Dastmalchi, Mehran; Chang, Limei; Torres, Miguel A; Ng, Kenneth K S; Facchini, Peter J
2018-05-19
Codeinone reductase (COR) catalyzes the reversible NADPH-dependent reduction of codeinone to codeine as the penultimate step of morphine biosynthesis in opium poppy (Papaver somniferum). COR also irreversibly reduces neopinone, which forms by spontaneous isomerization in aqueous solution from codeinone, to neopine. In a parallel pathway involving 3-O-desmethylated analogs, COR converts morphinone to morphine, and neomorphinone to neomorphine. Similar to neopine, neomorphine formation by COR is irreversible. Neopine is a minor substrate for codeine O-demethylase (CODM) yielding morphine. In the plant, neopine levels are low and neomorphine has not been detected. Silencing of CODM leads to accumulation of upstream metabolites, such as codeine and thebaine, but does not result in a shift towards higher relative concentrations of neopine, suggesting a plant mechanism for limiting neopine production. In yeast (Saccharomyces cerevisiae) engineered to produce opiate alkaloids, the catalytic properties of COR lead to accumulation of neopine and neomorphine as major products. An isoform (COR-B) was isolated from opium poppy chemotype Bea's Choice that showed higher catalytic activity compared with previously characterized CORs, and it yielded mostly neopine in vitro and in engineered yeast. Five catalytically distinct COR isoforms (COR1.1-1.4 and COR-B) were used to determine sequence-function relationships that influence product selectivity. Biochemical characterization and site-directed mutagenesis of native COR isoforms identified four residues (V25, K41, F129 and W279) that affected protein stability, reaction velocity, and product selectivity and output. Improving COR performance coupled with an ability to guide pathway flux is necessary to facilitate production of opiate alkaloids in engineered microorganisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Luong, Susan; Ung, Alison T; Kalman, John; Fu, Shanlin
2014-07-30
Pyridinium chlorochromate (PCC) is the active ingredient of 'Urine Luck', a commercially available in vitro adulterating agent used to conceal the presence of drugs in a urine specimen. The exposure of codeine and its major glucuronide metabolite codeine-6-glucuronide (C6G) to PCC was investigated to determine whether PCC is an effective masking agent for these opiate compounds. Following the addition of PCC to both spiked and authentic codeine and C6G-positive urine specimens, the samples were monitored using liquid chromatography/mass spectrometry (LC/MS). Stable reaction products were identified and characterized using high-resolution MS analysis and, where possible, nuclear magnetic resonance (NMR) analysis. It was determined that PCC effectively oxidizes codeine and C6G, thus altering the original codeine-to-C6G ratio in the urine specimen. Four reaction products were identified for codeine: codeinone, 14-hydroxycodeinone, 6-O-methylcodeine and 8-hydroxy-7,8-dihydrocodeinone. Similarly, three reaction products were identified for C6G: codeinone, codeine and a lactone of C6G (tentative assignment). Besides addressing the complications added to interpretation, more investigation is warranted to further determine their potential for use as markers for monitoring the presence of codeine and C6G in urine specimens adulterated with PCC. Copyright © 2014 John Wiley & Sons, Ltd.
Induction of non-apoptotic cell death by morphinone in human promyelocytic leukemia HL-60 cells.
Takeuchi, Risa; Hoshijima, Hiroshi; Nagasaka, Hiroshi; Chowdhury, Shahead Ali; Kikuchi, Hirotaka; Kanda, Yumiko; Kunii, Shiro; Kawase, Masami; Sakagami, Hiroshi
2006-01-01
As previously suggested, codeinone (oxidation product of codeine) induces non-apoptotic cell death, characterized by marginal caspase activation and the lack of DNA fragmentation in HL-60 human promyelocytic leukemia cells, which was inhibited by N-acetyl-L-cysteine. Whether, morphinone, an oxidative metabolite of morphine, also induced a similar type of cell death in HL-60 cells was investigated. Morphinone showed slightly higher cytotoxic activity against human tumor cell lines (oral squamous cell carcinoma HSC-2, HSC-3, HSC-4, NA, Ca9-22, promyelocytic leukemia HL-60, cervical carcinoma HeLa) than against normal oral human cells (gingival fibroblast HGF, pulp cells HPC, periodontal ligament fibroblast HPLF). Morphinone also induced an almost undetectable level of internucleosomal DNA fragmentation in the HL-60 cells. Morphinone did not activate caspase-8 or -9 in these cells. Morphinone dose-dependently activated caspase-3 in both HL-60 and HSC-2 cell lines, but to a much lesser extent than actinomycin D. Electron microscopy demonstrated that morphinone induced mitochondrial shrinkage, vacuolization and production of autophagosome and the loss of cell surface microvilli, without destruction of cell surface and nuclear membranes in the HL-60 cells. The autophagy inhibitor 3-methyladenine (0.3-10 mM) slightly inhibited the morphinone-induced cytotoxicity, when corrected for its own cytotoxicity. These data suggest that morphinone induces non-apoptotic cell death in HL-60 cells.
Crop and medicinal plants proteomics in response to salt stress
Aghaei, Keyvan; Komatsu, Setsuko
2013-01-01
Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen-related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase, and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase, and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects. PMID:23386857
Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae
Jirschitzka, Jan; Schmidt, Gregor W.; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D’Auria, John Charles
2012-01-01
The pharmacologically important tropane alkaloids have a scattered distribution among angiosperm families, like many other groups of secondary metabolites. To determine whether tropane alkaloids have evolved repeatedly in different lineages or arise from an ancestral pathway that has been lost in most lines, we investigated the tropinone-reduction step of their biosynthesis. In species of the Solanaceae, which produce compounds such as atropine and scopolamine, this reaction is known to be catalyzed by enzymes of the short-chain dehydrogenase/reductase family. However, in Erythroxylum coca (Erythroxylaceae), which accumulates cocaine and other tropane alkaloids, no proteins of the short-chain dehydrogenase/reductase family were found that could catalyze this reaction. Instead, purification of E. coca tropinone-reduction activity and cloning of the corresponding gene revealed that a protein of the aldo-keto reductase family carries out this reaction in E. coca. This protein, designated methylecgonone reductase, converts methylecgonone to methylecgonine, the penultimate step in cocaine biosynthesis. The protein has highest sequence similarity to other aldo-keto reductases, such as chalcone reductase, an enzyme of flavonoid biosynthesis, and codeinone reductase, an enzyme of morphine alkaloid biosynthesis. Methylecgonone reductase reduces methylecgonone (2-carbomethoxy-3-tropinone) stereospecifically to 2-carbomethoxy-3β-tropine (methylecgonine), and has its highest activity, protein level, and gene transcript level in young, expanding leaves of E. coca. This enzyme is not found at all in root tissues, which are the site of tropane alkaloid biosynthesis in the Solanaceae. This evidence supports the theory that the ability to produce tropane alkaloids has arisen more than once during the evolution of the angiosperms. PMID:22665766