Coded mask telescopes for X-ray astronomy
NASA Astrophysics Data System (ADS)
Skinner, G. K.; Ponman, T. J.
1987-04-01
The principle of the coded mask techniques are discussed together with the methods of image reconstruction. The coded mask telescopes built at the University of Birmingham, including the SL 1501 coded mask X-ray telescope flown on the Skylark rocket and the Coded Mask Imaging Spectrometer (COMIS) projected for the Soviet space station Mir, are described. A diagram of a coded mask telescope and some designs for coded masks are included.
Computing Challenges in Coded Mask Imaging
NASA Technical Reports Server (NTRS)
Skinner, Gerald
2009-01-01
This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.
Techniques for the analysis of data from coded-mask X-ray telescopes
NASA Technical Reports Server (NTRS)
Skinner, G. K.; Ponman, T. J.; Hammersley, A. P.; Eyles, C. J.
1987-01-01
Several techniques useful in the analysis of data from coded-mask telescopes are presented. Methods of handling changes in the instrument pointing direction are reviewed and ways of using FFT techniques to do the deconvolution considered. Emphasis is on techniques for optimally-coded systems, but it is shown that the range of systems included in this class can be extended through the new concept of 'partial cycle averaging'.
The Sensitivity of Coded Mask Telescopes
NASA Technical Reports Server (NTRS)
Skinner, Gerald K.
2008-01-01
Simple formulae are often used to estimate the sensitivity of coded mask X-ray or gamma-ray telescopes, but t,hese are strictly only applicable if a number of basic assumptions are met. Complications arise, for example, if a grid structure is used to support the mask elements, if the detector spatial resolution is not good enough to completely resolve all the detail in the shadow of the mask or if any of a number of other simplifying conditions are not fulfilled. We derive more general expressions for the Poisson-noise-limited sensitivity of astronomical telescopes using the coded mask technique, noting explicitly in what circumstances they are applicable. The emphasis is on using nomenclature and techniques that result in simple and revealing results. Where no convenient expression is available a procedure is given which allows the calculation of the sensitivity. We consider certain aspects of the optimisation of the design of a coded mask telescope and show that when the detector spatial resolution and the mask to detector separation are fixed, the best source location accuracy is obtained when the mask elements are equal in size to the detector pixels.
Accelerator test of the coded aperture mask technique for gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Jenkins, T. L.; Frye, G. M., Jr.; Owens, A.; Carter, J. N.; Ramsden, D.
1982-01-01
A prototype gamma-ray telescope employing the coded aperture mask technique has been constructed and its response to a point source of 20 MeV gamma-rays has been measured. The point spread function is approximately a Gaussian with a standard deviation of 12 arc minutes. This resolution is consistent with the cell size of the mask used and the spatial resolution of the detector. In the context of the present experiment, the error radius of the source position (90 percent confidence level) is 6.1 arc minutes.
Secondary gamma-ray production in a coded aperture mask
NASA Technical Reports Server (NTRS)
Owens, A.; Frye, G. M., Jr.; Hall, C. J.; Jenkins, T. L.; Pendleton, G. N.; Carter, J. N.; Ramsden, D.; Agrinier, B.; Bonfand, E.; Gouiffes, C.
1985-01-01
The application of the coded aperture mask to high energy gamma-ray astronomy will provide the capability of locating a cosmic gamma-ray point source with a precision of a few arc-minutes above 20 MeV. Recent tests using a mask in conjunction with drift chamber detectors have shown that the expected point spread function is achieved over an acceptance cone of 25 deg. A telescope employing this technique differs from a conventional telescope only in that the presence of the mask modifies the radiation field in the vicinity of the detection plane. In addition to reducing the primary photon flux incident on the detector by absorption in the mask elements, the mask will also be a secondary radiator of gamma-rays. The various background components in a CAMTRAC (Coded Aperture Mask Track Chamber) telescope are considered. Monte-Carlo calculations are compared with recent measurements obtained using a prototype instrument in a tagged photon beam line.
Securing information display by use of visual cryptography.
Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo
2003-09-01
We propose a secure display technique based on visual cryptography. The proposed technique ensures the security of visual information. The display employs a decoding mask based on visual cryptography. Without the decoding mask, the displayed information cannot be viewed. The viewing zone is limited by the decoding mask so that only one person can view the information. We have developed a set of encryption codes to maintain the designed viewing zone and have demonstrated a display that provides a limited viewing zone.
Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes
NASA Technical Reports Server (NTRS)
Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.
1991-01-01
While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.
Optimization technique of wavefront coding system based on ZEMAX externally compiled programs
NASA Astrophysics Data System (ADS)
Han, Libo; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua
2016-10-01
Wavefront coding technique as a means of athermalization applied to infrared imaging system, the design of phase plate is the key to system performance. This paper apply the externally compiled programs of ZEMAX to the optimization of phase mask in the normal optical design process, namely defining the evaluation function of wavefront coding system based on the consistency of modulation transfer function (MTF) and improving the speed of optimization by means of the introduction of the mathematical software. User write an external program which computes the evaluation function on account of the powerful computing feature of the mathematical software in order to find the optimal parameters of phase mask, and accelerate convergence through generic algorithm (GA), then use dynamic data exchange (DDE) interface between ZEMAX and mathematical software to realize high-speed data exchanging. The optimization of the rotational symmetric phase mask and the cubic phase mask have been completed by this method, the depth of focus increases nearly 3 times by inserting the rotational symmetric phase mask, while the other system with cubic phase mask can be increased to 10 times, the consistency of MTF decrease obviously, the maximum operating temperature of optimized system range between -40°-60°. Results show that this optimization method can be more convenient to define some unconventional optimization goals and fleetly to optimize optical system with special properties due to its externally compiled function and DDE, there will be greater significance for the optimization of unconventional optical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less
Vijayakumar, A; Rosen, Joseph
2017-06-12
Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.
Large Coded Aperture Mask for Spaceflight Hard X-ray Images
NASA Technical Reports Server (NTRS)
Vigneau, Danielle N.; Robinson, David W.
2002-01-01
The 2.6 square meter coded aperture mask is a vital part of the Burst Alert Telescope on the Swift mission. A random, but known pattern of more than 50,000 lead tiles, each 5 mm square, was bonded to a large honeycomb panel which projects a shadow on the detector array during a gamma ray burst. A two-year development process was necessary to explore ideas, apply techniques, and finalize procedures to meet the strict requirements for the coded aperture mask. Challenges included finding a honeycomb substrate with minimal gamma ray attenuation, selecting an adhesive with adequate bond strength to hold the tiles in place but soft enough to allow the tiles to expand and contract without distorting the panel under large temperature gradients, and eliminating excess adhesive from all untiled areas. The largest challenge was to find an efficient way to bond the > 50,000 lead tiles to the panel with positional tolerances measured in microns. In order to generate the desired bondline, adhesive was applied and allowed to cure to each tile. The pre-cured tiles were located in a tool to maintain positional accuracy, wet adhesive was applied to the panel, and it was lowered to the tile surface with synchronized actuators. Using this procedure, the entire tile pattern was transferred to the large honeycomb panel in a single bond. The pressure for the bond was achieved by enclosing the entire system in a vacuum bag. Thermal vacuum and acoustic tests validated this approach. This paper discusses the methods, materials, and techniques used to fabricate this very large and unique coded aperture mask for the Swift mission.
Russo, Paolo; Mettivier, Giovanni
2011-04-01
The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35 kVp and M = 6.1, with a detector entrance exposure as low as 1.82 mR (0.125 mA s tube load). The slit camera indicated a focal spot of 0.112 mm x 0.104 mm at 35 kVp and M = 3.15, with an exposure at the detector of 72 mR. Focal spot measurements with the coded mask could be performed up to 80 kVp. Tolerance to angular misalignment with the reference beam up to 7 degrees in in-plane rotations and 1 degrees deg in out-of-plane rotations was observed. The axial distance of the focal spot from the coded mask could also be determined. It is possible to determine the beam intensity via measurement of the intensity of the decoded image of the focal spot and via a calibration procedure. Coded aperture masks coupled to a digital area detector produce precise determinations of the focal spot of an x-ray tube with reduced tube loading and measurement time, coupled to a large tolerance in the alignment of the mask.
Secure information display with limited viewing zone by use of multi-color visual cryptography.
Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo
2004-04-05
We propose a display technique that ensures security of visual information by use of visual cryptography. A displayed image appears as a completely random pattern unless viewed through a decoding mask. The display has a limited viewing zone with the decoding mask. We have developed a multi-color encryption code set. Eight colors are represented in combinations of a displayed image composed of red, green, blue, and black subpixels and a decoding mask composed of transparent and opaque subpixels. Furthermore, we have demonstrated secure information display by use of an LCD panel.
NASA Astrophysics Data System (ADS)
Bhardwaj, D. S. S.; Ghosh, Nilanjan; Rao, Nageswara; Pai, Ravi R.
2009-10-01
Runtime of the Mask Data Preparation (MDP) tool is largely dependent on the hierarchy of the input layout data. In this paper, we present a technique where a hierarchical or flat input design layout or almost flat mask data can be converted into a favorable hierarchical data which can be directly used by MDP tools for fracturing. A favorable hierarchy is a hierarchy of cells where polygons within cells do not overlap with each other even if bounding boxes of cells might overlap with each other. This is an important characteristic which can be intelligently made use of by intra-polygonal operations like fracturing. Otherwise, a mask data preparation (MDP) tool has to take the responsibility for resolving overlaps among polygons, which slows down the processing and increases the data size. MDP on a favorable hierarchy will thus speed up the fracturing or re-fracturing steps and also minimize the output fractured data size, as shown through the experimental results in the paper. In the proposed technique, the favorable hierarchy is generated using a modified version of the Lempel-Ziv (LZ) coding algorithm, which was originally devised for compressing character strings. A hierarchical fracturing algorithm can be employed to work on the favorable hierarchy generated, which will utilize the property of a favorable hierarchy that polygons do not overlap with each other. Apart from the obvious runtime benefits, such a favorable hierarchy allows considerable reduction in fractured data size as most mask data formats allow representation of a hierarchy containing two levels.
Interactive Videodisc Learning Systems.
ERIC Educational Resources Information Center
Currier, Richard L.
1983-01-01
Discussion of capabilities of interactive videodisc, which combines video images recorded on disc and random-access, highlights interactivity; teaching techniques with videodiscs (including masking, disassembly, movie maps, tactical maps, action code, and simulation); costs; and games. Illustrative material is provided. (High Technology, P. O. Box…
Dual-sided coded-aperture imager
Ziock, Klaus-Peter [Clinton, TN
2009-09-22
In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.
Perea, Manuel; Acha, Joana
2009-02-01
Recently, a number of input coding schemes (e.g., SOLAR model, SERIOL model, open-bigram model, overlap model) have been proposed that capture the transposed-letter priming effect (i.e., faster response times for jugde-JUDGE than for jupte-JUDGE). In their current version, these coding schemes do not assume any processing differences between vowels and consonants. However, in a lexical decision task, Perea and Lupker (2004, JML; Lupker, Perea, & Davis, 2008, L&CP) reported that transposed-letter priming effects occurred for consonant transpositions but not for vowel transpositions. This finding poses a challenge for these recently proposed coding schemes. Here, we report four masked priming experiments that examine whether this consonant/vowel dissociation in transposed-letter priming is task-specific. In Experiment 1, we used a lexical decision task and found a transposed-letter priming effect only for consonant transpositions. In Experiments 2-4, we employed a same-different task - a task which taps early perceptual processes - and found a robust transposed-letter priming effect that did not interact with consonant/vowel status. We examine the implications of these findings for the front-end of the models of visual word recognition.
Optical performances of the FM JEM-X masks
NASA Astrophysics Data System (ADS)
Reglero, V.; Rodrigo, J.; Velasco, T.; Gasent, J. L.; Chato, R.; Alamo, J.; Suso, J.; Blay, P.; Martínez, S.; Doñate, M.; Reina, M.; Sabau, D.; Ruiz-Urien, I.; Santos, I.; Zarauz, J.; Vázquez, J.
2001-09-01
The JEM-X Signal Multiplexing Systems are large HURA codes "written" in a pure tungsten plate 0.5 mm thick. 24.247 hexagonal pixels (25% open) are spread over a total area of 535 mm diameter. The tungsten plate is embedded in a mechanical structure formed by a Ti ring, a pretensioning system (Cu-Be) and an exoskeleton structure that provides the required stiffness. The JEM-X masks differ from the SPI and IBIS masks on the absence of a code support structure covering the mask assembly. Open pixels are fully transparent to X-rays. The scope of this paper is to report the optical performances of the FM JEM-X masks defined by uncertainties on the pixel location (centroid) and size coming from the manufacturing and assembly processes. Stability of the code elements under thermoelastic deformations is also discussed. As a general statement, JEM-X Mask optical properties are nearly one order of magnitude better than specified in 1994 during the ESA instrument selection.
Design criteria for small coded aperture masks in gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Sembay, S.; Gehrels, Neil
1990-01-01
Most theoretical work on coded aperture masks in X-ray and low-energy gamma-ray astronomy has concentrated on masks with large numbers of elements. For gamma-ray spectrometers in the MeV range, the detector plane usually has only a few discrete elements, so that masks with small numbers of elements are called for. For this case it is feasible to analyze by computer all the possible mask patterns of given dimension to find the ones that best satisfy the desired performance criteria. A particular set of performance criteria for comparing the flux sensitivities, source positioning accuracies and transparencies of different mask patterns is developed. The results of such a computer analysis for masks up to dimension 5 x 5 unit cell are presented and it is concluded that there is a great deal of flexibility in the choice of mask pattern for each dimension.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Wei, Jingxuan
2014-09-01
The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.
2012-01-01
We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.
Improved techniques reduce face mask leak during simulated neonatal resuscitation: study 2.
Wood, Fiona E; Morley, Colin J; Dawson, Jennifer A; Kamlin, C Omar F; Owen, Louise S; Donath, Susan; Davis, Peter G
2008-05-01
Techniques of positioning and holding neonatal face masks vary. Studies have shown that leak at the face mask is common and often substantial irrespective of operator experience. (1) To identify a technique for face mask placement and hold which will minimise mask leak. (2) To investigate the effect of written instruction and demonstration of the identified technique on mask leak for two round face masks. Three experienced neonatologists compared methods of placing and holding face masks to minimise the leak for Fisher & Paykel 60 mm and Laerdal size 0/1 masks. 50 clinical staff gave positive pressure ventilation to a modified manikin designed to measure leak at the face mask. They were provided with written instructions on how to position and hold each mask and then received a demonstration. Face mask leak was measured after each teaching intervention. A technique of positioning and holding the face masks was identified which minimised leak. The mean (SD) mask leaks before instruction, after instruction and after demonstration were 55% (31), 49% (30), 33% (26) for the Laerdal mask and 57% (25), 47% (28), 32% (30) for the Fisher & Paykel mask. There was no significant difference in mask leak between the two masks. Written instruction alone reduced leak by 8.8% (CI 1.4% to 16.2%) for either mask; when combined with a demonstration mask leak was reduced by 24.1% (CI 16.4% to 31.8%). Written instruction and demonstration of the identified optimal technique resulted in significantly reduced face mask leak.
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.
Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R
2014-01-13
A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.
Optical digital chaos cryptography
NASA Astrophysics Data System (ADS)
Arenas-Pingarrón, Álvaro; González-Marcos, Ana P.; Rivas-Moscoso, José M.; Martín-Pereda, José A.
2007-10-01
In this work we present a new way to mask the data in a one-user communication system when direct sequence - code division multiple access (DS-CDMA) techniques are used. The code is generated by a digital chaotic generator, originally proposed by us and previously reported for a chaos cryptographic system. It is demonstrated that if the user's data signal is encoded with a bipolar phase-shift keying (BPSK) technique, usual in DS-CDMA, it can be easily recovered from a time-frequency domain representation. To avoid this situation, a new system is presented in which a previous dispersive stage is applied to the data signal. A time-frequency domain analysis is performed, and the devices required at the transmitter and receiver end, both user-independent, are presented for the optical domain.
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
NASA Astrophysics Data System (ADS)
King, Sharon V.; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe
2014-03-01
Wavefront coding techniques are currently used to engineer unique point spread functions (PSFs) that enhance existing microscope modalities or create new ones. Previous work in this field demonstrated that simulated intensity PSFs encoded with a generalized cubic phase mask (GCPM) are invariant to spherical aberration or misfocus; dependent on parameter selection. Additional work demonstrated that simulated PSFs encoded with a squared cubic phase mask (SQUBIC) produce a depth invariant focal spot for application in confocal scanning microscopy. Implementation of PSF engineering theory with a liquid crystal on silicon (LCoS) spatial light modulator (SLM) enables validation of WFC phase mask designs and parameters by manipulating optical wavefront properties with a programmable diffractive element. To validate and investigate parameters of the GCPM and SQUBIC WFC masks, we implemented PSF engineering in an upright microscope modified with a dual camera port and a LCoS SLM. We present measured WFC PSFs and compare them to simulated PSFs through analysis of their effect on the microscope imaging system properties. Experimentally acquired PSFs show the same intensity distribution as simulation for the GCPM phase mask, the SQUBIC-mask and the well-known and characterized cubic-phase mask (CPM), first applied to high NA microscopy by Arnison et al.10, for extending depth of field. These measurements provide experimental validation of new WFC masks and demonstrate the use of the LCoS SLM as a WFC design tool. Although efficiency improvements are needed, this application of LCoS technology renders the microscope capable of switching among multiple WFC modes.
Kumar, Manoj; Vijayakumar, A; Rosen, Joseph
2017-09-14
We present a lensless, interferenceless incoherent digital holography technique based on the principle of coded aperture correlation holography. The acquired digital hologram by this technique contains a three-dimensional image of some observed scene. Light diffracted by a point object (pinhole) is modulated using a random-like coded phase mask (CPM) and the intensity pattern is recorded and composed as a point spread hologram (PSH). A library of PSHs is created using the same CPM by moving the pinhole to all possible axial locations. Intensity diffracted through the same CPM from an object placed within the axial limits of the PSH library is recorded by a digital camera. The recorded intensity this time is composed as the object hologram. The image of the object at any axial plane is reconstructed by cross-correlating the object hologram with the corresponding component of the PSH library. The reconstruction noise attached to the image is suppressed by various methods. The reconstruction results of multiplane and thick objects by this technique are compared with regular lens-based imaging.
QR code-based non-linear image encryption using Shearlet transform and spiral phase transform
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan
2018-02-01
In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.
NASA Astrophysics Data System (ADS)
Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong
2015-10-01
We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.
Estimating human cochlear tuning behaviorally via forward masking
NASA Astrophysics Data System (ADS)
Oxenham, Andrew J.; Kreft, Heather A.
2018-05-01
The cochlea is where sound vibrations are transduced into the initial neural code for hearing. Despite the intervening stages of auditory processing, a surprising number of auditory perceptual phenomena can be explained in terms of the cochlea's biomechanical transformations. The quest to relate perception to these transformations has a long and distinguished history. Given its long history, it is perhaps surprising that something as fundamental as the link between frequency tuning in the cochlea and perception remains a controversial and active topic of investigation. Here we review some recent developments in our understanding of the relationship between cochlear frequency tuning and behavioral measures of frequency selectivity in humans. We show that forward masking using the notched-noise technique can produce reliable estimates of tuning that are in line with predictions from stimulus frequency otoacoustic emissions.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Yoshikawa, Shoji; Suematsu, Kenichi; Terao, Kenji
2015-07-01
High-sensitivity EUV mask pattern defect detection is one of the major issues in order to realize the device fabrication by using the EUV lithography. We have already designed a novel Projection Electron Microscope (PEM) optics that has been integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code), and which seems to be quite promising for 16 nm hp generation EUVL Patterned mask Inspection (PI). Defect inspection sensitivity was evaluated by capturing an electron image generated at the mask by focusing onto an image sensor. The progress of the novel PEM optics performance is not only about making an image sensor with higher resolution but also about doing a better image processing to enhance the defect signal. In this paper, we describe the experimental results of EUV patterned mask inspection using the above-mentioned system. The performance of the system is measured in terms of defect detectability for 11 nm hp generation EUV mask. To improve the inspection throughput for 11 nm hp generation defect detection, it would require a data processing rate of greater than 1.5 Giga- Pixel-Per-Second (GPPS) that would realize less than eight hours of inspection time including the step-and-scan motion associated with the process. The aims of the development program are to attain a higher throughput, and enhance the defect detection sensitivity by using an adequate pixel size with sophisticated image processing resulting in a higher processing rate.
Evaluation of a native vegetation masking technique
NASA Technical Reports Server (NTRS)
Kinsler, M. C.
1984-01-01
A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.
Not All Skilled Readers Have Cracked the Code: Individual Differences in Masked Form Priming
ERIC Educational Resources Information Center
Andrews, Sally; Lo, Steson
2012-01-01
This experiment investigated whether individual differences in written language proficiency among university students predict the early stages of lexical retrieval tapped by the masked form priming lexical decision task. To separate the contributions of sublexical facilitation and lexical competition to masked form priming, the effects of prime…
Optimization of wavefront coding imaging system using heuristic algorithms
NASA Astrophysics Data System (ADS)
González-Amador, E.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zermeño-Loreto, O.
2017-08-01
Wavefront Coding (WFC) systems make use of an aspheric Phase-Mask (PM) and digital image processing to extend the Depth of Field (EDoF) of computational imaging systems. For years, several kinds of PM have been designed to produce a point spread function (PSF) near defocus-invariant. In this paper, the optimization of the phase deviation parameter is done by means of genetic algorithms (GAs). In this, the merit function minimizes the mean square error (MSE) between the diffraction limited Modulated Transfer Function (MTF) and the MTF of the system that is wavefront coded with different misfocus. WFC systems were simulated using the cubic, trefoil, and 4 Zernike polynomials phase-masks. Numerical results show defocus invariance aberration in all cases. Nevertheless, the best results are obtained by using the trefoil phase-mask, because the decoded image is almost free of artifacts.
NASA Astrophysics Data System (ADS)
George, Jonathan K.
2013-05-01
In the search for low-cost wide spectrum imagers it may become necessary to sacrifice the expense of the focal plane array and revert to a scanning methodology. In many cases the sensor may be too unwieldy to physically scan and mirrors may have adverse effects on particular frequency bands. In these cases, photonic masks can be devised to modulate the incoming light field with a code over time. This is in essence code-division multiplexing of the light field into a lower dimension channel. In this paper a simple method for modulating the light field with masks of the Archimedes' spiral is presented and a mathematical model of the two-dimensional mask set is developed.
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.
2018-01-01
In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.
Athermalization of infrared dual field optical system based on wavefront coding
NASA Astrophysics Data System (ADS)
Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha
2017-02-01
Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.
NASA Astrophysics Data System (ADS)
Lang, Jun; Zhang, Jing
2015-03-01
In our proposed optical image cryptosystem, two pairs of phase-amplitude masks are generated from the chaotic web map for image encryption in the 4f double random phase-amplitude encoding (DRPAE) system. Instead of transmitting the real keys and the enormous masks codes, only a few observed measurements intermittently chosen from the masks are delivered. Based on compressive sensing paradigm, we suitably refine the series expansions of web map equations to better reconstruct the underlying system. The parameters of the chaotic equations can be successfully calculated from observed measurements and then can be used to regenerate the correct random phase-amplitude masks for decrypting the encoded information. Numerical simulations have been performed to verify the proposed optical image cryptosystem. This cryptosystem can provide a new key management and distribution method. It has the advantages of sufficiently low occupation of the transmitted key codes and security improvement of information transmission without sending the real keys.
NASA Astrophysics Data System (ADS)
Choi, Heon; Wang, Wei-long; Kallingal, Chidam
2015-03-01
The continuous scaling of semiconductor devices is quickly outpacing the resolution improvements of lithographic exposure tools and processes. This one-sided progression has pushed optical lithography to its limits, resulting in the use of well-known techniques such as Sub-Resolution Assist Features (SRAF's), Source-Mask Optimization (SMO), and double-patterning, to name a few. These techniques, belonging to a larger category of Resolution Enhancement Techniques (RET), have extended the resolution capabilities of optical lithography at the cost of increasing mask complexity, and therefore cost. One such technique, called Inverse Lithography Technique (ILT), has attracted much attention for its ability to produce the best possible theoretical mask design. ILT treats the mask design process as an inverse problem, where the known transformation from mask to wafer is carried out backwards using a rigorous mathematical approach. One practical problem in the application of ILT is the resulting contour-like mask shapes that must be "Manhattanized" (composed of straight edges and 90-deg corners) in order to produce a manufacturable mask. This conversion process inherently degrades the mask quality as it is a departure from the "optimal mask" represented by the continuously curved shapes produced by ILT. However, simpler masks composed of longer straight edges reduce the mask cost as it lowers the shot count and saves mask writing time during mask fabrication, resulting in a conflict between manufacturability and performance for ILT produced masks1,2. In this study, various commonly used metrics will be combined into an objective function to produce a single number to quantitatively measure a particular ILT solution's ability to balance mask manufacturability and RET performance. Several metrics that relate to mask manufacturing costs (i.e. mask vertex count, ILT computation runtime) are appropriately weighted against metrics that represent RET capability (i.e. process-variation band, edge-placement-error) in order to reflect the desired practical balance. This well-defined scoring system allows direct comparison of several masks with varying degrees of complexities. Using this method, ILT masks produced with increasing mask constraints will be compared, and it will be demonstrated that using the smallest minimum width for mask shapes does not always produce the optimal solution.
Implementation of trinary logic in a polarization encoded optical shadow-casting scheme.
Rizvi, R A; Zaheer, K; Zubairy, M S
1991-03-10
The design of various multioutput trinary combinational logic units by a polarization encoded optical shadow-casting (POSC) technique is presented. The POSC modified algorithm is employed to design and implement these logic elements in a trinary number system with separate and simultaneous generation of outputs. A detailed solution of the POSC logic equations for a fixed source plane and a fixed decoding mask is given to obtain input pixel coding for a trinary half-adder, full adder, and subtractor.
Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo
2017-09-01
Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present regardless of the tested EAFDs. Based on the present findings, we conclude that there is an asymmetry between the electric and the acoustic masker modalities. These observations have implications for the design and fitting of EAS sound-coding strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Combining Simultaneous with Temporal Masking
ERIC Educational Resources Information Center
Hermens, Frouke; Herzog, Michael H.; Francis, Gregory
2009-01-01
Simultaneous and temporal masking are two frequently used techniques in psychology and vision science. Although there are many studies and theories related to each masking technique, there are no systematic investigations of their mutual relationship, even though both techniques are often applied together. Here, the authors show that temporal…
A new approach in dry technology for non-degrading optical and EUV mask cleaning
NASA Astrophysics Data System (ADS)
Varghese, Ivin; Smith, Ben; Balooch, Mehdi; Bowers, Chuck
2012-11-01
The Eco-Snow Systems group of RAVE N.P., Inc. has developed a new cleaning technique to target several of the advanced and next generation mask clean challenges. This new technique, especially when combined with Eco-Snow Systems cryogenic CO2 cleaning technology, provides several advantages over existing methods because it: 1) is solely based on dry technique without requiring additional complementary aggressive wet chemistries that degrade the mask, 2) operates at atmospheric pressure and therefore avoids expensive and complicated equipment associated with vacuum systems, 3) generates ultra-clean reactants eliminating possible byproduct adders, 4) can be applied locally for site specific cleaning without exposing the rest of the mask or can be used to clean the entire mask, 5) removes organic as well as inorganic particulates and film contaminations, and 6) complements current techniques utilized for cleaning of advanced masks such as reduced chemistry wet cleans. In this paper, we shall present examples demonstrating the capability of this new technique for removal of pellicle glue residues and for critical removal of carbon contamination on EUV masks.
Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314
Lupker, Stephen J.
2017-01-01
The experiments reported here used “Reversed-Interior” (RI) primes (e.g., cetupmor-COMPUTER) in three different masked priming paradigms in order to test between different models of orthographic coding/visual word recognition. The results of Experiment 1, using a standard masked priming methodology, showed no evidence of priming from RI primes, in contrast to the predictions of the Bayesian Reader and LTRS models. By contrast, Experiment 2, using a sandwich priming methodology, showed significant priming from RI primes, in contrast to the predictions of open bigram models, which predict that there should be no orthographic similarity between these primes and their targets. Similar results were obtained in Experiment 3, using a masked prime same-different task. The results of all three experiments are most consistent with the predictions derived from simulations of the Spatial-coding model. PMID:29244824
NASA Technical Reports Server (NTRS)
Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.
1976-01-01
A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.
Oral mask ventilation is more effective than face mask ventilation after nasal surgery.
Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat
2016-06-01
To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.
Zandbergen, Paul A
2014-01-01
Public health datasets increasingly use geographic identifiers such as an individual's address. Geocoding these addresses often provides new insights since it becomes possible to examine spatial patterns and associations. Address information is typically considered confidential and is therefore not released or shared with others. Publishing maps with the locations of individuals, however, may also breach confidentiality since addresses and associated identities can be discovered through reverse geocoding. One commonly used technique to protect confidentiality when releasing individual-level geocoded data is geographic masking. This typically consists of applying a certain amount of random perturbation in a systematic manner to reduce the risk of reidentification. A number of geographic masking techniques have been developed as well as methods to quantity the risk of reidentification associated with a particular masking method. This paper presents a review of the current state-of-the-art in geographic masking, summarizing the various methods and their strengths and weaknesses. Despite recent progress, no universally accepted or endorsed geographic masking technique has emerged. Researchers on the other hand are publishing maps using geographic masking of confidential locations. Any researcher publishing such maps is advised to become familiar with the different masking techniques available and their associated reidentification risks.
NASA Astrophysics Data System (ADS)
Vella, A.; Munoz, Andre; Healy, Matthew J. F.; Lane, David; Lockley, D.
2017-08-01
The PENELOPE Monte Carlo simulation code was used to determine the optimum thickness and aperture diameter of a pinhole mask for X-ray backscatter imaging in a security application. The mask material needs to be thick enough to absorb most X-rays, and the pinhole must be wide enough for sufficient field of view whilst narrow enough for sufficient image spatial resolution. The model consisted of a fixed geometry test object, various masks with and without pinholes, and a 1040 x 1340 pixels' area detector inside a lead lined camera housing. The photon energy distribution incident upon masks was flat up to selected energy limits. This artificial source was used to avoid the optimisation being specific to any particular X-ray source technology. The pixelated detector was modelled by digitising the surface area represented by the PENELOPE phase space file and integrating the energies of the photons impacting within each pixel; a MATLAB code was written for this. The image contrast, signal to background ratio, spatial resolution, and collimation effect were calculated at the simulated detector as a function of pinhole diameter and various thicknesses of mask made of tungsten, tungsten/epoxy composite or bismuth alloy. A process of elimination was applied to identify suitable masks for a viable X-ray backscattering security application.
Wafer hot spot identification through advanced photomask characterization techniques: part 2
NASA Astrophysics Data System (ADS)
Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike
2017-03-01
Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.
Wafer hot spot identification through advanced photomask characterization techniques
NASA Astrophysics Data System (ADS)
Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike
2016-10-01
As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.
NASA Astrophysics Data System (ADS)
Cork, Chris; Lugg, Robert; Chacko, Manoj; Levi, Shimon
2005-06-01
With the exponential increase in output database size due to the aggressive optical proximity correction (OPC) and resolution enhancement technique (RET) required for deep sub-wavelength process nodes, the CPU time required for mask tape-out continues to increase significantly. For integrated device manufacturers (IDMs), this can impact the time-to-market for their products where even a few days delay could have a huge commercial impact and loss of market window opportunity. For foundries, a shorter turnaround time provides a competitive advantage in their demanding market, too slow could mean customers looking elsewhere for these services; while a fast turnaround may even command a higher price. With FAB turnaround of a mature, plain-vanilla CMOS process of around 20-30 days, a delay of several days in mask tapeout would contribute a significant fraction to the total time to deliver prototypes. Unlike silicon processing, masks tape-out time can be decreased by simply purchasing extra computing resources and software licenses. Mask tape-out groups are taking advantage of the ever-decreasing hardware cost and increasing power of commodity processors. The significant distributability inherent in some commercial Mask Synthesis software can be leveraged to address this critical business issue. Different implementations have different fractions of the code that cannot be parallelized and this affects the efficiency with which it scales, as is described by Amdahl"s law. Very few are efficient enough to allow the effective use of 1000"s of processors, enabling run times to drop from days to only minutes. What follows is a cost aware methodology to quantify the scalability of this class of software, and thus act as a guide to estimating the optimal investment in terms of hardware and software licenses.
Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.
2012-11-06
An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.
Buechner, Andreas; Beynon, Andy; Szyfter, Witold; Niemczyk, Kazimierz; Hoppe, Ulrich; Hey, Matthias; Brokx, Jan; Eyles, Julie; Van de Heyning, Paul; Paludetti, Gaetano; Zarowski, Andrzej; Quaranta, Nicola; Wesarg, Thomas; Festen, Joost; Olze, Heidi; Dhooge, Ingeborg; Müller-Deile, Joachim; Ramos, Angel; Roman, Stephane; Piron, Jean-Pierre; Cuda, Domenico; Burdo, Sandro; Grolman, Wilko; Vaillard, Samantha Roux; Huarte, Alicia; Frachet, Bruno; Morera, Constantine; Garcia-Ibáñez, Luis; Abels, Daniel; Walger, Martin; Müller-Mazotta, Jochen; Leone, Carlo Antonio; Meyer, Bernard; Dillier, Norbert; Steffens, Thomas; Gentine, André; Mazzoli, Manuela; Rypkema, Gerben; Killian, Matthijs; Smoorenburg, Guido
2011-11-01
Efficacy of the SPEAK and ACE coding strategies was compared with that of a new strategy, MP3000™, by 37 European implant centers including 221 subjects. The SPEAK and ACE strategies are based on selection of 8-10 spectral components with the highest levels, while MP3000 is based on the selection of only 4-6 components, with the highest levels relative to an estimate of the spread of masking. The pulse rate per component was fixed. No significant difference was found for the speech scores and for coding preference between the SPEAK/ACE and MP3000 strategies. Battery life was 24% longer for the MP3000 strategy. With MP3000 the best results were found for a selection of six components. In addition, the best results were found for a masking function with a low-frequency slope of 50 dB/Bark and a high-frequency slope of 37 dB/Bark (50/37) as compared to the other combinations examined of 40/30 and 20/15 dB/Bark. The best results found for the steepest slopes do not seem to agree with current estimates of the spread of masking in electrical stimulation. Future research might reveal if performance with respect to SPEAK/ACE can be enhanced by increasing the number of channels in MP3000 beyond 4-6 and it should shed more light on the optimum steepness of the slopes of the masking functions applied in MP3000.
Perceptually-Based Adaptive JPEG Coding
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)
1996-01-01
An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.
Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask
NASA Astrophysics Data System (ADS)
Morel, Sébastien
2004-09-01
A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.
Zandbergen, Paul A.
2014-01-01
Public health datasets increasingly use geographic identifiers such as an individual's address. Geocoding these addresses often provides new insights since it becomes possible to examine spatial patterns and associations. Address information is typically considered confidential and is therefore not released or shared with others. Publishing maps with the locations of individuals, however, may also breach confidentiality since addresses and associated identities can be discovered through reverse geocoding. One commonly used technique to protect confidentiality when releasing individual-level geocoded data is geographic masking. This typically consists of applying a certain amount of random perturbation in a systematic manner to reduce the risk of reidentification. A number of geographic masking techniques have been developed as well as methods to quantity the risk of reidentification associated with a particular masking method. This paper presents a review of the current state-of-the-art in geographic masking, summarizing the various methods and their strengths and weaknesses. Despite recent progress, no universally accepted or endorsed geographic masking technique has emerged. Researchers on the other hand are publishing maps using geographic masking of confidential locations. Any researcher publishing such maps is advised to become familiar with the different masking techniques available and their associated reidentification risks. PMID:26556417
Accuracy and performance of 3D mask models in optical projection lithography
NASA Astrophysics Data System (ADS)
Agudelo, Viviana; Evanschitzky, Peter; Erdmann, Andreas; Fühner, Tim; Shao, Feng; Limmer, Steffen; Fey, Dietmar
2011-04-01
Different mask models have been compared: rigorous electromagnetic field (EMF) modeling, rigorous EMF modeling with decomposition techniques and the thin mask approach (Kirchhoff approach) to simulate optical diffraction from different mask patterns in projection systems for lithography. In addition, each rigorous model was tested for two different formulations for partially coherent imaging: The Hopkins assumption and rigorous simulation of mask diffraction orders for multiple illumination angles. The aim of this work is to closely approximate results of the rigorous EMF method by the thin mask model enhanced with pupil filtering techniques. The validity of this approach for different feature sizes, shapes and illumination conditions is investigated.
Face mask ventilation--the dos and don'ts.
Wood, Fiona E; Morley, Colin J
2013-12-01
Face mask ventilation provides respiratory support to newly born or sick infants. It is a challenging technique and difficult to ensure that an appropriate tidal volume is delivered because large and variable leaks occur between the mask and face; airway obstruction may also occur. Technique is more important than the mask shape although the size must appropriately fit the face. The essence of the technique is to roll the mask on to the face from the chin while avoiding the eyes, with a finger and thumb apply a strong even downward pressure to the top of the mask, away from the stem and sloped sides or skirt of the mask, place the other fingers under the jaw and apply a similar upward pressure. Preterm infants require continuous end-expiratory pressure to facilitate lung aeration and maintain lung volume. This is best done with a T-piece device, not a self-inflating or flow-inflating bag. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tirapu Azpiroz, Jaione; Burr, Geoffrey W.; Rosenbluth, Alan E.; Hibbs, Michael
2008-03-01
In the Hyper-NA immersion lithography regime, the electromagnetic response of the reticle is known to deviate in a complicated manner from the idealized Thin-Mask-like behavior. Already, this is driving certain RET choices, such as the use of polarized illumination and the customization of reticle film stacks. Unfortunately, full 3-D electromagnetic mask simulations are computationally intensive. And while OPC-compatible mask electromagnetic field (EMF) models can offer a reasonable tradeoff between speed and accuracy for full-chip OPC applications, full understanding of these complex physical effects demands higher accuracy. Our paper describes recent advances in leveraging High Performance Computing as a critical step towards lithographic modeling of the full manufacturing process. In this paper, highly accurate full 3-D electromagnetic simulation of very large mask layouts are conducted in parallel with reasonable turnaround time, using a Blue- Gene/L supercomputer and a Finite-Difference Time-Domain (FDTD) code developed internally within IBM. A 3-D simulation of a large 2-D layout spanning 5μm×5μm at the wafer plane (and thus (20μm×20μm×0.5μm at the mask) results in a simulation with roughly 12.5GB of memory (grid size of 10nm at the mask, single-precision computation, about 30 bytes/grid point). FDTD is flexible and easily parallelizable to enable full simulations of such large layout in approximately an hour using one BlueGene/L "midplane" containing 512 dual-processor nodes with 256MB of memory per processor. Our scaling studies on BlueGene/L demonstrate that simulations up to 100μm × 100μm at the mask can be computed in a few hours. Finally, we will show that the use of a subcell technique permits accurate simulation of features smaller than the grid discretization, thus improving on the tradeoff between computational complexity and simulation accuracy. We demonstrate the correlation of the real and quadrature components that comprise the Boundary Layer representation of the EMF behavior of a mask blank to intensity measurements of the mask diffraction patterns by an Aerial Image Measurement System (AIMS) with polarized illumination. We also discuss how this model can become a powerful tool for the assessment of the impact to the lithographic process of a mask blank.
Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.
Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang
2018-09-01
Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.
High Contrast Internal and External Coronagraph Masks Produced by Various Techniques
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatha; Wilson, Daniel; White, Victor; Muller, Richard; Dickie, Matthew; Yee, Karl; Ruiz, Ronald; Shaklan, Stuart; Cady, Eric; Kern, Brian;
2013-01-01
Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on different architectures to suppress star light. Various fabrication technologies are required to address a wide range of needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further development is in progress to produce circular masks of various kinds for obscured aperture telescopes.
Del Re, Elisabetta C; Gao, Yi; Eckbo, Ryan; Petryshen, Tracey L; Blokland, Gabriëlla A M; Seidman, Larry J; Konishi, Jun; Goldstein, Jill M; McCarley, Robert W; Shenton, Martha E; Bouix, Sylvain
2016-01-01
Brain masking of MRI images separates brain from surrounding tissue and its accuracy is important for further imaging analyses. We implemented a new brain masking technique based on multi-atlas brain segmentation (MABS) and compared MABS to masks generated using FreeSurfer (FS; version 5.3), Brain Extraction Tool (BET), and Brainwash, using manually defined masks (MM) as the gold standard. We further determined the effect of different masking techniques on cortical and subcortical volumes generated by FreeSurfer. Images were acquired on a 3-Tesla MR Echospeed system General Electric scanner on five control and five schizophrenia subjects matched on age, sex, and IQ. Automated masks were generated from MABS, FS, BET, and Brainwash, and compared to MM using these metrics: a) volume difference from MM; b) Dice coefficients; and c) intraclass correlation coefficients. Mean volume difference between MM and MABS masks was significantly less than the difference between MM and FS or BET masks. Dice coefficient between MM and MABS was significantly higher than Dice coefficients between MM and FS, BET, or Brainwash. For subcortical and left cortical regions, MABS volumes were closer to MM volumes than were BET or FS volumes. For right cortical regions, MABS volumes were closer to MM volumes than were BET volumes. Brain masks generated using FreeSurfer, BET, and Brainwash are rapidly obtained, but are less accurate than manually defined masks. Masks generated using MABS, in contrast, resemble more closely the gold standard of manual masking, thereby offering a rapid and viable alternative. Copyright © 2015 by the American Society of Neuroimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, H.; Barat, E.; Carrel, F.
In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)
Mechanically and electrically robust metal-mask design for organic CMOS circuits
NASA Astrophysics Data System (ADS)
Shintani, Michihiro; Qin, Zhaoxing; Kuribara, Kazunori; Ogasahara, Yasuhiro; Hiromoto, Masayuki; Sato, Takashi
2018-04-01
The design of metal masks for fabricating organic CMOS circuits requires the consideration of not only the electrical property of the circuits, but also the mechanical strength of the masks. In this paper, we propose a new design flow for metal masks that realizes coanalysis of the mechanical and electrical properties and enables design exploration considering the trade-off between the two properties. As a case study, we apply a “stitching technique” to the mask design of a ring oscillator and explore the best design. With this technique, mask patterns are divided into separate parts using multiple mask layers to improve the mechanical strength at the cost of high resistance of the vias. By a numerical experiment, the design trade-off of the stitching technique is quantitatively analyzed, and it is demonstrated that the proposed flow is useful for the exploration of the designs of metal masks.
Time-Frequency Masking for Speech Separation and Its Potential for Hearing Aid Design
Wang, DeLiang
2008-01-01
A new approach to the separation of speech from speech-in-noise mixtures is the use of time-frequency (T-F) masking. Originated in the field of computational auditory scene analysis, T-F masking performs separation in the time-frequency domain. This article introduces the T-F masking concept and reviews T-F masking algorithms that separate target speech from either monaural or binaural mixtures, as well as microphone-array recordings. The review emphasizes techniques that are promising for hearing aid design. This article also surveys recent studies that evaluate the perceptual effects of T-F masking techniques, particularly their effectiveness in improving human speech recognition in noise. An assessment is made of the potential benefits of T-F masking methods for the hearing impaired in light of the processing constraints of hearing aids. Finally, several issues pertinent to T-F masking are discussed. PMID:18974204
CD-measurement technique for hole patterns on stencil mask
NASA Astrophysics Data System (ADS)
Ishikawa, Mikio; Yusa, Satoshi; Takikawa, Tadahiko; Fujita, Hiroshi; Sano, Hisatake; Hoga, Morihisa; Hayashi, Naoya
2004-12-01
EB lithography has a potential to successfully form hole patterns as small as 80 nm with a stencil mask. In a previous paper we proposed a technique using a HOLON dual-mode critical dimension (CD) SEM ESPA-75S in the transmission mode for CD measurement of line-and-space patterns on a stencil mask. In this paper we extend our effort of developing a CD measurement technique to contact hole features and determine it in comparison of measured values between features on mask and those printed on wafer. We have evaluated the width method and the area methods using designed 80-500 nm wide contact hole patterns on a large area membrane mask and their resist images on wafer printed by a LEEPL3000. We find that 1) the width method and the area methods show an excellent mask-wafer correlation for holes over 110 nm, and 2) the area methods show a better mask-wafer correlation than the width method does for holes below 110 nm. We conclude that the area calculated from the transmission SEM image is more suitable in defining the hole dimensions than the width for contact holes on a stencil mask.
Masking technique for coating thickness control on large and strongly curved aspherical optics.
Sassolas, B; Flaminio, R; Franc, J; Michel, C; Montorio, J-L; Morgado, N; Pinard, L
2009-07-01
We discuss a method to control the coating thickness deposited onto large and strongly curved optics by ion beam sputtering. The technique uses an original design of the mask used to screen part of the sputtered materials. A first multielement mask is calculated from the measured two-dimensional coating thickness distribution. Then, by means of an iterative process, the final mask is designed. By using such a technique, it has been possible to deposit layers of tantalum pentoxide having a high thickness gradient onto a curved substrate 500 mm in diameter. Residual errors in the coating thickness profile are below 0.7%.
X-ray backscatter radiography with lower open fraction coded masks
NASA Astrophysics Data System (ADS)
Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David
2017-09-01
Single sided radiographic imaging would find great utility for medical, aerospace and security applications. While coded apertures can be used to form such an image from backscattered X-rays they suffer from near field limitations that introduce noise. Several theoretical studies have indicated that for an extended source the images signal to noise ratio may be optimised by using a low open fraction (<0.5) mask. However, few experimental results have been published for such low open fraction patterns and details of their formulation are often unavailable or are ambiguous. In this paper we address this process for two types of low open fraction mask, the dilute URA and the Singer set array. For the dilute URA the procedure for producing multiple 2D array patterns from given 1D binary sequences (Barker codes) is explained. Their point spread functions are calculated and their imaging properties are critically reviewed. These results are then compared to those from the Singer set and experimental exposures are presented for both type of pattern; their prospects for near field imaging are discussed.
DeTrano, Alexander; Karimi, Naghmeh; Karri, Ramesh; Guo, Xiaofei; Carlet, Claude; Guilley, Sylvain
2015-01-01
Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set.
DeTrano, Alexander; Karimi, Naghmeh; Karri, Ramesh; Guo, Xiaofei; Carlet, Claude; Guilley, Sylvain
2015-01-01
Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set. PMID:26491717
Modified signed-digit arithmetic based on redundant bit representation.
Huang, H; Itoh, M; Yatagai, T
1994-09-10
Fully parallel modified signed-digit arithmetic operations are realized based on redundant bit representation of the digits proposed. A new truth-table minimizing technique is presented based on redundant-bitrepresentation coding. It is shown that only 34 minterms are enough for implementing one-step modified signed-digit addition and subtraction with this new representation. Two optical implementation schemes, correlation and matrix multiplication, are described. Experimental demonstrations of the correlation architecture are presented. Both architectures use fixed minterm masks for arbitrary-length operands, taking full advantage of the parallelism of the modified signed-digit number system and optics.
Color masking of developmental enamel defects: a case series.
Torres, C R G; Borges, A B
2015-01-01
Developmental defects involving color alteration of enamel frequently compromise the esthetic appearance of the tooth. The resin infiltration technique represents an alternative treatment for color masking of these lesions and uniformization of tooth color. This technique is considered relatively simple and microinvasive, since only a minimal portion of enamel is removed. This article illustrates the color-masking effect with resin infiltration of fluorosis and traumatic hypomineralization lesions with a case series. The final esthetic outcomes demonstrated the ability of the resin infiltrant to mask the color of white developmental defect lesions, resulting in satisfactory clinical esthetic improvements. However, in more severe cases, the color-masking effect was not complete.
Phonologically-Based Priming in the Same-Different Task With L1 Readers.
Lupker, Stephen J; Nakayama, Mariko; Yoshihara, Masahiro
2018-02-01
The present experiment provides an investigation of a promising new tool, the masked priming same-different task, for investigating the orthographic coding process. Orthographic coding is the process of establishing a mental representation of the letters and letter order in the word being read which is then used by readers to access higher-level (e.g., semantic) information about that word. Prior research (e.g., Norris & Kinoshita, 2008) had suggested that performance in this task may be based entirely on orthographic codes. As reported by Lupker, Nakayama, and Perea (2015a), however, in at least some circumstances, phonological codes also play a role. Specifically, even though their 2 languages are completely different orthographically, Lupker et al.'s Japanese-English bilinguals showed priming in this task when masked L1 primes were phonologically similar to L2 targets. An obvious follow-up question is whether Lupker et al.'s effect might have resulted from a strategy that was adopted by their bilinguals to aid in processing of, and memory for, the somewhat unfamiliar L2 targets. In the present experiment, Japanese readers responded to (Japanese) Kanji targets with phonologically identical primes (on "related" trials) being presented in a completely different but highly familiar Japanese script, Hiragana. Once again, significant priming effects were observed, indicating that, although performance in the masked priming same-different task may be mainly based on orthographic codes, phonological codes can play a role even when the stimuli being matched are familiar words from a reader's L1. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Are visual cue masking and removal techniques equivalent for studying perceptual skills in sport?
Mecheri, Sami; Gillet, Eric; Thouvarecq, Regis; Leroy, David
2011-01-01
The spatial-occlusion paradigm makes use of two techniques (masking and removing visual cues) to provide information about the anticipatory cues used by viewers. The visual scene resulting from the removal technique appears to be incongruous, but the assumed equivalence of these two techniques is spreading. The present study was designed to address this issue by combining eye-movement recording with the two types of occlusion (removal versus masking) in a tennis serve-return task. Response accuracy and decision onsets were analysed. The results indicated that subjects had longer reaction times under the removal condition, with an identical proportion of correct responses. Also, the removal technique caused the subjects to rely on atypical search patterns. Our findings suggest that, when the removal technique was used, viewers were unable to systematically count on stored memories to help them accomplish the interception task. The persistent failure to question some of the assumptions about the removal technique in applied visual research is highlighted, and suggestions for continued use of the masking technique are advanced.
Captive breeding and reintroduction of the endangered masked bobwhite
Carpenter, J.W.; Gabel, R.R.; Goodwin, J.G.
1991-01-01
Efforts to restore the endangered masked bobwhite (Colinus virginianus ridgwayi) to its former range have required 1) habitat acquisition, restoration, and preservation; 2) captive propagation; and 3) reintroduction .bf captive-bred stock. In its role to recover the masked bobwhite, the Patuxent Wildlife Research Center (U.S. Fish and Wildli e Service) has refined captive breeding techniques; provided captive-produced stock for release; conducted field research on the distribution, limiting factors, and habitat characteristics of this species; and developed release methods. Techniques for the husbandry and captive management, breeding, artificial incubation and hatching of eggs, and rearing of young of the masked bobwhite have been developed. Successful reintroduction techniques for the masked bobwhite have included prerelease conditioning and/or cross-fostering of captive-reared masked bobwhite chicks to a wild-caught, related, vasectomized bobwhite species and their release to the wild as family units. In addition, the establishment by the U. S. Fish and Wildlife Service of the Buenos Aires National Wildlife Refuge in 1985 has further enhanced the potential for establishing a self-sustaining population of the masked bobwhite in the U. S. Through continued releases and active management of habitat, therefore, it is believed that the masked bobwhite can become permanently established at the refuge to ensure its continued survival in the wild.
Evaluation of coded aperture radiation detectors using a Bayesian approach
NASA Astrophysics Data System (ADS)
Miller, Kyle; Huggins, Peter; Labov, Simon; Nelson, Karl; Dubrawski, Artur
2016-12-01
We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.
Validation of optical codes based on 3D nanostructures
NASA Astrophysics Data System (ADS)
Carnicer, Artur; Javidi, Bahram
2017-05-01
Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Kyle; Marleau, Peter; Brubaker, Erik
In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed imagemore » quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.« less
ERIC Educational Resources Information Center
Kezilas, Yvette; McKague, Meredith; Kohnen, Saskia; Badcock, Nicholas A.; Castles, Anne
2017-01-01
Masked transposed-letter (TL) priming effects have been used to index letter position processing over the course of reading development. Whereas some studies have reported an increase in TL priming over development, others have reported a decrease. These findings have led to the development of 2 somewhat contradictory accounts of letter position…
Whiteford, Kelly L.; Oxenham, Andrew J.
2015-01-01
The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding. PMID:26627783
Whiteford, Kelly L; Oxenham, Andrew J
2015-11-01
The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.
QR images: optimized image embedding in QR codes.
Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P
2014-07-01
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
Shekar, Ashim; Balakrishna, Ramdas; Sudarshan, H.; Veena, G. C.; Bhuvaneshwari, S.
2017-01-01
The beauty of the laryngeal mask is that it forms an air tight seal enclosing the larynx rather than plugging the pharynx, and avoid airway obstruction in the oropharynx. The goal of its development was to create an intermediate form of airway management face mask and endotracheal tube. Indication for its use includes any procedure that would normally involve the use of a face mask. The laryngeal mask airway was designed as a new concept in airway management and has been gaining a firm position in anesthetic practice. Despite wide spread use the definitive role of the laryngeal mask airway is yet to be established. In some situations, such as after failed tracheal intubation or in oral surgery its use is controversial. There are several unresolved issues, for example the effect of the laryngeal mask on regurgitation and whether or not cricoids pressure prevents placement of mask. We review the techniques of insertion, details of misplacement, and complications associated with use of the laryngeal mask. We then attempt to clarify the role of laryngeal mask in air way management during anesthesia, discussing the advantages and disadvantages as well as indications and contraindications of its use in oral and maxillofacial surgery. PMID:29349045
Jannu, Anubhav; Shekar, Ashim; Balakrishna, Ramdas; Sudarshan, H; Veena, G C; Bhuvaneshwari, S
2017-12-01
The beauty of the laryngeal mask is that it forms an air tight seal enclosing the larynx rather than plugging the pharynx, and avoid airway obstruction in the oropharynx. The goal of its development was to create an intermediate form of airway management face mask and endotracheal tube. Indication for its use includes any procedure that would normally involve the use of a face mask. The laryngeal mask airway was designed as a new concept in airway management and has been gaining a firm position in anesthetic practice. Despite wide spread use the definitive role of the laryngeal mask airway is yet to be established. In some situations, such as after failed tracheal intubation or in oral surgery its use is controversial. There are several unresolved issues, for example the effect of the laryngeal mask on regurgitation and whether or not cricoids pressure prevents placement of mask. We review the techniques of insertion, details of misplacement, and complications associated with use of the laryngeal mask. We then attempt to clarify the role of laryngeal mask in air way management during anesthesia, discussing the advantages and disadvantages as well as indications and contraindications of its use in oral and maxillofacial surgery.
LCD real-time mask technique for fabrication of arbitrarily shaped microstructure
NASA Astrophysics Data System (ADS)
Peng, Qinjun; Guo, Yongkang; Chen, Bo; Du, Jinglei; Xiang, Jinshan; Cui, Zheng
2002-04-01
A new technique to fabricate arbitrarily shaped microstructures by using LCD (liquid crystal display) real- time mask is reported in this paper. Its principle and design method are explained. Based on partial coherent imaging theory, the process to fabricate micro-axicon array and zigzag grating has been simulated. The experiment using a color LCD as real-time mask has been set up. Micro-axicon array and zigzag grating has been fabricated by the LCD real-time mask technique. The 3D surface relief structures were made on pan chromatic silver-halide sensitized gelatin (Kodak-131) with trypsinase etching. The pitch size of zigzag grating is 46.26micrometers . The caliber of axicon is 118.7micrometers , and the etching depth is 1.332micrometers .
Inadequate face mask ventilation--clinical applications.
Goranović, Tatjana; Milić, Morena; Holjevac, Jadranka Katancić; Maldini, Branka; Sakić, Katarina
2010-09-01
Face mask ventilation is a life saving technique. This article will review aetiology and patophysiological consequences of inadequate mask ventilation. The main focus will be on circulatory changes during induction of anesthesia, before and in a short period after intubation that could be attributed to inadequate mask ventilation in humans.
The complete mitochondrial genome of the masked palm civet (Paguma larvata, Mammalia, Carnivora).
Zhang, Dan; Xu, Liwen; Bu, Hongliang; Wang, Di; Xu, Chongren; Wang, Rongjiang
2016-09-01
The complete mitochondrial genome of the masked palm civet (Paguma larvata, Mammalia, Carnivora) is a circular molecule of 16 710 bp in length, containing 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes, and a control region. The features of the mitochondrial genome of the masked palm civet are similar to the other mammals. The phylogenetic analysis shows that all species from the family Viverridae cluster together, in which P. larvata exhibits the closest relationship with Genetta servalina.
Reading a standing wave: figure-ground-alternation masking of primes in evaluative priming.
Bermeitinger, Christina; Kuhlmann, Michael; Wentura, Dirk
2012-09-01
We propose a new masking technique for masking word stimuli. Drawing on the phenomena of metacontrast and paracontrast, we alternately presented two prime displays of the same word with the background color in one display matching the font color in the other display and vice versa. The sequence of twenty alterations (spanning approx. 267 ms) was sandwich-masked by structure masks. Using this masking technique, we conducted evaluative priming experiments with positive and negative target and prime words. Significant priming effects were found - for primes and targets drawn from the same as well as from different word sets. Priming effects were independent of prime discrimination performance in direct tests and they were still significant after the sample was restricted to those participants who showed random responding in the direct test. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri;
2012-01-01
Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.
A broad band X-ray imaging spectrophotometer for astrophysical studies
NASA Technical Reports Server (NTRS)
Lum, Kenneth S. K.; Lee, Dong Hwan; Ku, William H.-M.
1988-01-01
A broadband X-ray imaging spectrophotometer (BBXRIS) has been built for astrophysical studies. The BBXRIS is based on a large-imaging gas scintillation proportional counter (LIGSPC), a combination of a gas scintillation proportional counter and a multiwire proportional counter, which achieves 8 percent (FWHM) energy resolution and 1.5-mm (FWHM) spatial resolution at 5.9 keV. The LIGSPC can be integrated with a grazing incidence mirror and a coded aperture mask to provide imaging over a broad range of X-ray energies. The results of tests involving the LIGSPC and a coded aperture mask are presented, and possible applications of the BBXRIS are discussed.
NASA Astrophysics Data System (ADS)
Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany
2014-02-01
A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.
Obeidat, Shadi; Badin, Shadi; Khawaja, Imran
2010-04-01
Dynamic Y stents are used in tracheobronchial obstruction, tracheal stenosis, and tracheomalacia. Placement may be difficult and is usually accomplished using a rigid grasping forceps (under fluoroscopic guidance) or a rigid bronchoscope. We report using a new stent placement technique on an elderly patient with a central tracheobronchial tumor. It included using a flexible bronchoscope, video laryngoscope, and laryngeal mask airway. The new technique we used has the advantages of continuous direct endoscopic visualization during stent advancement and manipulation, and securing the airways with a laryngeal mask airway at the same time. This technique eliminates the need for intraoperative fluoroscopy.
Development for 2D pattern quantification method on mask and wafer
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Toyoda, Yasutaka; Wang, Zhigang
2010-03-01
We have developed the effective method of mask and silicon 2-dimensional metrology. The aim of this method is evaluating the performance of the silicon corresponding to Hotspot on a mask. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and mask manufacture, and this has a big impact on the semiconductor market that centers on the mask business. 2-dimensional Shape quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. On the other hand, there is roughness in the silicon shape made from a mass-production line. Moreover, there is variation in the silicon shape. For this reason, quantification of silicon shape is important, in order to estimate the performance of a pattern. In order to quantify, the same shape is equalized in two dimensions. And the method of evaluating based on the shape is popular. In this study, we conducted experiments for averaging method of the pattern (Measurement Based Contouring) as two-dimensional mask and silicon evaluation technique. That is, observation of the identical position of a mask and a silicon was considered. It is possible to analyze variability of the edge of the same position with high precision. The result proved its detection accuracy and reliability of variability on two-dimensional pattern (mask and silicon) and is adaptable to following fields of mask quality management. - Estimate of the correlativity of shape variability and a process margin. - Determination of two-dimensional variability of pattern. - Verification of the performance of the pattern of various kinds of Hotspots. In this report, we introduce the experimental results and the application. We expect that the mask measurement and the shape control on mask production will make a huge contribution to mask yield-enhancement and that the DFM solution for mask quality control process will become much more important technology than ever. It is very important to observe the shape of the same location of Design, Mask, and Silicon in such a viewpoint.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1974-01-01
Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.
Face mask use by patients in primary care.
Tischendorf, Jessica S; Temte, Jonathan L
2012-02-01
Face masks are recommended for patients with respiratory symptoms to reduce influenza transmission. Little knowledge exists regarding actual utilization and acceptance of face masks in primary care. Compare distribution of face masks to clinic and community trends in respiratory infection (RI) and influenza-like illness (ILI); estimate the annual need for face masks in primary care. Retrospective observational study of practice data from a 31-week period starting in October 2009. Family practice clinic in Madison, Wis. Patients with fever, cough, or other respiratory symptoms as evaluated by reception staff. Age, sex, and weekly counts of individuals receiving a face mask, as well as counts of RI and ILI patients based on ICD-9 coding from 27 statewide clinics. Face mask counts were 80% of RI counts for the clinic and reflected the demographics of the clinic population. Distribution was correlated to prevalence of RI (R = 0.783, P < 0.001) and ILI (R = 0.632, P < 0.001). Annually, 8% of clinic visits were for RI. The high percentage of face mask use among RI patients reflects the feasibility of this intervention to help control influenza transmission in a primary care setting. Using the present data, clinics can estimate the annual need for face masks.
Technique for ship/wake detection
Roskovensky, John K [Albuquerque, NM
2012-05-01
An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.
Method of Modeling and Simulation of Shaped External Occulters
NASA Technical Reports Server (NTRS)
Lyon, Richard G. (Inventor); Clampin, Mark (Inventor); Petrone, Peter, III (Inventor)
2016-01-01
The present invention relates to modeling an external occulter including: providing at least one processor executing program code to implement a simulation system, the program code including: providing an external occulter having a plurality of petals, the occulter being coupled to a telescope; and propagating light from the occulter to a telescope aperture of the telescope by scalar Fresnel propagation, by: obtaining an incident field strength at a predetermined wavelength at an occulter surface; obtaining a field propagation from the occulter to the telescope aperture using a Fresnel integral; modeling a celestial object at differing field angles by shifting a location of a shadow cast by the occulter on the telescope aperture; calculating an intensity of the occulter shadow on the telescope aperture; and applying a telescope aperture mask to a field of the occulter shadow, and propagating the light to a focal plane of the telescope via FFT techniques.
ERIC Educational Resources Information Center
Sauval, Karinne; Perre, Laetitia; Casalis, Séverine
2017-01-01
The present study aimed to investigate the development of automatic phonological processes involved in visual word recognition during reading acquisition in French. A visual masked priming lexical decision experiment was carried out with third, fifth graders and adult skilled readers. Three different types of partial overlap between the prime and…
NASA Astrophysics Data System (ADS)
Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong
2016-05-01
The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.
Video encryption using chaotic masks in joint transform correlator
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2015-03-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.
Fabrication technique for a custom face mask for the treatment of obstructive sleep apnea.
Prehn, Ronald S; Colquitt, Tom
2016-05-01
The development of the positive airway pressure custom mask (TAP-PAP CM) has changed the treatment of obstructive sleep apnea. The TAP-PAP CM is used in continuous positive airway pressure therapy (CPAP) and is fabricated from the impression of the face. This mask is then connected to a post screwed into the mechanism of the TAP3 (Thornton Anterior Positioner) oral appliance. This strapless CPAP face mask features an efficient and stable CPAP interface with mandibular stabilization (Hybrid Therapy). A technique with a 2-stage polyvinyl siloxane face impression is described that offers improvements over the established single-stage face impression. This 2-stage impression technique eliminates problems inherent in the single-stage face impression, including voids, compressed tissue, inadequate borders, and a rushed experience due to the setting time of the single stage. The result is a custom mask with an improved seal to the CPAP device. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Testing the efficacy of homemade masks: would they protect in an influenza pandemic?
Davies, Anna; Thompson, Katy-Anne; Giri, Karthika; Kafatos, George; Walker, Jimmy; Bennett, Allan
2013-08-01
This study examined homemade masks as an alternative to commercial face masks. Several household materials were evaluated for the capacity to block bacterial and viral aerosols. Twenty-one healthy volunteers made their own face masks from cotton t-shirts; the masks were then tested for fit. The number of microorganisms isolated from coughs of healthy volunteers wearing their homemade mask, a surgical mask, or no mask was compared using several air-sampling techniques. The median-fit factor of the homemade masks was one-half that of the surgical masks. Both masks significantly reduced the number of microorganisms expelled by volunteers, although the surgical mask was 3 times more effective in blocking transmission than the homemade mask. Our findings suggest that a homemade mask should only be considered as a last resort to prevent droplet transmission from infected individuals, but it would be better than no protection.
Bubble masks for time-encoded imaging of fast neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Brennan, James S.; Marleau, Peter
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixedmore » blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.« less
Parametric studies and characterization measurements of x-ray lithography mask membranes
NASA Astrophysics Data System (ADS)
Wells, Gregory M.; Chen, Hector T. H.; Engelstad, Roxann L.; Palmer, Shane R.
1991-08-01
The techniques used in the experimental characterization of thin membranes are considered for their potential use as mask blanks for x-ray lithography. Among the parameters of interest for this evaluation are the film's stress, fracture strength, uniformity of thickness, absorption in the x-ray and visible spectral regions and the modulus and grain structure of the material. The experimental techniques used for measuring these properties are described. The accuracy and applicability of the assumptions used to derive the formulas that relate the experimental measurements to the parameters of interest are considered. Experimental results for silicon carbide and diamond films are provided. Another characteristic needed for an x-ray mask carrier is radiation stability. The number of x-ray exposures expected to be performed in the lifetime of an x-ray mask on a production line is on the order of 107. The dimensional stability requirements placed on the membranes during this period are discussed. Interferometric techniques that provide sufficient sensitivity for these stability measurements are described. A comparison is made between the different techniques that have been developed in term of the information that each technique provides, the accuracy of the various techniques, and the implementation issues that are involved with each technique.
Refractive index determination using the central focal masking technique with dispersion colors.
Wilcox, R.E.
1983-01-01
The procedures, precision, advantages and limitations of central focal masking ("dispersion staining'), a technique for determining the refractive indices of microfragments by the immersion method and for distinguishing between minerals in an immersion mount, are described. -J.A.Z.
Coherent diffractive imaging using randomly coded masks
Seaberg, Matthew H.; d'Aspremont, Alexandre; Turner, Joshua J.
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. As a result, the experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-raymore » synchrotron and even free electron laser experiments.« less
Coherent diffractive imaging using randomly coded masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025; D'Aspremont, Alexandre
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even freemore » electron laser experiments.« less
3D-printed coded apertures for x-ray backscatter radiography
NASA Astrophysics Data System (ADS)
Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David
2017-09-01
Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.
High-precision two-way optic-fiber time transfer using an improved time code.
Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping
2014-11-01
We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.
Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.
Chen, Pengwen; Fannjiang, Albert
2018-05-01
The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.
NASA Astrophysics Data System (ADS)
Zait, Eitan; Ben-Zvi, Guy; Dmitriev, Vladimir; Oshemkov, Sergey; Pforr, Rainer; Hennig, Mario
2006-05-01
Intra-field CD variation is, besides OPC errors, a main contributor to the total CD variation budget in IC manufacturing. It is caused mainly by mask CD errors. In advanced memory device manufacturing the minimum features are close to the resolution limit resulting in large mask error enhancement factors hence large intra-field CD variations. Consequently tight CD Control (CDC) of the mask features is required, which results in increasing significantly the cost of mask and hence the litho process costs. Alternatively there is a search for such techniques (1) which will allow improving the intrafield CD control for a given moderate mask and scanner imaging performance. Currently a new technique (2) has been proposed which is based on correcting the printed CD by applying shading elements generated in the substrate bulk of the mask by ultrashort pulsed laser exposure. The blank transmittance across a feature is controlled by changing the density of light scattering pixels. The technique has been demonstrated to be very successful in correcting intra-field CD variations caused by the mask and the projection system (2). A key application criterion of this technique in device manufacturing is the stability of the absorbing pixels against DUV light irradiation being applied during mask projection in scanners. This paper describes the procedures and results of such an investigation. To do it with acceptable effort a special experimental setup has been chosen allowing an evaluation within reasonable time. A 193nm excimer laser with pulse duration of 25 ns has been used for blank irradiation. Accumulated dose equivalent to 100,000 300 mm wafer exposures has been applied to Half Tone PSM mask areas with and without CDC shadowing elements. This allows the discrimination of effects appearing in treated and untreated glass regions. Several intensities have been investigated to define an acceptable threshold intensity to avoid glass compaction or generation of color centers in the glass. The impact of the irradiation on the mask transmittance of both areas has been studied by measurements of the printed CD on wafer using a wafer scanner before and after DUV irradiation.
DOT National Transportation Integrated Search
1967-04-01
A number of techniques for determining the protective efficiency of passenger and crew masks was developed, utilized and compared. In the case of newly developed passenger masks, subjects were exposed to a chamber flight profile designed around the N...
Al-Kasmi, Basheer; Alsirawan, Mhd Bashir; Bashimam, Mais; El-Zein, Hind
2017-08-28
Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hall, Callie
2005-01-01
Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.
NASA Technical Reports Server (NTRS)
Spruce, Joe; Hall, Callie
2005-01-01
Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.
Comesaña, Montserrat; Soares, Ana P; Marcet, Ana; Perea, Manuel
2016-11-01
In skilled adult readers, transposed-letter effects (jugde-JUDGE) are greater for consonant than for vowel transpositions. These differences are often attributed to phonological rather than orthographic processing. To examine this issue, we employed a scenario in which phonological involvement varies as a function of reading experience: A masked priming lexical decision task with 50-ms primes in adult and developing readers. Indeed, masked phonological priming at this prime duration has been consistently reported in adults, but not in developing readers (Davis, Castles, & Iakovidis, 1998). Thus, if consonant/vowel asymmetries in letter position coding with adults are due to phonological influences, transposed-letter priming should occur for both consonant and vowel transpositions in developing readers. Results with adults (Experiment 1) replicated the usual consonant/vowel asymmetry in transposed-letter priming. In contrast, no signs of an asymmetry were found with developing readers (Experiments 2-3). However, Experiments 1-3 did not directly test the existence of phonological involvement. To study this question, Experiment 4 manipulated the phonological prime-target relationship in developing readers. As expected, we found no signs of masked phonological priming. Thus, the present data favour an interpretation of the consonant/vowel dissociation in letter position coding as due to phonological rather than orthographic processing. © 2016 The British Psychological Society.
Binary-mask generation for diffractive optical elements using microcomputers.
O'Shea, D C; Beletic, J W; Poutous, M
1993-05-10
A new technique for generation of binary masks for the fabrication of diffractive optical elements is investigated. This technique, which uses commercially available desktop-publishing hardware and software in conjunction with a standard photoreduction camera, is much faster and less expensive thanhe conventional methods. The short turnaround time and low cost should give researchers a much greater degree of flexibility in the field of binary optics and enable wider application of diffractive-optics technology. Techniques for generating optical elements by using standard software packages that produce PostScript output are described. An evaluation of the dimensional fidelity of the mask reproduction from design to its realization in photoresist is presented.
Prediction and outcomes of impossible mask ventilation: a review of 50,000 anesthetics.
Kheterpal, Sachin; Martin, Lizabeth; Shanks, Amy M; Tremper, Kevin K
2009-04-01
There are no existing data regarding risk factors for impossible mask ventilation and limited data regarding its incidence. The authors sought to determine the incidence, predictors, and outcomes associated with impossible mask ventilation. The authors performed an observational study over a 4-yr period. For each adult patient undergoing a general anesthetic, preoperative patient characteristics, detailed airway physical exam, and airway outcome data were collected. The primary outcome was impossible mask ventilation defined as the inability to exchange air during bag-mask ventilation attempts, despite multiple providers, airway adjuvants, or neuromuscular blockade. Secondary outcomes included the final, definitive airway management technique and direct laryngoscopy view. The incidence of impossible mask ventilation was calculated. Independent (P < 0.05) predictors of impossible mask ventilation were identified by performing a logistic regression full model fit. Over a 4-yr period from 2004 to 2008, 53,041 attempts at mask ventilation were recorded. A total of 77 cases of impossible mask ventilation (0.15%) were observed. Neck radiation changes, male sex, sleep apnea, Mallampati III or IV, and presence of beard were identified as independent predictors. The receiver-operating-characteristic area under the curve for this model was 0.80 +/- 0.03. Nineteen impossible mask ventilation patients (25%) also demonstrated difficult intubation, with 15 being intubated successfully. Twelve patients required an alternative intubation technique, including two surgical airways and two patients who were awakened and underwent successful fiberoptic intubation. Impossible mask ventilation is an infrequent airway event that is associated with difficult intubation. Neck radiation changes represent the most significant clinical predictor of impossible mask ventilation in the patient dataset.
Anantasit, Nattachai; Vaewpanich, Jarin; Kuptanon, Teeradej; Kamalaporn, Haruitai; Khositseth, Anant
2016-11-01
To evaluate the pediatric residents' cardiopulmonary resuscitation (CPR) skills, and their improvements after recorded video feedbacks. Pediatric residents from a university hospital were enrolled. The authors surveyed the level of pediatric resuscitation skill confidence by a questionnaire. Eight psychomotor skills were evaluated individually, including airway, bag-mask ventilation, pulse check, prompt starting and technique of chest compression, high quality CPR, tracheal intubation, intraosseous, and defibrillation. The mock code skills were also evaluated as a team using a high-fidelity mannequin simulator. All the participants attended a concise Pediatric Advanced Life Support (PALS) lecture, and received video-recorded feedback for one hour. They were re-evaluated 6 wk later in the same manner. Thirty-eight residents were enrolled. All the participants had a moderate to high level of confidence in their CPR skills. Over 50 % of participants had passed psychomotor skills, except the bag-mask ventilation and intraosseous skills. There was poor correlation between their confidence and passing the psychomotor skills test. After course feedback, the percentage of high quality CPR skill in the second course test was significantly improved (46 % to 92 %, p = 0.008). The pediatric resuscitation course should still remain in the pediatric resident curriculum and should be re-evaluated frequently. Video-recorded feedback on the pitfalls during individual CPR skills and mock code case scenarios could improve short-term psychomotor CPR skills and lead to higher quality CPR performance.
Simple method for generating adjustable trains of picosecond electron bunches
NASA Astrophysics Data System (ADS)
Muggli, P.; Allen, B.; Yakimenko, V. E.; Park, J.; Babzien, M.; Kusche, K. P.; Kimura, W. D.
2010-05-01
A simple, passive method for producing an adjustable train of picosecond electron bunches is demonstrated. The key component of this method is an electron beam mask consisting of an array of parallel wires that selectively spoils the beam emittance. This mask is positioned in a high magnetic dispersion, low beta-function region of the beam line. The incoming electron beam striking the mask has a time/energy correlation that corresponds to a time/position correlation at the mask location. The mask pattern is transformed into a time pattern or train of bunches when the dispersion is brought back to zero downstream of the mask. Results are presented of a proof-of-principle experiment demonstrating this novel technique that was performed at the Brookhaven National Laboratory Accelerator Test Facility. This technique allows for easy tailoring of the bunch train for a particular application, including varying the bunch width and spacing, and enabling the generation of a trailing witness bunch.
Computerized Dead-Space Volume Measurement of Face Masks Applied to Simulated Faces.
Amirav, Israel; Luder, Anthony S; Halamish, Asaf; Marzuk, Chatib; Daitzchman, Marcelo; Newhouse, Michael T
2015-09-01
The dead-space volume (VD) of face masks for metered-dose inhaler treatments is particularly important in infants and young children with asthma, who have relatively low tidal volumes. Data about VD have been traditionally obtained from water displacement measurements, in which masks are held against a flat surface. Because, in real life, masks are placed against the face, VD is likely to differ considerably between masks depending upon their contour and fit. The aim of this study was to develop an accurate and reliable way to measure VD electronically and to apply this technique by comparing the electronic VD of commonly available face masks. Average digital faces were obtained from 3-dimensional images of 270 infants and children. Commonly used face masks (small and medium) from various manufacturers (Monaghan Medical, Pari Respiratory Equipment, Philips Respironics, and InspiRx) were scanned and digitized by means of computed tomography. Each mask was electronically applied to its respective digital face, and the VD enclosed (mL) was computerized and precisely measured. VD varied between 22.6 mL (SootherMask, InspiRx) and 43.1 mL (Vortex, Pari) for small masks and between 41.7 mL (SootherMask) and 71.5 mL (AeroChamber, Monaghan Medical) for medium masks. These values were significantly lower and less variable than measurements obtained by water displacement. Computerized techniques provide an innovative and relatively simple way of accurately measuring the VD of face masks applied to digital faces. As determined by computerized measurement using average-size virtual faces, the InspiRx masks had a significantly smaller VD for both small and medium masks compared with the other masks. This is of considerable importance with respect to aerosol dose and delivery time, particularly in young children. (ClinicalTrials.gov registration NCT01274299.). Copyright © 2015 by Daedalus Enterprises.
Tiwari, Roshan V.; Polk, Ashley N.; Patil, Hemlata; Ye, Xingyou; Pimparade, Manjeet B.; Repka, Michael A.
2017-01-01
Developing a pediatric oral formulation with an age-appropriate dosage form and taste masking of naturally bitter active pharmaceutical ingredients (APIs) are key challenges for formulation scientists. Several techniques are used for taste masking of bitter APIs to improve formulation palatability; however, not all the techniques are applicable to pediatric dosage forms because of the limitations on the kind and concentration of the excipients that can be used. Hot-melt extrusion (HME) technology is used successfully for taste masking of bitter APIs, and overcomes some of the limitations of the existing taste masking techniques. Likewise, analytical taste assessment is an important quality control parameter evaluated by several in vivo and in vitro methods, such as the human taste panel, electrophysiological methods, electronic sensor, and animal preference tests to aid in selecting a taste-masked formulation. However, the most appropriate in-vivo method to assess the taste-masking efficacy of pediatric formulations remains unknown, because it is not known to what extent the human taste panel/electronic tongue can predict the palatability in the pediatric patients. The purpose of this study was to develop taste-masked caffeine citrate extrudates via HME, and to demonstrate the wide applicability of a single bottle-test rat model to record and compare the volume consumed of the taste-masked solutions to that of the pure API. Thus, this rat model can be considered as a low-cost alternative taste-assessment method to the most commonly used expensive human taste panel/electronic tongue method for pediatric formulations. PMID:26573158
Simple solution for difficult face mask ventilation in children with orofacial clefts.
Veerabathula, Prardhana; Patil, Manajeet; Upputuri, Omkar; Durga, Padmaja
2014-10-01
Significant air leak from the facial cleft predisposes to difficult mask ventilation. The reported techniques of use of sterile gauze, larger face mask and laryngeal mask airway after intravenous induction have limited application in uncooperative children. We describe the use of dental impression material molded to the facial contour to cover the facial defect and aid ventilation with an appropriate size face mask in a child with a bilateral Tessier 3 anomaly. © 2014 John Wiley & Sons Ltd.
The design of wavefront coded imaging system
NASA Astrophysics Data System (ADS)
Lan, Shun; Cen, Zhaofeng; Li, Xiaotong
2016-10-01
Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.
An alternative method of fabricating sub-micron resolution masks using excimer laser ablation
NASA Astrophysics Data System (ADS)
Hayden, C. J.; Eijkel, J. C. T.; Dalton, C.
2004-06-01
In the work presented here, an excimer laser micromachining system has been used successfully to fabricate high-resolution projection and contact masks. The contact masks were subsequently used to produce chrome-gold circular ac electro-osmotic pump (cACEOP) microelectrode arrays on glass substrates, using a conventional contact photolithography process. The contact masks were produced rapidly (~15 min each) and were found to be accurate to sub-micron resolution, demonstrating an alternative route for mask fabrication. Laser machined masks were also used in a laser-projection system, demonstrating that such fabrication techniques are also suited to projection lithography. The work addresses a need for quick reproduction of high-resolution contact masks, given their rapid degradation when compared to non-contact masks.
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Subrata
2017-09-01
CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.
[Oxygenation: the impact of face mask coupling.].
Gregori, Waldemar Montoya de; Mathias, Lígia Andrade da Silva Telles; Piccinini Filho, Luiz; Pena, Ernesto Leonardo de Carpio; Vicuna, Aníbal Heberto Mora; Vieira, Joaquim Edson
2005-10-01
Different oxygenation techniques aim at promoting denitrogenation before apnea during induction. The main reason why CIO2 = 100% cannot be reached is the lack of adequate face mask coupling, allowing the entry of room air. Although anesthesiologists know this principle, not all of them apply it correctly, facilitating the entry of air in fresh gases flow and consequently diluting CIO2. This prospective study was performed to comparatively evaluate, through the variation of oxygen expired concentration (CEO2), the efficacy of the oxygenation technique via face mask in the conditions routinely used by anesthesiologists, simulating situations of progressive leaks. Oxygen end-tidal concentrations of 15 volunteers, physical status ASA I, were studied with 8 deep breaths (vital capacity) in 60 s with fresh gas flow of 10 L.min-1. The face mask was: tightly fitted with 100% CIO2 (Tf100) or varying from 50% to 90%, (Tf50, Tf60, Tf70, Tf80, Tf90); gravity-coupled to face and 100% CIO2 (Grav) and moved 1 cm away from face with 100% CIO2 (Aw). CEO2 was recorded at 10 s intervals. P < 0.05 was considered statistically significant. CEO2 has increased for all groups (p < 0.001), but only Tf100 reached values close to ideal (82.20 - 87). Comparing mean CEO2 of Grav and Tf100 at the end of 60s, (82.20 and 65.87) there was a difference of approximately 20% between both techniques, since gravity-coupled mask only did not provide adequate oxygenation. There were no significant differences between groups Tf70 and Grav (65.87 and 62.67) in all studied moments, suggesting that the latter simulates a 70% CIO2 at 60 s. Mean Aw group CEO2 increased to 47.20 at 60s showing that this technique may be associated to unacceptable risk of hypoxemia. All situations of face mask coupling gradually increased CEO2, although with decreased oxygenation efficacy due to situations of face mask malposition. This study has shown the need for attention during oxygenation, using well coupled face mask and eliminating normal practices of moved away or gravity-coupled masks.
Masked priming effects are modulated by expertise in the script.
Perea, Manuel; Abu Mallouh, Reem; Garcı A-Orza, Javier; Carreiras, Manuel
2011-05-01
In a recent study using a masked priming same-different matching task, Garcı´a-Orza, Perea, and Munoz (2010) found a transposition priming effect for letter strings, digit strings, and symbol strings, but not for strings of pseudoletters (i.e., EPRI-ERPI produced similar response times to the control pair EDBI-ERPI). They argued that the mechanism responsible for position coding in masked priming is not operative with those "objects" whose identity cannot be attained rapidly. To assess this hypothesis, Experiment 1 examined masked priming effects in Arabic for native speakers of Arabic, whereas participants in Experiments 2 and 3 were lower intermediate learners of Arabic and readers with no knowledge of Arabic, respectively. Results showed a masked priming effect only for readers who are familiar with the Arabic script. Furthermore, transposed-letter priming in native speakers of Arabic only occurred when the order of the root letters was kept intact. In Experiments 3-7, we examined why masked repetition priming is absent for readers who are unfamiliar with the Arabic script. We discuss the implications of these findings for models of visual-word recognition.
Affect of the unconscious: visually suppressed angry faces modulate our decisions.
Almeida, Jorge; Pajtas, Petra E; Mahon, Bradford Z; Nakayama, Ken; Caramazza, Alfonso
2013-03-01
Emotional and affective processing imposes itself over cognitive processes and modulates our perception of the surrounding environment. In two experiments, we addressed the issue of whether nonconscious processing of affect can take place even under deep states of unawareness, such as those induced by interocular suppression techniques, and can elicit an affective response that can influence our understanding of the surrounding environment. In Experiment 1, participants judged the likeability of an unfamiliar item--a Chinese character--that was preceded by a face expressing a particular emotion (either happy or angry). The face was rendered invisible through an interocular suppression technique (continuous flash suppression; CFS). In Experiment 2, backward masking (BM), a less robust masking technique, was used to render the facial expressions invisible. We found that despite equivalent phenomenological suppression of the visual primes under CFS and BM, different patterns of affective processing were obtained with the two masking techniques. Under BM, nonconscious affective priming was obtained for both happy and angry invisible facial expressions. However, under CFS, nonconscious affective priming was obtained only for angry facial expressions. We discuss an interpretation of this dissociation between affective processing and visual masking techniques in terms of distinct routes from the retina to the amygdala.
Gao, Liang; Chen, Xiangfei; Xiong, Jintian; Liu, Shengchun; Pu, Tao
2012-01-30
Based on reconstruction-equivalent-chirp (REC) technique, a novel solution for fabricating low-cost long fiber Bragg gratings (FBGs) with desired properties is proposed and initially studied. A proof-of-concept experiment is demonstrated with two conventional uniform phase masks and a submicron-precision translation stage, successfully. It is shown that the original phase shift (OPS) caused by phase mismatch of the two phase masks can be compensated by the equivalent phase shift (EPS) at the ±1st channels of sampled FBGs, separately. Furthermore, as an example, a π phase-shifted FBG of about 90 mm is fabricated by using these two 50mm-long uniform phase masks based on the presented method.
Mäkitie, A A; Salmi, M; Lindford, A; Tuomi, J; Lassus, P
2016-12-01
Prosthetic mask restoration of the donor face is essential in current facial transplant protocols. The aim was to develop a new three-dimensional (3D) printing (additive manufacturing; AM) process for the production of a donor face mask that fulfilled the requirements for facial restoration after facial harvest. A digital image of a single test person's face was obtained in a standardized setting and subjected to three different image processing techniques. These data were used for the 3D modeling and printing of a donor face mask. The process was also tested in a cadaver setting and ultimately used clinically in a donor patient after facial allograft harvest. and Conclusions: All the three developed and tested techniques enabled the 3D printing of a custom-made face mask in a timely manner that is almost an exact replica of the donor patient's face. This technique was successfully used in a facial allotransplantation donor patient. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Coma measurement by transmission image sensor with a PSM
NASA Astrophysics Data System (ADS)
Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming
2005-01-01
As feature size decreases, especially with the use of resolution enhancement technique such as off axis illumination and phase shifting mask, fast and accurate in-situ measurement of coma has become very important in improving the performance of modern lithographic tools. The measurement of coma can be achieved by the transmission image sensor, which is an aerial image measurement device. The coma can be determined by measuring the positions of the aerial image at multiple illumination settings. In the present paper, we improve the measurement accuracy of the above technique with an alternating phase shifting mask. Using the scalar diffraction theory, we analyze the effect of coma on the aerial image. To analyze the effect of the alternating phase shifting mask, we compare the pupil filling of the mark used in the above technique with that of the phase-shifted mark used in the new technique. We calculate the coma-induced image displacements of the marks at multiple partial coherence and NA settings, using the PROLITH simulation program. The simulation results show that the accuracy of coma measurement can increase approximately 20 percent using the alternating phase shifting mask.
Algorithm That Synthesizes Other Algorithms for Hashing
NASA Technical Reports Server (NTRS)
James, Mark
2010-01-01
An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the minimum amount of time. Given a list of numbers, try to find one or more solutions in which, if each number is compressed by use of the modulo function by some value, then a unique value is generated.
Active-duty military service members’ visual representations of PTSD and TBI in masks
Walker, Melissa S.; Kaimal, Girija; Gonzaga, Adele M. L.; Myers-Coffman, Katherine A.; DeGraba, Thomas J.
2017-01-01
ABSTRACT Active-duty military service members have a significant risk of sustaining physical and psychological trauma resulting in traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Within an interdisciplinary treatment approach at the National Intrepid Center of Excellence, service members participated in mask making during art therapy sessions. This study presents an analysis of the mask-making experiences of service members (n = 370) with persistent symptoms from combat- and mission-related TBI, PTSD, and other concurrent mood issues. Data sources included mask images and therapist notes collected over a five-year period. The data were coded and analyzed using grounded theory methods. Findings indicated that mask making offered visual representations of the self related to individual personhood, relationships, community, and society. Imagery themes referenced the injury, relational supports/losses, identity transitions/questions, cultural metaphors, existential reflections, and conflicted sense of self. These visual insights provided an increased understanding of the experiences of service members, facilitating their recovery. PMID:28452610
Active-duty military service members' visual representations of PTSD and TBI in masks.
Walker, Melissa S; Kaimal, Girija; Gonzaga, Adele M L; Myers-Coffman, Katherine A; DeGraba, Thomas J
2017-12-01
Active-duty military service members have a significant risk of sustaining physical and psychological trauma resulting in traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Within an interdisciplinary treatment approach at the National Intrepid Center of Excellence, service members participated in mask making during art therapy sessions. This study presents an analysis of the mask-making experiences of service members (n = 370) with persistent symptoms from combat- and mission-related TBI, PTSD, and other concurrent mood issues. Data sources included mask images and therapist notes collected over a five-year period. The data were coded and analyzed using grounded theory methods. Findings indicated that mask making offered visual representations of the self related to individual personhood, relationships, community, and society. Imagery themes referenced the injury, relational supports/losses, identity transitions/questions, cultural metaphors, existential reflections, and conflicted sense of self. These visual insights provided an increased understanding of the experiences of service members, facilitating their recovery.
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.
2016-11-01
Applications of optical methods for encryption purposes have been attracting interest of researchers for decades. The most popular are coherent techniques such as double random phase encoding. Its main advantage is high security due to transformation of spectrum of image to be encrypted into white spectrum via use of first phase random mask which allows for encrypted images with white spectra. Downsides are necessity of using holographic registration scheme and speckle noise occurring due to coherent illumination. Elimination of these disadvantages is possible via usage of incoherent illumination. In this case, phase registration no longer matters, which means that there is no need for holographic setup, and speckle noise is gone. Recently, encryption of digital information in form of binary images has become quite popular. Advantages of using quick response (QR) code in capacity of data container for optical encryption include: 1) any data represented as QR code will have close to white (excluding zero spatial frequency) Fourier spectrum which have good overlapping with encryption key spectrum; 2) built-in algorithm for image scale and orientation correction which simplifies decoding of decrypted QR codes; 3) embedded error correction code allows for successful decryption of information even in case of partial corruption of decrypted image. Optical encryption of digital data in form QR codes using spatially incoherent illumination was experimentally implemented. Two liquid crystal spatial light modulators were used in experimental setup for QR code and encrypting kinoform imaging respectively. Decryption was conducted digitally. Successful decryption of encrypted QR codes is demonstrated.
Assessment of molecular contamination in mask pod
NASA Astrophysics Data System (ADS)
Foray, Jean Marie; Dejaune, Patrice; Sergent, Pierre; Gough, Stuart; Cheung, D.; Davenet, Magali; Favre, Arnaud; Rude, C.; Trautmann, T.; Tissier, Michel; Fontaine, H.; Veillerot, M.; Avary, K.; Hollein, I.; Lerit, R.
2008-04-01
Context/ study Motivation: Contamination and especially Airbone Molecular Contamination (AMC) is a critical issue for mask material flow with a severe and fairly unpredictable risk of induced contamination and damages especially for 193 nm lithography. It is therefore essential to measure, to understand and then try to reduce AMC in mask environment. Mask material flow was studied in a global approach by a pool of European partners, especially within the frame of European MEDEA+ project, so called "MUSCLE". This paper deals with results and assessment of mask pod environment in term of molecular contamination in a first step, then in a second step preliminary studies to reduce mask pod influence and contamination due to material out gassing. Approach and techniques: A specific assessment of environmental / molecular contamination along the supply chain was performed by all partners. After previous work presented at EMLC 07, further studies were performed on real time contamination measurement pod at different sites locations (including Mask manufacturing site, blank manufacturing sites, IC fab). Studies were linked to the main critical issues: cleaning, storage, handling, materials and processes. Contamination measurement campaigns were carried out along the mask supply chain using specific Adixen analyzer in order to monitor in real time organic contaminants (ppb level) in mask pods. Key results would be presented: VOC, AMC and humidity level on different kinds of mask carriers, impact of basic cleaning on pod outgassing measurement (VOC, NH3), and process influence on pod contamination... In a second step, preliminary specific pod conditioning studies for better pod environment were performed based on Adixen vacuum process. Process influence had been experimentally measured in term of molecular outgassing from mask pods. Different AMC experimental characterization methods had been carried out leading to results on a wide range of organic and inorganic contaminants: by inline techniques based on Adixen humidity, also VOC and organic sensors, together by off-line techniques already used in the extensive previous mask pods benchmark (TD-GCMS & Ionic Chromatography). Humidity and VOC levels from mask carriers had shown significant reduction after Adixen pod conditioning process. Focus had been made on optimized vacuum step (for AMC) after particles carrier cleaning cycle. Based upon these key results new procedures, as well as guidelines for mask carrier cleaning optimization are proposed to improve pod contamination control. Summary results/next steps: This paper reports molecular contamination measurement campaigns performed by a pool of European partners along the mask supply chain. It allows us to investigate, identify and quantify critical molecular contamination in mask pod, as well as VOC and humidity, issues depending on locations, uses, and carrier's type. Preliminary studies highlight initial process solutions for pods conditioning that are being used for short term industrialization and further industrialized.
Joint optimization of source, mask, and pupil in optical lithography
NASA Astrophysics Data System (ADS)
Li, Jia; Lam, Edmund Y.
2014-03-01
Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.
Removal of central obscuration and spiders for coronagraphy
NASA Astrophysics Data System (ADS)
Abe, L.; Nishikawa, J.; Murakami, N.; Tamura, M.
2006-06-01
We present a method to remove the central obscuration and spiders, or any kind of geometry inside a telescope pupil. The technique relies on the combination of a first focal plane diffracting mask, and a complex amplitude pupil mask. In this combination, the central obscuration and eventual spider arms patterns in the re-imaged pupil (after the diffracting mask) are filled with coherent light. Adding an appropriate complex amplitude pupil mask allows virtually any kind of pupil shaping (in both amplitude and/or phase). We show that the obtained output pupil can feed a high efficiency coronagraph (any kind) with a very reasonable overall throughput and good performance even when considering pointing errors. In this paper, we specifically assess the performance of this technique when using apodized entrance pupils. This technique is relevant for ground based telescopes foreseeing the advent of higher order (so called ExAO) adaptive optics systems providing very high Strehl ratios. Some feasibility points are also discussed. adaptive optics systems providing very high Strehl ratios. Some feasibility points are also discussed.
Replication of Holograms with Corn Syrup by Rubbing
Mejias-Brizuela, Nildia Y.; Olivares-Pérez, Arturo; Ortiz-Gutiérrez, Mauricio
2012-01-01
Corn syrup films are used to replicate holograms in order to fabricate micro-structural patterns without the toxins commonly found in photosensitive salts and dyes. We use amplitude and relief masks with lithographic techniques and rubbing techniques in order to transfer holographic information to corn syrup material. Holographic diffraction patterns from holographic gratings and computer Fourier holograms fabricated with corn syrup are shown. We measured the diffraction efficiency parameter in order to characterize the film. The versatility of this material for storage information is promising. Holographic gratings achieved a diffraction efficiency of around 8.4% with an amplitude mask and 36% for a relief mask technique. Preliminary results using corn syrup as an emulsion for replicating holograms are also shown in this work.
Security authentication using phase-encoded nanoparticle structures and polarized light.
Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram
2015-01-15
Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.
Masking as an effective quality control method for next-generation sequencing data analysis.
Yun, Sajung; Yun, Sijung
2014-12-13
Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).
Dynamics of normalization underlying masking in human visual cortex.
Tsai, Jeffrey J; Wade, Alex R; Norcia, Anthony M
2012-02-22
Stimulus visibility can be reduced by other stimuli that overlap the same region of visual space, a process known as masking. Here we studied the neural mechanisms of masking in humans using source-imaged steady state visual evoked potentials and frequency-domain analysis over a wide range of relative stimulus strengths of test and mask stimuli. Test and mask stimuli were tagged with distinct temporal frequencies and we quantified spectral response components associated with the individual stimuli (self terms) and responses due to interaction between stimuli (intermodulation terms). In early visual cortex, masking alters the self terms in a manner consistent with a reduction of input contrast. We also identify a novel signature of masking: a robust intermodulation term that peaks when the test and mask stimuli have equal contrast and disappears when they are widely different. We fit all of our data simultaneously with family of a divisive gain control models that differed only in their dynamics. Models with either very short or very long temporal integration constants for the gain pool performed worse than a model with an integration time of ∼30 ms. Finally, the absolute magnitudes of the response were controlled by the ratio of the stimulus contrasts, not their absolute values. This contrast-contrast invariance suggests that many neurons in early visual cortex code relative rather than absolute contrast. Together, these results provide a more complete description of masking within the normalization framework of contrast gain control and suggest that contrast normalization accomplishes multiple functional goals.
Affect of the unconscious: Visually suppressed angry faces modulate our decisions
Pajtas, Petra E.; Mahon, Bradford Z.; Nakayama, Ken; Caramazza, Alfonso
2016-01-01
Emotional and affective processing imposes itself over cognitive processes and modulates our perception of the surrounding environment. In two experiments, we addressed the issue of whether nonconscious processing of affect can take place even under deep states of unawareness, such as those induced by interocular suppression techniques, and can elicit an affective response that can influence our understanding of the surrounding environment. In Experiment 1, participants judged the likeability of an unfamiliar item—a Chinese character—that was preceded by a face expressing a particular emotion (either happy or angry). The face was rendered invisible through an interocular suppression technique (continuous flash suppression; CFS). In Experiment 2, backward masking (BM), a less robust masking technique, was used to render the facial expressions invisible. We found that despite equivalent phenomenological suppression of the visual primes under CFS and BM, different patterns of affective processing were obtained with the two masking techniques. Under BM, nonconscious affective priming was obtained for both happy and angry invisible facial expressions. However, under CFS, nonconscious affective priming was obtained only for angry facial expressions. We discuss an interpretation of this dissociation between affective processing and visual masking techniques in terms of distinct routes from the retina to the amygdala. PMID:23224765
Variability-aware double-patterning layout optimization for analog circuits
NASA Astrophysics Data System (ADS)
Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Lee, Zhao Chuan; Tseng, I.-Lun; Ong, Jonathan Yoong Seang
2018-03-01
The semiconductor industry has adopted multi-patterning techniques to manage the delay in the extreme ultraviolet lithography technology. During the design process of double-patterning lithography layout masks, two polygons are assigned to different masks if their spacing is less than the minimum printable spacing. With these additional design constraints, it is very difficult to find experienced layout-design engineers who have a good understanding of the circuit to manually optimize the mask layers in order to minimize color-induced circuit variations. In this work, we investigate the impact of double-patterning lithography on analog circuits and provide quantitative analysis for our designers to select the optimal mask to minimize the circuit's mismatch. To overcome the problem and improve the turn-around time, we proposed our smart "anchoring" placement technique to optimize mask decomposition for analog circuits. We have developed a software prototype that is capable of providing anchoring markers in the layout, allowing industry standard tools to perform automated color decomposition process.
NASA Astrophysics Data System (ADS)
Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu
2011-03-01
Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.
X-ray beam equalization for digital fluoroscopy
NASA Astrophysics Data System (ADS)
Molloi, Sabee Y.; Tang, Jerry; Marcin, Martin R.; Zhou, Yifang; Anvar, Behzad
1996-04-01
The concept of radiographic equalization has previously been investigated. However, a suitable technique for digital fluoroscopic applications has not been developed. The previously reported scanning equalization techniques cannot be applied to fluoroscopic applications due to their exposure time limitations. On the other hand, area beam equalization techniques are more suited for digital fluoroscopic applications. The purpose of this study is to develop an x- ray beam equalization technique for digital fluoroscopic applications that will produce an equalized radiograph with minimal image artifacts and tube loading. Preliminary unequalized images of a humanoid chest phantom were acquired using a digital fluoroscopic system. Using this preliminary image as a guide, an 8 by 8 array of square pistons were used to generate masks in a mold with CeO2. The CeO2 attenuator thicknesses were calculated using the gray level information from the unequalized image. The generated mask was positioned close to the focal spot (magnification of 8.0) in order to minimize edge artifacts from the mask. The masks were generated manually in order to investigate the piston and matrix size requirements. The development of an automated version of mask generation and positioning is in progress. The results of manual mask generation and positioning show that it is possible to generate equalized radiographs with minimal perceptible artifacts. The equalization of x-ray transmission across the field exiting from the object significantly improved the image quality by preserving local contrast throughout the image. Furthermore, the reduction in dynamic range significantly reduced the effect of x-ray scatter and veiling glare from high transmission to low transmission areas. Also, the x-ray tube loading due to the mask assembly itself was negligible. In conclusion it is possible to produce area beam compensation that will be compatible with digital fluoroscopy with minimal compensation artifacts. The compensation process produces an image with equalized signal to noise ratio in all parts of the image.
JPEG2000-coded image error concealment exploiting convex sets projections.
Atzori, Luigi; Ginesu, Giaime; Raccis, Alessio
2005-04-01
Transmission errors in JPEG2000 can be grouped into three main classes, depending on the affected area: LL, high frequencies at the lower decomposition levels, and high frequencies at the higher decomposition levels. The first type of errors are the most annoying but can be concealed exploiting the signal spatial correlation like in a number of techniques proposed in the past; the second are less annoying but more difficult to address; the latter are often imperceptible. In this paper, we address the problem of concealing the second class or errors when high bit-planes are damaged by proposing a new approach based on the theory of projections onto convex sets. Accordingly, the error effects are masked by iteratively applying two procedures: low-pass (LP) filtering in the spatial domain and restoration of the uncorrupted wavelet coefficients in the transform domain. It has been observed that a uniform LP filtering brought to some undesired side effects that negatively compensated the advantages. This problem has been overcome by applying an adaptive solution, which exploits an edge map to choose the optimal filter mask size. Simulation results demonstrated the efficiency of the proposed approach.
Paving the way to a full chip gate level double patterning application
NASA Astrophysics Data System (ADS)
Haffner, Henning; Meiring, Jason; Baum, Zachary; Halle, Scott
2007-10-01
Double patterning lithography processes can offer significant yield enhancement for challenging circuit designs. Many decomposition (i.e. the process of dividing the layout design into first and second exposures) techniques are possible, but the focus of this paper is on the use of a secondary "cut" mask to trim away extraneous features left from the first exposure. This approach has the advantage that each exposure only needs to support a subset of critical features (e.g. dense lines with the first exposure, isolated spaces with the second one). The extraneous features ("printing assist features" or PrAFs) are designed to support the process window of critical features much like the role of the subresolution assist features (SRAFs) in conventional processes. However, the printing nature of PrAFs leads to many more design options, and hence a greater process and decomposition parameter exploration space, than are available for SRAFs. A decomposition scheme using PRAFs was developed for a gate level process. A critical driver of the work was to deliver improved across-chip linewidth variation (ACLV) performance versus an optimized single exposure process while providing support for a larger range of critical features. A variety of PRAF techniques were investigated by simulation, with a PrAF scheme similar to standard SRAF rules being chosen as the optimal solution [1]. This paper discusses aspects of the code development for an automated PrAF generation and placement scheme and the subsequent decomposition of a layout into two mask levels. While PrAF placement and decomposition is straightforward for layouts with pitch and orientation restrictions, it becomes rather complex for unrestricted layout styles. Because this higher complexity yields more irregularly shaped PrAFs, mask making becomes another critical driver of the optimum placement and clean-up strategies. Examples are given of how those challenges are met or can be successfully circumvented. During subsequent decomposition of the PrAF-enhanced layout into two independent mask levels, various geometric decomposition parameters have to be considered. As an example, the removal of PrAFs has to be guaranteed by a minimum required overlap of the cut mask opening past any PrAF edge. It is discussed that process assumptions such as CD tolerances and overlay as well as inter-level relationship ground rules need to be considered to successfully optimize the final decomposition scheme. Furthermore, simulation and experimental results regarding not only ACLV but also across-device linewidth variation (ADLV) are analyzed.
Nasal versus face mask for multiple-breath washout technique in preterm infants.
Schulzke, S M; Deeptha, K; Sinhal, S; Baldwin, D N; Pillow, J J
2008-09-01
The large dead space associated with face masks might impede the accuracy and feasibility of multiple-breath washout (MBW) measurements in small infants. We asked if a low dead space nasal mask would provide measurements of resting lung volume and ventilation inhomogeneity comparable to those obtained with a face mask, when using the MBW technique. Unsedated preterm infants breathing without mechanical assistance and weighing between 1.50 and 2.49 kg were studied. Paired MBW tests with nasal and face masks were obtained using sulphur hexafluoride (SF(6)) as the tracer gas. The order of mask application was quasi-randomized. Bland-Altman method and intraclass correlation coefficient were used to analyze outcomes. Measurements were obtained in 20 infants with a mean (SD) postmenstrual age of 36 (1.4) w and a test weight of 2.0 (0.3) kg. The mean difference (95% CI) for nasal vs. face mask was -3.2 breaths/min (-6.2, -0.1 breaths/min) for respiratory rate, -1.0 ml/kg (-2.3, 0.3 ml/kg) for lung volume, 0.6 (0.1, 1.1) for lung clearance index, 0.2 (0.1, 0.3) for first to zeroeth moment ratio and 1.33 (0.6, 2.4) for second to zeroeth moment ratio. Paired measurements of lung volume showed acceptable agreement and good correlation, but there was poor agreement and poor correlation between indices of ventilation inhomogeneity obtained with the two masks. Functional dead space of the nasal mask was similar to that of the face mask despite its smaller water displacement volume. During MBW in infants below 2.5 kg body weight, a nasal mask results in comparable lung volume measurements. Indices of ventilation inhomogeneity may not be directly comparable using masks with different dead space. (c) 2008 Wiley-Liss, Inc.
A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics
NASA Astrophysics Data System (ADS)
Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.; Amman, Mark
2018-06-01
A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, such as a possible explanation for the excess positron emission from the Galactic center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter cadmium zinc telluride detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope achieved energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63° FWHM at 511 keV and 1.30° FWHM at 1809 keV, and is capable of resolving sources to at least 0.2° at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton-imaging mode yields an effective area of 183 cm2 at 511 keV and an anticipated all-sky sensitivity of 3.6 × 10-6 photons cm-2 s-1 for a broadened 511 keV source over a two-year observation time. Additionally, combining a coded mask with a Compton imager to improve point-source localization for positron detection has been demonstrated.
Wavefront coding for fast, high-resolution light-sheet microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Olarte, Omar E.; Licea-Rodriguez, Jacob; Loza-Alvarez, Pablo
2017-02-01
Some biological experiments demand the observation of dynamics processes in 3D with high spatiotemporal resolution. The use of wavefront coding to extend the depth-of-field (DOF) of the collection arm of a light-sheet microscope is an interesting alternative for fast 3D imaging. Under this scheme, the 3D features of the sample are captured at high volumetric rates while the light sheet is swept rapidly within the extended DOF. The DOF is extended by coding the pupil function of the imaging lens by using a custom-designed phase mask. A posterior restoration step is required to decode the information of the captured images based on the applied phase mask [1]. This hybrid optical-digital approach is known as wavefront coding (WFC). Previously, we have demonstrated this method for performing fast 3D imaging of biological samples at medium resolution [2]. In this work, we present the extension of this approach for high-resolution microscopes. Under these conditions, the effective DOF of a standard high NA objective is of a few micrometers. Here we demonstrate that by the use of WFC, we can extend the DOF more than one order of magnitude keeping the high-resolution imaging. This is demonstrated for two designed phase masks using Zebrafish and C. elegans samples. [1] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled Illumination-Detection Microscopy. Selected Optics in Year 2105," in Optics and Photonics news 26, p. 41 (2015). [2] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled illumination detection in light sheet microscopy for fast volumetric imaging," Optica 2(8), 702 (2015).
NASA Astrophysics Data System (ADS)
McNie, Mark E.; Combes, David J.; Smith, Gilbert W.; Price, Nicola; Ridley, Kevin D.; Brunson, Kevin M.; Lewis, Keith L.; Slinger, Chris W.; Rogers, Stanley
2007-09-01
Coded aperture imaging has been used for astronomical applications for several years. Typical implementations use a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. More recent applications have emerged in the visible and infra red bands for low cost lens-less imaging systems. System studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. We report on work to develop a novel, reconfigurable mask based on micro-opto-electro-mechanical systems (MOEMS) technology employing interference effects to modulate incident light in the mid-IR band (3-5μm). This is achieved by tuning a large array of asymmetric Fabry-Perot cavities by applying an electrostatic force to adjust the gap between a moveable upper polysilicon mirror plate supported on suspensions and underlying fixed (electrode) layers on a silicon substrate. A key advantage of the modulator technology developed is that it is transmissive and high speed (e.g. 100kHz) - allowing simpler imaging system configurations. It is also realised using a modified standard polysilicon surface micromachining process (i.e. MUMPS-like) that is widely available and hence should have a low production cost in volume. We have developed designs capable of operating across the entire mid-IR band with peak transmissions approaching 100% and high contrast. By using a pixelated array of small mirrors, a large area device comprising individually addressable elements may be realised that allows reconfiguring of the whole mask at speeds in excess of video frame rates.
Modular multiaperatures for light sensors
NASA Technical Reports Server (NTRS)
Rizzo, A. A.
1977-01-01
Process involves electroplating multiaperature masks as unit, eliminating alinement and assembly difficulties previously encountered. Technique may be applied to masks in automated and surveillance light systems, when precise, wide angle field of view is needed.
Novel contact hole reticle design for enhanced lithography process window in IC manufacturing
NASA Astrophysics Data System (ADS)
Chang, Chung-Hsing
2005-01-01
For 90nm node generation, 65nm, and beyond, dark field mask types such as contact-hole, via, and trench patterns that all are very challenging to print with satisfactory process windows for day-to-day lithography manufacturing. Resolution enhancement technology (RET) masks together with ArF high numerical aperture (NA) scanners have been recognized as the inevitable choice of method for 65nm node manufacturing. Among RET mask types, the alternating phase shifting mask (AltPSM) is one of the well-known strong enhancement techniques. However AltPSM can have a very strong optical proximity effect that comes with the use of small on-axis illumination sigma setting. For very dense contact features, it may be possible for AltPSM to overcome the phase conflict by limiting the mask design rules. But it is not feasible to resolve the inherent phase conflict for the semi-dense, semi-isolated and isolated contact areas. Hence the adoption of this strong enhancement technique for dark filed mask types in today"s IC manufacturing has been very limited. In this paper, we present a novel yet a very powerful design method to achieve contact and via masks printing for 90nm, 65nm, and beyond. We name our new mask design as: Novel Improved Contact-hole pattern Exposure PSM (NICE PSM) with off-axis illumination, such as QUASAR. This RET masks design can enhance the process window of isolated, semi-isolated contact hole and via hole patterns. The main concepts of NICE PSM with QUASAR off-axis illumination are analogous to the Super-FLEX pupil filter technology.
Novel contact hole reticle design for enhanced lithography process window in IC manufacturing
NASA Astrophysics Data System (ADS)
Chang, Chung-Hsing
2004-10-01
For 90nm node generation, 65nm, and beyond, dark field mask types such as contact-hole, via, and trench patterns that all are very challenging to print with satisfactory process windows for day-to-day lithography manufacturing. Resolution enhancement technology (RET) masks together with ArF high numerical aperture (NA) scanners have been recognized as the inevitable choice of method for 65nm node manufacturing. Among RET mask types, the alternating phase shifting mask (AltPSM) is one of the well-known strong enhancement techniques. However, AltPSM can have a very strong optical proximity effect that comes with the use of small on-axis illumination sigma setting. For very dense contact features, it may be possible for AltPSM to overcome the phase conflict by limiting the mask design rules. But it is not feasible to resolve the inherent phase conflict for the semi-dense, semi-isolated and isolated contact areas. Hence the adoption of this strong enhancement technique for dark filed mask types in today"s IC manufacturing has been very limited. In this paper, we report a novel yet a very powerful design method to achieve contact and via masks printing for 90nm, 65nm, and beyond. We name our new mask design as: Novel Improved Contact-hole pattern Exposure PSM (NICE PSM) with off-axis illumination, such as QUASAR. This RET masks design can enhance the process window of isolated, semi-isolated contact hole and via hole patterns. The main concepts of NICE PSM with QUASAR off-axis illumination are analogous to the Super-FLEX pupil filter technology.
Real-Time Implementation of Nonlinear Processing Functions.
1981-08-01
crystal devices and then to use them in a coherent optical data- processing apparatus using halftone masks custom designed at the University oi Southern...California. With the halftone mask technique, we have demonstrated logarithmic nonlinear transformation, allowing us to separate multiplicative images...improved.,_ This device allowed nonlinear functions to be implemented directly wit - out the need for specially made halftone masks. Besides
Photorefractive keratectomy at 193 nm using an erodible mask
NASA Astrophysics Data System (ADS)
Gordon, Michael; Brint, Stephen F.; Durrie, Daniel S.; Seiler, Theo; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.
1992-08-01
Clinical experience with more than ten thousand sighted eyes has demonstrated great promise for correcting myopia with photorefractive keratectomy (PRK). Previously reported techniques have incorporated computer-controlled irises, diaphragms, and apertures to regulate the desired distribution of 193 nm radiation onto the eye. This paper reports on an entirely new approach for performing PRK which utilizes an erodible mask to control the shape transfer process. Compared to the more traditional techniques, the erodible mask offers promise of correcting a broad range of refractive errors. In this paper the erodible mask and associated hardware are described in detail. We describe the shape transfer experiments used to predict the functional relationship between the desired refractive correction and the mask shape. We report on early clinical results from five patients with myopic astigmatism. We conclude that the early shape transfer experiments overestimated the spherical component of the correction by 1.25 diopters and underestimated the cylindrical component by approximately 0.85 diopters. The data suggest there may be biological effects which evoke different healing responses when myopic PRK corrections are performed with and without astigmatism. Clinical trials are proceeding with the mask shapes adjusted for these observations.
Barth, Jürgen; Michlig, Nadja; Munder, Thomas
2014-01-01
Randomised controlled trials (RCTs) of psychotherapeutic interventions assume that specific techniques are used in treatments, which are responsible for changes in the client's symptoms. This assumption also holds true for meta-analyses, where evidence for specific interventions and techniques is compiled. However, it has also been argued that different treatments share important techniques and that an upcoming consensus about useful treatment strategies is leading to a greater integration of treatments. This makes assumptions about the effectiveness of specific interventions ingredients questionable if the shared (common) techniques are more often used in interventions than are the unique techniques. This study investigated the unique or shared techniques in RCTs of cognitive-behavioural therapy (CBT) and short-term psychodynamic psychotherapy (STPP). Psychotherapeutic techniques were coded from 42 masked treatment descriptions of RCTs in the field of depression (1979–2010). CBT techniques were often used in studies identified as either CBT or STPP. However, STPP techniques were only used in STPP-identified studies. Empirical clustering of treatment descriptions did not confirm the original distinction of CBT versus STPP, but instead showed substantial heterogeneity within both approaches. Extraction of psychotherapeutic techniques from the treatment descriptions is feasible and could be used as a content-based approach to classify treatments in systematic reviews and meta-analyses. PMID:25750827
Extra Solar Planet Science With a Non Redundant Mask
NASA Astrophysics Data System (ADS)
Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi
2017-01-01
To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.
The Cadmium Zinc Telluride Imager on AstroSat
NASA Astrophysics Data System (ADS)
Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.
2017-06-01
The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.
NASA Astrophysics Data System (ADS)
Thamm, Thomas; Geh, Bernd; Djordjevic Kaufmann, Marija; Seltmann, Rolf; Bitensky, Alla; Sczyrba, Martin; Samy, Aravind Narayana
2018-03-01
Within the current paper, we will concentrate on the well-known CDC technique from Carl Zeiss to improve the CD distribution of the wafer by improving the reticle CDU and its impact on hotspots and Litho process window. The CDC technique uses an ultra-short pulse laser technology, which generates a micro-level Shade-In-Element (also known as "Pixels") into the mask quartz bulk material. These scatter centers are able to selectively attenuate certain areas of the reticle in higher resolution compared to other methods and thus improve the CD uniformity. In a first section, we compare the CDC technique with scanner dose correction schemes. It becomes obvious, that the CDC technique has unique advantages with respect to spatial resolution and intra-field flexibility over scanner correction schemes, however, due to the scanner flexibility across wafer both methods are rather complementary than competing. In a second section we show that a reference feature based correction scheme can be used to improve the CDU of a full chip with multiple different features that have different MEEF and dose sensitivities. In detail we will discuss the impact of forward scattering light originated by the CDC pixels on the illumination source and the related proximity signature. We will show that the impact on proximity is small compared to the CDU benefit of the CDC technique. Finally we show to which extend the reduced variability across reticle will result in a better common electrical process window of a whole chip design on the whole reticle field on wafer. Finally we will discuss electrical verification results between masks with purposely made bad CDU that got repaired by the CDC technique versus inherently good "golden" masks on a complex logic device. No yield difference is observed between the repaired bad masks and the masks with good CDU.
Modeling and Observations of Phase-Mask Trapezoidal Profiles with Grating-Fiber Image Reproduction
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Lindesay, James V.; Lee, Hyung R.; Ndlela, Zolili U.; Thompso, Erica J.
2000-01-01
We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 microns are modeled and investigated.
Diffractive phase-shift lithography photomask operating in proximity printing mode.
Cirino, Giuseppe A; Mansano, Ronaldo D; Verdonck, Patrick; Cescato, Lucila; Neto, Luiz G
2010-08-02
A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.
Coded aperture ptychography: uniqueness and reconstruction
NASA Astrophysics Data System (ADS)
Chen, Pengwen; Fannjiang, Albert
2018-02-01
Uniqueness of solution is proved for any ptychographic scheme with a random mask under a minimum overlap condition and local geometric convergence analysis is given for the alternating projection (AP) and Douglas-Rachford (DR) algorithms. DR is shown to possess a unique fixed point in the object domain and for AP a simple criterion for distinguishing the true solution among possibly many fixed points is given. A minimalist scheme, where the adjacent masks overlap 50% of the area and each pixel of the object is illuminated by exactly four illuminations, is conveniently parametrized by the number q of shifted masks in each direction. The lower bound 1 - C/q 2 is proved for the geometric convergence rate of the minimalist scheme, predicting a poor performance with large q which is confirmed by numerical experiments. The twin-image ambiguity is shown to arise for certain Fresnel masks and degrade the performance of reconstruction. Extensive numerical experiments are performed to explore the general features of a well-performing mask, the optimal value of q and the robustness with respect to measurement noise.
Effectiveness of three just-in-time training modalities for N-95 mask fit testing.
Jones, David; Stoler, Genevieve; Suyama, Joe
2013-01-01
To compare and contrast three different training modalities for fit testing N-95 respirator face masks. Block randomized interventional study. Urban university. Two hundred eighty-nine medical students. Students were randomly assigned to video, lecture, or slide show to evaluate the effectiveness of the methods for fit testing large groups of people. Ease of fit and success of fit for each instructional technique. Mask 1 was a Kimberly-Clark duckbill N-95 respirator mask, and mask 2 was a 3M™ carpenters N-95 respirator mask. "Ease of fit" was defined as the ability to successfully don a mask in less than 30 seconds. "Success of fit" was defined as the ability to correctly don a mask in one try. There were no statistical differences by training modality for either mask regarding ease of fit or success of fit. There were no differences among video presentation, small group demonstration, and self-directed slide show just-in-time training modalities for ease of fit or success of fit N-95 respirator mask fitting. Further study is needed to explore more effective fit training modalities.
Associative and repetition priming with the repeated masked prime technique: no priming found.
Avons, S E; Russo, Riccardo; Cinel, Caterina; Verolini, Veronica; Glynn, Kevin; McDonald, Rebecca; Cameron, Marie
2009-01-01
Wentura and Frings (2005) reported evidence of subliminal categorical priming on a lexical decision task, using a new method of visual masking in which the prime string consisted of the prime word flanked by random consonants and random letter masks alternated with the prime string on successive refresh cycles. We investigated associative and repetition priming on lexical decision, using the same method of visual masking. Three experiments failed to show any evidence of associative priming, (1) when the prime string was fixed at 10 characters (three to six flanking letters) and (2) when the number of flanking letters were reduced or absent. In all cases, prime detection was at chance level. Strong associative priming was observed with visible unmasked primes, but the addition of flanking letters restricted priming even though prime detection was still high. With repetition priming, no priming effects were found with the repeated masked technique, and prime detection was poor but just above chance levels. We conclude that with repeated masked primes, there is effective visual masking but that associative priming and repetition priming do not occur with experiment-unique prime-target pairs. Explanations for this apparent discrepancy across priming paradigms are discussed. The priming stimuli and prime-target pairs used in this study may be downloaded as supplemental materials from mc.psychonomic-journals.org/content/supplemental.
Fabrication and Characteristics of Free Standing Shaped Pupil Masks for TPF-Coronagraph
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham; Echternach, Pierre M.; Dickie, Matthew R.; Muller, Richard E.; White, Victor E.; Hoppe, Daniel J.; Shaklan, Stuart B.; Belikov, Ruslan; Kasdin, N. Jeremy; Vanderbei, Robert J.;
2006-01-01
Direct imaging and characterization of exo-solar terrestrial planets require coronagraphic instruments capable of suppressing star light to 10-10. Pupil shaping masks have been proposed and designed1 at Princeton University to accomplish such a goal. Based on Princeton designs, free standing (without a substrate) silicon masks have been fabricated with lithographic and deep etching techniques. In this paper, we discuss the fabrication of such masks and present their physical and optical characteristics in relevance to their performance over the visible to near IR bandwidth.
Jeon, Seokwoo; Shir, Daniel J.; Nam, Yun Suk; ...
2007-05-08
This paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 μm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 μm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together withmore » optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures. Lastly, these approaches provide capabilities in 3D fabrication that complement those of other techniques, with potential applications in photonics, microfluidics, drug delivery and other areas.« less
Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok
2016-12-05
High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.
2014-01-01
Background Aseptic technique and handwashing have been shown to be important factors in perioperative bacterial transmission, however compliance often remains low despite guidelines and educational programs. Infectious complications of neuraxial (epidural and spinal) anesthesia are severe but fortunately rare. We conducted a survey to assess aseptic technique practices for neuraxial anesthesia in Israel before and after publication of international guidelines (which focused on handwashing, jewelry/watch removal and the wearing of a mask and cap). Methods The sampling frame was the general anesthesiology workforce in hospitals selected from each of the four medical faculties in Israel. Data was collected anonymously over one week in each hospital in two periods: April 2006 and September 2009. Most anesthesiologists received the questionnaires at departmental staff meetings and filled them out during these meetings; additionally, a local investigator approached anesthesiologists not present at these staff meetings individually. Primary endpoint questions were: handwashing, removal of wristwatch/jewelry, wearing mask, wearing hat/cap, wearing sterile gown; answering options were: "always", "usually", "rarely" or "never". Primary endpoint for analysis: respondents who both always wash their hands and always wear a mask ("handwash-mask composite") - "always" versus "any other response". We used logistic regression to perform the analysis. Time (2006, 2009) and hospital were included in the analysis as fixed effects. Results 135/160 (in 2006) and 127/164 (in 2009) anesthesiologists responded to the surveys; response rate 84% and 77% respectively. Respondents constituted 23% of the national anesthesiologist workforce. The main outcome "handwash-mask composite" was significantly increased after guideline publication (33% vs 58%; p = 0.0003). In addition, significant increases were seen for handwashing (37% vs 63%; p = 0.0004), wearing of mask (61% vs 78%; p < 0.0001), hat/cap (53% vs 76%; p = 0.0011) and wearing sterile gown (32% vs 51%; p < 0.0001). An apparent improvement in aseptic technique from 2006 to 2009 is noted across all hospitals and all physician groups. Conclusion Self-reported aseptic technique by Israeli anesthesiologists improved in the survey conducted after the publication of international guidelines. Although the before-after study design cannot prove a cause-effect relationship, it does show an association between the publication of international guidelines and significant improvement in self-reported aseptic technique. PMID:24661425
Scanner qualification with IntenCD based reticle error correction
NASA Astrophysics Data System (ADS)
Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan
2010-03-01
Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.
EUV microexposures at the ALS using the 0.3-NA MET projectionoptics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik
2005-09-01
The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similarmore » tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm.« less
Intact figure-ground segmentation in schizophrenia.
Herzog, Michael H; Kopmann, Sabine; Brand, Andreas
2004-11-30
As revealed by backward masking studies, schizophrenic patients show strong impairments of early visual processing. However, the underlying temporal mechanisms are not yet well understood. To shed light on the exact timing of these deficits, we employed a paradigm in which two masks follow each other. We investigated 16 medicated schizophrenic patients and a matched group of 14 controls with a new backward masking technique, shine-through. In accordance with other masking studies, schizophrenic patients require a dramatically longer processing time to reach a predefined performance level compared with healthy subjects. However, patients are surprisingly sensitive to subtle differences in the timing of the two masks, revealing good temporal resolution. This good temporal resolution indicates intact and fast perceptual grouping and figure-ground segmentation in spite of high susceptibility to masking procedures in schizophrenia.
Edge-illumination x-ray phase contrast imaging with Pt-based metallic glass masks
NASA Astrophysics Data System (ADS)
Saghamanesh, Somayeh; Aghamiri, Seyed Mahmoud-Reza; Olivo, Alessandro; Sadeghilarijani, Maryam; Kato, Hidemi; Kamali-Asl, Alireza; Yashiro, Wataru
2017-06-01
Edge-illumination x-ray phase contrast imaging (EI XPCI) is a non-interferometric phase-sensitive method where two absorption masks are employed. These masks are fabricated through a photolithography process followed by electroplating which is challenging in terms of yield as well as time- and cost-effectiveness. We report on the first implementation of EI XPCI with Pt-based metallic glass masks fabricated by an imprinting method. The new tested alloy exhibits good characteristics including high workability beside high x-ray attenuation. The fabrication process is easy and cheap, and can produce large-size masks for high x-ray energies within minutes. Imaging experiments show a good quality phase image, which confirms the potential of these masks to make the EI XPCI technique widely available and affordable.
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji
2016-03-01
Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.
An interactive tool for gamut masking
NASA Astrophysics Data System (ADS)
Song, Ying; Lau, Cheryl; Süsstrunk, Sabine
2014-02-01
Artists often want to change the colors of an image to achieve a particular aesthetic goal. For example, they might limit colors to a warm or cool color scheme to create an image with a certain mood or feeling. Gamut masking is a technique that artists use to limit the set of colors they can paint with. They draw a mask over a color wheel and only use the hues within the mask. However, creating the color palette from the mask and applying the colors to the image requires skill. We propose an interactive tool for gamut masking that allows amateur artists to create an image with a desired mood or feeling. Our system extracts a 3D color gamut from the 2D user-drawn mask and maps the image to this gamut. The user can draw a different gamut mask or locally refine the image colors. Our voxel grid gamut representation allows us to represent gamuts of any shape, and our cluster-based image representation allows the user to change colors locally.
Updating Landsat-derived land-cover maps using change detection and masking techniques
NASA Technical Reports Server (NTRS)
Likens, W.; Maw, K.
1982-01-01
The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.
Magnetron sputtering for the production of EUV mask blanks
NASA Astrophysics Data System (ADS)
Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank
2015-03-01
Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.
Dai, Lengshi; Shinn-Cunningham, Barbara G
2016-01-01
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
Combined tool approach is 100% successful for emergency football face mask removal.
Copeland, Aaron J; Decoster, Laura C; Swartz, Erik E; Gattie, Eric R; Gale, Stephanie D
2007-11-01
To compare effectiveness of two techniques for removing football face masks: cutting loop straps [cutting tool: FMXtractor (FMX)] or removing screws with a cordless screwdriver and using the FMXtractor as needed for failed removals [combined tool (CT)]. Null hypotheses: no differences in face mask removal success, removal time or difficulty between techniques or helmet characteristics. Retrospective, cross-sectional. NOCSAE-certified helmet reconditioning plants. 600 used high school helmets. Face mask removal attempted with two techniques. Success, removal time, rating of perceived exertion (RPE). Both techniques were effective [CT 100% (300/300); FMX 99.4% (298/300)]. Use of the backup FMXtractor in CT trials was required in 19% of trials. There was significantly (P<0.001) less call for the backup tool in helmets with silver screws (6%) than in helmets with other screws (31%). Mean removal time was 44.51+/-18.79s (CT: 37.84+/-15.37s, FMX: 51.21+/-19.54s; P<0.001). RPE was different between techniques (CT: 1.83+/-1.20, FMX: 3.11+/-1.27; P<0.001). Removal from helmets with silver screws was faster (Silver=33.38+/-11.03, Others=42.18+/-17.64; P<0.001) and easier (Silver=1.42+/-0.89, Other=2.23+/-1.33; P<0.001). CT was faster and easier than FMX. Most CT trials were completed with the screwdriver alone; helmets with silver screws had 94% screwdriver success. Clinically, these findings are important because this and other research shows that compared to removal with cutting tools, screwdriver removal decreases time, difficulty and helmet movement (reducing potential for iatrogenic injury). The combined-tool approach captures benefits of the screwdriver while offering a contingency for screw removal failure. Teams should use degradation-resistant screws. Sports medicine professionals must be prepared with appropriate tools and techniques to efficiently remove the face mask from an injured football player's helmet.
Optically secured information retrieval using two authenticated phase-only masks.
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-10-23
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.
Optically secured information retrieval using two authenticated phase-only masks
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-01-01
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213
Optically secured information retrieval using two authenticated phase-only masks
NASA Astrophysics Data System (ADS)
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-10-01
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.
NASA Astrophysics Data System (ADS)
Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas
2009-10-01
This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.
Abnormal spatial frequency channels in esotropic cats.
Holopigian, K; Blake, R
1984-01-01
A noise masking paradigm was used to measure spatial tuning for the deviating and nondeviating eyes of two esotropic cats and for one eye of a control cat. With increasing noise contrast, masking grew more slowly for both the deviating and the nondeviating eyes of the esotropic cats than for the control cat; apparently, contrast coding is impaired for both eyes of the esotropic cats. Masking with band-reject filtered noise indicated that detection channels for either eye of the esotropic cats were twice as broadly tuned as those for the control cat. In a subsequent experiment, the spatial tuning characteristics of two human esotropes were found to be normal, indicating a fundamental difference between human esotropia and esotropia induced in cats by the section of an eye muscle.
Primer3_masker: integrating masking of template sequence with primer design software.
Kõressaar, Triinu; Lepamets, Maarja; Kaplinski, Lauris; Raime, Kairi; Andreson, Reidar; Remm, Maido
2018-06-01
Designing PCR primers for amplifying regions of eukaryotic genomes is a complicated task because the genomes contain a large number of repeat sequences and other regions unsuitable for amplification by PCR. We have developed a novel k-mer based masking method that uses a statistical model to detect and mask failure-prone regions on the DNA template prior to primer design. We implemented the software as a standalone software primer3_masker and integrated it into the primer design program Primer3. The standalone version of primer3_masker is implemented in C. The source code is freely available at https://github.com/bioinfo-ut/primer3_masker/ (standalone version for Linux and macOS) and at https://github.com/primer3-org/primer3/ (integrated version). Primer3 web application that allows masking sequences of 196 animal and plant genomes is available at http://primer3.ut.ee/. maido.remm@ut.ee. Supplementary data are available at Bioinformatics online.
Manoiloff, Laura; Segui, Juan; Hallé, Pierre
2016-01-01
In this research, we combine a cross-form word-picture visual masked priming procedure with an internal phoneme monitoring task to examine repetition priming effects. In this paradigm, participants have to respond to pictures whose names begin with a prespecified target phoneme. This task unambiguously requires retrieving the word-form of the target picture's name and implicitly orients participants' attention towards a phonological level of representation. The experiments were conducted within Spanish, whose highly transparent orthography presumably promotes fast and automatic phonological recoding of subliminal, masked visual word primes. Experiments 1 and 2 show that repetition primes speed up internal phoneme monitoring in the target, compared to primes beginning with a different phoneme from the target, or sharing only their first phoneme with the target. This suggests that repetition primes preactivate the phonological code of the entire target picture's name, hereby speeding up internal monitoring, which is necessarily based on such a code. To further qualify the nature of the phonological code underlying internal phoneme monitoring, a concurrent articulation task was used in Experiment 3. This task did not affect the repetition priming effect. We propose that internal phoneme monitoring is based on an abstract phonological code, prior to its translation into articulation.
Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L
2012-09-04
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.
NASA Astrophysics Data System (ADS)
Vijayakumar, A.; Rosen, Joseph
2017-05-01
Coded aperture correlation holography (COACH) is a recently developed incoherent digital holographic technique. In COACH, two holograms are recorded: the object hologram for the object under study and another hologram for a point object called PSF hologram. The holograms are recorded by interfering two beams, both diffracted from the same object point, but only one of them passes through a random-like coded phase mask (CPM). The same CPM is used for recording the object as well as the PSF holograms. The image is reconstructed by correlating the object hologram with a processed version of the PSF hologram. The COACH holographic technique exhibits the same transverse and axial resolution of the regular imaging, but with the unique capability of storing 3D information. The basic COACH configuration consists of a single spatial light modulator (SLM) used for displaying the CPM. In this study, the basic COACH configuration has been advanced by employing two spatial light modulators (SLMs) in the setup. The refractive lens used in the basic COACH setup for collecting and collimating the light diffracted by the object is replaced by an SLM on which an equivalent diffractive lens is displayed. Unlike a refractive lens, the diffractive lens displayed on the first SLM focuses light with different wavelengths to different axial planes, which are separated by distances larger than the axial correlation lengths of the CPM for any visible wavelength. This characteristic extends the boundaries of COACH from three-dimensional to four-dimensional imaging with the wavelength as its fourth dimension.
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
An improved land mask for the SSM/I grid
NASA Technical Reports Server (NTRS)
Martino, Michael G.; Cavalieri, Donald J.; Gloersen, Per; Zwally, H. Jay; Acker, James G. (Editor)
1995-01-01
This paper discusses the development of a new land/ocean/coastline mask for use with Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) data, and other types of data which are mapped to the polar stereographic SSM/I grid. Pre-existing land masks were found to disagree, to lack certain land features, and to disagree with land boundaries that are visible in high resolution sensor imagery, such as imagery from the Synthetic Aperture Radar (SAR) on the Earth Resources Satellite (ERS-1). The Digital Chart of the World (DCW) database was initially selected as a source of shoreline data for this effort. Techniques for developing a land mask from these shoreline data are discussed. The resulting land mask, although not perfect, is seen to exhibit significant improvement over previous land mask products.
2009-04-16
the transmitted waveform, then spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response represented...400 Frequence (MHz) Figure 5.4: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response...600 Frequence (MHz) Figure 5.7: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response
Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing
NASA Astrophysics Data System (ADS)
Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis
1999-07-01
While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.
Cloud detection algorithm comparison and validation for operational Landsat data products
Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady
2017-01-01
Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.
Future reticle demand and next-generation lithography technologies
NASA Astrophysics Data System (ADS)
Behringer, Uwe F. W.; Ehrlich, Christian; Fortange, Olaf
1999-04-01
Mask technology has often been considered an enabling for semiconductor fabrication. But today photomasks have evolved to a bottle neck in the every increasing integration process of semiconductor circuits. Regarding to the 1997 SIA roadmap there are very stringent requirements for mask making. Even with the momentary weak Asian market the worldwide demand for reticles will continue to grow. The anticipation of larger reticles has been discussed over years. What ever the reason for the need of larger reticles, the move to the 230 mm X 230 mm reticle size will provide size will provide unique challenges to both the mask equipment manufacturers and mask fabricator. Next Generation Lithography together with their mask techniques are in development and try to come into the market.
High-emulation mask recognition with high-resolution hyperspectral video capture system
NASA Astrophysics Data System (ADS)
Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin
2014-11-01
We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.
Automatic classification of blank substrate defects
NASA Astrophysics Data System (ADS)
Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati
2014-10-01
Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.
Michalek, P; Donaldson, W; Graham, C; Hinds, J D
2010-01-01
Insertion of a supraglottic airway and tracheal intubation through it may be indicated in resuscitation scenarios where conventional laryngoscopy fails. Various supraglottic devices have been used as conduits for tracheal intubation, including the intubating laryngeal mask airway (ILMA), the Ctrach laryngeal mask and the I-gel supraglottic airway. A prospective study with 25 participants evaluated the success rate of blind intubation (using a gum-elastic bougie, an Aintree intubating catheter (AIC) and designated tracheal tube) and fibrescope-guided tracheal intubation (through the intubating laryngeal mask airway and the I-gel supraglottic airway) on three different airway manikins. Twenty-five anaesthetists performed three intubations with each method on each of three manikins. The success rate of the fibrescope-guided technique was significantly higher than blind attempts (P<0.0001) with both devices. For fibreoptic techniques, there was no difference found between the ILMA and I-gel (P>0.05). All blind techniques were significantly more successful in the ILMA group compared to the I-gel (P<0.0001 for bougie, Aintree catheter and tracheal tube, respectively). The results of this study show that, in manikins, fibreoptic intubation through both ILMA and I-gel is a highly successful technique. Blind intubation through the I-gel showed a low success rate and should not be attempted. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Take a byte out of MEEF: VAMPIRE: Vehicle for Advanced Mask Pattern Inspection Readiness Evaluations
NASA Astrophysics Data System (ADS)
Badger, Karen D.; Rankin, Jed; Turley, Christina; Seki, Kazunori; Dechene, Dan J.; Abdelghany, Hesham
2016-09-01
MEEF, or Mask Error Enhancement Factor, is simply defined as the ratio of the change in printed wafer feature width to the change in mask feature width scaled to wafer level. It is important in chip manufacturing that leads to the amplification of mask errors, creating challenges with both achieving dimensional control tolerances and ensuring defect free masks, as measured by on-wafer image quality. As lithographic imaging continues to be stressed, using lower and lower k1 factor resolution enhancement techniques, the high MEEF areas present on advanced optical masks creates an environment where the need for increased mask defect sensitivity in high-MEEF areas becomes more and more critical. There are multiple approaches to mask inspection that may or may not provide enough sensitivity to detect all wafer-printable defects; the challenge in the application of these techniques is simultaneously maintaining an acceptable level of mask inspectability. The higher the MEEF, the harder the challenge will be to achieve and appropriate level of sensitivity while maintaining inspectability…and to do so on the geometries that matter. The predominant photomask fabrication inspection approach in use today compares the features on the reticle directly with the design database using high-NA optics. This approach has the ability to detect small defects, however, when inspecting aggressive OPC, it can lead to the over-detection of inconsequential, or nuisance defects. To minimize these nuisance detections, changing the sensitivity of the inspection can improve the inspectability of a mask inspected in high-NA mode, however, it leads to the inability to detect subtle, yet wafer-printable defects in High-MEEF geometry, due to the fact that this `desense' must be applied globally. There are also `lithography-emulating' approaches to inspection that use various means to provide high defect sensitivity and the ability to tolerate inconsequential, non-printing defects by using scanner-like conditions to determine which defects are wafer printable. This inspection technique is commonly referred to as being `lithography plane' or `litho plane,' since it's assessing the mask quality based on how the mask appears to the imaging optics during use, as proposed to traditional `reticle plane' inspection which is comparing the mask only with its target design. Regardless of how the defects are detected, the real question is when should they be detected? For larger technology nodes, defects are considered `statistical risks'…i.e., first they have to occur, and then they have to fall in high-MEEF areas in order to be of concern, and be below the detection limits of traditional reticle-plane inspection. In short, the `perfect storm' has to happen in order to miss printable defects using well-optimized traditional inspection approaches. The introduction of lithographic inspection techniques has revealed this statistical game is a much higher risk than originally estimated, in that very subtle waferprintable CD errors typically fall into the desense band for traditional reticle plane inspection. Because printability is largely influenced by MEEF, designs with high-MEEF values are at greater risk of traditional inspection missing printable CD errors. The question is… how high is high… and at what MEEF is optical inspection at the reticle plane sufficient? This paper will provide evaluation results for both reticle-plane and litho-plane inspections as they pertain to varying degrees of MEEF. A newly designed high-MEEF programmed defect test mask, named VAMPIRE, will be introduced. This test mask is based on 7 nm node technology and contains intentionally varying degrees of MEEF as well as a variety of programmed defects in high-MEEF environments…all of which have been verified for defect lithographic significance on a Zeiss AIMS system.
Dry etched SiO2 Mask for HgCdTe Etching Process
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.
OPC care-area feedforwarding to MPC
NASA Astrophysics Data System (ADS)
Dillon, Brian; Peng, Yi-Hsing; Hamaji, Masakazu; Tsunoda, Dai; Muramatsu, Tomoyuki; Ohara, Shuichiro; Zou, Yi; Arnoux, Vincent; Baron, Stanislas; Zhang, Xiaolong
2016-10-01
Demand for mask process correction (MPC) is growing for leading-edge process nodes. MPC was originally intended to correct CD linearity for narrow assist features difficult to resolve on a photomask without any correction, but it has been extended to main features as process nodes have been shrinking. As past papers have observed, MPC shows improvements in photomask fidelity. Using advanced shape and dose corrections could give more improvements, especially at line-ends and corners. However, there is a dilemma on using such advanced corrections on full mask level because it increases data volume and run time. In addition, write time on variable shaped beam (VSB) writers also increases as the number of shots increases. Optical proximity correction (OPC) care-area defines circuit design locations that require high mask fidelity under mask writing process variations such as energy fluctuation. It is useful for MPC to switch its correction strategy and permit the use of advanced mask correction techniques in those local care-areas where they provide maximum wafer benefits. The use of mask correction techniques tailored to localized post-OPC design can result in similar desired level of data volume, run time, and write time. ASML Brion and NCS have jointly developed a method to feedforward the care-area information from Tachyon LMC to NDE-MPC to provide real benefit for improving both mask writing and wafer printing quality. This paper explains the detail of OPC care-area feedforwarding to MPC between ASML Brion and NCS, and shows the results. In addition, improvements on mask and wafer simulations are also shown. The results indicate that the worst process variation (PV) bands are reduced up to 37% for a 10nm tech node metal case.
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Pham, Dzung L.; Butman, John
2016-03-01
Minimum intensity projection is a technique commonly used to display magnetic resonance susceptibility weighted images, allowing the observer to better visualize hemorrhages and vasculature. The technique displays the minimum intensity in a given projection within a thick slab, allowing different connectivity patterns to be easily revealed. Unfortunately, the low signal intensity of the skull within the thick slab can mask superficial tissues near the skull base and other regions. Because superficial microhemorrhages are a common feature of traumatic brain injury, this effect limits the ability to proper diagnose and follow up patients. In order to overcome this limitation, we developed a method to allow minimum intensity projection to properly display superficial tissues adjacent to the skull. Our approach is based on two brain masks, the largest of which includes extracerebral voxels. The analysis of the rind within both masks containing the actual brain boundary allows reclassification of those voxels initially missed in the smaller mask. Morphological operations are applied to guarantee accuracy and topological correctness, and the mean intensity within the mask is assigned to all outer voxels. This prevents bone from dominating superficial regions in the projection, enabling superior visualization of cortical hemorrhages and vessels.
Germanium Lift-Off Masks for Thin Metal Film Patterning
NASA Technical Reports Server (NTRS)
Brown, Ari
2012-01-01
A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.
Inspection of lithographic mask blanks for defects
Sommargren, Gary E.
2001-01-01
A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.
Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique
NASA Astrophysics Data System (ADS)
Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.
2015-12-01
Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.
Self-masking: Listening during vocalization. Normal hearing.
Borg, Erik; Bergkvist, Christina; Gustafsson, Dan
2009-06-01
What underlying mechanisms are involved in the ability to talk and listen simultaneously and what role does self-masking play under conditions of hearing impairment? The purpose of the present series of studies is to describe a technique for assessment of masked thresholds during vocalization, to describe normative data for males and females, and to focus on hearing impairment. The masking effect of vocalized [a:] on narrow-band noise pulses (250-8000 Hz) was studied using the maximum vocalization method. An amplitude-modulated series of sound pulses, which sounded like a steam engine, was masked until the criterion of halving the perceived pulse rate was reached. For masking of continuous reading, a just-follow-conversation criterion was applied. Intra-session test-retest reproducibility and inter-session variability were calculated. The results showed that female voices were more efficient in masking high frequency noise bursts than male voices and more efficient in masking both a male and a female test reading. The male had to vocalize 4 dBA louder than the female to produce the same masking effect on the test reading. It is concluded that the method is relatively simple to apply and has small intra-session and fair inter-session variability. Interesting gender differences were observed.
Reusable High Aspect Ratio 3-D Nickel Shadow Mask
Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.
2017-01-01
Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835
A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.
Rigorous diffraction analysis using geometrical theory of diffraction for future mask technology
NASA Astrophysics Data System (ADS)
Chua, Gek S.; Tay, Cho J.; Quan, Chenggen; Lin, Qunying
2004-05-01
Advanced lithographic techniques such as phase shift masks (PSM) and optical proximity correction (OPC) result in a more complex mask design and technology. In contrast to the binary masks, which have only transparent and nontransparent regions, phase shift masks also take into consideration transparent features with a different optical thickness and a modified phase of the transmitted light. PSM are well-known to show prominent diffraction effects, which cannot be described by the assumption of an infinitely thin mask (Kirchhoff approach) that is used in many commercial photolithography simulators. A correct prediction of sidelobe printability, process windows and linearity of OPC masks require the application of rigorous diffraction theory. The problem of aerial image intensity imbalance through focus with alternating Phase Shift Masks (altPSMs) is performed and compared between a time-domain finite-difference (TDFD) algorithm (TEMPEST) and Geometrical theory of diffraction (GTD). Using GTD, with the solution to the canonical problems, we obtained a relationship between the edge on the mask and the disturbance in image space. The main interest is to develop useful formulations that can be readily applied to solve rigorous diffraction for future mask technology. Analysis of rigorous diffraction effects for altPSMs using GTD approach will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, A; Mirkarimi, P; Stearns, D G
2002-05-22
EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Small defects in this thin film coating can significantly alter the reflected field and introduce defects in the printed image. Ideally one would want to produce defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to effectively repair multilayer defects, and to this effect they present two complementary defect repair strategies for use on multilayer-coated EUVL mask blanks. A defect is any area on the mask which causes unwanted variationsmore » in EUV dose in the aerial image obtained in a printing tool, and defect repair is correspondingly defined as any strategy that renders a defect unprintable during exposure. The term defect mitigation can be adopted to describe any strategy which renders a critical defect non-critical when printed, and in this regard a non-critical defect is one that does not adversely affect device function. Defects in the patterned absorber layer consist of regions where metal, typically chrome, is unintentionally added or removed from the pattern leading to errors in the reflected field. There currently exists a mature technology based on ion beam milling and ion beam assisted deposition for repairing defects in the absorber layer of transmission lithography masks, and it is reasonable to expect that this technology will be extended to the repair of absorber defects in EUVL masks. However, techniques designed for the repair of absorber layers can not be directly applied to the repair of defects in the mask blank, and in particular the multilayer film. In this paper they present for the first time a new technique for the repair of amplitude defects as well as recent results on the repair of phase defects.« less
[Difficult fiberoptic tracheal intubation in 1 month-old infant with Treacher Collins Syndrome].
Fuentes, Ricardo; De la Cuadra, Juan Carlos; Lacassie, Hector; González, Alejandro
Neonates and small infants with craniofacial malformation may be very difficult or impossible to mask ventilate or intubate. We would like to report the fiberoptic intubation of a small infant with Treacher Collins Syndrome using the technique described by Ellis et al. An one month-old infant with Treacher Collins Syndrome was scheduled for mandibular surgery under general endotracheal anesthesia. Direct laryngoscopy for oral intubation failed to reveal the glottis. Fiberoptic intubation using nasal approach and using oral approach through a 1.5 size laryngeal mask airway were performed; however, both approach failed because the fiberscope loaded with a one 3.5mm ID uncuffed tube was stuck inside the nasal cavity or inside the laryngeal mask airway respectively. Therefore, the laryngeal mask airway was keep in place and the fiberoptic intubation technique described by Ellis et al. was planned: the tracheal tube with the 15mm adapter removed was loaded proximally over the fiberscope; the fiberscope was advanced under video-screen visualization into the trachea; the laryngeal mask airway was removed, leaving the fiberscope in place; the tracheal tube was passed completely through the laryngeal mask airway and advanced down over the fiberscope into the trachea; the fiberscope was removed and the 15mm adapter was reattached to the tracheal tube. The fiberoptic intubation method through a laryngeal mask airway described by Ellis et al. can be successfully used in small infants with Treacher Collins Syndrome. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Attenuated phase-shift mask (PSM) blanks for flat panel display
NASA Astrophysics Data System (ADS)
Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru
2015-10-01
The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.
Optical image encryption based on real-valued coding and subtracting with the help of QR code
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng
2015-08-01
A novel optical image encryption based on real-valued coding and subtracting is proposed with the help of quick response (QR) code. In the encryption process, the original image to be encoded is firstly transformed into the corresponding QR code, and then the corresponding QR code is encoded into two phase-only masks (POMs) by using basic vector operations. Finally, the absolute values of the real or imaginary parts of the two POMs are chosen as the ciphertexts. In decryption process, the QR code can be approximately restored by recording the intensity of the subtraction between the ciphertexts, and hence the original image can be retrieved without any quality loss by scanning the restored QR code with a smartphone. Simulation results and actual smartphone collected results show that the method is feasible and has strong tolerance to noise, phase difference and ratio between intensities of the two decryption light beams.
Image masking using polygon fills and morphological transformations
NASA Technical Reports Server (NTRS)
Simpson, James J.
1992-01-01
Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.
Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters.
Ferrari, José A; Flores, Jorge L; Perciante, César D; Frins, Erna
2009-07-01
A new method for real-time edge enhancement and image equalization using photochromic filters is presented. The reversible self-adaptive capacity of photochromic materials is used for creating an unsharp mask of the original image. This unsharp mask produces a kind of self filtering of the original image. Unlike the usual Fourier (coherent) image processing, the technique we propose can also be used with incoherent illumination. Validation experiments with Bacteriorhodopsin and photochromic glass are presented.
Masked Inhibitory Priming in English: Evidence for Lexical Inhibition
ERIC Educational Resources Information Center
Davis, Colin J.; Lupker, Stephen J.
2006-01-01
Predictions derived from the interactive activation (IA) model were tested in 3 experiments using the masked priming technique in the lexical decision task. Experiment 1 showed a strong effect of prime lexicality: Classifications of target words were facilitated by orthographically related nonword primes (relative to unrelated nonword primes) but…
Literature and Creative Expression.
ERIC Educational Resources Information Center
Carlson, Ruth Kearney
Films, records, and literature and technique books helpful in encouraging creativity and composition writing are listed and described under the following headings: Books on forms of poetry (4 items); Creative dramatics and puppetry (9); Masks and mask making (9); Oriental forms of poetry--Haiku (9), Tanka (2), and other Oriental verse patterns…
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Davis, D. E.
1982-09-01
This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.
Prewarping techniques in imaging: applications in nanotechnology and biotechnology
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Milanfar, Peyman
2005-03-01
In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.
Microscale Patterning of Thermoplastic Polymer Surfaces by Selective Solvent Swelling
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L.
2012-01-01
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of microns, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539
Lee, Shao-Hsuan; Hsiao, Tzu-Yu; Lee, Guo-She
2015-06-01
Sustained vocalizations of vowels [a], [i], and syllable [mə] were collected in twenty normal-hearing individuals. On vocalizations, five conditions of different audio-vocal feedback were introduced separately to the speakers including no masking, wearing supra-aural headphones only, speech-noise masking, high-pass noise masking, and broad-band-noise masking. Power spectral analysis of vocal fundamental frequency (F0) was used to evaluate the modulations of F0 and linear-predictive-coding was used to acquire first two formants. The results showed that while the formant frequencies were not significantly shifted, low-frequency modulations (<3 Hz) of F0 significantly increased with reduced audio-vocal feedback across speech sounds and were significantly correlated with auditory awareness of speakers' own voices. For sustained speech production, the motor speech controls on F0 may depend on a feedback mechanism while articulation should rely more on a feedforward mechanism. Power spectral analysis of F0 might be applied to evaluate audio-vocal control for various hearing and neurological disorders in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
The retention and disruption of color information in human short-term visual memory.
Nemes, Vanda A; Parry, Neil R A; Whitaker, David; McKeefry, Declan J
2012-01-27
Previous studies have demonstrated that the retention of information in short-term visual perceptual memory can be disrupted by the presentation of masking stimuli during interstimulus intervals (ISIs) in delayed discrimination tasks (S. Magnussen & W. W. Greenlee, 1999). We have exploited this effect in order to determine to what extent short-term perceptual memory is selective for stimulus color. We employed a delayed hue discrimination paradigm to measure the fidelity with which color information was retained in short-term memory. The task required 5 color normal observers to discriminate between spatially non-overlapping colored reference and test stimuli that were temporally separated by an ISI of 5 s. The points of subjective equality (PSEs) on the resultant psychometric matching functions provided an index of performance. Measurements were made in the presence and absence of mask stimuli presented during the ISI, which varied in hue around the equiluminant plane in DKL color space. For all reference stimuli, we found a consistent mask-induced, hue-dependent shift in PSE compared to the "no mask" conditions. These shifts were found to be tuned in color space, only occurring for a range of mask hues that fell within bandwidths of 29-37 deg. Outside this range, masking stimuli had little or no effect on measured PSEs. The results demonstrate that memory masking for color exhibits selectivity similar to that which has already been demonstrated for other visual attributes. The relatively narrow tuning of these interference effects suggests that short-term perceptual memory for color is based on higher order, non-linear color coding. © ARVO
Optimization of printing techniques for electrochemical biosensors
NASA Astrophysics Data System (ADS)
Zainuddin, Ahmad Anwar; Mansor, Ahmad Fairuzabadi Mohd; Rahim, Rosminazuin Ab; Nordin, Anis Nurashikin
2017-03-01
Electrochemical biosensors show great promise for point-of-care applications due to their low cost, portability and compatibility with microfluidics. The miniature size of these sensors provides advantages in terms of sensitivity, specificity and allows them to be mass produced in arrays. The most reliable fabrication technique for these sensors is lithography followed by metal deposition using sputtering or chemical vapor deposition techniques. This technique which is usually done in the cleanroom requires expensive masking followed by deposition. Recently, cheaper printing techniques such as screen-printing and ink-jet printing have become popular due to its low cost, ease of fabrication and mask-less method. In this paper, two different printing techniques namely inkjet and screen printing are demonstrated for an electrochemical biosensor. For ink-jet printing technique, optimization of key printing parameters, such as pulse voltages, drop spacing and waveform setting, in-house temperature and cure annealing for obtaining the high quality droplets, are discussed. These factors are compared with screen-printing parameters such as mesh size, emulsion thickness, minimum spacing of lines and curing times. The reliability and reproducibility of the sensors are evaluated using scotch tape test, resistivity and profile-meter measurements. It was found that inkjet printing is superior because it is mask-less, has minimum resolution of 100 µm compared to 200 µm for screen printing and higher reproducibility rate of 90% compared to 78% for screen printing.
A procedure and program to calculate shuttle mask advantage
NASA Astrophysics Data System (ADS)
Balasinski, A.; Cetin, J.; Kahng, A.; Xu, X.
2006-10-01
A well-known recipe for reducing mask cost component in product development is to place non-redundant elements of layout databases related to multiple products on one reticle plate [1,2]. Such reticles are known as multi-product, multi-layer, or, in general, multi-IP masks. The composition of the mask set should minimize not only the layout placement cost, but also the cost of the manufacturing process, design flow setup, and product design and introduction to market. An important factor is the quality check which should be expeditious and enable thorough visual verification to avoid costly modifications once the data is transferred to the mask shop. In this work, in order to enable the layer placement and quality check procedure, we proposed an algorithm where mask layers are first lined up according to the price and field tone [3]. Then, depending on the product die size, expected fab throughput, and scribeline requirements, the subsequent product layers are placed on the masks with different grades. The actual reduction of this concept to practice allowed us to understand the tradeoffs between the automation of layer placement and setup related constraints. For example, the limited options of the numbers of layer per plate dictated by the die size and other design feedback, made us consider layer pairing based not only on the final price of the mask set, but also on the cost of mask design and fab-friendliness. We showed that it may be advantageous to introduce manual layer pairing to ensure that, e.g., all interconnect layers would be placed on the same plate, allowing for easy and simultaneous design fixes. Another enhancement was to allow some flexibility in mixing and matching of the layers such that non-critical ones requiring low mask grade would be placed in a less restrictive way, to reduce the count of orphan layers. In summary, we created a program to automatically propose and visualize shuttle mask architecture for design verification, with enhancements to due to the actual application of the code.
REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission
NASA Astrophysics Data System (ADS)
Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K; Chodas, Mark; Smith, Matthew W; Bautz, Mark W.; Kissel, Steven E; Villasenor, Jesus Noel; Oprescu, Antonia
2014-06-01
The REgolith X-Ray Imaging Spectrometer (REXIS) is a student-led instrument being designed, built, and operated as a collaborative effort involving MIT and Harvard. It is a part of NASA's OSIRIS-REx mission, which is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of the primitive carbonaceous chondrite-like asteroid 101955 Bennu in 2019. REXIS will determine spatial variations in elemental composition of Bennu's surface through solar-induced X-ray fluorescence. REXIS consists of four X-ray CCDs in the detector plane and an X-ray mask. It is the first coded-aperture X-ray telescope in a planetary mission, which combines the benefit of high X-ray throughput of wide-field collimation with imaging capability of a coded-mask, enabling detection of elemental surface distributions at approximately 50-200 m scales. We present an overview of the REXIS instrument and the expected performance.
Building A New Kind of Graded-Z Shield for Swift's Burst Alert Telescope
NASA Technical Reports Server (NTRS)
Robinson, David W.
2002-01-01
The Burst Alert Telescope (BAT) on Swift has a graded-Z Shield that closes out the volume between the coded aperture mask and the Cadmium-Zinc-Telluride (CZT) detector array. The purpose of the 37 kilogram shield is to attenuate gamma rays that have not penetrated the coded aperture mask of the BAT instrument and are therefore a major source of noise on the detector array. Unlike previous shields made from plates and panels, this shield consists of multiple layers of thin metal foils (lead, tantalum, tin, and copper) that are stitched together much like standard multi-layer insulation blankets. The shield sections are fastened around BAT, forming a curtain around the instrument aperture. Strength tests were performed to validate and improve the design, and the shield will be vibration tested along with BAT in late 2002. Practical aspects such as the layup design, methods of manufacture, and testing of this new kind of graded-Z Shield are presented.
Ka-Band ARM Zenith Radar Corrections Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen; Toto, Tami; Giangrande, Scott
The KAZRCOR Value -added Product (VAP) performs several corrections to the ingested KAZR moments and also creates a significant detection mask for each radar mode. The VAP computes gaseous attenuation as a function of time and radial distance from the radar antenna, based on ambient meteorological observations, and corrects observed reflectivities for that effect. KAZRCOR also dealiases mean Doppler velocities to correct velocities whose magnitudes exceed the radar’s Nyquist velocity. Input KAZR data fields are passed through into the KAZRCOR output files, in their native time and range coordinates. Complementary corrected reflectivity and velocity fields are provided, along with amore » mask of significant detections and a number of data quality flags. This report covers the KAZRCOR VAP as applied to the original KAZR radars and the upgraded KAZR2 radars. Currently there are two separate code bases for the different radar versions, but once KAZR and KAZR2 data formats are harmonized, only a single code base will be required.« less
Guo, Xiaohu; Dong, Liquan; Zhao, Yuejin; Jia, Wei; Kong, Lingqin; Wu, Yijian; Li, Bing
2015-04-01
Wavefront coding (WFC) technology is adopted in the space optical system to resolve the problem of defocus caused by temperature difference or vibration of satellite motion. According to the theory of WFC, we calculate and optimize the phase mask parameter of the cubic phase mask plate, which is used in an on-axis three-mirror Cassegrain (TMC) telescope system. The simulation analysis and the experimental results indicate that the defocused modulation transfer function curves and the corresponding blurred images have a perfect consistency in the range of 10 times the depth of focus (DOF) of the original TMC system. After digital image processing by a Wiener filter, the spatial resolution of the restored images is up to 57.14 line pairs/mm. The results demonstrate that the WFC technology in the TMC system has superior performance in extending the DOF and less sensitivity to defocus, which has great value in resolving the problem of defocus in the space optical system.
Nanoimprint wafer and mask tool progress and status for high volume semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Matsuoka, Yoichi; Seki, Junichi; Nakayama, Takahiro; Nakagawa, Kazuki; Azuma, Hisanobu; Yamamoto, Kiyohito; Sato, Chiaki; Sakai, Fumio; Takabayashi, Yukio; Aghili, Ali; Mizuno, Makoto; Choi, Jin; Jones, Chris E.
2016-10-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are many criteria that determine whether a particular technology is ready for wafer manufacturing. Defectivity and mask life play a significant role relative to meeting the cost of ownership (CoO) requirements in the production of semiconductor devices. Hard particles on a wafer or mask create the possibility of inducing a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, the lifetime of both the master mask and the replica mask can be extended. In this work, we report results that demonstrate a path towards achieving mask lifetimes of better than 1000 wafers. On the mask side, a new replication tool, the FPA-1100 NR2 is introduced. Mask replication is required for nanoimprint lithography (NIL), and criteria that are crucial to the success of a replication platform include both particle control, resolution and image placement accuracy. In this paper we discuss the progress made in both feature resolution and in meeting the image placement specification for replica masks.
Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya
2017-05-01
The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.
Reflective Occultation Mask for Evaluation of Occulter Designs for Planet Finding
NASA Technical Reports Server (NTRS)
Hagopian, John; Lyon, Richard; Shiri, Shahram; Roman, Patrick
2011-01-01
Advanced formation flying occulter designs utilize a large occulter mask flying in formation with an imaging telescope to block and null starlight to allow imaging of faint planets in exosolar systems. A paper describes the utilization of subscale reflective occultation masks to evaluate formation flying occulter designs. The use of a reflective mask allows mounting of the occulter by conventional means and simplifies the test configuration. The innovation alters the test set-up to allow mounting of the mask using standard techniques to eliminate the problems associated with a standard configuration. The modified configuration uses a reflective set-up whereby the star simulator reflects off of a reflective occulting mask and into an evaluation telescope. Since the mask is sized to capture all rays required for the imaging test, it can be mounted directly to a supporting fixture without interfering with the beam. Functionally, the reflective occultation mask reflects light from the star simulator instead of transmitting it, with a highly absorptive carbon nanotube layer simulating the occulter blocking mask. A subscale telescope images the star source and companion dim source that represents a planet. The primary advantage of this is that the occulter can be mounted conventionally instead of using diffractive wires or magnetic levitation.
Trends in pharmaceutical taste masking technologies: a patent review.
Ayenew, Zelalem; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K
2009-01-01
According to the year 2003 survey of pediatricians by the American Association of Pediatrics, unpleasant taste was the biggest barrier for completing treatment in pediatrics. The field of taste masking of active pharmaceutical ingredients (API) has been continuously evolving with varied technologies and new excipients. The article reviews the trends in taste masking technologies by studying the current state of the art patent database for the span of year 1997 to 2007. The worldwide database of European patent office (http://ep.espacenet.com) was employed to collect the patents and patent applications. It also discusses the possible reasons for the change of preferences in the taste masking technologies with time. The prime factors critical to the selection of an optimal taste masking technique such as the extent of drug bitterness, solubility, particle characteristics, dosage form and dose are briefly discussed.
New mask technology challenges
NASA Astrophysics Data System (ADS)
Kimmel, Kurt R.
2001-09-01
Mask technology development has accelerated dramatically in recent years from the glacial pace of the last three decades to the rapid and sometimes simultaneous introductions of new wavelengths and mask-based resolution enhancement techniques. The nature of the semiconductor business has also become one driven by time-to-market as an overwhelming factor in capturing market share and profit. These are among the factors that have created enormous stress on the mask industry to produce masks with enhanced capabilities, such as phase-shifting attenuators, sub-resolution assist bars, and optical proximity correction (OPC) features, while maintaining or reducing cost and cycle time. The mask can no longer be considered a commodity item that is purchased form the lowest-cost supplier. Instead, it must now be promoted as an integral part of the technical and business case for a total lithographic solution. Improving partnership between designer, mask-maker, and wafer lithographer will be the harbinger of success in finding a profitable balance of capability, cost, and cycle time. Likewise for equipment infrastructure development, stronger partnership on the international level is necessary to control development cost and mitigate schedule and technical risks.
NASA Astrophysics Data System (ADS)
Filies, Olaf; de Ridder, Luc; Rodriguez, Ben; Kujiken, Aart
2002-03-01
Semiconductor manufacturing has become a global business, in which companies of different size unite in virtual enterprises to meet new opportunities. Therefore Mask manufacturing is a key business, but mask ordering is a complex process and is always critical regarding design to market time, even though mask complexity and customer base are increasing using a wide variety of different mask order forms which are frequently faulty and very seldom complete. This is effectively blocking agile manufacturing and can tie wafer fabs to a single mask The goal of the project is elimination of the order verification through paperless, electronically linked information sharing/exchange between chip design, mask production and production stages, which will allow automation of the mask preparation. To cover these new techniques and their specifications as well as the common ones with automated tools a special generic Meta-model will be generated, based on the current standards for mask specifications, including the requirements from the involved partners (Alcatel Microelectronics, Altis, Compugraphics, Infineon, Nimble, Sigma-C), the project works out a pre-normative standard. The paper presents the current status of work. This work is partly funded by the Commission of the European Union under the Fifth Framework project IST-1999-10332 AutoMOPS.
Fast Computation of the Two-Point Correlation Function in the Age of Big Data
NASA Astrophysics Data System (ADS)
Pellegrino, Andrew; Timlin, John
2018-01-01
We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.
Lin, Zhicheng; He, Sheng
2012-10-25
Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.
NASA Astrophysics Data System (ADS)
Awrangjeb, M.; Siddiqui, F. U.
2017-11-01
In complex urban and residential areas, there are buildings which are not only connected with and/or close to one another but also partially occluded by their surrounding vegetation. Moreover, there may be buildings whose roofs are made of transparent materials. In transparent buildings, there are point returns from both the ground (or materials inside the buildings) and the rooftop. These issues confuse the previously proposed building masks which are generated from either ground points or non-ground points. The normalised digital surface model (nDSM) is generated from the non-ground points and usually it is hard to find individual buildings and trees using the nDSM. In contrast, the primary building mask is produced using the ground points, thereby it misses the transparent rooftops. This paper proposes a new building mask based on the non-ground points. The dominant directions of non-ground lines extracted from the multispectral imagery are estimated. A dummy grid with the target mask resolution is rotated at each dominant direction to obtain the corresponding height values from the non-ground points. Three sub-masks are then generated from the height grid by estimating the gradient function. Two of these sub-masks capture planar surfaces whose height remain constant in along and across the dominant direction, respectively. The third sub-mask contains only the flat surfaces where the height (ideally) remains constant in all directions. All the sub-masks generated in all estimated dominant directions are combined to produce the candidate building mask. Although the application of the gradient function helps in removal of most of the vegetation, the final building mask is obtained through removal of planar vegetation, if any, and tiny isolated false candidates. Experimental results on three Australian data sets show that the proposed method can successfully remove vegetation, thereby separate buildings from occluding vegetation and detect buildings with transparent roof materials. While compared to existing building detection techniques, the proposed technique offers higher objectbased completeness, correctness and quality, specially in complex scenes with aforementioned issues. It is not only capable of detecting transparent buildings, but also small garden sheds which are sometimes as small as 5 m2 in area.
Preis, Maren; Grother, Leon; Axe, Philip; Breitkreutz, Jörg
2015-08-01
The use of solid oral dosage forms is typically favored with regard to stability and ease of administration. The aim of this study was to investigate whether cyclodextrins (CD) or ion exchange resins (IER) could be used to taste-mask cetirizine HCl when formulated in a freeze-dried oral formulation. The oral lyophilisates were produced using the Zydis(®) technology that offer the opportunity to produce the dosage form directly in the aluminum laminate blister packs. This study confirmed that a pre-formed resinate of cetirizine HCl and various cyclodextrins can be successfully incorporated into the Zydis(®) oral lyophilisate. A chemically stable product with acceptable release profile was obtained in the case of cyclodextrin. This study has also demonstrated that the Insent(®) taste sensing system is a useful technique for predicting the taste-masking potential of Zydis(®) formulations. The electronic taste sensing system (e-tongue) data can be used to provide guidance on the selection of taste-masked formulations. Principal component analysis (PCA) of sensor data by plotting the PCA scores revealed the effects of used taste-masking techniques on the e-tongue sensors, indicating the successful taste improvement. The PCA plot of the taste sensor data revealed larger distances between the non-taste-masked sample and the CD- and IER-loaded samples, and the shift toward the drug-free formulations and excipient signals indicates a modification of the product taste. The human taste trial confirms the acceptability of the selected promising formulations. The taste evaluation results showed that an effectively taste-masked formulation has been achieved using β-cyclodextrin and cherry/sucralose flavor system with over 80% of volunteers finding the tablet to be acceptable. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, W; Zeidan, O
2014-06-01
Purpose: We present a quantitative methodology utilizing an optical tracking system for monitoring head inter-fraction movements within brain masks to assess the effectiveness of two intracranial immobilization techniques. Methods and Materials: A 3-point-tracking method was developed to measure the mask location for a treatment field at each fraction. Measured displacement of mask location to its location at first fraction is equivalent to the head movement within the mask. Head movements for each of treatment fields were measured over about 10 fractions at each patient for seven patients; five treated in supine and two treated in prone. The Q-fix Base-of-Skull headmore » frame was used in supine while the CIVCO uni-frame baseplate was used in prone. Displacements of recoded couch position of each field post imaging at each fraction were extracted for those seven patients. Standard deviation (S.D.) of head movements and couch displacements was scored for statistical analysis. Results: The accuracy of 3PtTrack method was within 1.0 mm by phantom measurements. Patterns of head movement and couch displacement were similar for patients treated in either supine or prone. In superior-inferior direction, mean value of scored standard deviations over seven patients were 1.6 mm and 3.4 mm for the head movement and the couch displacement, respectively. The result indicated that the head movement combined with a loose fixation between the mask-to-head frame results large couch displacements for each patient, and also large variation between patients. However, the head movement is the main cause for the couch displacement with similar magnitude of around 1.0 mm in anterior-posterior and lateral directions. Conclusions: Optical-tracking methodology independently quantifying head movements could improve immobilization devices by correctly acting on causes for head motions within mask. A confidence in the quality of intracranial immobilization techniques could be more efficient by eliminating the need for frequent imaging.« less
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
Fabricating Blazed Diffraction Gratings by X-Ray Lithography
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel
2004-01-01
Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.
Cost-effective masks for deep x-ray lithography
NASA Astrophysics Data System (ADS)
Scheunemann, Heinz-Ulrich; Loechel, Bernd; Jian, Linke; Schondelmaier, Daniel; Desta, Yohannes M.; Goettert, Jost
2003-04-01
The production of X-ray masks is one of the key techniques for X-ray lithography and the LIGA process. Different ways for the fabrication of X-ray masks has been established. Very sophisticated, difficult and expensive procedures are required to produce high precision and high quality X-ray masks. In order to minimize the cost of an X-ray mask, the mask blank must be inexpensive and readily available. The steps involved in the fabrication process must also be minimal. In the past, thin membranes made of titanium, silicon carbide, silicon nitride (2-5μm) or thick beryllium substrates (500μm) have been used as mask blanks. Thin titanium and silicon compounds have very high transparency for X-rays; therefore, these materials are predestined for use as mask membrane material. However, the handling and fabrication of thin membranes is very difficult, thus expensive. Beryllium is highly transparent to X-rays, but the processing and use of beryllium is risky due to potential toxicity. During the past few years graphite based X-ray masks have been in use at various research centers, but the sidewall quality of the generated resist patterns is in the range of 200-300 nm Ra. We used polished graphite to improve the sidewall roughness, but polished graphite causes other problems in the fabrication of X-ray masks. This paper describes the advantages associated with the use of polished graphite as mask blank as well as the fabrication process for this low cost X-ray mask. Alternative membrane materials will also be discussed.
Masking of errors in transmission of VAPC-coded speech
NASA Technical Reports Server (NTRS)
Cox, Neil B.; Froese, Edwin L.
1990-01-01
A subjective evaluation is provided of the bit error sensitivity of the message elements of a Vector Adaptive Predictive (VAPC) speech coder, along with an indication of the amenability of these elements to a popular error masking strategy (cross frame hold over). As expected, a wide range of bit error sensitivity was observed. The most sensitive message components were the short term spectral information and the most significant bits of the pitch and gain indices. The cross frame hold over strategy was found to be useful for pitch and gain information, but it was not beneficial for the spectral information unless severe corruption had occurred.
Past and future challenges from a display mask writer perspective
NASA Astrophysics Data System (ADS)
Ekberg, Peter; von Sydow, Axel
2012-06-01
Since its breakthrough, the liquid crystal technology has continued to gain momentum and the LCD is today the dominating display type used in desktop monitors, television sets, mobile phones as well as other mobile devices. To improve production efficiency and enable larger screen sizes, the LCD industry has step by step increased the size of the mother glass used in the LCD manufacturing process. Initially the mother glass was only around 0.1 m2 large, but with each generation the size has increased and with generation 10 the area reaches close to 10 m2. The increase in mother glass size has in turn led to an increase in the size of the photomasks used - currently the largest masks are around 1.6 × 1.8 meters. A key mask performance criterion is the absence of "mura" - small systematic errors captured only by the very sensitive human eye. To eliminate such systematic errors, special techniques have been developed by Micronic Mydata. Some mura suppressing techniques are described in this paper. Today, the race towards larger glass sizes has come to a halt and a new race - towards higher resolution and better image quality - is ongoing. The display mask is therefore going through a change that resembles what the semiconductor mask went through some time ago: OPC features are introduced, CD requirements are increasing sharply and multi tone masks (MTMs) are widely used. Supporting this development, Micronic Mydata has introduced a number of compensation methods in the writer, such as Z-correction, CD map and distortion control. In addition, Micronic Mydata MMS15000, the world's most precise large area metrology tool, has played an important role in improving mask placement quality and is briefly described in this paper. Furthermore, proposed specifications and system architecture concept for a new generation mask writers - able to fulfill future image quality requirements - is presented in this paper. This new system would use an AOD/AOM writing engine and be capable of resolving 0.6 micron features.
Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies
NASA Astrophysics Data System (ADS)
Savorgnan, G. A. D.; Graham, A. W.
2016-01-01
Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.
SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au
Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, containsmore » a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.« less
Gamma-ray lens development status for a European gamma-ray imager
NASA Astrophysics Data System (ADS)
Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.
2006-06-01
A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.
110 °C range athermalization of wavefront coding infrared imaging systems
NASA Astrophysics Data System (ADS)
Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong
2017-09-01
110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.
Optical information encryption based on incoherent superposition with the help of the QR code
NASA Astrophysics Data System (ADS)
Qin, Yi; Gong, Qiong
2014-01-01
In this paper, a novel optical information encryption approach is proposed with the help of QR code. This method is based on the concept of incoherent superposition which we introduce for the first time. The information to be encrypted is first transformed into the corresponding QR code, and thereafter the QR code is further encrypted into two phase only masks analytically by use of the intensity superposition of two diffraction wave fields. The proposed method has several advantages over the previous interference-based method, such as a higher security level, a better robustness against noise attack, a more relaxed work condition, and so on. Numerical simulation results and actual smartphone collected results are shown to validate our proposal.
Software resilience and the effectiveness of software mitigation in microcontrollers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather; Baker, Zachary; Fairbanks, Tom
Commercially available microprocessors could be useful to the space community for noncritical computations. There are many possible components that are smaller, lower-power, and less expensive than traditional radiation-hardened microprocessors. Many commercial microprocessors have issues with single-event effects (SEEs), such as single-event upsets (SEUs) and single-event transients (SETs), that can cause the microprocessor to calculate an incorrect result or crash. In this paper we present the Trikaya technique for masking SEUs and SETs through software mitigation techniques. Furthermore, test results show that this technique can be very effective at masking errors, making it possible to fly these microprocessors for a varietymore » of missions.« less
Software resilience and the effectiveness of software mitigation in microcontrollers
Quinn, Heather; Baker, Zachary; Fairbanks, Tom; ...
2015-12-01
Commercially available microprocessors could be useful to the space community for noncritical computations. There are many possible components that are smaller, lower-power, and less expensive than traditional radiation-hardened microprocessors. Many commercial microprocessors have issues with single-event effects (SEEs), such as single-event upsets (SEUs) and single-event transients (SETs), that can cause the microprocessor to calculate an incorrect result or crash. In this paper we present the Trikaya technique for masking SEUs and SETs through software mitigation techniques. Furthermore, test results show that this technique can be very effective at masking errors, making it possible to fly these microprocessors for a varietymore » of missions.« less
Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning
NASA Astrophysics Data System (ADS)
Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi
2011-11-01
Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle has been removed from returned masks (after long term usage/exposure in the wafer fab), requires a very aggressive SPM wet clean, that drastically reduces the available budget for mask properties (CD, phase/transmission). We show that CO2aerosol cleaning can be utilized to remove the bulk of the glue residue effectively, while preserving the mask properties. This application required a differently designed nozzle to impart the required removal force for the sticky glue residue. A new nozzle was developed and qualified that resulted in PRE in the range of 92-98%. Results also include data on a patterned mask that was exposed in a lithography stepper in a wafer production environment. On EUV mask, our group has experimentally demonstrated that 50 CO2 cleaning cycles of Ru film on the EUV Front-side resulted in no appreciable reflectivity change, implying that no degradation of the Ru film occurs.
NASA Astrophysics Data System (ADS)
Hector, Scott
2005-11-01
The extension of optical projection lithography through immersion to patterning features with half pitch <=65 nm is placing greater demands on the mask. Strong resolution enhancement techniques (RETs), such as embedded and alternating phase shift masks and complex model-based optical proximity correction, are required to compensate for diffraction and limited depth of focus (DOF). To fabricate these masks, many new or upgraded tools are required to write patterns, measure feature sizes and placement, inspect for defects, review defect printability and repair defects on these masks. Beyond the significant technical challenges, suppliers of mask fabrication equipment face the challenge of being profitable in the small market for mask equipment while encountering significant R&D expenses to bring new generations of mask fabrication equipment to market. The total available market for patterned masks is estimated to be $2.5B to $2.9B per year. The patterned mask market is about 20% of the market size for lithography equipment and materials. The total available market for mask-making equipment is estimated to be about $800M per year. The largest R&D affordability issue arises for the makers of equipment for fabricating masks where total available sales are typically less than ten units per year. SEMATECH has used discounted cash flow models to predict the affordable R&D while maintaining industry accepted internal rates of return. The results have been compared to estimates of the total R&D cost to bring a new generation of mask equipment to market for various types of tools. The analysis revealed that affordability of the required R&D is a significant problem for many suppliers of mask-making equipment. Consortia such as SEMATECH and Selete have played an important role in cost sharing selected mask equipment and material development projects. Governments in the United States, in Europe and in Japan have also helped equipment suppliers with support for R&D. This paper summarizes the challenging business model for mask equipment suppliers and highlight government support for mask equipment and materials development.
Ziegler, Johannes C; Bertrand, Daisy; Lété, Bernard; Grainger, Jonathan
2014-04-01
The present study used a variant of masked priming to track the development of 2 marker effects of orthographic and phonological processing from Grade 1 through Grade 5 in a cross-sectional study. Pseudohomophone (PsH) priming served as a marker for phonological processing, whereas transposed-letter (TL) priming was a marker for coarse-grained orthographic processing. The results revealed a clear developmental picture. First, the PsH priming effect was significant and remained stable across development, suggesting that phonology not only plays an important role in early reading development but continues to exert a robust influence throughout reading development. This finding challenges the view that more advanced readers should rely less on phonological information than younger readers. Second, the TL priming effect increased monotonically with grade level and reading age, which suggests greater reliance on coarse-grained orthographic coding as children become better readers. Thus, TL priming effects seem to be a good marker effect for children's ability to use coarse-grained orthographic coding to speed up direct lexical access in alphabetic languages. The results were predicted by the dual-route model of orthographic processing, which suggests that direct orthographic access is achieved through coarse-grained orthographic coding that tolerates some degree of flexibility in letter order. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Clustering Binary Data in the Presence of Masking Variables
ERIC Educational Resources Information Center
Brusco, Michael J.
2004-01-01
A number of important applications require the clustering of binary data sets. Traditional nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often be successfully applied to these data sets. However, the presence of masking variables in a data set can impede the ability of the K-means algorithm to recover the…
Vision Aided Inertial Navigation System Augmented with a Coded Aperture
2011-03-24
as the change in blur at different distances from the pixel plane can be inferred. Cameras with a micro lens array (called plenoptic cameras...images from 8 slightly different perspectives [14,43]. Dappled photography is a similar to the plenoptic camera approach except that a cosine mask
Ipsilateral masking between acoustic and electric stimulations.
Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang
2011-08-01
Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.
NASA Astrophysics Data System (ADS)
Lei, Tianhu; Udupa, Jayaram K.; Moonis, Gul; Schwartz, Eric; Balcer, Laura
2005-04-01
Based on Fuzzy Connectedness (FC) object delineation principles and algorithms, a hierarchical brain tissue segmentation technique has been developed for MR images. After MR image background intensity inhomogeneity correction and intensity standardization, three FC objects for cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) are generated via FC object delineation, and an intracranial (IC) mask is created via morphological operations. Then, the IC mask is decomposed into parenchymal (BP) and CSF masks, while the BP mask is separated into WM and GM masks. WM mask is further divided into pure and dirty white matter masks (PWM and DWM). In Multiple Sclerosis studies, a severe white matter lesion (LS) mask is defined from DWM mask. Based on the segmented brain tissue images, a histogram-based method has been developed to find disease-specific, image-based quantitative markers for characterizing the macromolecular manifestation of the two diseases. These same procedures have been applied to 65 MS (46 patients and 19 normal subjects) and 25 AD (15 patients and 10 normal subjects) data sets, each of which consists of FSE PD- and T2-weighted MR images. Histograms representing standardized PD and T2 intensity distributions and their numerical parameters provide an effective means for characterizing the two diseases. The procedures are systematic, nearly automated, robust, and the results are reproducible.
NASA Astrophysics Data System (ADS)
Yun, Dong-Un; Lee, Sang-Kwon
2017-06-01
In this paper, we present a novel method for an objective evaluation of knocking noise emitted by diesel engines based on the temporal and frequency masking theory. The knocking sound of a diesel engine is a vibro-acoustic sound correlated with the high-frequency resonances of the engine structure and a periodic impulsive sound with amplitude modulation. Its period is related to the engine speed and includes specific frequency bands related to the resonances of the engine structure. A knocking sound with the characteristics of a high-frequency impulsive wave can be masked by low-frequency sounds correlated with the harmonics of the firing frequency and broadband noise. The degree of modulation of the knocking sound signal was used for such objective evaluations in previous studies, without considering the masking effect. However, the frequency masking effect must be considered for the objective evaluation of the knocking sound. In addition to the frequency masking effect, the temporal masking effect occurs because the period of the knocking sound changes according to the engine speed. Therefore, an evaluation method considering the temporal and frequency masking effect is required to analyze the knocking sound objectively. In this study, an objective evaluation method considering the masking effect was developed based on the masking theory of sound and signal processing techniques. The method was applied successfully for the objective evaluation of the knocking sound of a diesel engine.
An optimized OPC and MDP flow for reducing mask write time and mask cost
NASA Astrophysics Data System (ADS)
Yang, Ellyn; Li, Cheng He; Park, Se Jin; Zhu, Yu; Guo, Eric
2010-09-01
In the process of optical proximity correction, layout edge or fragment is migrating to proper position in order to minimize edge placement error (EPE). During this fragment migration, several factors other than EPE can be also taken into account as a part of cost function for optimal fragment displacement. Several factors are devised in favor of OPC stability, which can accommodate room for high mask error enhancement factor (MEEF), lack of process window, catastrophic pattern failure such as pinch/bridge and improper fragmentation. As technology node becomes finer, there happens conflict between OPC accuracy and stability. Especially for metal layers, OPC has focused on the stability by loss of accurate OPC results. On this purpose, several techniques have been introduced, which are target smoothing, process window aware OPC, model-based retargeting and adaptive OPC. By utilizing those techniques, OPC enables more stabilized patterning, instead of realizing design target exactly on wafer. Inevitably, post-OPC layouts become more complicated because those techniques invoke additional edge, or fragments prior to correction or during OPC iteration. As a result, jogs of post OPC layer can be dramatically increased, which results in huge number of shot count after data fracturing. In other words, there is trade-off relationship between data complexity and various methods for OPC stability. In this paper, those relationships have been investigated with respect to several technology nodes. The mask shot count reduction is achieved by reducing the number of jogs with which EPE difference are within pre-specified value. The effect of jog smoothing on OPC output - in view of OPC performance and mask data preparation - was studied quantitatively for respective technology nodes.
Weksler, N; Tarnopolski, A; Klein, M; Schily, M; Rozentsveig, V; Shapira, A R; Gurman, G M
2005-05-01
To assess the ability of medical students to learn and retain skills of airway manipulation for insertion of the endotracheal tube, the laryngeal mask airway (Laryngeal Mask Company, Henley-on-Thames, UK) and the oesophageal-tracheal Combitube (Kendall-Sheridan Catheter Corp., Argyle, NY, USA). A 6-month prospective study was conducted among fifth-year medical students attending a 3-week clerkship in the Division of Anesthesiology and Critical Care Medicine in the Soroka Medical Center. All the students viewed a demonstration of insertion technique for the endotracheal tube, the laryngeal mask airway and the Combitube, followed by formal teaching in a mannikin. At the end of the program, the insertion skills were demonstrated in the mannikin, the success rate on the first attempt was registered and the students were requested to assess (by questionnaire) their ability to execute airway manipulation (phase 1). Six months later, the students were requested to repeat the insertion technique, and a similar re-evaluation applied (phase 2). The success rate, during the first phase, at first attempts was 100% for the laryngeal mask airway and the Combitube, compared to 57.4% for the endotracheal tube (P < 0.02), and 92.6%, 96.2% and 62.9% (P < 0.02) respectively for the second phase of the study. Learning and retention skills of medical students, in a mannikin, are more accentuated with the laryngeal mask airway and the Combitube than seen with an endotracheal tube.
Fast-neutron, coded-aperture imager
NASA Astrophysics Data System (ADS)
Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.
2015-06-01
This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led to a reduction in the background by a factor of 1.7 and thus allowed for the detection and localization of the 1.8 μCi. The detection significance for each source at different standoff distances will be discussed.
Bio-inspired color sketch for eco-friendly printing
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Tolstaya, Ekaterina V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul
2012-01-01
Saving of toner/ink consumption is an important task in modern printing devices. It has a positive ecological and social impact. We propose technique for converting print-job pictures to a recognizable and pleasant color sketches. Drawing a "pencil sketch" from a photo relates to a special area in image processing and computer graphics - non-photorealistic rendering. We describe a new approach for automatic sketch generation which allows to create well-recognizable sketches and to preserve partly colors of the initial picture. Our sketches contain significantly less color dots then initial images and this helps to save toner/ink. Our bio-inspired approach is based on sophisticated edge detection technique for a mask creation and multiplication of source image with increased contrast by this mask. To construct the mask we use DoG edge detection, which is a result of blending of initial image with its blurred copy through the alpha-channel, which is created from Saliency Map according to Pre-attentive Human Vision model. Measurement of percentage of saved toner and user study proves effectiveness of proposed technique for toner saving in eco-friendly printing mode.
NASA Astrophysics Data System (ADS)
Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.
2006-04-01
We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.
NASA Astrophysics Data System (ADS)
Neuer, Marcus J.
2013-11-01
A technique for the spectral identification of strontium-90 is shown, utilising a Maximum-Likelihood deconvolution. Different deconvolution approaches are discussed and summarised. Based on the intensity distribution of the beta emission and Geant4 simulations, a combined response matrix is derived, tailored to the β- detection process in sodium iodide detectors. It includes scattering effects and attenuation by applying a base material decomposition extracted from Geant4 simulations with a CAD model for a realistic detector system. Inversion results of measurements show the agreement between deconvolution and reconstruction. A detailed investigation with additional masking sources like 40K, 226Ra and 131I shows that a contamination of strontium can be found in the presence of these nuisance sources. Identification algorithms for strontium are presented based on the derived technique. For the implementation of blind identification, an exemplary masking ratio is calculated.
Vannozzi, Ilaria; Ciantelli, Massimiliano; Moscuzza, Francesca; Scaramuzzo, Rosa T; Panizza, Davide; Sigali, Emilio; Boldrini, Antonio; Cuttano, Armando
2017-10-01
Neonatal respiratory distress syndrome (RDS) is a major cause of mortality and morbidity among preterm infants. Although the INSURE (INtubation, SURfactant administration, Estubation) technique for surfactant replacement therapy is so far the gold standard method, over the last years new approaches have been studied, i.e. less invasive surfactant administration (LISA) or minimally invasive surfactant therapy (MIST). Here we propose an originally modified MIST, called CALMEST (Catheter And Laryngeal Mask Endotracheal Surfactant Therapy), using a particular laryngeal mask as a guide for a thin catheter to deliver surfactant directly in the trachea. We performed a preliminary study on a mannequin and a subsequent in vivo pilot trial. This novel procedure is quick, effective and well tolerated and might represent an improvement in reducing neonatal stress. Ultimately, CALMEST offers an alternative approach that could be extremely useful for medical staff with low expertise in laryngoscopy and intubation.
Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns
Hau-Riege, Stefan Peter [Fremont, CA
2007-05-01
The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.
Invited Article: Mask-modulated lensless imaging with multi-angle illuminations
NASA Astrophysics Data System (ADS)
Zhang, Zibang; Zhou, You; Jiang, Shaowei; Guo, Kaikai; Hoshino, Kazunori; Zhong, Jingang; Suo, Jinli; Dai, Qionghai; Zheng, Guoan
2018-06-01
The use of multiple diverse measurements can make lensless phase retrieval more robust. Conventional diversity functions include aperture diversity, wavelength diversity, translational diversity, and defocus diversity. Here we discuss a lensless imaging scheme that employs multiple spherical-wave illuminations from a light-emitting diode array as diversity functions. In this scheme, we place a binary mask between the sample and the detector for imposing support constraints for the phase retrieval process. This support constraint enforces the light field to be zero at certain locations and is similar to the aperture constraint in Fourier ptychographic microscopy. We use a self-calibration algorithm to correct the misalignment of the binary mask. The efficacy of the proposed scheme is first demonstrated by simulations where we evaluate the reconstruction quality using mean square error and structural similarity index. The scheme is then experimentally tested by recovering images of a resolution target and biological samples. The proposed scheme may provide new insights for developing compact and large field-of-view lensless imaging platforms. The use of the binary mask can also be combined with other diversity functions for better constraining the phase retrieval solution space. We provide the open-source implementation code for the broad research community.
Modeling OPC complexity for design for manufacturability
NASA Astrophysics Data System (ADS)
Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong
2005-11-01
Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.
Bottlenecks of the wavefront sensor based on the Talbot effect.
Podanchuk, Dmytro; Kovalenko, Andrey; Kurashov, Vitalij; Kotov, Myhaylo; Goloborodko, Andrey; Danko, Volodymyr
2014-04-01
Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack-Hartmann sensor.
NASA Technical Reports Server (NTRS)
Harwit, M.
1977-01-01
Sources of noise and error correcting procedures characteristic of Hadamard transform optical systems were investigated. Reduction of spectral noise due to noise spikes in the data, the effect of random errors, the relative performance of Fourier and Hadamard transform spectrometers operated under identical detector-noise-limited conditions, and systematic means for dealing with mask defects are among the topics discussed. The distortion in Hadamard transform optical instruments caused by moving Masks, incorrect mask alignment, missing measurements, and diffraction is analyzed and techniques for reducing or eliminating this distortion are described.
Carbon contamination topography analysis of EUV masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Y.-J.; Yankulin, L.; Thomas, P.
2010-03-12
The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.
Dry etching technologies for reflective multilayer
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori
2012-11-01
We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.
Lin, Zhicheng; He, Sheng
2012-01-01
Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817
Laryngeal mask airway for airway control during percutaneous dilatational tracheostomy.
Pratt, T; Bromilow, J
2011-11-01
Percutaneous dilatational tracheostomy is a common bedside procedure in critical care for patients requiring prolonged mechanical ventilation. The traditional technique requires withdrawal of the endotracheal tube to a proximal position to facilitate tracheostomy insertion, but this carries the risk of inadvertent extubation and does not prevent cuff rupture. Use of a supraglottic airway such as the laryngeal mask airway may avoid these risks and could provide a safe alternative to the endotracheal tube. We present an appraisal of the literature to date. We found reasonable evidence to show improved ventilation and bronchoscopic visualisation with the laryngeal mask airway, but this has not been translated into improved outcome. There is currently insufficient evidence to draw conclusions about the safety of the laryngeal mask airway during percutaneous dilatational tracheostomy.
Electrically induced formation of uncapped, hollow polymeric microstructures
NASA Astrophysics Data System (ADS)
Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.
2006-11-01
Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.
Drašković, Milica; Medarević, Djordje; Aleksić, Ivana; Parojčić, Jelena
2017-05-01
Considering that bitter taste of drugs incorporated in orally disintegrating tablets (ODTs) can be the main reason for avoiding drug therapy, it is of the utmost importance to achieve successful taste-masking. The evaluation of taste-masking effectiveness is still a major challenge. The objective of this study was to mask bitter taste of the selected model drugs by drug particle coating with Eudragit ® E PO, as well as to evaluate taste-masking effectiveness of prepared ODTs using compendial dissolution testing, dissolution in the small-volume shake-flask assembly and trained human taste panel. Model drugs were coated in fluidized bed. Disintequik™ ODT was used as a novel co-processed excipient for ODT preparation. Selected formulations were investigated in vitro and in vivo using techniques for taste-masking assessment. Significantly slower drug dissolution was observed from tablets with coated drug particles during the first 3 min of investigation. Results of in vivo taste-masking assessment demonstrated significant improvement in drug bitterness suppression in formulations with coated drug. Strong correlation between the results of drug dissolution in the small-volume shake-flask assembly and in vivo evaluation data was established (R ≥ 0.970). Drug particle coating with Eudragit ® E PO can be a suitable approach for bitter taste-masking. Strong correlation between in vivo and in vitro results implicate that small-volume dissolution method may be used as surrogate for human panel taste-masking assessment, in the case of physical taste-masking approach application.
Vector scattering analysis of TPF coronagraph pupil masks
NASA Astrophysics Data System (ADS)
Ceperley, Daniel P.; Neureuther, Andrew R.; Lieber, Michael D.; Kasdin, N. Jeremy; Shih, Ta-Ming
2004-10-01
Rigorous finite-difference time-domain electromagnetic simulation is used to simulate the scattering from proto-typical pupil mask cross-section geometries and to quantify the differences from the normally assumed ideal on-off behavior. Shaped pupil plane masks are a promising technology for the TPF coronagraph mission. However the stringent requirements placed on the optics require that the detailed behavior of the edge-effects of these masks be examined carefully. End-to-end optical system simulation is essential and an important aspect is the polarization and cross-section dependent edge-effects which are the subject of this paper. Pupil plane masks are similar in many respects to photomasks used in the integrated circuit industry. Simulation capabilities such as the FDTD simulator, TEMPEST, developed for analyzing polarization and intensity imbalance effects in nonplanar phase-shifting photomasks, offer a leg-up in analyzing coronagraph masks. However, the accuracy in magnitude and phase required for modeling a chronograph system is extremely demanding and previously inconsequential errors may be of the same order of magnitude as the physical phenomena under study. In this paper, effects of thick masks, finite conductivity metals, and various cross-section geometries on the transmission of pupil-plane masks are illustrated. Undercutting the edge shape of Cr masks improves the effective opening width to within λ/5 of the actual opening but TE and TM polarizations require opposite compensations. The deviation from ideal is examined at the reference plane of the mask opening. Numerical errors in TEMPEST, such as numerical dispersion, perfectly matched layer reflections, and source haze are also discussed along with techniques for mitigating their impacts.
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Bhaduri, Basanta
2017-06-01
In this paper, we propose a new technique for double image encryption in the Fresnel domain using wavelet transform (WT), gyrator transform (GT) and spiral phase masks (SPMs). The two input mages are first phase encoded and each of them are then multiplied with SPMs and Fresnel propagated with distances d1 and d2, respectively. The single-level discrete WT is applied to Fresnel propagated complex images to decompose each into sub-band matrices i.e. LL, HL, LH and HH. Further, the sub-band matrices of two complex images are interchanged after modulation with random phase masks (RPMs) and subjected to inverse discrete WT. The resulting images are then both added and subtracted to get intermediate images which are further Fresnel propagated with distances d3 and d4, respectively. These outputs are finally gyrator transformed with the same angle α to get the encrypted images. The proposed technique provides enhanced security in terms of a large set of security keys. The sensitivity of security keys such as SPM parameters, GT angle α, Fresnel propagation distances are investigated. The robustness of the proposed techniques against noise and occlusion attacks are also analysed. The numerical simulation results are shown in support of the validity and effectiveness of the proposed technique.
NASA Technical Reports Server (NTRS)
2002-01-01
Goddard Space Flight Center and Triangle Research & Development Corporation collaborated to create "Smart Eyes," a charge coupled device camera that, for the first time, could read and measure bar codes without the use of lasers. The camera operated in conjunction with software and algorithms created by Goddard and Triangle R&D that could track bar code position and direction with speed and precision, as well as with software that could control robotic actions based on vision system input. This accomplishment was intended for robotic assembly of the International Space Station, helping NASA to increase production while using less manpower. After successfully completing the two- phase SBIR project with Goddard, Triangle R&D was awarded a separate contract from the U.S. Department of Transportation (DOT), which was interested in using the newly developed NASA camera technology to heighten automotive safety standards. In 1990, Triangle R&D and the DOT developed a mask made from a synthetic, plastic skin covering to measure facial lacerations resulting from automobile accidents. By pairing NASA's camera technology with Triangle R&D's and the DOT's newly developed mask, a system that could provide repeatable, computerized evaluations of laceration injury was born.
Transposed-letter priming of prelexical orthographic representations.
Kinoshita, Sachiko; Norris, Dennis
2009-01-01
A prime generated by transposing two internal letters (e.g., jugde) produces strong priming of the original word (judge). In lexical decision, this transposed-letter (TL) priming effect is generally weak or absent for nonword targets; thus, it is unclear whether the origin of this effect is lexical or prelexical. The authors describe the Bayesian Reader theory of masked priming (D. Norris & S. Kinoshita, 2008), which explains why nonwords do not show priming in lexical decision but why they do in the cross-case same-different task. This analysis is followed by 3 experiments that show that priming in this task is not based on low-level perceptual similarity between the prime and target, or on phonology, to make the case that priming is based on prelexical orthographic representation. The authors then use this task to demonstrate equivalent TL priming effects for nonwords and words. The results are interpreted as the first reliable evidence based on the masked priming procedure that letter position is not coded absolutely within the prelexical, orthographic representation. The implications of the results for current letter position coding schemes are discussed.
Ventilation via Cut Nasotracheal Tube During General Anesthesia
Asahi, Yoshinao; Omichi, Shiro; Adachi, Seita; Kagamiuchi, Hajime; Kotani, Junichiro
2013-01-01
Many patients with disabilities need recurrent dental treatment under general anesthesia because of high caries prevalence and the nature of dental treatment. We evaluated the use of a nasal device as a possible substitute for flexible laryngeal mask airway to reduce the risk of unexpected failure accompanying intubation; we succeeded in ventilating the lungs with a cut nasotracheal tube (CNT) with its tip placed in the pharynx. We hypothesized that this technique would be useful during dental treatment under general anesthesia and investigated its usefulness as part of a minimally invasive technique. A prospective study was designed using general anesthesia in 37 dental patients with disabilities such as intellectual impairment, autism, and cerebral palsy. CNT ventilation was compared with mask ventilation with the patient in 3 positions: the neck in flexion, horizontal position, and in extension. The effect of mouth gags was also recorded during CNT ventilation. The percentages of cases with effective ventilation were similar for the 2 techniques in the neck extension and horizontal positions (89.2–97.3%). However, CNT ventilation was significantly more effective than mask ventilation in the neck flexion position (94.6 vs 45.9%; P < .0001). Mouth gags slightly reduced the rate of effective ventilation in the neck flexion position. Most dental treatments involving minor oral surgeries were performed using mouth gags during CNT ventilation. CNT ventilation was shown to be superior to mask ventilation and is useful during dental treatment under general anesthesia. PMID:23506278
[Effect of different pre-oxygenation procedures on arterial oxygen status].
Duda, D; Brandt, L; Rudlof, B; Mertzlufft, F; Dick, W
1988-07-01
There are different opinions regarding efficiency, duration, and techniques of preoxygenation. It was the aim of our study to systematically investigate the effectiveness of different preoxygenation methods by means of arterial blood gas parameters (paO2, SaO2, and CaO2). METHODS. After receiving informed consent, 80 patients undergoing coronary bypass grafting (NY-HA II-III, ASA III-IV, mean age 57 years) were randomized in eight groups, each with a different preoxygenation technique (Table 1). During normocapnic preoxygenation (Table 2), the following parameters were compared: duration of preoxygenation (3 vs. 5 min), manner of holding the face mask (tightly fitting vs. one digit away from mouth and nose), and oxygen flow (6 vs. 10 l/min) via anesthesia circuit system. Arterial blood gases were analyzed with a Corning 170 pH/blood gas analyzer and a Corning 2500 CO-oximeter. For statistical analysis Student's t-test was used. P less than or equal to 0.01 was considered to be significant (*). RESULTS. As Fig. 1 shows, the different preoxygenation techniques affected paO2 values differently: oxygen flow had a greater influence than duration of preoxygenation. Most important was the manner of holding the face mask. With a tightly fitting mask, preoxygenation was more effective than with the face mask one digit away from mouth and nose, independent of preoxygenation time and oxygen flow (Table 3). The SaO2 (Fig. 2) increased in the same manner with the different preoxygenation techniques from 94.0% to 97.5% (Table 3); CaO2 (Fig. 3) was influenced in a similar way (16.7 ml/dl to 17.4 ml/dl).(ABSTRACT TRUNCATED AT 250 WORDS)
Hybrid Imaging for Extended Depth of Field Microscopy
NASA Astrophysics Data System (ADS)
Zahreddine, Ramzi Nicholas
An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.
Protein assay structured on paper by using lithography
NASA Astrophysics Data System (ADS)
Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.
2015-03-01
There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.
The Big-Bubble Full Femtosecond Laser-Assisted Technique in Deep Anterior Lamellar Keratoplasty.
Buzzonetti, Luca; Petrocelli, Gianni; Valente, Paola; Iarossi, Giancarlo; Ardia, Roberta; Petroni, Sergio; Parrilla, Rosa
2015-12-01
To describe the big-bubble full femtosecond laser-assisted (BBFF) technique, which could be helpful in standardizing the big-bubble technique in deep anterior lamellar keratoplasty (DALK). Ten eyes of 10 consecutive patients affected by keratoconus underwent the BBFF technique using the 150-kHz IntraLase femtosecond laser (Intra-Lase FS Laser; Abbott Medical Optics, Inc., Santa Ana, CA). A 9-mm diameter metal mask with a single fissure 0.7 mm wide oriented at the 12-o'clock position was positioned into the cone, over the laser glass. The laser performed a ring lamellar cut (internal diameter = 3 mm; external diameter = 8 mm) 100 µm above the thinnest point, with the photodisruption effectively occurring only in the corneal stroma corresponding to the fissure to create a deep stromal channel; subsequently, an anterior side cut created an arcuate incision, from the corneal surface to the deep stromal channel on the mask's opening site. The mask was removed and the laser performed a full lamellar cut 200 µm above the thinnest point to create a lamella. After the removal of the lamella, the air needle was inserted into the stromal channel and air was injected to achieve a big bubble. The big bubble was achieved in 9 eyes (all type 1 bubbles) and all procedures were completed as DALK. Preliminary results suggest that the BBFF technique could help in standardizing the big-bubble technique in DALK, reducing the "learning curve" for surgeons who approach this technique and the risks of intraoperative complications. Copyright 2015, SLACK Incorporated.
The role of the faceguard in the production of flexion injuries to the cervical spine in football.
Melvin, W J; Dunlop, H W; Hetherington, R F; Kerr, J W
1965-11-20
The precise role of the single-bar face mask in producing major flexion violence to the cervical spine has been studied by review of game movies, analysis of the radiographs and detailed interviews with two players who sustained fractures of cervical spine. The single-bar face mask can become fixed in the ground, thereby forcing a runner's head down onto his chest as the trunk moves forward. Preventive measures embodying modifications in the face mask, strict coaching in football techniques and the institution of safety factors in the playing rules are proposed. Appreciation of the mechanism of injury is urged in order to encourage careful inspection of protective head gear as well as to direct the attention of team physicians to the possibility of serious flexion injury to the cervical spine occurring without dramatic evidence. This report is not a plea for abandonment of the face mask but rather a suggestion for careful selection of a safe and efficient mask.
Hot-melt extrusion microencapsulation of quercetin for taste-masking.
Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai
2017-02-01
Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.
Band-Limited Masks and Direct Imaging of Exoplanets
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2009-01-01
Band-limited masks have become the baseline design for what is now called "classical TPF" and also the N|RCamcomnagraphonJW8 .This technology remains one of the most promising paths for direct detection ofmxop|anedm and disks. I'll describe some of the latest progress in the implementation of this technique and what we have learned about where it can and can not be effectively applied.
Silicon Solar Cell Optimization.
1981-06-01
from the surface. (b) Oxide mask formation Etching grooves into the silicon requires an effective alkaline-resistant mask which will withstand the...face. This technique employs a very viscous photoresist, Furt #206, in conjunction with multiple spin-applications and bake periods, to effectively ...175 80 125 78 75 74 To compare the effects of groove depth, substrate thick- ness and bulk resistivity, an experiment was conducted. Using identical
OPC and PSM design using inverse lithography: a nonlinear optimization approach
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Milanfar, Peyman
2006-03-01
We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction (OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography. We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure that the estimated masks have only two or three (allowable) transmission values and are also comparatively simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and 100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears, serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.
Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dioszegi I.; Vanier P.E.; Salwen C.
2016-10-29
Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less
Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission
NASA Astrophysics Data System (ADS)
Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.
2018-02-01
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.
Releasing captive-reared masked bobwhite for population recovery: A review
Gall, S.A.; Kuvlesky, W.P.; Gee, G.; Brennan, L.A.; Palmer, W.E.; Burger, L.W.; Pruden, T.L.
2000-01-01
Efforts to re-establish the endangered masked bobwhite (Colinus virginianus ridgwayi) to it's former southern Arizona range have been ongoing since establishment of the Buenos Aires National Wildlife Refuge in 1986. Pre-release conditioning techniques developed prior to Refuge establishment continued to be utilized in an effort to improve post-release survival of captive-reared masked bobwhite chicks. Foremost among these techniques was the use of wild Texas bobwhite (C. v. texanus) males as foster parents which were paired with all broods released on the Refuge. The efficacy of this technique was evaluated using radio telemetry in 1994, and the results indicated that the use of foster Texas males was not as effective as had been presumed because post-release chick survival was poor. Therefore, in 1995 pre-release conditioning protocol were modified in an effort to improve post-release survival. The primary intent of these modifications was to emphasize wild behavior among chicks prior to release. Modifications to established protocol included imprinting chicks to adult bobwhites immediately after eggs hatched and exposing 1-to-2 day old chicks to natural foods (insects and seeds) while they were in brooder units. Foster parents and their respective broods were then placed in flight pens that mimicked the natural conditions that would confront broods upon release. Family groups were held in flight pens for several weeks for acclimatization purposes and then transported to temporary enclosures erected at release sites where they were held for a week and then released. Finally all releases were conducted during fall after covey formation was apparent to ensure that foster parents and released chicks remained with a group of birds. Preliminary results indicated that post-release chick survival was higher than what was observed in 1994. Pre-conditioning research will continue in an effort to further quantify post-release survival of masked bobwhite chicks. Although the results of this research project are preliminary, it is possible that pre-release conditioning techniques developed for masked bobwhites will prove useful to quail reestablishment efforts throughout North America.
Thermal wake/vessel detection technique
Roskovensky, John K [Albuquerque, NM; Nandy, Prabal [Albuquerque, NM; Post, Brian N [Albuquerque, NM
2012-01-10
A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.
Mask data processing in the era of multibeam writers
NASA Astrophysics Data System (ADS)
Abboud, Frank E.; Asturias, Michael; Chandramouli, Maesh; Tezuka, Yoshihiro
2014-10-01
Mask writers' architectures have evolved through the years in response to ever tightening requirements for better resolution, tighter feature placement, improved CD control, and tolerable write time. The unprecedented extension of optical lithography and the myriad of Resolution Enhancement Techniques have tasked current mask writers with ever increasing shot count and higher dose, and therefore, increasing write time. Once again, we see the need for a transition to a new type of mask writer based on massively parallel architecture. These platforms offer a step function improvement in both dose and the ability to process massive amounts of data. The higher dose and almost unlimited appetite for edge corrections open new windows of opportunity to further push the envelope. These architectures are also naturally capable of producing curvilinear shapes, making the need to approximate a curve with multiple Manhattan shapes unnecessary.
Perdigão, J; Lam, V Q; Burseth, B G; Real, C
This clinical report illustrates a conservative technique to mask enamel discolorations in maxillary anterior teeth caused by hypomineralization associated with enamel fluorosis and subsequent direct resin composite to improve the anterior esthetics. The treatment consisted of at-home whitening with 10% carbamide peroxide gel with potassium nitrate and sodium fluoride in a custom-fitted tray to mask the brown-stained areas, followed by resin infiltration to mask the white spot areas. An existing resin composite restoration in the maxillary right central incisor was subsequently replaced after completion of the whitening and resin infiltration procedures, whereas the two misaligned and rotated maxillary lateral incisors were built up with direct resin composite restorations to provide the illusion of adequate arch alignment, as the patient was unable to use orthodontic therapy.
Hegde, Maruti; Meenakshisundaram, Viswanath; Chartrain, Nicholas; Sekhar, Susheel; Tafti, Danesh; Williams, Christopher B; Long, Timothy E
2017-08-01
High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SEMATECH EUVL mask program status
NASA Astrophysics Data System (ADS)
Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick
2009-04-01
As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been made but a continued collaborative effort will be needed along with timely infrastructure investments to meet these challenging goals.
Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten
2017-01-01
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652
Kuvaki, B; Küçükgüçlü, S; Iyilikçi, L; Tuncali, B E; Cinar, O
2008-10-01
We investigated whether insertion of the disposable Soft Seal laryngeal mask airway (SSLM) was successful without intra-oral digital manipulation. One hundred patients undergoing anaesthesia using the SSLM were randomly assigned into two groups. Insertion was performed by either a direct or a rotational technique, both without intra-oral digital manipulation. The primary outcome measure was successful insertion at first attempt. Other outcomes included insertion time, fibreoptic assessment of the airway view and airway morbidity. The first attempt success rate was higher (98%) with the direct technique than with the rotational technique (75%; p = 0.002) but insertion time was faster with the latter method (mean [range] 15 [8-50] s) than with the direct method (20 [8-56] s; p = 0.035). Fibreoptic assessment and airway morbidity were similar in both groups. We conclude that the SSLM can be successfully inserted without intra-oral digital manipulation.
A Scheduling Algorithm for Replicated Real-Time Tasks
NASA Technical Reports Server (NTRS)
Yu, Albert C.; Lin, Kwei-Jay
1991-01-01
We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.
Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation
Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; ...
2015-10-28
Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R 56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacingmore » ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less
Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation
NASA Astrophysics Data System (ADS)
Zhu, X.; Broemmelsiek, D. R.; Shin, Y.-M.
2015-10-01
Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ -0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). The theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.
Inspection system qualification and integration into the mask manufacturing environment
NASA Astrophysics Data System (ADS)
LaVoy, Rosanne; Fujioka, Ron
1995-12-01
Integration of a mask inspection system into a manufacturing environment poses new challenges to both the inspection engineer and the equipment supplier. Traditional specifications (limited primarily to sensitivity and uptime) are no longer sufficient to successfully integrate a system into a 7 by 24 manufacturing area with multiple systems. Issues such as system sensitivity matching, sensitivity characterization by defect type, operator training and certification standards, and real-time SPC control of the systems must be addressed. This paper outlines some of the techniques Intel Mask Operation uses for integration of a new inspection system into the manufacturing line. Specifically moving a beta- site type tool out of the beta-site mode and into volume production. Examples are presented, including installation for manufacturing (including ergonomic modifications), techniques for system-to-system matching, use of SPC charts to monitor system performance, and operator training/certifications. Relationships between system PMs, or other environmental changes, and the system sensitivity SPC control charts also are discussed.
Effective data compaction algorithm for vector scan EB writing system
NASA Astrophysics Data System (ADS)
Ueki, Shinichi; Ashida, Isao; Kawahira, Hiroichi
2001-01-01
We have developed a new mask data compaction algorithm dedicated to vector scan electron beam (EB) writing systems for 0.13 μm device generation. Large mask data size has become a significant problem at mask data processing for which data compaction is an important technique. In our new mask data compaction, 'array' representation and 'cell' representation are used. The mask data format for the EB writing system with vector scan supports these representations. The array representation has a pitch and a number of repetitions in both X and Y direction. The cell representation has a definition of figure group and its reference. The new data compaction method has the following three steps. (1) Search arrays of figures by selecting pitches of array so that a number of figures are included. (2) Find out same arrays that have same repetitive pitch and number of figures. (3) Search cells of figures, where the figures in each cell take identical positional relationship. By this new method for the mask data of a 4M-DRAM block gate layer with peripheral circuits, 202 Mbytes without compaction was highly compacted to 6.7 Mbytes in 20 minutes on a 500 MHz PC.
NASA Astrophysics Data System (ADS)
Leek, Marjorie R.; Neff, Donna L.
2004-05-01
Charles Watson's studies of informational masking and the effects of stimulus uncertainty on auditory perception have had a profound impact on auditory research. His series of seminal studies in the mid-1970s on the detection and discrimination of target sounds in sequences of brief tones with uncertain properties addresses the fundamental problem of extracting target signals from background sounds. As conceptualized by Chuck and others, informational masking results from more central (even ``cogneetive'') processes as a consequence of stimulus uncertainty, and can be distinguished from ``energetic'' masking, which primarily arises from the auditory periphery. Informational masking techniques are now in common use to study the detection, discrimination, and recognition of complex sounds, the capacity of auditory memory and aspects of auditory selective attention, the often large effects of training to reduce detrimental effects of uncertainty, and the perceptual segregation of target sounds from irrelevant context sounds. This paper will present an overview of past and current research on informational masking, and show how Chuck's work has been expanded in several directions by other scientists to include the effects of informational masking on speech perception and on perception by listeners with hearing impairment. [Work supported by NIDCD.
Otitis Media and Related Complications among Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Adams, Daniel J.; Susi, Apryl; Erdie-Lalena, Christine R.; Gorman, Gregory; Hisle-Gorman, Elizabeth; Rajnik, Michael; Elrod, Marilisa; Nylund, Cade M.
2016-01-01
Acute otitis media (AOM) symptoms can be masked by communication deficits, common to children with autism spectrum disorders (ASD). We sought to evaluate the association between ASD and otitis media. Using ICD-9-CM diagnostic codes, we performed a retrospective case-cohort study comparing AOM, and otitis-related diagnoses among children with and…
Transposed Letter Priming with Horizontal and Vertical Text in Japanese and English Readers
ERIC Educational Resources Information Center
Witzel, Naoko; Qiao, Xiaomei; Forster, Kenneth
2011-01-01
It is well established that in masked priming, a target word (e.g., "JUDGE") is primed more effectively by a transposed letter (TL) prime (e.g., "jugde") than by an orthographic control prime (e.g., "junpe"). This is inconsistent with the slot coding schemes used in many models of visual word recognition. Several…
The Human Lives behind the Labels: The Global Sweatshop, Nike, and the Race to the Bottom.
ERIC Educational Resources Information Center
Bigelow, Bill
1997-01-01
The importance of discovering invisible social realities, of looking behind masks presented by everyday consumer goods (like T-shirts and soccer balls), inspired an Oregon high school teacher's efforts to teach about global sweatshops and child labor in poor countries. By examining loopholes in Nike's "code of conduct," students…
Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy
NASA Astrophysics Data System (ADS)
Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.
1993-11-01
We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.
NASA Astrophysics Data System (ADS)
Yusvana, Rama; Headon, Denis; Markx, Gerard H.
2009-08-01
The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-01-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801
Shape adaptive, robust iris feature extraction from noisy iris images.
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-10-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.
Study of shape evaluation for mask and silicon using large field of view
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka
2010-09-01
We have developed a highly integrated method of mask and silicon metrology. The aim of this integration is evaluating the performance of the silicon corresponding to Hotspot on a mask. It can use the mask shape of a large field, besides. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and mask manufacture, and this has a big impact on the semiconductor market that centers on the mask business. As an optimal solution to these issues, we provide a DFM solution that extracts 2-dimensional data for a more realistic and error-free simulation by reproducing accurately the contour of the actual mask, in addition to the simulation results from the mask data. On the other hand, there is roughness in the silicon form made from a mass-production line. Moreover, there is variation in the silicon form. For this reason, quantification of silicon form is important, in order to estimate the performance of a pattern. In order to quantify, the same form is equalized in two dimensions. And the method of evaluating based on the form is popular. In this study, we conducted experiments for averaging method of the pattern (Measurement Based Contouring) as two-dimensional mask and silicon evaluation technique. That is, observation of the identical position of a mask and a silicon was considered. The result proved its detection accuracy and reliability of variability on two-dimensional pattern (mask and silicon) and is adaptable to following fields of mask quality management. •Discrimination of nuisance defects for fine pattern. •Determination of two-dimensional variability of pattern. •Verification of the performance of the pattern of various kinds of Hotspots. In this report, we introduce the experimental results and the application. We expect that the mask measurement and the shape control on mask production will make a huge contribution to mask yield-enhancement and that the DFM solution for mask quality control process will become much more important technology than ever. It is very important to observe the form of the same location of Design, Mask, and Silicon in such a viewpoint. And we report it about algorithm of the image composition in Large Field.
Mathis, Michael R; Haydar, Bishr; Taylor, Emma L; Morris, Michelle; Malviya, Shobha V; Christensen, Robert E; Ramachandran, Satya-Krishna; Kheterpal, Sachin
2013-12-01
Although predictors of laryngeal mask airway failure in adults have been elucidated, there remains a paucity of data regarding laryngeal mask airway failure in children. The authors performed a retrospective database review of all pediatric patients who received a laryngeal mask anesthetic at their institution from 2006 to 2010. Device brands were restricted to LMA Unique™ (Cardinal Health, Dublin, OH) and LMA Classic™ (LMA North America, San Diego, CA), and primary outcome was laryngeal mask failure, defined as any airway event requiring device removal and tracheal intubation. Potential risk factors were analyzed with both univariate and multivariate techniques and included medical history, physical examination, surgical, and anesthetic characteristics. Of the 11,910 anesthesia cases performed in the study, 102 cases (0.86%) experienced laryngeal mask failure. Common presenting features of laryngeal mask failures included leak (25%), obstruction (48%), and patient intolerance such as intractable coughing/bucking (11%). Failures occurred before incision in 57% of cases and after incision in 43%. Independent clinical associations included ear/nose/throat surgical procedure, nonoutpatient admission status, prolonged surgical duration, congenital/acquired airway abnormality, and patient transport. The findings of the study support the use of the LMA Unique™ and LMA Classic™ as reliable pediatric supraglottic airway devices, demonstrating relatively low failure rates. Predictors of laryngeal mask airway failure in the pediatric surgical population do not overlap with those in the adult population and should therefore be independently considered.
Ultra-high resolution coded wavefront sensor.
Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang
2017-06-12
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
Known-plaintext attack on a joint transform correlator encrypting system.
Barrera, John Fredy; Vargas, Carlos; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Nestor
2010-11-01
We demonstrate in this Letter that a joint transform correlator shows vulnerability to known-plaintext attacks. An unauthorized user, who intercepts both an object and its encrypted version, can obtain the security key code mask. In this contribution, we conduct a hybrid heuristic attack scheme merge to a Gerchberg-Saxton routine to estimate the encrypting key to decode different ciphertexts encrypted with that same key. We also analyze the success of this attack for different pairs of plaintext-ciphertext used to get the encrypting code. We present simulation results for the decrypting procedure to demonstrate the validity of our analysis.
Propagation of resist heating mask error to wafer level
NASA Astrophysics Data System (ADS)
Babin, S. V.; Karklin, Linard
2006-10-01
As technology is approaching 45 nm and below the IC industry is experiencing a severe product yield hit due to rapidly shrinking process windows and unavoidable manufacturing process variations. Current EDA tools are unable by their nature to deliver optimized and process-centered designs that call for 'post design' localized layout optimization DFM tools. To evaluate the impact of different manufacturing process variations on final product it is important to trace and evaluate all errors through design to manufacturing flow. Photo mask is one of the critical parts of this flow, and special attention should be paid to photo mask manufacturing process and especially to mask tight CD control. Electron beam lithography (EBL) is a major technique which is used for fabrication of high-end photo masks. During the writing process, resist heating is one of the sources for mask CD variations. Electron energy is released in the mask body mainly as heat, leading to significant temperature fluctuations in local areas. The temperature fluctuations cause changes in resist sensitivity, which in turn leads to CD variations. These CD variations depend on mask writing speed, order of exposure, pattern density and its distribution. Recent measurements revealed up to 45 nm CD variation on the mask when using ZEP resist. The resist heating problem with CAR resists is significantly smaller compared to other types of resists. This is partially due to higher resist sensitivity and the lower exposure dose required. However, there is no data yet showing CD errors on the wafer induced by CAR resist heating on the mask. This effect can be amplified by high MEEF values and should be carefully evaluated at 45nm and below technology nodes where tight CD control is required. In this paper, we simulated CD variation on the mask due to resist heating; then a mask pattern with the heating error was transferred onto the wafer. So, a CD error on the wafer was evaluated subject to only one term of the mask error budget - the resist heating CD error. In simulation of exposure using a stepper, variable MEEF was considered.
Nanoimprint system development and status for high volume semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Hiura, Hiromi; Takabayashi, Yukio; Takashima, Tsuneo; Emoto, Keiji; Choi, Jin; Schumaker, Phil
2016-10-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography* (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are many criteria that determine whether a particular technology is ready for wafer manufacturing. For imprint lithography, recent attention has been given to the areas of overlay, throughput, defectivity, and mask replication. This paper reviews progress in these critical areas. Recent demonstrations have proven that mix and match overlay of less than 5nm can achieved. Further reductions require a higher order correction system. Modeling and experimental data are presented which provide a path towards reducing the overlay errors to less than 3nm. Throughput is mainly impacted by the fill time of the relief images on the mask. Improvement in resist materials provides a solution that allows 15 wafers per hour per station, or a tool throughput of 60 wafers per hour. Defectivity and mask life play a significant role relative to meeting the cost of ownership (CoO) requirements in the production of semiconductor devices. Hard particles on a wafer or mask create the possibility of inducing a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, the lifetime of both the master mask and the replica mask can be extended. In this work, we report results that demonstrate a path towards achieving mask lifetimes of better than 1000 wafers. Finally, on the mask side, a new replication tool, the FPA-1100NR2 is introduced. Mask replication is required for nanoimprint lithography (NIL), and criteria that are crucial to the success of a replication platform include both particle control and IP accuracy. In particular, by improving the specifications on the mask chuck, residual errors of only 1nm can be realized.
NASA Technical Reports Server (NTRS)
Turner, B. J. (Principal Investigator)
1982-01-01
A user friendly front end was constructed to facilitate access to the LANDSAT mosaic data base supplied by JPL and to process both LANDSAT and ancillary data. Archieval and retrieval techniques were developed to efficiently handle this data base and make it compatible with requirements of the Pennsylvania Bureau of Forestry. Procedures are ready for: (1) forming the forest/nonforest mask in ORSER compressed map format using GSFC-supplied classification procedures; (2) registering data from a new scene (defoliated) to the mask (which may involve mosaicking if the area encompasses two LANDSAT scenes; (3) producing a masked new data set using the MASK program; (4) analyzing this data set to produce a map showing degrees of defoliation, output on the Versatec plotter; and (5) producing color composite maps by a diazo-type process.
Masking in three pinnipeds: underwater, low-frequency critical ratios.
Southall, B L; Schusterman, R J; Kastak, D
2000-09-01
Behavioral techniques were used to determine underwater masked hearing thresholds for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Octave-band white noise maskers were centered at five test frequencies ranging from 200 to 2500 Hz; a slightly wider noise band was used for testing at 100 Hz. Critical ratios were calculated at one masking noise level for each test frequency. Above 200 Hz, critical ratios increased with frequency. This pattern is similar to that observed in most animals tested, and indicates that these pinnipeds lack specializations for detecting low-frequency tonal sounds in noise. However, the individual pinnipeds in this study, particularly the northern elephant seal, detected signals at relatively low signal-to-noise ratios. These results provide a means of estimating zones of auditory masking for pinnipeds exposed to anthropogenic noise sources.
High-quality GaN epitaxially grown on Si substrate with serpentine channels
NASA Astrophysics Data System (ADS)
Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong
2018-06-01
A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.
EUV mask manufacturing readiness in the merchant mask industry
NASA Astrophysics Data System (ADS)
Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek
2017-10-01
As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for the broadest community possible as the technology is implemented first within and then beyond the initial early adopters.
Photomask etch system and process for 10nm technology node and beyond
NASA Astrophysics Data System (ADS)
Chandrachood, Madhavi; Grimbergen, Michael; Yu, Keven; Leung, Toi; Tran, Jeffrey; Chen, Jeff; Bivens, Darin; Yalamanchili, Rao; Wistrom, Richard; Faure, Tom; Bartlau, Peter; Crawford, Shaun; Sakamoto, Yoshifumi
2015-10-01
While the industry is making progress to offer EUV lithography schemes to attain ultimate critical dimensions down to 20 nm half pitch, an interim optical lithography solution to address an immediate need for resolution is offered by various integration schemes using advanced PSM (Phase Shift Mask) materials including thin e-beam resist and hard mask. Using the 193nm wavelength to produce 10nm or 7nm patterns requires a range of optimization techniques, including immersion and multiple patterning, which place a heavy demand on photomask technologies. Mask schemes with hard mask certainly help attain better selectivity and hence better resolution but pose integration challenges and defectivity issues. This paper presents a new photomask etch solution for attenuated phase shift masks that offers high selectivity (Cr:Resist > 1.5:1), tighter control on the CD uniformity with a 3sigma value approaching 1 nm and controllable CD bias (5-20 nm) with excellent CD linearity performance (<5 nm) down to the finer resolution. The new system has successfully demonstrated capability to meet the 10 nm node photomask CD requirements without the use of more complicated hard mask phase shift blanks. Significant improvement in post wet clean recovery performance was demonstrated by the use of advanced chamber materials. Examples of CD uniformity, linearity, and minimum feature size, and etch bias performance on 10 nm test site and production mask designs will be shown.
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
Out-Phased Array Linearized Signaling (OPALS): A Practical Approach to Physical Layer Encryption
2015-10-26
Out-Phased Array Linearized Signaling ( OPALS ): A Practical Approach to Physical Layer Encryption Eric Tollefson, Bruce R. Jordan Jr., and Joseph D... OPALS ) which provides a practical approach to physical-layer encryption through spatial masking. Our approach modifies just the transmitter to employ...of the channel. With Out-Phased Array Linearized Signaling ( OPALS ), we propose a new masking technique that has some advantages of each of the
Performance of repaired defects and attPSM in EUV multilayer masks
NASA Astrophysics Data System (ADS)
Deng, Yunfei; La Fontaine, Bruno; Neureuther, Andrew R.
2002-12-01
The imaging performance of non-planar topographies in EUV masks for both partially repaired defects and non-planar attenuating phase-shifting masks made with repair treatments are evaluated using rigorous electromagnetic simulation with TEMPEST. Typical topographies produced by treatment techniques in the literature such as removal of top layers and compaction produced by electron-beam heating are considered. Isolated defects on/near the surface repaired by material removal are shown to result in an image intensity within 5% of the clear field value. Deeply buried defects within the multilayer treated by electron-beam heating can be repaired to 3% of the clear field but over repair can result in some degradation. Compaction from a 6.938 nm period to a 6.312 nm period shows a 540° phase-shift and an intensity reduced to about 6% suggesting such a treatment may be used to create attenuated phase-shifting masks for EUV. The quality of the aerial image for such a mask is studied as a function of the lateral transition distance between treated and untreated regions.
USDA-ARS?s Scientific Manuscript database
Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common b...
USDA-ARS?s Scientific Manuscript database
Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. This suggests that the GeneChip(R) Soybean Genome Array (soybean GeneChip) may be used for gene expression studies using common bean. To evaluate the utility...
ERIC Educational Resources Information Center
Kunde, Wilfried; Kiesel, Andrea; Hoffmann, Joachim
2005-01-01
We have recently argued that unconscious numerical stimuli might activate responses by a match with prespecified action trigger codes (action trigger account) rather than by semantic prime processing (elaborate processing account). [Van Opstal, F., Reynvoet, B., and Verguts, T. (2005). How to trigger elaborate processing? A comment on Kunde,…
Chosen-plaintext attack on a joint transform correlator encrypting system
NASA Astrophysics Data System (ADS)
Barrera, John Fredy; Vargas, Carlos; Tebaldi, Myrian; Torroba, Roberto
2010-10-01
We demonstrate that optical encryption methods based on the joint transform correlator architecture are vulnerable to chosen-plaintext attack. An unauthorized user, who introduces three chosen plaintexts in the accessible encryption machine, can obtain the security key code mask. In this contribution, we also propose an alternative method to eliminate ambiguities that allows obtaining the right decrypting key.
NASA Astrophysics Data System (ADS)
Kohman, T. P.
1995-05-01
The design of a cosmic X- or gamma -ray telescope with least- squares image reconstruction and its simulated operation have been described (Rev. Sci. Instrum. 60, 3396 and 3410 (1989)). Use of an auxiliary open aperture ("limiter") ahead of the coded aperture limits the object field to fewer pixels than detector elements, permitting least-squares reconstruction with improved accuracy in the imaged field; it also yields a uniformly sensitive ("flat") central field. The design has been enhanced to provide for mask-antimask operation. This cancels and eliminates uncertainties in the detector background, and the simulated results have virtually the same statistical accuracy (pixel-by-pixel output-input RMSD) as with a single mask alone. The simulations have been made more realistic by incorporating instrumental blurring of sources. A second-stage least-squares procedure had been developed to determine the precise positions and total fluxes of point sources responsible for clusters of above-background pixels in the field resulting from the first-stage reconstruction. Another program converts source positions in the image plane to celestial coordinates and vice versa, the image being a gnomic projection of a region of the sky.
Electrophysiological Evidence for the Sources of the Masking Level Difference.
Fowler, Cynthia G
2017-08-16
The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.
Grayscale lithography-automated mask generation for complex three-dimensional topography
NASA Astrophysics Data System (ADS)
Loomis, James; Ratnayake, Dilan; McKenna, Curtis; Walsh, Kevin M.
2016-01-01
Grayscale lithography is a relatively underutilized technique that enables fabrication of three-dimensional (3-D) microstructures in photosensitive polymers (photoresists). By spatially modulating ultraviolet (UV) dosage during the writing process, one can vary the depth at which photoresist is developed. This means complex structures and bioinspired designs can readily be produced that would otherwise be cost prohibitive or too time intensive to fabricate. The main barrier to widespread grayscale implementation, however, stems from the laborious generation of mask files required to create complex surface topography. We present a process and associated software utility for automatically generating grayscale mask files from 3-D models created within industry-standard computer-aided design (CAD) suites. By shifting the microelectromechanical systems (MEMS) design onus to commonly used CAD programs ideal for complex surfacing, engineering professionals already familiar with traditional 3-D CAD software can readily utilize their pre-existing skills to make valuable contributions to the MEMS community. Our conversion process is demonstrated by prototyping several samples on a laser pattern generator-capital equipment already in use in many foundries. Finally, an empirical calibration technique is shown that compensates for nonlinear relationships between UV exposure intensity and photoresist development depth as well as a thermal reflow technique to help smooth microstructure surfaces.
Flat-Sky Pseudo-Cls Analysis for Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Asgari, Marika; Taylor, Andy; Joachimi, Benjamin; Kitching, Thomas D.
2018-05-01
We investigate the use of estimators of weak lensing power spectra based on a flat-sky implementation of the 'Pseudo-CI' (PCl) technique, where the masked shear field is transformed without regard for masked regions of sky. This masking mixes power, and 'E'-convergence and 'B'-modes. To study the accuracy of forward-modelling and full-sky power spectrum recovery we consider both large-area survey geometries, and small-scale masking due to stars and a checkerboard model for field-of-view gaps. The power spectrum for the large-area survey geometry is sparsely-sampled and highly oscillatory, which makes modelling problematic. Instead, we derive an overall calibration for large-area mask bias using simulated fields. The effects of small-area star masks can be accurately corrected for, while the checkerboard mask has oscillatory and spiky behaviour which leads to percent biases. Apodisation of the masked fields leads to increased biases and a loss of information. We find that we can construct an unbiased forward-model of the raw PCls, and recover the full-sky convergence power to within a few percent accuracy for both Gaussian and lognormal-distributed shear fields. Propagating this through to cosmological parameters using a Fisher-Matrix formalism, we find we can make unbiased estimates of parameters for surveys up to 1,200 deg2 with 30 galaxies per arcmin2, beyond which the percent biases become larger than the statistical accuracy. This implies a flat-sky PCl analysis is accurate for current surveys but a Euclid-like survey will require higher accuracy.
Advanced EUV mask and imaging modeling
NASA Astrophysics Data System (ADS)
Evanschitzky, Peter; Erdmann, Andreas
2017-10-01
The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.
Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask
2014-01-01
A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication. PMID:24940174
An automatic iris occlusion estimation method based on high-dimensional density estimation.
Li, Yung-Hui; Savvides, Marios
2013-04-01
Iris masks play an important role in iris recognition. They indicate which part of the iris texture map is useful and which part is occluded or contaminated by noisy image artifacts such as eyelashes, eyelids, eyeglasses frames, and specular reflections. The accuracy of the iris mask is extremely important. The performance of the iris recognition system will decrease dramatically when the iris mask is inaccurate, even when the best recognition algorithm is used. Traditionally, people used the rule-based algorithms to estimate iris masks from iris images. However, the accuracy of the iris masks generated this way is questionable. In this work, we propose to use Figueiredo and Jain's Gaussian Mixture Models (FJ-GMMs) to model the underlying probabilistic distributions of both valid and invalid regions on iris images. We also explored possible features and found that Gabor Filter Bank (GFB) provides the most discriminative information for our goal. Finally, we applied Simulated Annealing (SA) technique to optimize the parameters of GFB in order to achieve the best recognition rate. Experimental results show that the masks generated by the proposed algorithm increase the iris recognition rate on both ICE2 and UBIRIS dataset, verifying the effectiveness and importance of our proposed method for iris occlusion estimation.
Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.
Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J
2011-12-01
The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.
Glaser, I
1982-04-01
By combining a lenslet array with masks it is possible to obtain a noncoherent optical processor capable of computing in parallel generalized 2-D discrete linear transformations. We present here an analysis of such lenslet array processors (LAP). The effect of several errors, including optical aberrations, diffraction, vignetting, and geometrical and mask errors, are calculated, and guidelines to optical design of LAP are derived. Using these results, both ultimate and practical performances of LAP are compared with those of competing techniques.
Lincoln's craniofacial microsomia: three-dimensional laser scanning of 2 Lincoln life masks.
Fishman, Ronald S; Da Silveira, Adriana
2007-08-01
Examination of 2 life masks of Abraham Lincoln's face was performed by means of 3-dimensional laser surface scanning. This technique enabled documentation and analysis of Lincoln's facial contours and demonstrated his marked facial asymmetry, particularly evident in the smaller left superior orbital rim. This may have led to retroplacement of the trochlea on the left side, leading, in turn, to the mild superior oblique paresis that was manifested intermittently during adulthood.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
NASA Astrophysics Data System (ADS)
McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick
2006-03-01
The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.
Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeffrey G., E-mail: jglee@umd.edu; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742; Hill, W. T., E-mail: wth@umd.edu
2014-10-15
We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemicallymore » etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.« less
Face Masks for Noninvasive Ventilation: Fit, Excess Skin Hydration, and Pressure Ulcers.
Visscher, Marty O; White, Cynthia C; Jones, Jennifer M; Cahill, Thomas; Jones, Donna C; Pan, Brian S
2015-11-01
Pressure ulcers (stages III and IV) are serious safety events (ie, never events). Healthcare institutions are no longer reimbursed for costs to care for affected patients. Medical devices are the leading cause of pediatric pressure ulcers. Face masks for noninvasive ventilation were associated with a high percentage of pressure ulcers at our institution. A prospective cohort study investigated factors contributing to pressure ulcer development in 50 subjects using face masks for noninvasive ventilation. Color imaging, 3-dimensional surface imaging, and skin hydration measurements were used to identify early skin compromise and evaluate 3 interventions to reduce trauma: (1) a silicone foam dressing, (2) a water/polyethylene oxide hydrogel dressing, and (3) a flexible cloth mask. A novel mask fit technique was used to examine the impact of fit on the potential for skin compromise. Fifty subjects age 10.4 ± 9.1 y participated with color images for 22, hydration for 34, and mask fit analysis for 16. Of these, 69% had diagnoses associated with craniofacial anomalies. Stage I pressure ulcers were the most common injury. Skin hydration difference was 317 ± 29 for sites with erythema versus 75 ± 28 for sites without erythema (P < .05) and smallest for the cloth mask (P < .05). Fit distance metrics differed for the nasal, oronasal, and face shield interfaces, with threshold distances being higher for the oronasal mask than the others (P < .05). Areas of high contact were associated with skin erythema and pressure ulcers. This fit method is currently being utilized to select best-fit masks from available options, to identify the potential areas of increased tissue pressure, and to prevent skin injuries and their complications. Improvement of mask fit is an important priority for improving respiratory outcomes. Strategies to maintain normal skin hydration are important for protecting tissue integrity. Copyright © 2015 by Daedalus Enterprises.
Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi
2016-02-01
The purpose of this study was to compare the mean hepatic stiffness values obtained by the application of two different direct inverse problem reconstruction methods to magnetic resonance elastography (MRE). Thirteen healthy men (23.2±2.1 years) and 16 patients with liver diseases (78.9±4.3 years; 12 men and 4 women) were examined for this study using a 3.0 T-MRI. The healthy volunteers underwent three consecutive scans, two 70-Hz waveform and a 50-Hz waveform scans. On the other hand, the patients with liver disease underwent scanning using the 70-Hz waveform only. The MRE data for each subject was processed twice for calculation of the mean hepatic stiffness (Pa), once using the multiscale direct inversion (MSDI) and once using the multimodel direct inversion (MMDI). There were no significant differences in the mean stiffness values among the scans obtained with two 70-Hz and different waveforms. However, the mean stiffness values obtained with the MSDI technique (with mask: 2895.3±255.8 Pa, without mask: 2940.6±265.4 Pa) were larger than those obtained with the MMDI technique (with mask: 2614.0±242.1 Pa, without mask: 2699.2±273.5 Pa). The reproducibility of measurements obtained using the two techniques was high for both the healthy volunteers [intraclass correlation coefficients (ICCs): 0.840-0.953] and the patients (ICC: 0.830-0.995). These results suggest that knowledge of the characteristics of different direct inversion algorithms is important for longitudinal liver stiffness assessments such as the comparison of different scanners and evaluation of the response to fibrosis therapy.
1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data
NASA Astrophysics Data System (ADS)
Schulz, H. M.; Thies, B.; Cermak, J.; Bendix, J.
2012-06-01
In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.
1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data
NASA Astrophysics Data System (ADS)
Schulz, H. M.; Thies, B.; Cermak, J.; Bendix, J.
2012-10-01
In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.
Fabrication mechanism of friction-induced selective etching on Si(100) surface
2012-01-01
As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems. PMID:22356699
Fabrication mechanism of friction-induced selective etching on Si(100) surface.
Guo, Jian; Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong
2012-02-23
As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems.
Programmable CGH on photochromic material using DMD generated masks
NASA Astrophysics Data System (ADS)
Alata, Romain; Zamkotsian, Frédéric; Lanzoni, Patrick; Pariani, Giorgio; Bianco, Andrea; Bertarelli, Chiara
2018-02-01
Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing, including aspherical and free-form optics. Today, CGHs are recorded directly with a laser or intermediate masks, allowing only the realization of binary CGHs; they are efficient but can reconstruct only pixilated images. We propose a Digital Micromirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate. The DMD is composed of 2048x1080 individually controllable micro-mirrors, with a pitch of 13.68 μm. This is a real-time reconfigurable mask, perfect for recording CGHs. The photochromic plate is opaque at rest and becomes transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first amplitude grayscale CGH, in equally spaced levels, so called stepped CGH. We recorded up to 1000x1000 pixels CGHs with a contrast greater than 50, using Fresnel as well as Fourier coding scheme. Fresnel's CGH are obtained by calculating the inverse Fresnel transform of the original image at a given focus, ranging from 50cm to 2m. The reconstruction of the recorded images with a 632.8nm He-Ne laser beam leads to images with a high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates.
The best bits in an iris code.
Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J
2009-06-01
Iris biometric systems apply filters to iris images to extract information about iris texture. Daugman's approach maps the filter output to a binary iris code. The fractional Hamming distance between two iris codes is computed and decisions about the identity of a person are based on the computed distance. The fractional Hamming distance weights all bits in an iris code equally. However, not all the bits in an iris code are equally useful. Our research is the first to present experiments documenting that some bits are more consistent than others. Different regions of the iris are compared to evaluate their relative consistency, and contrary to some previous research, we find that the middle bands of the iris are more consistent than the inner bands. The inconsistent-bit phenomenon is evident across genders and different filter types. Possible causes of inconsistencies, such as segmentation, alignment issues, and different filters are investigated. The inconsistencies are largely due to the coarse quantization of the phase response. Masking iris code bits corresponding to complex filter responses near the axes of the complex plane improves the separation between the match and nonmatch Hamming distance distributions.
Snow and Ice Mask for the MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Remer, Lorraine; Kaufman, Yoram J.; Mattoo, Shana; Gao, Bo-Cai; Vermote, Eric
2005-01-01
The atmospheric products have been derived operationally from multichannel imaging data collected with the Moderate Resolution Imaging SpectroRadiometers (MODIS) on board the NASA Terra and Aqua spacecrafts. Preliminary validations of the products were previously reported. Through analysis of more extensive time-series of MODIS aerosol products (Collection 4), we have found that the aerosol products over land areas are slightly contaminated by snow and ice during the springtime snow-melting season. We have developed an empirical technique using MODIS near-IR channels centered near 0.86 and 1.24 pm and a thermal emission channel near 11 pm to mask out these snow-contaminated pixels over land. Improved aerosol retrievals over land have been obtained. Sample results from application of the technique to MODIS data acquired over North America, northern Europe, and northeastern Asia are presented. The technique has been implemented into the MODIS Collection 5 operational algorithm for retrieving aerosols over land from MODIS data.
Ultra-low roughness magneto-rheological finishing for EUV mask substrates
NASA Astrophysics Data System (ADS)
Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath
2013-09-01
EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.
Complementary-encoding holographic associative memory using a photorefractive crystal
NASA Astrophysics Data System (ADS)
Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan
1996-06-01
We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.
Le Rouic, J F; Breger, D; Peronnet, P; Hermouet-Leclair, E; Alphandari, A; Pousset-Decré, C; Badat, I; Becquet, F
2016-05-01
To describe a technique for extemporaneously drawing up bevacizumab for intravitreal injection (IVT) and report the rate of post-injection endophthtalmitis. Retrospective monocentric analysis (January 2010-December 2014) of all IVT of bevacizumab drawn up with the following technique: in the operating room (class ISO 7) through a mini-spike with an integrated bacteria retentive air filter. The surgeon was wearing sterile gloves and a mask. The assisting nurse wore a mask. The bevacizumab vial was discarded at the end of each session. Six thousand two hundred and thirty-six bevacizumab injections were performed. One case of endophthalmitis was noted (0.016%). During the same period, 4 cases of endophthalmitis were found after IVT of other drugs (4/32,992; 0.012%. P=0.8). Intravitreal injection of bevacizumab after extemporaneous withdrawal through a mini-spike filter is a simple and safe technique. The risk of postoperative endophthalmitis is very low. This simple technique facilitates access to compounded bevacizumab. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Development of binary image masks for TPF-C and ground-based AO coronagraphs
NASA Astrophysics Data System (ADS)
Ge, Jian; Crepp, Justin; Vanden Heuvel, Andrew; Miller, Shane; McDavitt, Dan; Kravchenko, Ivan; Kuchner, Marc
2006-06-01
We report progress on the development of precision binary notch-filter focal plane coronagraphic masks for directly imaging Earth-like planets at visible wavelengths with the Terrestrial Planet Finder Coronagraph (TPF-C), and substellar companions at near infrared wavelengths from the ground with coronagraphs coupled to high-order adaptive optics (AO) systems. Our recent theoretical studies show that 8th-order image masks (Kuchner, Crepp & Ge 2005, KCG05) are capable of achieving unlimited dynamic range in an ideal optical system, while simultaneously remaining relatively insensitive to low-spatial-frequency optical aberrations, such as tip/tilt errors, defocus, coma, astigmatism, etc. These features offer a suite of advantages for the TPF-C by relaxing many control and stability requirements, and can also provide resistance to common practical problems associated with ground-based observations; for example, telescope flexure and low-order errors left uncorrected by the AO system due to wavefront sensor-deformable mirror lag time can leak light at significant levels. Our recent lab experiments show that prototype image masks can generate contrast levels on the order of 2x10 -6 at 3 λ/D and 6x10 -7 at 10 λ/D without deformable mirror correction using monochromatic light (Crepp et al. 2006), and that this contrast is limited primarily by light scattered by imperfections in the optics and extra diffraction created by mask construction errors. These experiments also indicate that the tilt and defocus sensitivities of high-order masks follow the theoretical predictions of Shaklan and Green 2005. In this paper, we discuss these topics as well as review our progress on developing techniques for fabricating a new series of image masks that are "free-standing", as such construction designs may alleviate some of the (mostly chromatic) problems associated with masks that rely on glass substrates for mechanical support. Finally, results obtained from our AO coronagraph simulations are provided in the last section. In particular, we find that: (i) apodized masks provide deeper contrast than hard-edge masks when the image quality exceeds 80% Strehl ratio (SR), (ii) above 90% SR, 4th-order band-limited masks provide higher off-axis throughput than Gaussian masks when generating comparable contrast levels, and (iii) below ~90% SR, hard-edge masks may be better suited for high contrast imaging, since they are less susceptible to tip/tilt alignment errors.
Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
1983-01-01
High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.
ERIC Educational Resources Information Center
Webster, Rob
2014-01-01
In this article, the author reflects on findings from research on the role and impact of teaching assistants and experience of working as a special educational needs (SEN) officer. Research evidence suggests the reliance on teaching assistants to include pupils with Statements of SEN in mainstream settings masks a collective, though unintentional,…
ERIC Educational Resources Information Center
Parsons, Amy; Howe, Nina
2013-01-01
Preschool boys' pretense and coconstruction of shared meanings during two play sessions (superhero and generic toys) were investigated with 58 middle-class boys ("M" age = 54.95 mos.). The frequency of dyadic pretense and the coconstruction of shared meanings in the play were coded. The frequency of pretense did not vary across the two…
SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, S; Kaye, W; Jaworski, J
2015-06-15
Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinholemore » camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired for various applications worldwide, including proton therapy imaging R&D.« less
NASA Astrophysics Data System (ADS)
Tornga, Shawn R.
The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.
Process For Patterning Dispenser-Cathode Surfaces
NASA Technical Reports Server (NTRS)
Garner, Charles E.; Deininger, William D.
1989-01-01
Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.
Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery.
Ketcha, M D; De Silva, T; Uneri, A; Kleinszig, G; Vogt, S; Wolinsky, J-P; Siewerdsen, J H
During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.
Moors, Pieter; Wagemans, Johan; de-Wit, Lee
2014-01-01
Continuous flash suppression (CFS) is a powerful interocular suppression technique, which is often described as an effective means to reliably suppress stimuli from visual awareness. Suppression through CFS has been assumed to depend upon a reduction in (retinotopically specific) neural adaptation caused by the continual updating of the contents of the visual input to one eye. In this study, we started from the observation that suppressing a moving stimulus through CFS appeared to be more effective when using a mask that was actually more prone to retinotopically specific neural adaptation, but in which the properties of the mask were more similar to those of the to-be-suppressed stimulus. In two experiments, we find that using a moving Mondrian mask (i.e., one that includes motion) is more effective in suppressing a moving stimulus than a regular CFS mask. The observed pattern of results cannot be explained by a simple simulation that computes the degree of retinotopically specific neural adaptation over time, suggesting that this kind of neural adaptation does not play a large role in predicting the differences between conditions in this context. We also find some evidence consistent with the idea that the most effective CFS mask is the one that matches the properties (speed) of the suppressed stimulus. These results question the general importance of retinotopically specific neural adaptation in CFS, and potentially help to explain an implicit trend in the literature to adapt one's CFS mask to match one's to-be-suppressed stimuli. Finally, the results should help to guide the methodological development of future research where continuous suppression of moving stimuli is desired.
Automatic masking for robust 3D-2D image registration in image-guided spine surgery
NASA Astrophysics Data System (ADS)
Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.
2016-03-01
During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.
65-nm full-chip implementation using double dipole lithography
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Chen, J. Fung; Cororan, Noel; Knose, William T.; Van Den Broeke, Douglas J.; Laidig, Thomas L.; Wampler, Kurt E.; Shi, Xuelong; Hsu, Michael; Eurlings, Mark; Finders, Jo; Chiou, Tsann-Bim; Socha, Robert J.; Conley, Will; Hsieh, Yen W.; Tuan, Steve; Hsieh, Frank
2003-06-01
Double Dipole Lithography (DDL) has been demonstrated to be capable of patterning complex 2D patterns. Due to inherently high aerial imaging contrast, especially for dense features, we have found that it has a very good potential to meet manufacturing requirements for the 65nm node using ArF binary chrome masks. For patterning in the k1<0.35 regime without resorting to hard phase-shift masks (PSMs), DDL is one unique Resolution Enhancement Technique (RET) which can achieve an acceptable process window. To utilize DDL for printing actual IC devices, the original design data must be decomposed into "vertical (V)" and "horizontal (H)" masks for the respective X- and Y-dipole exposures. An improved two-pass, model-based, DDL mask data processing methodology has been established. It is capable of simultaneously converting complex logic and memory mask patterns into DDL compatible mask layout. To maximize the overlapped process window area, we have previously shown that the pattern-shielding algorithm must be intelligently applied together with both Scattering Bars (SBs) and model-based OPC (MOPC). Due to double exposures, stray light must be well-controlled to ensure uniform printing across the entire chip. One solution to minimize stray light is to apply large patches of solid chrome in open areas to reduce the background transmission during exposure. Unfortunately, this is not feasible for a typical clear-field poly gate masks to be patterned by a positive resist process. In this work, we report a production-worthy DDL mask pattern decomposition scheme for full-chip application. A new generation of DDL technology reticle set has been developed to verify the printing performance. Shielding is a critical part of the DDL. An innovative shielding scheme has been developed to protect the critical features and minimize the impact of stray light during double exposure.
The role of executive attention in object substitution masking.
Filmer, Hannah L; Wells-Peris, Roxanne; Dux, Paul E
2017-05-01
It was long thought that a key characteristic of object substitution masking (OSM) was the requirement for spatial attention to be dispersed for the mask to impact visual sensitivity. However, recent studies have provided evidence questioning whether spatial attention interacts with OSM magnitude, suggesting that the previous reports reflect the impact of performance being at ceiling for the low attention load conditions. Another technique that has been employed to modulate attention in OSM paradigms involves presenting the target stimulus foveally, but with another demanding task shown immediately prior, and thus taxing executive/temporal attention. Under such conditions, when the two tasks occur in close temporal proximity relatively to greater temporal separation, masking is increased. However this effect could also be influenced by performance being at ceiling in some conditions. Here, we manipulated executive attention for a foveated target using a dual-task paradigm. Critically, ceiling performance was avoided by thresholding the target stimulus prior to it being presented under OSM conditions. We found no evidence for an interaction between executive attention load and masking. Collectively, along with the previous findings, our results provide compelling evidence that OSM as a phenomenon occurs independently of attention.
[Laryngeal mask for intubation (Fastrach)].
Añez Simón, C; Boada Pié, S; Solsona Dellá, B
2000-10-01
The laryngeal mask for intubation (MLI), or "Fastrach", is a new device designed by Brain for airway management. The MLI, a modified version of the conventional laryngeal mask, allows for blind intubation through the device using endotracheal tubes up to 8 mm in diameter. Insertion with the head in a neutral position makes this system useful for managing the airway when neck injury is present. The device has been used successfully in patients assessed as having difficult-to-manage airways and its use in emergencies inside or outside the hospital is promising. The MLI has been used with high rates of success in combination with other techniques such as fiberoptic bronchoscopy (success rate 99 to 100%) and transillumination (95 to 100% success rate) in patients whose airways have been considered difficult to manage. Given such high rates of success for MLI placement (95 to 100%) and for blind orotracheal intubation (81 to 100%), the Fastrach may offer an alternative to the conventional laryngeal mask in algorithms for airway management.
Righetti, Laura; Rolli, Enrico; Galaverna, Gianni; Suman, Michele; Bruni, Renato
2017-01-01
“Masked mycotoxins” senso strictu are conjugates of mycotoxins resulting from metabolic pathways activated by the interplay between pathogenic fungi and infected plants. Zearalenone, an estrogenic mycotoxin produced by Fusarium spp, was the first masked mycotoxin ever described in the literature, but its biotransformation has been studied to a lesser extent if compared to other compounds such as deoxynivalenol. We presented herein the first application of organ and tissue culture techniques to study the metabolic fate of zearalenone in durum wheat, using an untargeted HR-LCMS approach. A complete, quick absorption of zearalenone by uninfected plant organs was noticed, and its biotransformation into a large spectrum of phase I and phase II metabolites has been depicted. Therefore, wheat organ tissue cultures can be effectively used as a biocatalytic tool for the production of masked mycotoxins, as well as a replicable model for the investigation of the interplay between mycotoxins and wheat physiology. PMID:29145415
A challenging dissociation in masked identity priming with the lexical decision task.
Perea, Manuel; Jiménez, María; Gómez, Pablo
2014-05-01
The masked priming technique has been used extensively to explore the early stages of visual-word recognition. One key phenomenon in masked priming lexical decision is that identity priming is robust for words, whereas it is small/unreliable for nonwords. This dissociation has usually been explained on the basis that masked priming effects are lexical in nature, and hence there should not be an identity prime facilitation for nonwords. We present two experiments whose results are at odds with the assumption made by models that postulate that identity priming is purely lexical, and also challenge the assumption that word and nonword responses are based on the same information. Our experiments revealed that for nonwords, but not for words, matched-case identity PRIME-TARGET pairs were responded to faster than mismatched-case identity prime-TARGET pairs, and this phenomenon was not modulated by the lowercase/uppercase feature similarity of the stimuli. Copyright © 2014 Elsevier B.V. All rights reserved.
A Roman bronze statuette with gilded silver mask from Sardinia: an EDXRF study
NASA Astrophysics Data System (ADS)
Cesareo, Roberto; Brunetti, Antonio; D'Oriano, Rubens; Canu, Alba; Demontis, Gonaria Mattia; Celauro, Angela
2013-12-01
A Roman bronze statuette from the 2nd Century BC was recovered from a nuragic sanctuary close to Florinas, in the north of Sardinia. The facial portion of the statuette is covered by a silver mask, partially gilded and attached to the bronze by tin-lead welding. The silver mask was carefully analyzed by portable energy-dispersive X-ray fluorescence (EDXRF), a non-destructive and non-invasive method. The aim of the analysis was to reconstruct the layered structure of the silver gilt mask, and to determine homogeneity and thickness of the gold, silver and lead-tin sheets. This is possible by using the internal ratio of the X-ray lines, i.e. starting from the surface, Au (L α/L β), Ag (K α/K β), Au-L α/Ag-K α and Pb (L α/L β).The results were compared with those obtained with simulated X-ray spectra, obtained both experimentally and by using the Monte Carlo simulation technique.
The Four-Quadrant Phase-Mask Coronagraph. I. Principle
NASA Astrophysics Data System (ADS)
Rouan, D.; Riaud, P.; Boccaletti, A.; Clénet, Y.; Labeyrie, A.
2000-11-01
We describe a new type of coronagraph, based on the principle of a phase mask as proposed by Roddier and Roddier a few years ago but using an original mask design found by one of us (D. R.), a four-quadrant binary phase mask (0, π) covering the full field of view at the focal plane. The mutually destructive interferences of the coherent light from the main source produce a very efficient nulling. The computed rejection rate of this coronagraph appears to be very high since, when perfectly aligned and phase-error free, it could in principle reduce the total amount of light from the bright source by a factor of 108, corresponding to a gain of 20 mag in brightness at the location of the first Airy ring, relative to the Airy peak. In the real world the gain is of course reduced by a strong factor, but nulling is still performing quite well, provided that the perturbation of the phase, for instance, due to the Earth's atmosphere, is efficiently corrected by adaptive optics. We show from simulations that a detection at a contrast of 10 mag between a star and a faint companion is achievable in excellent conditions, while 8 mag appears routinely feasible. This coronagraph appears less sensitive to atmospheric turbulence and has a larger dynamic range than other recently proposed nulling techniques: the phase-mask coronagraph (by Roddier and Roddier) or the Achromatic Interfero-Coronagraph (by Gay and Rabbia). We present the principle of the four-quadrant coronagraph and results of a first series of simulations. We compare those results with theoretical performances of other devices. We briefly analyze the different limitations in space or ground-based observations, as well as the issue of manufacturing the device. We also discuss several ways to improve the detection of a faint companion around a bright object. We conclude that, with respect to previous techniques, an instrument equipped with this coronagraph should have better performance and even enable the imaging of extrasolar giant planets at a young stage, when coupled with additional cleaning techniques.
Exploring EUV and SAQP pattering schemes at 5nm technology node
NASA Astrophysics Data System (ADS)
Hamed Fatehy, Ahmed; Kotb, Rehab; Lafferty, Neal; Jiang, Fan; Word, James
2018-03-01
For years, Moore's law keeps driving the semiconductors industry towards smaller dimensions and higher density chips with more devices. Earlier, the correlation between exposure source's wave length and the smallest resolvable dimension, mandated the usage of Deep Ultra-Violent (DUV) optical lithography system which has been used for decades to sustain Moore's law, especially when immersion lithography was introduced with 193nm ArF laser sources. As dimensions of devices get smaller beyond Deep Ultra-Violent (DUV) optical resolution limits, the need for Extremely Ultra-Violent (EUV) optical lithography systems was a must. However, EUV systems were still under development at that time for the mass-production in semiconductors industry. Theretofore, Multi-Patterning (MP) technologies was introduced to swirl about DUV optical lithography limitations in advanced nodes beyond minimum dimension (CD) of 20nm. MP can be classified into two main categories; the first one is to split the target itself across multiple masks that give the original target patterns when they are printed. This category includes Double, Triple and Quadruple patterning (DP, TP, and QP). The second category is the Self-Aligned Patterning (SAP) where the target is divided into Mandrel patterns and non-Mandrel patterns. The Mandrel patterns get printed first, then a self-aligned sidewalls are grown around these printed patterns drawing the other non-Mandrel targets, afterword, a cut mask(s) is used to define target's line-ends. This approach contains Self-Aligned-Double Pattering (SADP) and Self-Aligned- Quadruple-Pattering (SAQP). DUV and MP along together paved the way for the industry down to 7nm. However, with the start of development at the 5nm node and the readiness of EUV, the differentiation question is aroused again, which pattering approach should be selected, direct printing using EUV or DUV with MP, or a hybrid flow that contains both DUV-MP and EUV. In this work we are comparing two potential pattering techniques for Back End Of Line (BEOL) metal layers in the 5nm technology node, the first technique is Single Exposure EUV (SE-EUV) with a Direct Patterning EUV lithography process, and the second one is Self-Aligned Quadruple Patterning (SAQP) with a hybrid lithography processes, where the drawn metal target layer is decomposed into a Mandrel mask and Blocks/Cut mask, Mandrel mask is printed using DUV 193i lithography process, while Block/Cut Mask is printed using SE-EUV lithography process. The pros and cons of each technique are quantified based on Edge-Placement-Error (EPE) and Process Variation Band (PVBand) measured at 1D and 2D edges. The layout used in this comparison is a candidate layout for Foundries 5nm process node.
NASA Technical Reports Server (NTRS)
Desai, U. D.; Orwig, Larry E.
1988-01-01
In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.
Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking
NASA Astrophysics Data System (ADS)
Rassat, Anais
2016-07-01
Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.
Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking
NASA Astrophysics Data System (ADS)
Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J.
2014-08-01
Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.
Drowsy driver mobile application: Development of a novel scleral-area detection method.
Mohammad, Faisal; Mahadas, Kausalendra; Hung, George K
2017-10-01
A reliable and practical app for mobile devices was developed to detect driver drowsiness. It consisted of two main components: a Haar cascade classifier, provided by a computer vision framework called OpenCV, for face/eye detection; and a dedicated JAVA software code for image processing that was applied over a masked region circumscribing the eye. A binary threshold was performed over the masked region to provide a quantitative measure of the number of white pixels in the sclera, which represented the state of eye opening. A continuously low white-pixel count would indicate drowsiness, thereby triggering an alarm to alert the driver. This system was successfully implemented on: (1) a static face image, (2) two subjects under laboratory conditions, and (3) a subject in a vehicle environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Creation of hybrid optoelectronic systems for document identification
NASA Astrophysics Data System (ADS)
Muravsky, Leonid I.; Voronyak, Taras I.; Kulynych, Yaroslav P.; Maksymenko, Olexander P.; Pogan, Ignat Y.
2001-06-01
Use of security devices based on a joint transform correlator (JTC) architecture for identification of credit cards and other products is very promising. The experimental demonstration of the random phase encoding technique for security verification shows that hybrid JTCs can be successfully utilized. The random phase encoding technique provides a very high protection level of products and things to be identified. However, the realization of this technique is connected with overcoming of the certain practical problems. To solve some of these problems and simultaneously to improve the security of documents and other products, we propose to use a transformed phase mask (TPM) as an input object in an optical correlator. This mask is synthesized from a random binary pattern (RBP), which is directly used to fabricate a reference phase mask (RPM). To obtain the TPM, we previously separate the RBP on a several parts (for example, K parts) of an arbitrary shape and further fabricate the TPM from this transformed RBP. The fabricated TPM can be bonded as the optical mark to any product or thing to be identified. If the RPM and the TPM are placed on the optical correlator input, the first diffracted order of the output correlation signal is containing the K narrow autocorrelation peaks. The distances between the peaks and the peak's intensities can be treated as the terms of the identification feature vector (FV) for the TPM identification.
NASA Astrophysics Data System (ADS)
Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.
2017-03-01
The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.
Machine learning based cloud mask algorithm driven by radiative transfer modeling
NASA Astrophysics Data System (ADS)
Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.
2017-12-01
Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.
Rapid modelling of the redshift-space power spectrum multipoles for a masked density field
NASA Astrophysics Data System (ADS)
Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.
2017-01-01
In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.
Malham, Gregory M; Parker, Rhiannon M
2018-04-01
OBJECTIVE Image guidance for spine surgery has been reported to improve the accuracy of pedicle screw placement and reduce revision rates and radiation exposure. Current navigation and robot-assisted techniques for percutaneous screws rely on bone-anchored trackers and Kirchner wires (K-wires). There is a paucity of published data regarding the placement of image-guided percutaneous screws without K-wires. A new skin-adhesive stereotactic patient tracker (SpineMask) eliminates both an invasive bone-anchored tracker and K-wires for pedicle screw placement. This study reports the authors' early experience with the use of SpineMask for "K-wireless" placement of minimally invasive pedicle screws and makes recommendations for its potential applications in lumbar fusion. METHODS Forty-five consecutive patients (involving 204 screws inserted) underwent K-wireless lumbar pedicle screw fixation with SpineMask and intraoperative neuromonitoring. Screws were inserted by percutaneous stab or Wiltse incisions. If required, decompression with or without interbody fusion was performed using mini-open midline incisions. Multimodality intraoperative neuromonitoring assessing motor and sensory responses with triggered electromyography (tEMG) was performed. Computed tomography scans were obtained 2 days postoperatively to assess screw placement and any cortical breaches. A breach was defined as any violation of a pedicle screw involving the cortical bone of the pedicle. RESULTS Fourteen screws (7%) required intraoperative revision. Screws were removed and repositioned due to a tEMG response < 13 mA, tactile feedback, and 3D fluoroscopic assessment. All screws were revised using the SpineMask with the same screw placement technique. The highest proportion of revisions occurred with Wiltse incisions (4/12, 33%) as this caused the greatest degree of SpineMask deformation, followed by a mini midline incision (3/26, 12%). Percutaneous screws via a single stab incision resulted in the fewest revisions (7/166, 4%). Postoperative CT demonstrated 7 pedicle screw breaches (3%; 5 lateral, 1 medial, 1 superior), all with percutaneous stab incisions (7/166, 4%). The radiological accuracy of the SpineMask tracker was 97% (197/204 screws). No patients suffered neural injury or required postoperative screw revision. CONCLUSIONS The noninvasive cutaneous SpineMask tracker with 3D image guidance and tEMG monitoring provided high accuracy (97%) for percutaneous pedicle screw placement via stab incisions without K-wires.
Error-correction coding for digital communications
NASA Astrophysics Data System (ADS)
Clark, G. C., Jr.; Cain, J. B.
This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.
The Toxicity of Photographic Chemicals.
1980-10-01
workers are as subject to nonchemically induced skin disorders as anyone else, a physician must evaluate each case of contact dermatitis in relation to all...be mistaken for a drinking vessel to contain or measure chemicals. 14. Do not eat food or drink beverages in workrooms where chemicals are mixed or...codes have severe restrictions which apply to such activity. Mixing personnel must wear protective clothing and breathing masks. When large quantities of
de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio
2012-01-01
Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306
Audio steganography by amplitude or phase modification
NASA Astrophysics Data System (ADS)
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Cost-effective MEMS piezoresistive cantilever-based sensor fabrication for gait movement analysis
NASA Astrophysics Data System (ADS)
Saadon, Salem; Anuar, A. F. M.; Wahab, Yufridin
2017-03-01
The conventional photolithography of crystalline silicon technique is limited to two-dimensional and structure scaling. It's also requiring a lot of time and chemical involves for the whole process. These problems can be overcome by using laser micromachining technique, that capable to produce three-dimensional structure and simultaneously avoiding the photo mask needs. In this paper, we reported on the RapidX-250 Excimer laser micromachining with 248 nm KrF to create in-time mask design and assisting in the fabrication process of piezo-resistive micro cantilever structures. Firstly, laser micromachining parameters have been investigated in order to fabricate the acceleration sensor to analyzing human gait movement. Preliminary result shows that the fabricated sensor able to define the movement difference of human motion regarding the electrical characteristic of piezo-resistor.
Marshall, F J; Radha, P B
2014-11-01
A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-01-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel
2016-10-01
Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Ghai, Babita; Sethi, Sameer; Ram, Jagat; Wig, Jyotsna
2013-02-01
Clinical end points are often used to guide inflation and adequacy of cuff seal after laryngeal mask airway placement. However, clinical end points for cuff inflation have been shown to have significantly higher intracuff pressure. The adjusted cuff pressure between 55 and 60 cm H(2)O causes significantly better seal of laryngeal mask airway. We prospectively assessed the cuff pressures generated by cuff inflation guided by clinical end points, and the actual volume of air required to achieve cuff pressures between 55 and 60 cm H(2)O for sizes 1-2.5 reusable classic laryngeal mask airway. Two hundred and three ASA I and II children undergoing elective cataract surgery requiring general anesthesia receiving laryngeal mask airway sizes 1-2.5 were recruited to this study. The laryngeal mask airway was placed using standard technique. After insertion of laryngeal mask airway, the cuff was slowly inflated until a slight outward shift of device was noted. Cuff pressures were measured using calibrated hand held Portex Cuff Inflator Pressure Gauge (Portex Limited, Hythe, Kent, UK). If the cuff pressure was >60 cm H(2)O, the cuff was deflated to achieve a cuff pressure of 55-60 cm H(2)O. The volume of air required to achieve this pressure was recorded. The volume of air required to achieve the pressure between 55 and 60 cm H(2)O in laryngeal mask airway size 1, 1.5, 2.0, and 2.5 were 2.750 ± 0.2565, 4.951 ± 0.5378, 6.927 ± 0.6328, and 10.208 ± 1.4535 ml, respectively. The difference between the initial and the final cuff volumes and pressures in all laryngeal mask airway sizes were statistically significant(P = 0.000). Lower cuff volumes are required to achieve a pressure of 60 cm H(2)O than those required if clinical end points are used as a sole guide for determining cuff inflation for patients receiving pediatric laryngeal mask airways. © 2012 Blackwell Publishing Ltd.
Temporal parameters and time course of perceptual latency priming.
Scharlau, Ingrid; Neumann, Odmar
2003-06-01
Visual stimuli (primes) reduce the perceptual latency of a target appearing at the same location (perceptual latency priming, PLP). Three experiments assessed the time course of PLP by masked and, in Experiment 3, unmasked primes. Experiments 1 and 2 investigated the temporal parameters that determine the size of priming. Stimulus onset asynchrony was found to exert the main influence accompanied by a small effect of prime duration. Experiment 3 used a large range of priming onset asynchronies. We suggest to explain PLP by the Asynchronous Updating Model which relates it to the asynchrony of 2 central coding processes, preattentive coding of basic visual features and attentional orienting as a prerequisite for perceptual judgments and conscious perception.
Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera
NASA Astrophysics Data System (ADS)
Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu
2016-09-01
We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.
NASA Astrophysics Data System (ADS)
Norris, Barnaby; Schworer, Guillaume; Tuthill, Peter; Jovanovic, Nemanja; Guyon, Olivier; Stewart, Paul; Martinache, Frantz
2015-03-01
Direct imaging of protoplanetary discs promises to provide key insight into the complex sequence of processes by which planets are formed. However, imaging the innermost region of such discs (a zone critical to planet formation) is challenging for traditional observational techniques (such as near-IR imaging and coronagraphy) due to the relatively long wavelengths involved and the area occulted by the coronagraphic mask. Here, we introduce a new instrument - Visible Aperture-Masking Polarimetric Interferometer for Resolving Exoplanetary Signatures (VAMPIRES) - which combines non-redundant aperture-masking interferometry with differential polarimetry to directly image this previously inaccessible innermost region. By using the polarization of light scattered by dust in the disc to provide precise differential calibration of interferometric visibilities and closure phases, VAMPIRES allows direct imaging at and beyond the telescope diffraction limit. Integrated into the SCExAO (Subaru Coronagraphic Extreme Adaptive Optics) system at the Subaru telescope, VAMPIRES operates at visible wavelengths (where polarization is high) while allowing simultaneous infrared observations conducted by HICIAO. Here, we describe the instrumental design and unique observing technique and present the results of the first on-sky commissioning observations, validating the excellent visibility and closure-phase precision which are then used to project expected science performance metrics.
Singh, Narinder Pal; Walker, Robbie James Eades; Cowan, Fiona; Davidson, Arthur Craig; Roberts, David Newton
2014-05-01
Continuous positive airway pressure (CPAP) is the gold standard treatment for moderate to severe obstructive sleep apnoea (OSA). Eye-related side effects of CPAP are commonly attributed to a poorly sealed mask, allowing leaked air to blow over the eye. We present 3 cases where attended polysomnography (A-PSG) demonstrated CPAP-associated retrograde air escape via the nasolacrimal system (CRANS) in the absence of any mask leaks. Symptoms included dry eye, epiphora, air escape from the medial canthus, and eyelid flutter. Symptoms were controlled with a variety of surgical and nonsurgical techniques. CRANS represents a previously undescribed clinical entity. CRANS may be responsible for some CPAP-related eye side effects and possibly for rarer secondary eye complications, including conjunctivitis and corneal ulceration. CRANS should be suspected in any patient on CPAP complaining of eye symptoms. CRANS may be diagnosed through careful observation during A-PSG and confirmed by performing a "saline bubble test." Management options include nonsurgical (mask alternatives, humidification, nasopharyngeal airway) and surgical techniques (nasal airway surgery, inferior turbinate out-fracture and adhesion, injection of bulking agent around Hasner's valve).
Clinical applications of selected binaural effects.
Noffsinger, D
1982-01-01
Examination was made of the behaviors exhibited on selected binaural tasks by 556 persons with diagnosed peripheral hearing loss or central nervous system damage. The tasks used included loudness balancing (LB), intracranial midline imaging (MI), masking level differences (MLD), and binaural beats (BB). The methods used were chosen for their clinical utility. Loudness balancing and midline imaging were of the most diagnostic value when hearing loss was present. Masking level differences were best at detecting pathology which did not produce hearing loss. None of the techniques were sensitive to cortical damage.
NASA Technical Reports Server (NTRS)
Policastro, Steven G. (Inventor); Woo, Dae-Shik (Inventor)
1983-01-01
A self-aligned method of implanting the edges of NMOS/SOS transistors is described. The method entails covering the silicon islands with a thick oxide layer, applying a protective photoresist layer over the thick oxide layer, and exposing the photoresist layer from the underside of the sapphire substrate thereby using the island as an exposure mask. Only the photoresist on the islands' edges will be exposed. The exposed photoresist is then removed and the thick oxide is removed from the islands edges which are then implanted.
Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.
Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun
2016-07-01
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Turk, Amos; And Others
1972-01-01
Dispersion, chemical oxidation, and masking are reviewed as techniques primarily employed for odor control. Devices and systems, costs, and problems of measurement are considered in light of environmental agencies' efforts to curb smelly emissions. (BL)
Utilization of optical emission endpoint in photomask dry etch processing
NASA Astrophysics Data System (ADS)
Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas
2002-03-01
Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.
Joseph, Kimera; Bader, Karlen; Wilson, Sara; Walker, Melissa; Stephens, Mark; Varpio, Lara
2017-04-01
Professional identity formation is an on-going, integrative process underlying trainees' experiences of medical education. Since each medical student's professional identity formation process is an individual, internal, and often times emotionally charged unconscious experience, it can be difficult for educators to understand each student's unique experience. We investigate if mask making can provide learners and educators the opportunity to explore medical students' professional identity formation experiences. In 2014 and 2015, 30 third year medical students created masks, with a brief accompanying written narrative, to creatively express their medical education experiences. Using a paradigmatic case selection approach, four masks were analyzed using techniques from visual rhetoric and the Listening Guide. The research team clearly detected identity dissonance in each case. Each case provided insights into the unique personal experiences of the dissonance process for each trainee at a particular point in their medical school training. We propose that mask making accompanied by a brief narrative reflection can help educators identify students experiencing identity dissonance, and explore each student's unique experience of that dissonance. The process of making these artistic expressions may also provide a form of intervention that can enable educators to help students navigate professional identity formation and identity dissonance experiences.
Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications
NASA Astrophysics Data System (ADS)
Ermeydan, Esra Şengün; ćankaya, Ilyas
2018-01-01
Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.
Impact of topographic mask models on scanner matching solutions
NASA Astrophysics Data System (ADS)
Tyminski, Jacek K.; Pomplun, Jan; Renwick, Stephen P.
2014-03-01
Of keen interest to the IC industry are advanced computational lithography applications such as Optical Proximity Correction of IC layouts (OPC), scanner matching by optical proximity effect matching (OPEM), and Source Optimization (SO) and Source-Mask Optimization (SMO) used as advanced reticle enhancement techniques. The success of these tasks is strongly dependent on the integrity of the lithographic simulators used in computational lithography (CL) optimizers. Lithographic mask models used by these simulators are key drivers impacting the accuracy of the image predications, and as a consequence, determine the validity of these CL solutions. Much of the CL work involves Kirchhoff mask models, a.k.a. thin masks approximation, simplifying the treatment of the mask near-field images. On the other hand, imaging models for hyper-NA scanner require that the interactions of the illumination fields with the mask topography be rigorously accounted for, by numerically solving Maxwell's Equations. The simulators used to predict the image formation in the hyper-NA scanners must rigorously treat the masks topography and its interaction with the scanner illuminators. Such imaging models come at a high computational cost and pose challenging accuracy vs. compute time tradeoffs. Additional complication comes from the fact that the performance metrics used in computational lithography tasks show highly non-linear response to the optimization parameters. Finally, the number of patterns used for tasks such as OPC, OPEM, SO, or SMO range from tens to hundreds. These requirements determine the complexity and the workload of the lithography optimization tasks. The tools to build rigorous imaging optimizers based on first-principles governing imaging in scanners are available, but the quantifiable benefits they might provide are not very well understood. To quantify the performance of OPE matching solutions, we have compared the results of various imaging optimization trials obtained with Kirchhoff mask models to those obtained with rigorous models involving solutions of Maxwell's Equations. In both sets of trials, we used sets of large numbers of patterns, with specifications representative of CL tasks commonly encountered in hyper-NA imaging. In this report we present OPEM solutions based on various mask models and discuss the models' impact on hyper- NA scanner matching accuracy. We draw conclusions on the accuracy of results obtained with thin mask models vs. the topographic OPEM solutions. We present various examples representative of the scanner image matching for patterns representative of the current generation of IC designs.
Yi, Eun-Jin; Kim, Ju-Young; Rhee, Yun-Seok; Kim, Su-Hyeon; Lee, Hyo-Joong; Park, Chun-Woong; Park, Eun-Seok
2014-05-15
The aim of the present study was to prepare the particulate taste-masking system to mask the bitter taste of sildenafil citrate (SC), a well-known phosphodiesterase-5 inhibitor used for erectile dysfunction (ED) and pulmonary artery hypertension (PAH). It was evaluated for the taste masking efficiency by the in vitro measurement using electronic tongue (e-tongue) system and the in vivo human panel sensory test. Microcapsules were prepared by microencapsulation with a gastro-soluble polymer, Eudragit(®) E100 (E100), using a spray drying technique at four different weight ratios (2:1, 1:1, 1:2, and 1:3). Characters of prepared microcapsules and the effect of polymer ratio on the taste masking were investigated. The particle morphology and the distribution of SC in microcapsules were observed by SEM-EDS and physical properties were evaluated by PXRD, Raman spectroscopy, and DSC. By drug dissolution studies at pH 1.2 buffer and DW, it was found that E100 was not able to alter the drug release in stomach. As the result of taste evaluation studies, there were a good correlation (R(2)=0.9867) between the weight ratio of polymer and the taste masking efficiency expressed in the distances on the PCA map of the e-tongue data, and a relevance of the e-tongue measurement with the result of sensory test. Copyright © 2014. Published by Elsevier B.V.
Defect inspection and printability study for 14 nm node and beyond photomask
NASA Astrophysics Data System (ADS)
Seki, Kazunori; Yonetani, Masashi; Badger, Karen; Dechene, Dan J.; Akima, Shinji
2016-10-01
Two different mask inspection techniques are developed and compared for 14 nm node and beyond photomasks, High resolution and Litho-based inspection. High resolution inspection is the general inspection method in which a 19x nm wavelength laser is used with the High NA inspection optics. Litho-based inspection is a new inspection technology. This inspection uses the wafer lithography information, and as such, this method has automatic defect classification capability which is based on wafer printability. Both High resolution and Litho-based inspection methods are compared using 14 nm and 7 nm node programmed defect and production design masks. The defect sensitivity and mask inspectability is compared, in addition to comparing the defect classification and throughput. Additionally, the Cost / Infrastructure comparison is analyzed and the impact of each inspection method is discussed.
Beissner, Florian; Baudrexel, Simon; Volz, Steffen; Deichmann, Ralf
2010-08-15
Dual-echo EPI is based on the acquisition of two images with different echo times per excitation, thus allowing for the calculation of purely T2(*) weighted data. The technique can be used for the measurement of functional activation whenever the prerequisite of constant equilibrium magnetization cannot be fulfilled due to variable inter-volume delays. The latter is the case when image acquisition is triggered by physiological parameters (e.g. cardiac gating) or by the subject's response. Despite its frequent application, there is currently no standardized way of combining the information obtained from the two acquired echoes. The goal of this study was to quantify the implication of different echo combination methods (quotients of echoes and quantification of T(2)(*)) and calculation modalities, either pre-smoothing data before combination or subjecting unsmoothed combined data to masking (no masking, volume-wise masking, joint masking), on the theoretically predicted signal-to-noise ratio (SNR) of the BOLD response and on activation results of two fMRI experiments using finger tapping and visual stimulation in one group (n=5) and different motor paradigms to activate motor areas in the cortex and the brainstem in another group (n=21). A significant impact of echo combination and masking procedure was found for both SNR and activation results. The recommended choice is a direct calculation of T(2)(*) values, either using joint masking on unsmoothed data, or pre-smoothing images prior to T(2)(*) calculation. This method was most beneficial in areas close to the surface of the brain or adjacent to the ventricles and may be especially relevant to brainstem fMRI. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Current status of x-ray mask manufacturing at the Microlithographic Mask Development Center
NASA Astrophysics Data System (ADS)
Kimmel, Kurt R.; Hughes, Patrick J.
1996-07-01
The Microlithographic Mask Development Center (MMD) has been the focal point of X-ray mask development efforts in the United States since its inception in 1993. Funded by the Advanced Research Projects Agency (ARPA), and with technical support from the Proximity X-ray Lithography Association (AT&T, IBM, Loral Federal Systems, and Motorola) the MMD has recently made dramatic advances in mask fabrication. Numerous defect-free 64Mb and 256Mb DRAM masks have been made on both boron-doped silicon and silicon carbide substrates. Image-placement error of less than 35nm 3 sigma is achieved with high yield. Image-size (critical dimension) control of 25nm 3 sigma on 250nm nominal images is representative performance. This progress is being made in a manufacturing environment with significant volumes, multiple customers, multiple substrate configurations, and fast turnaround-time (TAT) requirements. The MMD state-of-the-art equipment infrastructure has made much of this progress possible. This year the MMD qualified the EL-4, an IBM-designed-and-built variable-shaped-spot e-beam system. The fundamental performance parameters of this system will be described. Operational techniques of multiple partial exposure writing and product specific emulation (PSE) have been implemented to improve image-placement accuracy with remarkable success. Image-size control was studied in detail with contributory components separated. Defect density was systematically reduced to yield defect-free masks while simultaneously tightening inspection criteria. Information about these and other recent engineering highlights will be reported. An outline of the primary engineering challenges and goals for 1996 and status of progress toward 100 nm design rule capability will also be given.
Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs
NASA Astrophysics Data System (ADS)
Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji
2004-08-01
The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.
Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2016-01-01
We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249
Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk
2008-07-15
The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.
Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H.; Öğmen, Haluk
2008-01-01
The 1990s, the “decade of the brain,” witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this “steady-state approach,” more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness. PMID:20517493
Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams
NASA Astrophysics Data System (ADS)
Ohya, Kaoru
2017-03-01
The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.
NASA Technical Reports Server (NTRS)
Albus, James S.
1961-01-01
The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.
NASA Astrophysics Data System (ADS)
Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David
2015-03-01
Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and color balanced layouts.
Research on the Improved Image Dodging Algorithm Based on Mask Technique
NASA Astrophysics Data System (ADS)
Yao, F.; Hu, H.; Wan, Y.
2012-08-01
The remote sensing image dodging algorithm based on Mask technique is a good method for removing the uneven lightness within a single image. However, there are some problems with this algorithm, such as how to set an appropriate filter size, for which there is no good solution. In order to solve these problems, an improved algorithm is proposed. In this improved algorithm, the original image is divided into blocks, and then the image blocks with different definitions are smoothed using the low-pass filters with different cut-off frequencies to get the background image; for the image after subtraction, the regions with different lightness are processed using different linear transformation models. The improved algorithm can get a better dodging result than the original one, and can make the contrast of the whole image more consistent.
Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei
2009-03-10
Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of amore » silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.« less
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples
ERIC Educational Resources Information Center
Avetisyan, Marianna; Fox, Jean-Paul
2012-01-01
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-06-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.
How do paramedics manage the airway during out of hospital cardiac arrest?
Voss, Sarah; Rhys, Megan; Coates, David; Greenwood, Rosemary; Nolan, Jerry P.; Thomas, Matthew; Benger, Jonathan
2014-01-01
Aim The best method of initial airway management during resuscitation for out of hospital cardiac arrest (OHCA) is unknown. The airway management techniques used currently by UK paramedics during resuscitation for OHCA are not well documented. This study describes the airway management techniques used in the usual practice arm of the REVIVE-Airways feasibility study, and documents the pathway of interventions to secure and sustain ventilation during OHCA. Method Data were collected from OHCAs attended by paramedics participating in the REVIVE-Airways trial between March 2012 and February 2013. Patients were included if they were enrolled in the usual practice arm of the study, fulfilled the main study eligibility criteria and did not receive either of the intervention supraglottic airway devices during the resuscitation attempt. Results Data from 196 attempted resuscitations were included in the analysis. The initial approach to airway management was bag-mask for 108 (55%), a supraglottic airway device (SAD) for 39 (20%) and tracheal intubation for 49 (25%). Paramedics made further airway interventions in 64% of resuscitations. When intubation was the initial approach, there was no further intervention in 76% of cases; this compares to 16% and 44% with bag-mask and SAD respectively. The most common reason cited by paramedics for changing from bag-mask was to carry out advanced life support, followed by regurgitation and inadequate ventilation. Inadequate ventilation was the commonest reason cited for removing a SAD. Conclusion Paramedics use a range of techniques to manage the airway during OHCA, and as the resuscitation evolves. It is therefore desirable to ensure that a range of techniques and equipment, supported by effective training, are available to paramedics who attend OHCA. PMID:25260723
Psychovisual masks and intelligent streaming RTP techniques for the MPEG-4 standard
NASA Astrophysics Data System (ADS)
Mecocci, Alessandro; Falconi, Francesco
2003-06-01
In today multimedia audio-video communication systems, data compression plays a fundamental role by reducing the bandwidth waste and the costs of the infrastructures and equipments. Among the different compression standards, the MPEG-4 is becoming more and more accepted and widespread. Even if one of the fundamental aspects of this standard is the possibility of separately coding video objects (i.e. to separate moving objects from the background and adapt the coding strategy to the video content), currently implemented codecs work only at the full-frame level. In this way, many advantages of the flexible MPEG-4 syntax are missed. This lack is due both to the difficulties in properly segmenting moving objects in real scenes (featuring an arbitrary motion of the objects and of the acquisition sensor), and to the current use of these codecs, that are mainly oriented towards the market of DVD backups (a full-frame approach is enough for these applications). In this paper we propose a codec for MPEG-4 real-time object streaming, that codes separately the moving objects and the scene background. The proposed codec is capable of adapting its strategy during the transmission, by analysing the video currently transmitted and setting the coder parameters and modalities accordingly. For example, the background can be transmitted as a whole or by dividing it into "slightly-detailed" and "highly detailed" zones that are coded in different ways to reduce the bit-rate while preserving the perceived quality. The coder can automatically switch in real-time, from one modality to the other during the transmission, depending on the current video content. Psychovisual masks and other video-content based measurements have been used as inputs for a Self Learning Intelligent Controller (SLIC) that changes the parameters and the transmission modalities. The current implementation is based on the ISO 14496 standard code that allows Video Objects (VO) transmission (other Open Source Codes like: DivX, Xvid, and Cisco"s Mpeg-4IP, have been analyzed but, as for today, they do not support VO). The original code has been deeply modified to integrate the SLIC and to adapt it for real-time streaming. A personal RTP (Real Time Protocol) has been defined and a Client-Server application has been developed. The viewer can decode and demultiplex the stream in real-time, while adapting to the changing modalities adopted by the Server according to the current video content. The proposed codec works as follows: the image background is separated by means of a segmentation module and it is transmitted by means of a wavelet compression scheme similar to that used in the JPEG2000. The VO are coded separately and multiplexed with the background stream. At the receiver the stream is demultiplexed to obtain the background and the VO that are subsequently pasted together. The final quality depends on many factors, in particular: the quantization parameters, the Group Of Video Object (GOV) length, the GOV structure (i.e. the number of I-P-B VOP), the search area for motion compensation. These factors are strongly related to the following measurement parameters (that have been defined during the development): the Objects Apparent Size (OAS) in the scene, the Video Object Incidence factor (VOI), the temporal correlation (measured through the Normalized Mean SAD, NMSAD). The SLIC module analyzes the currently transmitted video and selects the most appropriate settings by choosing from a predefined set of transmission modalities. For example, in the case of a highly temporal correlated sequence, the number of B-VOP is increased to improve the compression ratio. The strategy for the selection of the number of B-VOP turns out to be very different from those reported in the literature for B-frames (adopted for MPEG-1 and MPEG-2), due to the different behaviour of the temporal correlation when limited only to moving objects. The SLIC module also decides how to transmit the background. In our implementation we adopted the Visual Brain theory i.e. the study of what the "psychic eye" can get from a scene. According to this theory, a Psychomask Image Analysis (PIA) module has been developed to extract the visually homogeneous regions of the background. The PIA module produces two complementary masks one for the visually low variance zones and one for the higly variable zones; these zones are compressed with different strategies and encoded into two multiplexed streams. From practical experiments it turned out that the separate coding is advantageous only if the low variance zones exceed 50% of the whole background area (due to the overhead given by the need of transmitting the zone masks). The SLIC module takes care of deciding the appropriate transmission modality by analyzing the results produced by the PIA module. The main features of this codec are: low bitrate, good image quality and coding speed. The current implementation runs in real-time on standard PC platforms, the major limitation being the fixed position of the acquisition sensor. This limitation is due to the difficulties in separating moving objects from the background when the acquisition sensor moves. Our current real-time segmentation module does not produce suitable results if the acquisition sensor moves (only slight oscillatory movements are tolerated). In any case, the system is particularly suitable for tele surveillance applications at low bit-rates, where the camera is usually fixed or alternates among some predetermined positions (our segmentation module is capable of accurately separate moving objects from the static background when the acquisition sensor stops, even if different scenes are seen as a result of the sensor displacements). Moreover, the proposed architecture is general, in the sense that when real-time, robust segmentation systems (capable of separating objects in real-time from the background while the sensor itself is moving) will be available, they can be easily integrated while leaving the rest of the system unchanged. Experimental results related to real sequences for traffic monitoring and for people tracking and afety control are reported and deeply discussed in the paper. The whole system has been implemented in standard ANSI C code and currently runs on standard PCs under Microsoft Windows operating system (Windows 2000 pro and Windows XP).
Auinger, Alice Barbara; Riss, Dominik; Liepins, Rudolfs; Rader, Tobias; Keck, Tilman; Keintzel, Thomas; Kaider, Alexandra; Baumgartner, Wolf-Dieter; Gstoettner, Wolfgang; Arnoldner, Christoph
2017-07-01
It has been shown that patients with electric acoustic stimulation (EAS) perform better in noisy environments than patients with a cochlear implant (CI). One reason for this could be the preserved access to acoustic low-frequency cues including the fundamental frequency (F0). Therefore, our primary aim was to investigate whether users of EAS experience a release from masking with increasing F0 difference between target talker and masking talker. The study comprised 29 patients and consisted of three groups of subjects: EAS users, CI users and normal-hearing listeners (NH). All CI and EAS users were implanted with a MED-EL cochlear implant and had at least 12 months of experience with the implant. Speech perception was assessed with the Oldenburg sentence test (OlSa) using one sentence from the test corpus as speech masker. The F0 in this masking sentence was shifted upwards by 4, 8, or 12 semitones. For each of these masker conditions the speech reception threshold (SRT) was assessed by adaptively varying the masker level while presenting the target sentences at a fixed level. A statistically significant improvement in speech perception was found for increasing difference in F0 between target sentence and masker sentence in EAS users (p = 0.038) and in NH listeners (p = 0.003). In CI users (classic CI or EAS users with electrical stimulation only) speech perception was independent from differences in F0 between target and masker. A release from masking with increasing difference in F0 between target and masking speech was only observed in listeners and configurations in which the low-frequency region was presented acoustically. Thus, the speech information contained in the low frequencies seems to be crucial for allowing listeners to separate multiple sources. By combining acoustic and electric information, EAS users even manage tasks as complicated as segregating the audio streams from multiple talkers. Preserving the natural code, like fine-structure cues in the low-frequency region, seems to be crucial to provide CI users with the best benefit. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.
2017-01-01
Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3-4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.
Disintegrating Social Sciences.
ERIC Educational Resources Information Center
Perrow, Charles
1982-01-01
Argues that social scientists convey the impression of rational behavior by means of self-serving research techniques. Concludes that their artificially constructed order masks the disorder of everyday existence and that they should have tolerance for human frailties. (Author/WD)
Deformably registering and annotating whole CLARITY brains to an atlas via masked LDDMM
NASA Astrophysics Data System (ADS)
Kutten, Kwame S.; Vogelstein, Joshua T.; Charon, Nicolas; Ye, Li; Deisseroth, Karl; Miller, Michael I.
2016-04-01
The CLARITY method renders brains optically transparent to enable high-resolution imaging in the structurally intact brain. Anatomically annotating CLARITY brains is necessary for discovering which regions contain signals of interest. Manually annotating whole-brain, terabyte CLARITY images is difficult, time-consuming, subjective, and error-prone. Automatically registering CLARITY images to a pre-annotated brain atlas offers a solution, but is difficult for several reasons. Removal of the brain from the skull and subsequent storage and processing cause variable non-rigid deformations, thus compounding inter-subject anatomical variability. Additionally, the signal in CLARITY images arises from various biochemical contrast agents which only sparsely label brain structures. This sparse labeling challenges the most commonly used registration algorithms that need to match image histogram statistics to the more densely labeled histological brain atlases. The standard method is a multiscale Mutual Information B-spline algorithm that dynamically generates an average template as an intermediate registration target. We determined that this method performs poorly when registering CLARITY brains to the Allen Institute's Mouse Reference Atlas (ARA), because the image histogram statistics are poorly matched. Therefore, we developed a method (Mask-LDDMM) for registering CLARITY images, that automatically finds the brain boundary and learns the optimal deformation between the brain and atlas masks. Using Mask-LDDMM without an average template provided better results than the standard approach when registering CLARITY brains to the ARA. The LDDMM pipelines developed here provide a fast automated way to anatomically annotate CLARITY images; our code is available as open source software at http://NeuroData.io.
Gamell, Marc; Teranishi, Keita; Kolla, Hemanth; ...
2017-10-26
In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments.more » In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamell, Marc; Teranishi, Keita; Kolla, Hemanth
In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments.more » In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.« less
SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.
1995-01-01
Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.
The masking of beluga whale (Delphinapterus leucas) vocalizations by icebreaker noise
NASA Astrophysics Data System (ADS)
Erbe, Christine
1998-11-01
This thesis examines the masking effect of underwater noise on beluga whale communication. As ocean water is greatly opaque for light but well conducting for sound, marine mammals rely primarily on their hearing for orientation and communication. Man-made underwater noise has the potential of interfering with sounds used by marine mammals. Masking to the point of incomprehensibility can have fatal results-for the individual, but ultimately for the entire species. As part of our understanding of whether marine mammals can cope with human impact on nature, this thesis is the first to study the interference of real ocean noises with complex animal vocalizations. At the Vancouver Aquarium, a beluga whale was trained for acoustic experiments, during which masked hearing thresholds were measured. Focus lay on noise created by icebreaking ships in the Arctic. As experiments with trained animals are time and cost expensive, various techniques were examined for their ability to model the whale's response. These were human hearing tests, visual spectrogram discrimination, matched filtering, spectrogram cross-correlation, critical band cross-correlation, adaptive filtering and various types of artificial neural networks. The most efficient method with respect to similarity to the whale's data and speed, was a backpropagation neural net. Masked hearing thresholds would be of little use if they could not be related to accessible quantities in the wild. An ocean sound propagation model was applied to determine critical distances between a noise source, a calling whale and a listening whale. Colour diagrams, called maskograms, were invented to illustrate zones of masking in the wild. Results are that bubbler system noise with a source level of 194 dB re 1 μPa at 1 m has a maximum radius of masking of 15 km in a 3- dimensional ocean. Propeller noise with a source level of 203 dB re 1 μPa at 1 m has a maximum radius of masking of 22 km. A naturally occurring icecracking event with a source level of 147 dB re 1 μPa at 1 m only masks if the listening whale is within 8 m of the event. Therefore, in the wild, propeller cavitation noise masks furthest, followed by bubbler system noise, then icecracking noise.
Single closed contact for 0.18-micron photolithography process
NASA Astrophysics Data System (ADS)
Cheung, Cristina; Phan, Khoi A.; Chiu, Robert J.
2000-06-01
With the rapid advances of deep submicron semiconductor technology, identifying defects is converted into a challenge for different modules in the fabrication of chips. Yield engineers often do bitmap on a memory circuit array (SRAM) to identify the failure bits. This is followed by a wafer stripback to look for visual defects at each deprocessed layer for feedback to the Fab. However, to identify the root cause of a problem, Fab engineers must be able to detect similar defects either on the product wafers in process or some short loop test wafers. In the photolithography process, we recognize that the detection of defects is becoming as important as satisfying the critical dimension (CD) of the device. For a multi-level metallization chemically mechanical polish backend process, it is very difficult to detect missing contacts or via at the masking steps due to metal grain roughness, film color variation and/or previous layer defects. Often, photolithography engineer must depend on Photo Cell Monitor (PCM) and short loop experiments for controlling baseline defects and improvement. In this paper, we discuss the findings on the Poly mask PCM and the Contact mask PCM. We present the comparison between the Poly mask and the Contact mask of the I-line Phase Shifted Via mask and DUV mask process for a 0.18 micron process technology. The correlation and the different type of defects between the Contact PCM and the Poly Mask are discussed. The Contact PCM was found to be more sensitive and correlated to contact failure at sort yield better. We also dedicate to study the root cause of a single closed contact hole in the Contact mask short loop experiment for a 0.18 micron process technology. A single closed contact defect was often caused by the developer process, such as bubbles in the line, resist residue left behind, and the rinse mechanism. We also found surfactant solution helps to improve the surface tension of the wafer for the developer process and this prevents/eliminates a single closed contact hole defects. The applications and effects of using different substrates like SiON, different thicknesses of Oxides, and Poly in the Contact Photo Mask is shown. Finally, some defect troubleshooting techniques and the root cause analysis are also discussed.
Poisson-Spot Intensity Reduction with a Partially-Transparent Petal-Shaped Optical Mask
NASA Technical Reports Server (NTRS)
Shiri, Shahram; Wasylkiwskyj, Wasyl
2013-01-01
The presence of Poisson's spot, also known as the spot of Arago, formed along the optical axis in the geometrical shadow behind an obstruction, has been known since the 18th century. The presence of this spot can best be described as the consequence of constructive interference of light waves diffracted on the edge of the obstruction where its central position can··be determined by the symmetry of the object More recently, the elimination of this spot has received attention in the fields of particle physics, high-energy lasers, astronomy and lithography. In this paper, we introduce a novel, partially transparent petaled mask shape that suppresses the bright spot by up to 10 orders of magnitude in intensity, with powerful applications to many of the above fields. The optimization technique formulated in this design can identify mask shapes having partial transparency only near the petal tips.
Model-based correction for local stress-induced overlay errors
NASA Astrophysics Data System (ADS)
Stobert, Ian; Krishnamurthy, Subramanian; Shi, Hongbo; Stiffler, Scott
2018-03-01
Manufacturing embedded DRAM deep trench capacitors can involve etching very deep holes into silicon wafers1. Due to various design constraints, these holes may not be uniformly distributed across the wafer surface. Some wafer processing steps for these trenches results in stress effects which can distort the silicon wafer in a manner that creates localized alignment issues between the trenches and the structures built above them on the wafer. In this paper, we describe a method to model these localized silicon distortions for complex layouts involving billions of deep trench structures. We describe wafer metrology techniques and data which have been used to verify the stress distortion model accuracy. We also provide a description of how this kind of model can be used to manipulate the polygons in the mask tape out flow to compensate for predicted localized misalignments between design shapes from a deep trench mask and subsequent masks.
Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space
NASA Astrophysics Data System (ADS)
Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng
2017-09-01
A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.
Notes from the Field: Acute Mercury Poisoning After Home Gold and Silver Smelting--Iowa, 2014.
Koirala, Samir; Leinenkugel, Kathy
2015-12-18
In March 2014, a man, aged 59 years, who lived alone and had been using different smelting techniques viewed on the Internet to recover gold and silver from computer components, was evaluated at a local emergency department for shortness of breath, tremors, anorexia, and generalized weakness. During the smelting processes, he had used hydrogen peroxide, nitric acid, muriatic acid, and sulfuric acid purchased from local stores or Internet retailers. For protection, he wore a military gas mask of unknown type. The mask was used with filter cartridges, but their effectiveness against chemical fumes was not known.
The WFM Instrument of the LOFT mission
NASA Astrophysics Data System (ADS)
Gálvez, J. L.; Hernanz, M.; Álvarez, L.; LOFT/WFM Team
2013-05-01
LOFT, the Large Observatory For X-ray Timing, was selected by ESA in 2011 as one of the four M3 (medium class) missions concepts of the Cosmic Vision programme that will compete for a launch opportunity at the start of the 2020s. LOFT includes two instruments: the Large Area Detector (LAD), a ˜10 m^2 collimated X-ray detector in the 2-50 keV range (up to 80 keV in extended mode), and the Wide Field Monitor (WFM), a coded-mask wide field X-ray monitor based on silicon radiation detectors. We, the Institute of Space Sciences (CSIC-IEEC) in Barcelona, are deeply involved in the LOFT mission, sharing the leadership of the WFM instrument with DTU Space in Denmark. We are responsible of the mechanics of the WFM, including the structural and thermal design. The WFM baseline is a set of 4 units (each unit corresponds to 2 co-aligned cameras) arranged in arch, covering a field of view at zero response of 180°× 90°, and one more unit pointing to the anti-sun direction. The structure of each camera lies on its own coded mask of Tungsten, 150 μm thick, a collimator and the detector plane (20 cm below the mask) providing a fine (arc minutes) angular resolution. The camera detector plane (182 cm^2) will operate at -20°C in order to achieve an energy resolution FWHM of less than 500 eV in the 2-50 keV energy range. The WFM has the main scope of catching good triggering sources to be pointed with the LAD. Its large field of view will permit to observe in the same energy range of the LAD about 50% of the sky at once. The WFM is designed also to catch transient/bursting events down to a few mCrab fluxes and will provide for them data with fine spectral and timing resolution (up to 10 μsec).
The NuSTAR Mission: Implementation and Science Prospects
NASA Technical Reports Server (NTRS)
Zhang, William W.
2009-01-01
NuSTAR is NASA's next X-ray observatory scheduled to be launched in 2011. It will have two multi-layered X-ray mirror assemblies capable of focusing X-rays in the band of 5 to 80 keV, providing unprecedented detection and imaging sensitivity in a band that only coded-mask or collimated detection has been possible. In this talk I will describe the instrumentation and the prospects of using it to perform various kinds of astronomical studies.
Methods for rapidly processing angular masks of next-generation galaxy surveys
NASA Astrophysics Data System (ADS)
Swanson, M. E. C.; Tegmark, Max; Hamilton, Andrew J. S.; Hill, J. Colin
2008-07-01
As galaxy surveys become larger and more complex, keeping track of the completeness, magnitude limit and other survey parameters as a function of direction on the sky becomes an increasingly challenging computational task. For example, typical angular masks of the Sloan Digital Sky Survey contain about N = 300000 distinct spherical polygons. Managing masks with such large numbers of polygons becomes intractably slow, particularly for tasks that run in time with a naive algorithm, such as finding which polygons overlap each other. Here we present a `divide-and-conquer' solution to this challenge: we first split the angular mask into pre-defined regions called `pixels', such that each polygon is in only one pixel, and then perform further computations, such as checking for overlap, on the polygons within each pixel separately. This reduces tasks to , and also reduces the important task of determining in which polygon(s) a point on the sky lies from to , resulting in significant computational speedup. Additionally, we present a method to efficiently convert any angular mask to and from the popular HEALPIX format. This method can be generically applied to convert to and from any desired spherical pixelization. We have implemented these techniques in a new version of the MANGLE software package, which is freely available at http://space.mit.edu/home/tegmark/mangle/, along with complete documentation and example applications. These new methods should prove quite useful to the astronomical community, and since MANGLE is a generic tool for managing angular masks on a sphere, it has the potential to benefit terrestrial mapmaking applications as well.
Sub-Optical Lithography With Nanometer Definition Masks
NASA Technical Reports Server (NTRS)
Hartley, Frank T.; Malek, Chantal Khan; Neogi, Jayant
2000-01-01
Nanometer feature size lithography represents a major paradigm shift for the electronics and micro-electro-mechanical industries. In this paper, we discuss the capacity of dynamic focused reactive ion beam (FIB) etching systems to undertake direct and highly anisotropic erosion of thick evaporated gold coatings on boron-doped silicon X-ray mask membranes. FIB offers a new level of flexibility in micro fabrication, allowing for fast fabrication of X-ray masks, where pattern definition and surface alteration are combined in the same step which eliminates the whole lithographic process, in particular resist, resist development, electro-deposition and resist removal. Focused ion beam diameters as small as 7 nm can be obtained enabling fabrication well into the sub-20 nm regime. In preliminary demonstrations of this X-ray mask fabrication technique 22 nm width lines were milled directly through 0.9 microns of gold and a miniature mass spectrometer pattern was milled through over 0.5 microns of gold. Also presented are the results of the shadow printing, using the large depth of field of synchrotron high energy parallel X-ray beam, of these and other sub-optical defined patterns in photoresist conformally coated over surfaces of extreme topographical variation. Assuming that electronic circuits and/or micro devices scale proportionally, the surface area of devices processed with X-ray lithography and 20 nm critical dimension X-ray masks would be 0.5% that of contemporary devices (350 nm CD). The 20 CD mask fabrication represents an initial effort - a further factor of three reduction is anticipated which represents a further order-of-magnitude reduction in die area.
NASA Astrophysics Data System (ADS)
Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.
2017-01-01
Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.
NASA Astrophysics Data System (ADS)
Charrier, Michel; Everett, Daniel; Fieret, Jim; Karrer, Tobias; Rau, Sven; Valard, Jean-Luc
2001-06-01
A novel method is presented to produce a high precision pattern of copper tracks on both sides of a 4-layer conformal radar antenna made of PEI polymer and shaped as a truncated pseudo-parabolic cylinder. The antenna is an active emitter-receiver so that an accuracy of a fraction of the wavelength of the microwave radiation is required. After 2D layer design in Allegro, the resulting Gerber file-format circuits are wrapped around the antenna shape, resulting in a cutter-path file which provides the input for a postprocessor that outputs G-code for robot- and laser control. A rules file contains embedded information such as laser parameters and mask aperture related to the Allegro symbols. The robot consists of 6 axes that manipulate the antenna, and 2 axes for the mask plate. The antenna can be manipulated to an accuracy of +/- 20 micrometers over its full dimensions of 200x300x50 mm. The four layers are constructed by successive copper coating, resist coating, laser ablation, copper etching, resist removal, insulation polyimide film lamination and laser dielectric drilling for microvia holes and through-holes drilling. Applications are in space and aeronautical communication and radar detection systems, with possible extensions to automotive and mobile hand-sets, and land stations.
NASA Astrophysics Data System (ADS)
Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand
SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.
Data compression for satellite images
NASA Technical Reports Server (NTRS)
Chen, P. H.; Wintz, P. A.
1976-01-01
An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.
The application of phase grating to CLM technology for the sub-65nm node optical lithography
NASA Astrophysics Data System (ADS)
Yoon, Gi-Sung; Kim, Sung-Hyuck; Park, Ji-Soong; Choi, Sun-Young; Jeon, Chan-Uk; Shin, In-Kyun; Choi, Sung-Woon; Han, Woo-Sung
2005-06-01
As a promising technology for sub-65nm node optical lithography, CLM(Chrome-Less Mask) technology among RETs(Resolution Enhancement Techniques) for low k1 has been researched worldwide in recent years. CLM has several advantages, such as relatively simple manufacturing process and competitive performance compared to phase-edge PSM's. For the low-k1 lithography, we have researched CLM technique as a good solution especially for sub-65nm node. As a step for developing the sub-65nm node optical lithography, we have applied CLM technology in 80nm-node lithography with mesa and trench method. From the analysis of the CLM technology in the 80nm lithography, we found that there is the optimal shutter size for best performance in the technique, the increment of wafer ADI CD varied with pattern's pitch, and a limitation in patterning various shapes and size by OPC dead-zone - OPC dead-zone in CLM technique is the specific region of shutter size that dose not make the wafer CD increased more than a specific size. And also small patterns are easily broken, while fabricating the CLM mask in mesa method. Generally, trench method has better optical performance than mesa. These issues have so far restricted the application of CLM technology to a small field. We approached these issues with 3-D topographic simulation tool and found that the issues could be overcome by applying phase grating in trench-type CLM. With the simulation data, we made some test masks which had many kinds of patterns with many different conditions and analyzed their performance through AIMS fab 193 and exposure on wafer. Finally, we have developed the CLM technology which is free of OPC dead-zone and pattern broken in fabrication process. Therefore, we can apply the CLM technique into sub-65nm node optical lithography including logic devices.
Engineered ZnO nanowire arrays using different nanopatterning techniques
NASA Astrophysics Data System (ADS)
Volk, János; Szabó, Zoltán; Erdélyi, Róbert; Khánh, Nguyen Q.
2012-02-01
The impact of various masking patterns and template layers on the wet chemically grown vertical ZnO nanowire arrays was investigated. The nanowires/nanorods were seeded at nucleation windows which were patterned in a mask layer using various techniques such as electron beam lithography, nanosphere photolithography, and atomic force microscope type nanolithography. The compared ZnO templates included single crystals, epitaxial layer, and textured polycrystalline films. Scanning electron microscopy revealed that the alignment and crystal orientation of the nanowires were dictated by the underlying seed layer, while their geometry can be tuned by the parameters of the certain nanopatterning technique and of the wet chemical process. The comparison of the alternative nanolithography techniques showed that using direct writing methods the diameter of the ordered ZnO nanowires can be as low as 30-40 nm at a density of 100- 1000 NW/μm2 in a very limited area (10 μm2-1 mm2). Nanosphere photolithography assisted growth, on the other hand, favors thicker nanopillars (~400 nm) and enables large-area, low-cost patterning (1-100 cm2). These alternative lowtemperature fabrication routes can be used for different novel optoelectronic devices, such as nanorod based ultraviolet photodiode, light emitting device, and waveguide laser.
Adaptive coded aperture imaging in the infrared: towards a practical implementation
NASA Astrophysics Data System (ADS)
Slinger, Chris W.; Gilholm, Kevin; Gordon, Neil; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; Todd, Mike; De Villiers, Geoff; Watson, Philip; Wilson, Rebecca; Dyer, Gavin; Eismann, Mike; Meola, Joe; Rogers, Stanley
2008-08-01
An earlier paper [1] discussed the merits of adaptive coded apertures for use as lensless imaging systems in the thermal infrared and visible. It was shown how diffractive (rather than the more conventional geometric) coding could be used, and that 2D intensity measurements from multiple mask patterns could be combined and decoded to yield enhanced imagery. Initial experimental results in the visible band were presented. Unfortunately, radiosity calculations, also presented in that paper, indicated that the signal to noise performance of systems using this approach was likely to be compromised, especially in the infrared. This paper will discuss how such limitations can be overcome, and some of the tradeoffs involved. Experimental results showing tracking and imaging performance of these modified, diffractive, adaptive coded aperture systems in the visible and infrared will be presented. The subpixel imaging and tracking performance is compared to that of conventional imaging systems and shown to be superior. System size, weight and cost calculations indicate that the coded aperture approach, employing novel photonic MOEMS micro-shutter architectures, has significant merits for a given level of performance in the MWIR when compared to more conventional imaging approaches.
NASA Astrophysics Data System (ADS)
Wang, H. H.; Shi, Y. P.; Li, X. H.; Ni, K.; Zhou, Q.; Wang, X. H.
2018-03-01
In this paper, a scheme to measure the position of precision stages, with a high precision, is presented. The encoder is composed of a scale grating and a compact two-probe reading head, to read the zero position pulse signal and continuous incremental displacement signal. The scale grating contains different codes, multiple reference codes with different spacing superimposed onto the incremental grooves with an equal spacing structure. The codes of reference mask in the reading head is the same with the reference codes on the scale grating, and generate pulse signal to locate the reference position primarily when the reading head moves along the scale grating. After locating the reference position in a section by means of the pulse signal, the reference position can be located precisely with the amplitude of the incremental displacement signal. A kind of reference codes and scale grating were designed, and experimental results show that the primary precision of the design achieved is 1 μ m. The period of the incremental signal is 1μ m, and 1000/N nm precision can be achieved by subdivide the incremental signal in N times.
Ion Beam Sputtered Coatings of Bioglass
NASA Technical Reports Server (NTRS)
Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne
1982-01-01
The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.
Robust watermark technique using masking and Hermite transform.
Coronel, Sandra L Gomez; Ramírez, Boris Escalante; Mosqueda, Marco A Acevedo
2016-01-01
The following paper evaluates a watermark algorithm designed for digital images by using a perceptive mask and a normalization process, thus preventing human eye detection, as well as ensuring its robustness against common processing and geometric attacks. The Hermite transform is employed because it allows a perfect reconstruction of the image, while incorporating human visual system properties; moreover, it is based on the Gaussian functions derivates. The applied watermark represents information of the digital image proprietor. The extraction process is blind, because it does not require the original image. The following techniques were utilized in the evaluation of the algorithm: peak signal-to-noise ratio, the structural similarity index average, the normalized crossed correlation, and bit error rate. Several watermark extraction tests were performed, with against geometric and common processing attacks. It allowed us to identify how many bits in the watermark can be modified for its adequate extraction.
Liquid-crystal projection image depixelization by spatial phase scrambling
NASA Astrophysics Data System (ADS)
Yang, Xiangyang; Jutamulia, Suganda; Li, Nan
1996-08-01
A technique that removes the pixel structure by scrambling the relative phases among multiple spatial spectra is described. Because of the pixel structure of the liquid-crystal-display (LCD) panel, multiple spectra are generated at the Fourier-spectrum plane (usually at the back focal plane of the imaging lens). A transparent phase mask is placed at the Fourier-spectrum plane such that each spectral order is modulated by one of the subareas of the phase mask, and the phase delay resulting from each pair of subareas is longer than the coherent length of the light source, which is approximately 1 m for the wideband white light sources used in most of LCD s. Such a phase-scrambling technique eliminates the coherence between different spectral orders; therefore, the reconstructed images from the multiple spectra will superimpose incoherently, and the pixel structure will not be observed in the projection image.
Data Reduction and Image Reconstruction Techniques for Non-redundant Masking
NASA Astrophysics Data System (ADS)
Sallum, S.; Eisner, J.
2017-11-01
The technique of non-redundant masking (NRM) transforms a conventional telescope into an interferometric array. In practice, this provides a much better constrained point-spread function than a filled aperture and thus higher resolution than traditional imaging methods. Here, we describe an NRM data reduction pipeline. We discuss strategies for NRM observations regarding dithering patterns and calibrator selection. We describe relevant image calibrations and use example Large Binocular Telescope data sets to show their effects on the scatter in the Fourier measurements. We also describe the various ways to calculate Fourier quantities, and discuss different calibration strategies. We present the results of image reconstructions from simulated observations where we adjust prior images, weighting schemes, and error bar estimation. We compare two imaging algorithms and discuss implications for reconstructing images from real observations. Finally, we explore how the current state of the art compares to next-generation Extremely Large Telescopes.
Systematic study of source mask optimization and verification flows
NASA Astrophysics Data System (ADS)
Ben, Yu; Latypov, Azat; Chua, Gek Soon; Zou, Yi
2012-06-01
Source mask optimization (SMO) emerged as powerful resolution enhancement technique (RET) for advanced technology nodes. However, there is a plethora of flow and verification metrics in the field, confounding the end user of the technique. Systemic study of different flows and the possible unification thereof is missing. This contribution is intended to reveal the pros and cons of different SMO approaches and verification metrics, understand the commonality and difference, and provide a generic guideline for RET selection via SMO. The paper discusses 3 different type of variations commonly arise in SMO, namely pattern preparation & selection, availability of relevant OPC recipe for freeform source and finally the metrics used in source verification. Several pattern selection algorithms are compared and advantages of systematic pattern selection algorithms are discussed. In the absence of a full resist model for SMO, alternative SMO flow without full resist model is reviewed. Preferred verification flow with quality metrics of DOF and MEEF is examined.
Optical image encryption using fresnel zone plate mask based on fast walsh hadamard transform
NASA Astrophysics Data System (ADS)
Khurana, Mehak; Singh, Hukum
2018-05-01
A new symmetric encryption technique using Fresnel Zone Plate (FZP) based on Fast Walsh Hadamard Transform (FWHT) is proposed for security enhancement. In this technique, bits of plain image is randomized by shuffling the bits randomly. The obtained scrambled image is then masked with FZP using symmetric encryption in FWHT domain to obtain final encrypted image. FWHT has been used in the cryptosystem so as to protect image data from the quantization error and for reconstructing the image perfectly. The FZP used in proposed scheme increases the key space and makes it robust to many traditional attacks. The effectiveness and robustness of the proposed cryptosystem has been analyzed on the basis of various parameters by simulating on MATLAB 8.1.0 (R2012b). The experimental results are provided to highlight suitability of the proposed cryptosystem and prove that the system is secure.
A cost-effective methodology for the design of massively-parallel VLSI functional units
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Sriram, G.; Desouza, J.
1993-01-01
In this paper we propose a generalized methodology for the design of cost-effective massively-parallel VLSI Functional Units. This methodology is based on a technique of generating and reducing a massive bit-array on the mask-programmable PAcube VLSI array. This methodology unifies (maintains identical data flow and control) the execution of complex arithmetic functions on PAcube arrays. It is highly regular, expandable and uniform with respect to problem-size and wordlength, thereby reducing the communication complexity. The memory-functional unit interface is regular and expandable. Using this technique functional units of dedicated processors can be mask-programmed on the naked PAcube arrays, reducing the turn-around time. The production cost of such dedicated processors can be drastically reduced since the naked PAcube arrays can be mass-produced. Analysis of the the performance of functional units designed by our method yields promising results.
Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics
Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E. B.; Hyoung Lee, Wi; Wook Lee, Sang
2015-01-01
A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices. PMID:25959389
Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.
Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E B; Hyoung Lee, Wi; Wook Lee, Sang
2015-05-11
A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Xu, Minjie; Tian, Ailing
2017-04-01
A novel optical image encryption scheme is proposed based on quick response code and high dimension chaotic system, where only the intensity distribution of encoded information is recorded as ciphertext. Initially, the quick response code is engendered from the plain image and placed in the input plane of the double random phase encoding architecture. Then, the code is encrypted to the ciphertext with noise-like distribution by using two cascaded gyrator transforms. In the process of encryption, the parameters such as rotation angles and random phase masks are generated as interim variables and functions based on Chen system. A new phase retrieval algorithm is designed to reconstruct the initial quick response code in the process of decryption, in which a priori information such as three position detection patterns is used as the support constraint. The original image can be obtained without any energy loss by scanning the decrypted code with mobile devices. The ciphertext image is the real-valued function which is more convenient for storing and transmitting. Meanwhile, the security of the proposed scheme is enhanced greatly due to high sensitivity of initial values of Chen system. Extensive cryptanalysis and simulation have performed to demonstrate the feasibility and effectiveness of the proposed scheme.
A novel bit-wise adaptable entropy coding technique
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is adaptable in that each bit to be encoded may have an associated probability esitmate which depends on previously encoded bits. The technique may have advantages over arithmetic coding. The technique can achieve arbitrarily small redundancy and admits a simple and fast decoder.
Novel EUV mask black border suppressing EUV and DUV OoB light reflection
NASA Astrophysics Data System (ADS)
Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi
2016-05-01
EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.
Does Kaniso activate CASINO?: input coding schemes and phonology in visual-word recognition.
Acha, Joana; Perea, Manuel
2010-01-01
Most recent input coding schemes in visual-word recognition assume that letter position coding is orthographic rather than phonological in nature (e.g., SOLAR, open-bigram, SERIOL, and overlap). This assumption has been drawn - in part - by the fact that the transposed-letter effect (e.g., caniso activates CASINO) seems to be (mostly) insensitive to phonological manipulations (e.g., Perea & Carreiras, 2006, 2008; Perea & Pérez, 2009). However, one could argue that the lack of a phonological effect in prior research was due to the fact that the manipulation always occurred in internal letter positions - note that phonological effects tend to be stronger for the initial syllable (Carreiras, Ferrand, Grainger, & Perea, 2005). To reexamine this issue, we conducted a masked priming lexical decision experiment in which we compared the priming effect for transposed-letter pairs (e.g., caniso-CASINO vs. caviro-CASINO) and for pseudohomophone transposed-letter pairs (kaniso-CASINO vs. kaviro-CASINO). Results showed a transposed-letter priming effect for the correctly spelled pairs, but not for the pseudohomophone pairs. This is consistent with the view that letter position coding is (primarily) orthographic in nature.
NASA Technical Reports Server (NTRS)
Duda, James L.; Barth, Suzanna C
2005-01-01
The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.
NASA Technical Reports Server (NTRS)
Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.
1972-01-01
Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.
NASA Astrophysics Data System (ADS)
Liansheng, Sui; Yin, Cheng; Bing, Li; Ailing, Tian; Krishna Asundi, Anand
2018-07-01
A novel computational ghost imaging scheme based on specially designed phase-only masks, which can be efficiently applied to encrypt an original image into a series of measured intensities, is proposed in this paper. First, a Hadamard matrix with a certain order is generated, where the number of elements in each row is equal to the size of the original image to be encrypted. Each row of the matrix is rearranged into the corresponding 2D pattern. Then, each pattern is encoded into the phase-only masks by making use of an iterative phase retrieval algorithm. These specially designed masks can be wholly or partially used in the process of computational ghost imaging to reconstruct the original information with high quality. When a significantly small number of phase-only masks are used to record the measured intensities in a single-pixel bucket detector, the information can be authenticated without clear visualization by calculating the nonlinear correlation map between the original image and its reconstruction. The results illustrate the feasibility and effectiveness of the proposed computational ghost imaging mechanism, which will provide an effective alternative for enriching the related research on the computational ghost imaging technique.
Printability and inspectability of programmed pit defects on teh masks in EUV lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, I.-Y.; Seo, H.-S.; Ahn, B.-S.
2010-03-12
Printability and inspectability of phase defects in ELlVL mask originated from substrate pit were investigated. For this purpose, PDMs with programmed pits on substrate were fabricated using different ML sources from several suppliers. Simulations with 32-nm HP L/S show that substrate pits with below {approx}20 nm in depth would not be printed on the wafer if they could be smoothed by ML process down to {approx}1 nm in depth on ML surface. Through the investigation of inspectability for programmed pits, minimum pit sizes detected by KLA6xx, AIT, and M7360 depend on ML smoothing performance. Furthermore, printability results for pit defectsmore » also correlate with smoothed pit sizes. AIT results for pattemed mask with 32-nm HP L/S represents that minimum printable size of pits could be {approx}28.3 nm of SEVD. In addition, printability of pits became more printable as defocus moves to (-) directions. Consequently, printability of phase defects strongly depends on their locations with respect to those of absorber patterns. This indicates that defect compensation by pattern shift could be a key technique to realize zero printable phase defects in EUVL masks.« less
β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia
Kutty, Geetha; Davis, A. Sally; Ferreyra, Gabriela A.; Qiu, Ju; Huang, Da Wei; Sassi, Monica; Bishop, Lisa; Handley, Grace; Sherman, Brad; Lempicki, Richard; Kovacs, Joseph A.
2016-01-01
β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis. In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses. PMID:27324243
NASA Astrophysics Data System (ADS)
Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.
2016-12-01
Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.
Pawar, Harshal Ashok; Joshi, Pooja Rasiklal
2014-01-01
Drugs from nitroimidazole category are generally bitter in taste. Oral formulation with bitter taste is not palatable. Geriatrics and pediatrics patients usually suffer from swallowing difficulties. Many other patients in some disease conditions avoid swallowing tablets. Satranidazole is a new nitro-imidazole derivative with bitter taste and is available in market as film coated tablet. The purpose of this research was to mask the bitter taste of Satranidazole by coating complexation with low melting point wax and Eudragit EPO. Different types of wax (glyceryl monostearate, stearic acid and cetyl alcohol) were tried for taste masking. The drug to stearic acid ratio 1 : 2 was found to be optimum on the basis of taste evaluation and in vitro release. The formulated granules were found to possess good flow property. FTIR studies confirmed that there was no interaction between drug and excipients. Scanning Electron Microscopy of drug and the optimized batch of granules was performed. The in vitro release of drug from granules was compared with marketed tablet formulation. The taste masked granules of optimized batch showed 87.65% release of drug in 1 hr which is comparable to that of marketed tablet formulation. PMID:26556200
Kheterpal, Sachin; Healy, David; Aziz, Michael F; Shanks, Amy M; Freundlich, Robert E; Linton, Fiona; Martin, Lizabeth D; Linton, Jonathan; Epps, Jerry L; Fernandez-Bustamante, Ana; Jameson, Leslie C; Tremper, Tyler; Tremper, Kevin K
2013-12-01
Research regarding difficult mask ventilation (DMV) combined with difficult laryngoscopy (DL) is extremely limited even though each technique serves as a rescue for one another. Four tertiary care centers participating in the Multicenter Perioperative Outcomes Group used a consistent structured patient history and airway examination and airway outcome definition. DMV was defined as grade 3 or 4 mask ventilation, and DL was defined as grade 3 or 4 laryngoscopic view or four or more intubation attempts. The primary outcome was DMV combined with DL. Patients with the primary outcome were compared to those without the primary outcome to identify predictors of DMV combined with DL using a non-parsimonious logistic regression. Of 492,239 cases performed at four institutions among adult patients, 176,679 included a documented face mask ventilation and laryngoscopy attempt. Six hundred ninety-eight patients experienced the primary outcome, an overall incidence of 0.40%. One patient required an emergent cricothyrotomy, 177 were intubated using direct laryngoscopy, 284 using direct laryngoscopy with bougie introducer, 163 using videolaryngoscopy, and 73 using other techniques. Independent predictors of the primary outcome included age 46 yr or more, body mass index 30 or more, male sex, Mallampati III or IV, neck mass or radiation, limited thyromental distance, sleep apnea, presence of teeth, beard, thick neck, limited cervical spine mobility, and limited jaw protrusion (c-statistic 0.84 [95% CI, 0.82-0.87]). DMV combined with DL is an infrequent but not rare phenomenon. Most patients can be managed with the use of direct or videolaryngoscopy. An easy to use unweighted risk scale has robust discriminating capacity.
NASA Astrophysics Data System (ADS)
Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko
2013-09-01
Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
NASA Astrophysics Data System (ADS)
Ten, Jyi Sheuan; Sparkes, Martin; O'Neill, William
2017-02-01
A rapid, mask-less deposition technique for the deposition of conductive tracks to nano- and micro-devices has been developed. The process uses a 405 nm wavelength laser diode for the direct deposition of tungsten tracks on silicon substrates via laser assisted chemical vapour deposition. Unlike lithographic processes this technique is single step and does not require chemical masks that may contaminate the substrate. To demonstrate the process, tungsten was deposited from tungsten hexacarbonyl precursors to produce conductive tracks with widths of 1.7-28 μm and heights of 0.05-35 μm at laser scan speeds up to 40 μm/s. The highest volumetric deposition rate achieved is 1×104 μm3/s, three orders of magnitude higher than that of focused ion beam deposition and on par with a 515 nm wavelength argon ion laser previously reported as the laser source. The microstructure and elemental composition of the deposits are comparable to that of largearea chemical vapour deposition methods using the same chemical precursor. The contact resistance and track resistance of the deposits has been measured using the transfer length method to be 205 μΩ cm. The deposition temperature has been estimated at 334 °C from a laser heat transfer model accounting for temperature dependent optical and physical properties of the substrate. The peak temperatures achieved on silicon and other substrates are higher than the thermal dissociation temperature of numerous precursors, indicating that this technique can also be used to deposit other materials such as gold and platinum on various substrates.
3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique
NASA Astrophysics Data System (ADS)
Lee, Tze Pin; Mohamed, Khairudin
2016-02-01
Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photoresist layers. This fabrication method is extremely time consuming, low throughput, costly and complicated to conduct for high volume manufacturing scale. On the other hand, next generation lithography such as electron beam lithography (EBL), focused ion beam lithography (FIB) and extreme ultraviolet lithography (EUV) are however too costly and the machines require expertise to setup. Therefore, the purpose of this study is to develop a simplified method in producing 3D microstructures using single grayscale emulsion mask technique. By using this grayscale fabrication method, microstructures of thickness as high as 500μm and as low as 20μm are obtained in a single photolithography exposure. Finally, the fabrication of 3D microfluidic channel has been demonstrated by using this grayscale photolithographic technique.
Borges, A B; Caneppele, T M F; Masterson, D; Maia, L C
2017-01-01
To determine if resin infiltration is an effective treatment for improving the esthetic appearance of tooth discoloration resulting from development defects of enamel (EDD) and white spot lesions (WSL) by means of a systematic review. A comprehensive search was performed in PubMed, Scopus, Web of Science, LILACS, BBO Library, Cochrane Library, and SIGLE, as well as in the abstracts of IADR conference, and in the clinical trials registry. Clinical studies in patients with whitish tooth discoloration, in which the resin infiltration technique was applied, were included. Color masking was the primary outcome. The methodological quality and risk of biases of included papers was assessed using MINORS criteria for non-randomized (NRS) comparative studies and Cochrane Collaboration for randomized clinical trials (RCT). From a total of 2930 articles, 17 were assessed for eligibility and 11 remained in the qualitative synthesis. Four NRS and seven RCT studies were selected, the latter consisting of four full-text studies and three conference abstracts. Two studies were excluded from the quality assessment, due to overlapping results. The number of participants (treated teeth) ranged from 18 to 21 (38-74) in the NRS, and 20-83 (20-231) in the RCT studies. Post-orthodontic WSL were the most frequent treated lesions. Initial condition was used as control in the NR studies. In the RCT, resin infiltration was compared to non treatment, remineralization, or bleaching. Overall, partial or complete color masking of affected teeth was reported immediately after resin infiltration. Only two studies followed original outcomes up to one year and reported maintenance of original color masking. Two NR studies were assessed as "moderate" and one as "high" quality. Two RCT were classified as "low" risk of bias in the chosen key domains. The remaining four studies were considered "unclear" or "high" risk of bias. Although the partial or total masking effect of enamel whitish discoloration has been shown with resin infiltration, there is no strong evidence to support this technique based on the present clinical studies. Enamel whitish discolorations in esthetically compromised areas are clinically undesirable. Minimally invasive approaches used as attempts to minimize the discoloration include the resin infiltration technique. The evidence for clinical recommendation of this technique is not strong, thus, further RCT studies with long-term follow-ups should be conducted. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Sydney University PAPA camera
NASA Astrophysics Data System (ADS)
Lawson, Peter R.
1994-04-01
The Precision Analog Photon Address (PAPA) camera is a photon-counting array detector that uses optical encoding to locate photon events on the output of a microchannel plate image intensifier. The Sydney University camera is a 256x256 pixel detector which can operate at speeds greater than 1 million photons per second and produce individual photon coordinates with a deadtime of only 300 ns. It uses a new Gray coded mask-plate which permits a simplified optical alignment and successfully guards against vignetting artifacts.
Adaptive temporal compressive sensing for video with motion estimation
NASA Astrophysics Data System (ADS)
Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi
2018-04-01
In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.
Recent advances in lossless coding techniques
NASA Astrophysics Data System (ADS)
Yovanof, Gregory S.
Current lossless techniques are reviewed with reference to both sequential data files and still images. Two major groups of sequential algorithms, dictionary and statistical techniques, are discussed. In particular, attention is given to Lempel-Ziv coding, Huffman coding, and arithmewtic coding. The subject of lossless compression of imagery is briefly discussed. Finally, examples of practical implementations of lossless algorithms and some simulation results are given.
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
NASA Astrophysics Data System (ADS)
Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik
2015-09-01
The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the need for high-speed e-beam inspection and then provides initial imaging results from EUV masks and wafers from 61 and 91 beam demonstration systems. Progress towards high resolution and consistent intentional defect arrays (IDA) is also shown.
Preliminary results for mask metrology using spatial heterodyne interferometry
NASA Astrophysics Data System (ADS)
Bingham, Philip R.; Tobin, Kenneth; Bennett, Marylyn H.; Marmillion, Pat
2003-12-01
Spatial heterodyne interferometry (SHI) is an imaging technique that captures both the phase and amplitude of a complex wavefront in a single high-speed image. This technology was developed at the Oak Ridge National Laboratory (ORNL) and is currently being implemented for semiconductor wafer inspection by nLine Corporation. As with any system that measures phase, metrology and inspection of surface structures is possible by capturing a wavefront reflected from the surface. The interpretation of surface structure heights for metrology applications can become very difficult with the many layers of various materials used on semiconductor wafers, so inspection (defect detection) has been the primary focus for semiconductor wafers. However, masks used for photolithography typically only contain a couple well-defined materials opening the doors to high-speed mask metrology in 3 dimensions in addition to inspection. Phase shift masks often contain structures etched out of the transparent substrate material for phase shifting. While these structures are difficult to inspect using only intensity, the phase and amplitude images captured with SHI can produce very good resolution of these structures. The phase images also provide depth information that is crucial for these phase shift regions. Preliminary testing has been performed to determine the feasibility of SHI for high-speed non-contact mask metrology using a prototype SHI system with 532 nm wavelength illumination named the Visible Alpha Tool (VAT). These results show that prototype SHI system is capable of performing critical dimension measurements on 400nm lines with a repeatability of 1.4nm and line height measurements with a repeatability of 0.26nm. Additionally initial imaging of an alternating aperture phase shift mask has shown the ability of SHI to discriminate between typical phase shift heights.
X-ray/VUV transmission gratings for astrophysical and laboratory applications
NASA Technical Reports Server (NTRS)
Schattenburg, M. L.; Anderson, E. H.; Smith, Henry I.
1990-01-01
This paper describes the techniques used to fabricate deep-submicron-period transmission gratings for astrophysical and laboratory applications, with special attention given to the major steps involved in the transmission grating fabrication. These include the holographic lithography procedure used to pattern the master transmission grating, the fabrication of X-ray mask, the X-ray lithography step used to transfer the X-ray mask pattern into a substrate, and the electroplating of the substrate to form the final grating pattern. The various ways in which transmission gratings can be used in X-ray and VUV spectroscopy are discussed together with some examples of experiments reported in the literature.
NASA Astrophysics Data System (ADS)
Swiecicki, I.; Ulysse, C.; Wolf, T.; Bernard, R.; Bergeal, N.; Briatico, J.; Faini, G.; Lesueur, J.; Villegas, Javier E.
2012-06-01
We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adjust the depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an unusually wide range of temperatures and applied fields for high-temperature superconducting films.
NASA Astrophysics Data System (ADS)
Liu, Jian; Xu, Rui
2018-04-01
Chaotic synchronisation has caused extensive attention due to its potential application in secure communication. This paper is concerned with the problem of adaptive synchronisation for two different kinds of memristor-based neural networks with time delays in leakage terms. By applying set-valued maps and differential inclusions theories, synchronisation criteria are obtained via linear matrix inequalities technique, which guarantee drive system being synchronised with response system under adaptive control laws. Finally, a numerical example is given to illustrate the feasibility of our theoretical results, and two schemes for secure communication are introduced based on chaotic masking method.
NASA Technical Reports Server (NTRS)
Lee, P. J.
1984-01-01
For rate 1/N convolutional codes, a recursive algorithm for finding the transfer function bound on bit error rate (BER) at the output of a Viterbi decoder is described. This technique is very fast and requires very little storage since all the unnecessary operations are eliminated. Using this technique, we find and plot bounds on the BER performance of known codes of rate 1/2 with K 18, rate 1/3 with K 14. When more than one reported code with the same parameter is known, we select the code that minimizes the required signal to noise ratio for a desired bit error rate of 0.000001. This criterion of determining goodness of a code had previously been found to be more useful than the maximum free distance criterion and was used in the code search procedures of very short constraint length codes. This very efficient technique can also be used for searches of longer constraint length codes.
Yan, F; Li, J; Wang, H J; Yang, X; Yang, J B; Tu, X J
2018-05-15
Objective: By observing the clinical effect of ultrasound, fiberoptic bronchoscopy and traditional standard in positioning the general anesthesia of laryngeal mask ventilation in elderly patients, the superiority of laryngeal mask positioning with visualization technique of ultrasound and fiberoptic bronchoscope on airway management in elderly patients with general anesthesia was analyzed. Methods: One hundred and twenty cases of elderly patients with general anesthesia of laryngeal mask ventilation from the People's Hospital of Yuyao city from October 2016 to October 2017 were selected and randomly divided into 3 groups( n =40)according to American Society of Anesthesiologists (ASA) grading criteria Ⅰ-Ⅲ. Group A: traditional standard positioning laryngeal mask group. Group B: fiberoptic bronchoscope positioning laryngeal mask group. Group C: ultrasound positioning laryngeal mask group. The general information of sex ratio of male and female, mass, and height, and operation type, operation duration, anaesthesia duration, and modified Mallampati grade were observed and compared among the three groups. The number of successful laryngeal mask ventilation after laryngeal mask placement in 3 groups was observed, the laryngeal mask placement time (T(0)) and the normal ventilation time after adjustment (T(1)) in each group were recorded, and the first success rate of laryngeal mask placement, the success rate after adjusting the positioning, and the success rate of re-placement were calculated. Moreover, the mean peak airway pressure at 5 min after operation, the minimum intrathecal injection gas for minimum ventilation (V(min)), the minimum laryngeal mask intravesical pressure (ICP(min)), and the lowest air pressure for oral and pharyngeal leakage (OLP(min)) were recorded. The airway seal pressure (OLP(60)) and the volume of gas injection (V(60)) when the intravesical pressure was 60 cmH(2)O (1 cmH(2)O=0.098 kPa) were used to record the incidence of postoperative laryngeal mask bleeding, cough, nausea and vomiting, and the incidence of pharyngalgia, odynophagia, hoarseness and other related complications after 24 hours of the operation. Results: There was no significant difference in general information, airway evaluation and anesthesia operation among the three groups (all P >0.05). The incidence of intraoperative laryngeal mask bleeding in group B and C was 7.9% and 2.6% respectively, the incidence of odynophagia at 24 hours after operation was 5.3% and 0 respectively, and the incidence of pharyngalgia and hoarseness was 18.4% and 7.9% respectively, less than that in group A (24.2%, 12.1% and 36.3%). The difference was statistically significant (χ(2)=8.900, 6.880, 9.000, P <0.05). The success rate of adjustment and positioning after the placement of laryngeal mask was 84.2% and 94.7% respectively in group B and C, higher than that in group A of 72.7%, and the difference was statistically significant (χ(2)=6.500, P <0.05). The lowest laryngeal mask intralaryngeal pressure for ventilation in group B and C was (35.39±4.67) cmH(2)O and (32.61±3.22) cmH(2)O, lower than that in group A of (39.30 ± 5.93) cmH(2)O, the intralaryngeal pressure was 60 cmH(2)O, and the airway seal pressure was (25.82±4.48) cmH(2)O and (28.34±6.99) cmH(2)O, higher than that in group A of (22.45±4.98) cmH(2)O, which was significantly different ( F =18.200, 9.720, P <0.05). Conclusions: In elderly patients with general anesthesia, it is feasible to manage the airway by ultrasound or fiberoptic bronchoscopy with laryngeal mask. Ultrasound positioning laryngeal mask improves the accuracy of the intraoperative ventilation, and reduces the incidence of postoperative airway related complications.
Calis, G; Leeuwenberg, E
1981-12-01
Coding rules can be formulated in which the shortest description of a figure-ground pattern exhibits a hierarchical structure, with the ground playing a primary and the figure a secondary role. We hypothesized that the process of perception involves and assimilation phase followed by a test phase in which the ground is tested before the figure. Experiments are described in which pairs of consecutive, superimposed patterns are presented in rapid succession, resulting in a subjective impression of seeing one pattern only. In these presentations, the second pattern introduces some deliberate distortion of the figure or ground displayed in the first pattern. Maximal distortions of the ground occur at shorter stimulus onset asynchronies than maximal distortions of the figure, suggesting that the ground codes are processed before figure codes. Moreover, patterns presenting the ground first are more likely to be perceived as ground, regardless of the distortions, than patterns presenting the figure first. This quasi masking or microgenetic approach might be relevant to theories on :mediations of immediate, or direct" perception.
Optical DC overlay measurement in the 2nd level process of 65 nm alternating phase shift mask
NASA Astrophysics Data System (ADS)
Ma, Jian; Han, Ke; Lee, Kyung; Korobko, Yulia; Silva, Mary; Chavez, Joas; Irvine, Brian; Henrichs, Sven; Chakravorty, Kishore; Olshausen, Robert; Chandramouli, Mahesh; Mammen, Bobby; Padmanaban, Ramaswamy
2005-11-01
Alternating phase shift mask (APSM) techniques help bridge the significant gap between the lithography wavelength and the patterning of minimum features, specifically, the poly line of 35 nm gate length (1x) in Intel's 65 nm technology. One of key steps in making APSM mask is to pattern to within the design tolerances the 2nd level resist so that the zero-phase apertures will be protected by the resist and the pi-phase apertures will be wide open for quartz etch. The ability to align the 2nd level to the 1st level binary pattern, i.e. the 2nd level overlay capability is very important, so is the capability of measuring the overlay accurately. Poor overlay could cause so-called the encroachment after quartz etch, producing undesired quartz bumps in the pi-apertures or quartz pits in the zero-apertures. In this paper, a simple, low-cost optical setup for the 2nd level DC (develop check) overlay measurements in the high volume manufacturing (HVM) of APSM masks is presented. By removing systematic errors in overlay associated with TIS and MIS (tool-induced shift and Mask-process induced shift), it is shown that this setup is capable of supporting the measurement of DC overlay with a tolerance as small as +/- 25 nm. The outstanding issues, such as DC overlay error component analysis, DC - FC (final check) overlay correlation and the overlay linearity (periphery vs. indie), are discussed.
Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.
Ramakrishnan, Saminathan; Subramaniam, Sivaraman; Stewart, A Francis; Grundmeier, Guido; Keller, Adrian
2016-11-16
DNA origami has become a widely used method for synthesizing well-defined nanostructures with promising applications in various areas of nanotechnology, biophysics, and medicine. Recently, the possibility to transfer the shape of single DNA origami nanostructures into different materials via molecular lithography approaches has received growing interest due to the great structural control provided by the DNA origami technique. Here, we use ordered monolayers of DNA origami nanostructures with internal cavities on mica surfaces as molecular lithography masks for the fabrication of regular protein patterns over large surface areas. Exposure of the masked sample surface to negatively charged proteins results in the directed adsorption of the proteins onto the exposed surface areas in the holes of the mask. By controlling the buffer and adsorption conditions, the protein coverage of the exposed areas can be varied from single proteins to densely packed monolayers. To demonstrate the versatility of this approach, regular nanopatterns of four different proteins are fabricated: the single-strand annealing proteins Redβ and Sak, the iron-storage protein ferritin, and the blood protein bovine serum albumin (BSA). We furthermore demonstrate the desorption of the DNA origami mask after directed protein adsorption, which may enable the fabrication of hierarchical patterns composed of different protein species. Because selectivity in adsorption is achieved by electrostatic interactions between the proteins and the exposed surface areas, this approach may enable also the large-scale patterning of other charged molecular species or even nanoparticles.
Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE
NASA Astrophysics Data System (ADS)
Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich
1993-01-01
SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.
New SHARE 2010 HSI-LiDAR dataset: re-calibration, detection assessment and delivery
NASA Astrophysics Data System (ADS)
Ientilucci, Emmett J.
2016-09-01
This paper revisits hyperspectral data collected from the SpecTIR hyperspectral airborne Rochester Experiment (SHARE) in 2010. It has been determined that there were calibration issues in the SWIR portion of the data. This calibration issue is discussed and has been rectified. Approaches for calibration to radiance and compensation to reflectance are discussed based on in-scene information and radiative transfer codes. In addition to the entire flight line, a much large target detection test and evaluation chip has been created which includes an abundance of potential false alarms. New truth masks are created along with results from target detection algorithms. Co-registered LiDAR data is also presented. Finally, all ground truth information (ground photos, metadata, MODTRAN tape5, ASD ground spectral measurements, target truth masks, etc.), in addition to the HSI flight lines and co-registered LiDAR data, has been organized, packaged and uploaded to the Center for Imaging Science / Digital Imaging and Remote Sensing Lab web server for public use.
Carrigy, Nicholas B; O'Reilly, Connor; Schmitt, James; Noga, Michelle; Finlay, Warren H
2014-08-01
During the aerosol delivery device design and optimization process, in vitro lung dose (LD) measurements are often performed using soft face models, which may provide a more clinically relevant representation of face mask dead volume (MDV) and face mask seal (FMS) than hard face models. However, a comparison of MDV, FMS, and LD for hard and soft face models is lacking. Metal, silicone, and polyurethane represented hard, soft, and very soft facial materials, respectively. MDV was measured using a water displacement technique. FMS was measured using a valved holding chamber (VHC) flow rate technique. The LD of beclomethasone dipropionate (BDP) delivered via a 100-μg Qvar® pressurized metered dose inhaler with AeroChamber Plus® Flow-Vu® VHC and Small Mask, defined as that which passes through the nasal airways of the idealized infant geometry, was measured using a bias tidal flow system with a filter. MDV, FMS, and LD were measured at 1.5 lb and 3.5 lb of applied force. A mathematical model was used to predict LD based on experimental measurements of MDV and FMS. Experimental BDP LD measurements for ABS, silicone, and polyurethane at 1.5 lb were 0.9 (0.6) μg, 2.4 (1.9) μg, and 19.3 (0.9) μg, respectively. At 3.5 lb, the respective LD was 10.0 (1.5) μg, 13.8 (1.4) μg, and 14.2 (0.9) μg. Parametric analysis with the mathematical model showed that differences in FMS between face models had a greater impact on LD than differences in MDV. The use of soft face models resulted in higher LD than hard face models, with a greater difference at 1.5 lb than at 3.5 lb. A lack of a FMS led to decreased dose consistency; therefore, a sealant should be used when measuring LD with a hard ABS or soft silicone face model at 1.5 lb of applied force or less.
Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit
NASA Technical Reports Server (NTRS)
Meginnis, I; Norcross, J.; Bekdash, O.
2016-01-01
It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification techniques for future CO2 washout limits in space suits