. PMID:27343015
Scherr, Karen A; Fagerlin, Angela; Williamson, Lillie D; Davis, J Kelly; Fridman, Ilona; Atyeo, Natalie; Ubel, Peter A
2017-01-01
Physicians' recommendations affect patients' treatment choices. However, most research relies on physicians' or patients' retrospective reports of recommendations, which offer a limited perspective and have limitations such as recall bias. To develop a reliable and valid method to measure the strength of physician recommendations using direct observation of clinical encounters. Clinical encounters (n = 257) were recorded as part of a larger study of prostate cancer decision making. We used an iterative process to create the 5-point Physician Recommendation Coding System (PhyReCS). To determine reliability, research assistants double-coded 50 transcripts. To establish content validity, we used 1-way analyses of variance to determine whether relative treatment recommendation scores differed as a function of which treatment patients received. To establish concurrent validity, we examined whether patients' perceived treatment recommendations matched our coded recommendations. The PhyReCS was highly reliable (Krippendorf's alpha = 0.89, 95% CI [0.86, 0.91]). The average relative treatment recommendation score for each treatment was higher for individuals who received that particular treatment. For example, the average relative surgery recommendation score was higher for individuals who received surgery versus radiation (mean difference = 0.98, SE = 0.18, P < 0.001) or active surveillance (mean difference = 1.10, SE = 0.14, P < 0.001). Patients' perceived recommendations matched coded recommendations 81% of the time. The PhyReCS is a reliable and valid way to capture the strength of physician recommendations. We believe that the PhyReCS would be helpful for other researchers who wish to study physician recommendations, an important part of patient decision making. © The Author(s) 2016.
Calderwood, Michael S.; Kleinman, Ken; Murphy, Michael V.; Platt, Richard; Huang, Susan S.
2014-01-01
Background Deep and organ/space surgical site infections (D/OS SSI) cause significant morbidity, mortality, and costs. Rates are publicly reported and increasingly used as quality metrics affecting hospital payment. Lack of standardized surveillance methods threaten the accuracy of reported data and decrease confidence in comparisons based upon these data. Methods We analyzed data from national validation studies that used Medicare claims to trigger chart review for SSI confirmation after coronary artery bypass graft surgery (CABG) and hip arthroplasty. We evaluated code performance (sensitivity and positive predictive value) to select diagnosis codes that best identified D/OS SSI. Codes were analyzed individually and in combination. Results Analysis included 143 patients with D/OS SSI after CABG and 175 patients with D/OS SSI after hip arthroplasty. For CABG, 9 International Classification of Diseases, 9th Revision (ICD-9) diagnosis codes identified 92% of D/OS SSI, with 1 D/OS SSI identified for every 4 cases with a diagnosis code. For hip arthroplasty, 6 ICD-9 diagnosis codes identified 99% of D/OS SSI, with 1 D/OS SSI identified for every 2 cases with a diagnosis code. Conclusions This standardized and efficient approach for identifying D/OS SSI can be used by hospitals to improve case detection and public reporting. This method can also be used to identify potential D/OS SSI cases for review during hospital audits for data validation. PMID:25734174
Natural language processing of clinical notes for identification of critical limb ischemia.
Afzal, Naveed; Mallipeddi, Vishnu Priya; Sohn, Sunghwan; Liu, Hongfang; Chaudhry, Rajeev; Scott, Christopher G; Kullo, Iftikhar J; Arruda-Olson, Adelaide M
2018-03-01
Critical limb ischemia (CLI) is a complication of advanced peripheral artery disease (PAD) with diagnosis based on the presence of clinical signs and symptoms. However, automated identification of cases from electronic health records (EHRs) is challenging due to absence of a single definitive International Classification of Diseases (ICD-9 or ICD-10) code for CLI. In this study, we extend a previously validated natural language processing (NLP) algorithm for PAD identification to develop and validate a subphenotyping NLP algorithm (CLI-NLP) for identification of CLI cases from clinical notes. We compared performance of the CLI-NLP algorithm with CLI-related ICD-9 billing codes. The gold standard for validation was human abstraction of clinical notes from EHRs. Compared to billing codes the CLI-NLP algorithm had higher positive predictive value (PPV) (CLI-NLP 96%, billing codes 67%, p < 0.001), specificity (CLI-NLP 98%, billing codes 74%, p < 0.001) and F1-score (CLI-NLP 90%, billing codes 76%, p < 0.001). The sensitivity of these two methods was similar (CLI-NLP 84%; billing codes 88%; p < 0.12). The CLI-NLP algorithm for identification of CLI from narrative clinical notes in an EHR had excellent PPV and has potential for translation to patient care as it will enable automated identification of CLI cases for quality projects, clinical decision support tools and support a learning healthcare system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
FILM-30: A Heat Transfer Properties Code for Water Coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARSHALL, THERON D.
2001-02-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less
Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing
2017-04-20
The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.
NASA Technical Reports Server (NTRS)
Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.
2004-01-01
This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.
VLF Trimpi modelling on the path NWC-Dunedin using both finite element and 3D Born modelling
NASA Astrophysics Data System (ADS)
Nunn, D.; Hayakawa, K. B. M.
1998-10-01
This paper investigates the numerical modelling of VLF Trimpis, produced by a D region inhomogeneity on the great circle path. Two different codes are used to model Trimpis on the path NWC-Dunedin. The first is a 2D Finite Element Method Code (FEM), whose solutions are rigorous and valid in the strong scattering or non-Born limit. The second code is a 3D model that invokes the Born approximation. The predicted Trimpis from these codes compare very closely, thus confirming the validity of both models. The modal scattering matrices for both codes are analysed in some detail and are found to have a comparable structure. They indicate strong scattering between the dominant TM modes. Analysis of the scattering matrix from the FEM code shows that departure from linear Born behaviour occurs when the inhomogeneity has a horizontal scale size of about 100 km and a maximum electron density enhancement at 75 km altitude of about 6 electrons.
A measure of short-term visual memory based on the WISC-R coding subtest.
Collaer, M L; Evans, J R
1982-07-01
Adapted the Coding subtest of the WISC-R to provide a measure of visual memory. Three hundred and five children, aged 8 through 12, were administered the Coding test using standard directions. A few seconds after completion the key was taken away, and each was given a paper with only the digits and asked to write the appropriate matching symbol below each. This was termed "Coding Recall." To provide validity data, a subgroup of 50 Ss also was administered the Attention Span for Letters subtest from the Detroit Tests of Learning Aptitude (as a test of visual memory for sequences of letters) and a Bender Gestalt recall test (as a measure of visual memory for geometric forms). Coding Recall means and standard deviations are reported separately by sex and age level. Implications for clinicans are discussed. Reservations about clinical use of the data are given in view of the possible lack of representativeness of the sample used and the limited reliability and validity of Coding Recall.
Computational design of short pulse laser driven iron opacity experiments
Martin, M. E.; London, R. A.; Goluoglu, S.; ...
2017-02-23
Here, the resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emissionmore » requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.« less
Computational design of short pulse laser driven iron opacity experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M. E.; London, R. A.; Goluoglu, S.
Here, the resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emissionmore » requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.« less
2014-01-01
Background The systematic review of reasons is a new way to obtain comprehensive information about specific ethical topics. One such review was carried out for the question of why post-trial access to trial drugs should or need not be provided. The objective of this study was to empirically validate this review using an author check method. The article also reports on methodological challenges faced by our study. Methods We emailed a questionnaire to the 64 corresponding authors of those papers that were assessed in the review of reasons on post-trial access. The questionnaire consisted of all quotations (“reason mentions”) that were identified by the review to represent a reason in a given author’s publication, together with a set of codings for the quotations. The authors were asked to rate the correctness of the codings. Results We received 19 responses, from which only 13 were completed questionnaires. In total, 98 quotations and their related codes in the 13 questionnaires were checked by the addressees. For 77 quotations (79%), all codings were deemed correct, for 21 quotations (21%), some codings were deemed to need correction. Most corrections were minor and did not imply a complete misunderstanding of the citation. Conclusions This first attempt to validate a review of reasons leads to four crucial methodological questions relevant to the future conduct of such validation studies: 1) How can a description of a reason be deemed incorrect? 2) Do the limited findings of this author check study enable us to determine whether the core results of the analysed SRR are valid? 3) Why did the majority of surveyed authors refrain from commenting on our understanding of their reasoning? 4) How can the method for validating reviews of reasons be improved? PMID:25262532
Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma
NASA Astrophysics Data System (ADS)
Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.
2016-12-01
Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1993-01-01
A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.
Frustrations among graduates of athletic training education programs.
Bowman, Thomas G; Dodge, Thomas M
2013-01-01
Although previous researchers have begun to identify sources of athletic training student stress, the specific reasons for student frustrations are not yet fully understood. It is important for athletic training administrators to understand sources of student frustration to provide a supportive learning environment. To determine the factors that lead to feelings of frustration while completing a professional athletic training education program (ATEP). Qualitative study. National Athletic Trainers' Association (NATA) accredited postprofessional education program. Fourteen successful graduates (12 women, 2 men) of accredited professional undergraduate ATEPs enrolled in an NATA-accredited postprofessional education program. We conducted semistructured interviews and analyzed data with a grounded theory approach using open, axial, and selective coding procedures. We negotiated over the coding scheme and performed peer debriefings and member checks to ensure trustworthiness of the results. Four themes emerged from the data: (1) Athletic training student frustrations appear to stem from the amount of stress involved in completing an ATEP, leading to anxiety and feelings of being overwhelmed. (2) The interactions students have with classmates, faculty, and preceptors can also be a source of frustration for athletic training students. (3) Monotonous clinical experiences often left students feeling disengaged. (4) Students questioned entering the athletic training profession because of the fear of work-life balance problems and low compensation. In order to reduce frustration, athletic training education programs should validate students' decisions to pursue athletic training and validate their contributions to the ATEP; provide clinical education experiences with graded autonomy; encourage positive personal interactions between students, faculty, and preceptors; and successfully model the benefits of a career in athletic training.
Development of the 3DHZETRN code for space radiation protection
NASA Astrophysics Data System (ADS)
Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert
Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.
Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model
NASA Astrophysics Data System (ADS)
Xu, Hui-Yun; Yang, Guo-Hui
2017-09-01
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.
Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations
NASA Astrophysics Data System (ADS)
Taitano, William
2017-10-01
In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn Initiative of ASC, and the LANL Institutional Computing. This work was performed under the NNSA of the USDOE at LANL under contract DE-AC52-06NA25396.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitello, P A; Fried, L E; Howard, W M
2011-07-21
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
NASA Technical Reports Server (NTRS)
Bose, Deepak
2012-01-01
The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above
Novel numerical techniques for magma dynamics
NASA Astrophysics Data System (ADS)
Rhebergen, S.; Katz, R. F.; Wathen, A.; Alisic, L.; Rudge, J. F.; Wells, G.
2013-12-01
We discuss the development of finite element techniques and solvers for magma dynamics computations. These are implemented within the FEniCS framework. This approach allows for user-friendly, expressive, high-level code development, but also provides access to powerful, scalable numerical solvers and a large family of finite element discretisations. With the recent addition of dolfin-adjoint, FeniCS supports automated adjoint and tangent-linear models, enabling the rapid development of Generalised Stability Analysis. The ability to easily scale codes to three dimensions with large meshes, and/or to apply intricate adjoint calculations means that efficiency of the numerical algorithms is vital. We therefore describe our development and analysis of preconditioners designed specifically for finite element discretizations of equations governing magma dynamics. The preconditioners are based on Elman-Silvester-Wathen methods for the Stokes equation, and we extend these to flows with compaction. Our simulations are validated by comparison of results with laboratory experiments on partially molten aggregates.
Activation of accelerator construction materials by heavy ions
NASA Astrophysics Data System (ADS)
Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.
2015-12-01
Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.
Drift wave turbulence simulations in LAPD
NASA Astrophysics Data System (ADS)
Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.
2009-11-01
We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.
NASA Astrophysics Data System (ADS)
Privas, E.; Archier, P.; Bernard, D.; De Saint Jean, C.; Destouche, C.; Leconte, P.; Noguère, G.; Peneliau, Y.; Capote, R.
2016-02-01
A new IAEA Coordinated Research Project (CRP) aims to test, validate and improve the IRDF library. Among the isotopes of interest, the modelisation of the 238U capture and fission cross sections represents a challenging task. A new description of the 238U neutrons induced reactions in the fast energy range is within progress in the frame of an IAEA evaluation consortium. The Nuclear Data group of Cadarache participates in this effort utilizing the 238U spectral indices measurements and Post Irradiated Experiments (PIE) carried out in the fast reactors MASURCA (CEA Cadarache) and PHENIX (CEA Marcoule). Such a collection of experimental results provides reliable integral information on the (n,γ) and (n,f) cross sections. This paper presents the Integral Data Assimilation (IDA) technique of the CONRAD code used to propagate the uncertainties of the integral data on the 238U cross sections of interest for dosimetry applications.
Development of a multispectral autoradiography using a coded aperture
NASA Astrophysics Data System (ADS)
Noto, Daisuke; Takeda, Tohoru; Wu, Jin; Lwin, Thet T.; Yu, Quanwen; Zeniya, Tsutomu; Yuasa, Tetsuya; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao
2000-11-01
Autoradiography is a useful imaging technique to understand biological functions using tracers including radio isotopes (RI's). However, it is not easy to describe the distribution of different kinds of tracers simultaneously by conventional autoradiography using X-ray film or Imaging plate. Each tracer describes each corresponding biological function. Therefore, if we can simultaneously estimate distribution of different kinds of tracer materials, the multispectral autoradiography must be a quite powerful tool to better understand physiological mechanisms of organs. So we are developing a system using a solid state detector (SSD) with high energy- resolution. Here, we introduce an imaging technique with a coded aperture to get spatial and spectral information more efficiently. In this paper, the imaging principle is described, and its validity and fundamental property are discussed by both simulation and phantom experiments with RI's such as 201Tl, 99mTc, 67Ga, and 123I.
Gerard, James M; Scalzo, Anthony J; Borgman, Matthew A; Watson, Christopher M; Byrnes, Chelsie E; Chang, Todd P; Auerbach, Marc; Kessler, David O; Feldman, Brian L; Payne, Brian S; Nibras, Sohail; Chokshi, Riti K; Lopreiato, Joseph O
2018-06-01
We developed a first-person serious game, PediatricSim, to teach and assess performances on seven critical pediatric scenarios (anaphylaxis, bronchiolitis, diabetic ketoacidosis, respiratory failure, seizure, septic shock, and supraventricular tachycardia). In the game, players are placed in the role of a code leader and direct patient management by selecting from various assessment and treatment options. The objective of this study was to obtain supportive validity evidence for the PediatricSim game scores. Game content was developed by 11 subject matter experts and followed the American Heart Association's 2011 Pediatric Advanced Life Support Provider Manual and other authoritative references. Sixty subjects with three different levels of experience were enrolled to play the game. Before game play, subjects completed a 40-item written pretest of knowledge. Game scores were compared between subject groups using scoring rubrics developed for the scenarios. Validity evidence was established and interpreted according to Messick's framework. Content validity was supported by a game development process that involved expert experience, focused literature review, and pilot testing. Subjects rated the game favorably for engagement, realism, and educational value. Interrater agreement on game scoring was excellent (intraclass correlation coefficient = 0.91, 95% confidence interval = 0.89-0.9). Game scores were higher for attendings followed by residents then medical students (Pc < 0.01) with large effect sizes (1.6-4.4) for each comparison. There was a very strong, positive correlation between game and written test scores (r = 0.84, P < 0.01). These findings contribute validity evidence for PediatricSim game scores to assess knowledge of pediatric emergency medicine resuscitation.
Validation of the analytical methods in the LWR code BOXER for gadolinium-loaded fuel pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Arkuszewski, J.J.; Kamboj, B.K.
1990-01-01
Due to the very high absorption occurring in gadolinium-loaded fuel pins, calculations of lattices with such pins present are a demanding test of the analysis methods in light water reactor (LWR) cell and assembly codes. Considerable effort has, therefore, been devoted to the validation of code methods for gadolinia fuel. The goal of the work reported in this paper is to check the analysis methods in the LWR cell/assembly code BOXER and its associated cross-section processing code ETOBOX, by comparison of BOXER results with those from a very accurate Monte Carlo calculation for a gadolinium benchmark problem. Initial results ofmore » such a comparison have been previously reported. However, the Monte Carlo calculations, done with the MCNP code, were performed at Los Alamos National Laboratory using ENDF/B-V data, while the BOXER calculations were performed at the Paul Scherrer Institute using JEF-1 nuclear data. This difference in the basic nuclear data used for the two calculations, caused by the restricted nature of these evaluated data files, led to associated uncertainties in a comparison of the results for methods validation. In the joint investigations at the Georgia Institute of Technology and PSI, such uncertainty in this comparison was eliminated by using ENDF/B-V data for BOXER calculations at Georgia Tech.« less
Validating LES for Jet Aeroacoustics
NASA Technical Reports Server (NTRS)
Bridges, James
2011-01-01
Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that result in having dreams come true. This paper primarily addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. It also addresses the latter problem in discussing what are relevant measures critical for aeroacoustics that should be used in validating LES codes. These new diagnostic techniques deliver measurements and flow statistics of increasing sophistication and capability, but what of their accuracy? And what are the measures to be used in validation? This paper argues that the issue of accuracy be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it is argued that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound.
Gnjidic, Danijela; Pearson, Sallie-Anne; Hilmer, Sarah N; Basilakis, Jim; Schaffer, Andrea L; Blyth, Fiona M; Banks, Emily
2015-03-30
Increasingly, automated methods are being used to code free-text medication data, but evidence on the validity of these methods is limited. To examine the accuracy of automated coding of previously keyed in free-text medication data compared with manual coding of original handwritten free-text responses (the 'gold standard'). A random sample of 500 participants (475 with and 25 without medication data in the free-text box) enrolled in the 45 and Up Study was selected. Manual coding involved medication experts keying in free-text responses and coding using Anatomical Therapeutic Chemical (ATC) codes (i.e. chemical substance 7-digit level; chemical subgroup 5-digit; pharmacological subgroup 4-digit; therapeutic subgroup 3-digit). Using keyed-in free-text responses entered by non-experts, the automated approach coded entries using the Australian Medicines Terminology database and assigned corresponding ATC codes. Based on manual coding, 1377 free-text entries were recorded and, of these, 1282 medications were coded to ATCs manually. The sensitivity of automated coding compared with manual coding was 79% (n = 1014) for entries coded at the exact ATC level, and 81.6% (n = 1046), 83.0% (n = 1064) and 83.8% (n = 1074) at the 5, 4 and 3-digit ATC levels, respectively. The sensitivity of automated coding for blank responses was 100% compared with manual coding. Sensitivity of automated coding was highest for prescription medications and lowest for vitamins and supplements, compared with the manual approach. Positive predictive values for automated coding were above 95% for 34 of the 38 individual prescription medications examined. Automated coding for free-text prescription medication data shows very high to excellent sensitivity and positive predictive values, indicating that automated methods can potentially be useful for large-scale, medication-related research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, William BJ J; Rearden, Bradley T
The validation of neutron transport methods used in nuclear criticality safety analyses is required by consensus American National Standards Institute/American Nuclear Society (ANSI/ANS) standards. In the last decade, there has been an increased interest in correlations among critical experiments used in validation that have shared physical attributes and which impact the independence of each measurement. The statistical methods included in many of the frequently cited guidance documents on performing validation calculations incorporate the assumption that all individual measurements are independent, so little guidance is available to practitioners on the topic. Typical guidance includes recommendations to select experiments from multiple facilitiesmore » and experiment series in an attempt to minimize the impact of correlations or common-cause errors in experiments. Recent efforts have been made both to determine the magnitude of such correlations between experiments and to develop and apply methods for adjusting the bias and bias uncertainty to account for the correlations. This paper describes recent work performed at Oak Ridge National Laboratory using the Sampler sequence from the SCALE code system to develop experimental correlations using a Monte Carlo sampling technique. Sampler will be available for the first time with the release of SCALE 6.2, and a brief introduction to the methods used to calculate experiment correlations within this new sequence is presented in this paper. Techniques to utilize these correlations in the establishment of upper subcritical limits are the subject of a companion paper and will not be discussed here. Example experimental uncertainties and correlation coefficients are presented for a variety of low-enriched uranium water-moderated lattice experiments selected for use in a benchmark exercise by the Working Party on Nuclear Criticality Safety Subgroup on Uncertainty Analysis in Criticality Safety Analyses. The results include studies on the effect of fuel rod pitch on the correlations, and some observations are also made regarding difficulties in determining experimental correlations using the Monte Carlo sampling technique.« less