Sample records for codes vorpal osiris

  1. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    NASA Astrophysics Data System (ADS)

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-01

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  2. Implementation of collisions on GPU architecture in the Vorpal code

    NASA Astrophysics Data System (ADS)

    Leddy, Jarrod; Averkin, Sergey; Cowan, Ben; Sides, Scott; Werner, Greg; Cary, John

    2017-10-01

    The Vorpal code contains a variety of collision operators allowing for the simulation of plasmas containing multiple charge species interacting with neutrals, background gas, and EM fields. These existing algorithms have been improved and reimplemented to take advantage of the massive parallelization allowed by GPU architecture. The use of GPUs is most effective when algorithms are single-instruction multiple-data, so particle collisions are an ideal candidate for this parallelization technique due to their nature as a series of independent processes with the same underlying operation. This refactoring required data memory reorganization and careful consideration of device/host data allocation to minimize memory access and data communication per operation. Successful implementation has resulted in an order of magnitude increase in simulation speed for a test-case involving multiple binary collisions using the null collision method. Work supported by DARPA under contract W31P4Q-16-C-0009.

  3. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  4. Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    NASA Astrophysics Data System (ADS)

    Cowan, B. M.; Kalmykov, S. Y.; Beck, A.; Davoine, X.; Bunkers, K.; Lifschitz, A. F.; Lefebvre, E.; Bruhwiler, D. L.; Shadwick, B. A.; Umstadter, D. P.; Umstadter

    2012-08-01

    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz, A. F. et al. 2009 Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys. 228(5), 1803-1814) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of two simulations indicates that these are free of numerical artefacts. Both approaches thus retrieve the physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver.

  5. Deployment of the OSIRIS EM-PIC code on the Intel Knights Landing architecture

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2017-10-01

    Electromagnetic particle-in-cell (EM-PIC) codes such as OSIRIS have found widespread use in modelling the highly nonlinear and kinetic processes that occur in several relevant plasma physics scenarios, ranging from astrophysical settings to high-intensity laser plasma interaction. Being computationally intensive, these codes require large scale HPC systems, and a continuous effort in adapting the algorithm to new hardware and computing paradigms. In this work, we report on our efforts on deploying the OSIRIS code on the new Intel Knights Landing (KNL) architecture. Unlike the previous generation (Knights Corner), these boards are standalone systems, and introduce several new features, include the new AVX-512 instructions and on-package MCDRAM. We will focus on the parallelization and vectorization strategies followed, as well as memory management, and present a detailed performance evaluation of code performance in comparison with the CPU code. This work was partially supported by Fundaçã para a Ciência e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014.

  6. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  7. Rapid development of image analysis research tools: Bridging the gap between researcher and clinician with pyOsiriX.

    PubMed

    Blackledge, Matthew D; Collins, David J; Koh, Dow-Mu; Leach, Martin O

    2016-02-01

    We present pyOsiriX, a plugin built for the already popular dicom viewer OsiriX that provides users the ability to extend the functionality of OsiriX through simple Python scripts. This approach allows users to integrate the many cutting-edge scientific/image-processing libraries created for Python into a powerful DICOM visualisation package that is intuitive to use and already familiar to many clinical researchers. Using pyOsiriX we hope to bridge the apparent gap between basic imaging scientists and clinical practice in a research setting and thus accelerate the development of advanced clinical image processing. We provide arguments for the use of Python as a robust scripting language for incorporation into larger software solutions, outline the structure of pyOsiriX and how it may be used to extend the functionality of OsiriX, and we provide three case studies that exemplify its utility. For our first case study we use pyOsiriX to provide a tool for smooth histogram display of voxel values within a user-defined region of interest (ROI) in OsiriX. We used a kernel density estimation (KDE) method available in Python using the scikit-learn library, where the total number of lines of Python code required to generate this tool was 22. Our second example presents a scheme for segmentation of the skeleton from CT datasets. We have demonstrated that good segmentation can be achieved for two example CT studies by using a combination of Python libraries including scikit-learn, scikit-image, SimpleITK and matplotlib. Furthermore, this segmentation method was incorporated into an automatic analysis of quantitative PET-CT in a patient with bone metastases from primary prostate cancer. This enabled repeatable statistical evaluation of PET uptake values for each lesion, before and after treatment, providing estaimes maximum and median standardised uptake values (SUVmax and SUVmed respectively). Following treatment we observed a reduction in lesion volume, SUVmax and SUVmed for all lesions, in agreement with a reduction in concurrent measures of serum prostate-specific antigen (PSA). Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  9. OSIRIS-REx Visible And Infrared Spectrometer - OVIRS

    NASA Technical Reports Server (NTRS)

    Hair, Jason

    2016-01-01

    Goddard Space Flight Center: Overall Instrument Responsibility; Instrument Scientist and Deputy Instrument Scientist; Management Systems Engineering; Mechanical Hardware; Harness Assemblies; SIDECAR Assembly Code; OVIRS Integration and Environmental Qualification; OVIRS Performance Testing, Calibration and Characterization.

  10. Particle In Cell Codes on Highly Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Tableman, Adam

    2014-10-01

    We describe strategies and examples of Particle-In-Cell Codes running on Nvidia GPU and Intel Phi architectures. This includes basic implementations in skeletons codes and full-scale development versions (encompassing 1D, 2D, and 3D codes) in Osiris. Both the similarities and differences between Intel's and Nvidia's hardware will be examined. Work supported by grants NSF ACI 1339893, DOE DE SC 000849, DOE DE SC 0008316, DOE DE NA 0001833, and DOE DE FC02 04ER 54780.

  11. Tunneling ionization and Wigner transform diagnostics in OSIRIS

    NASA Astrophysics Data System (ADS)

    Martins, S.; Fonseca, R. A.; Silva, L. O.; Deng, S.; Katsouleas, T.; Tsung, F.; Mori, W. B.

    2004-11-01

    We describe the ionization module implemented in the PIC code OSIRIS [1]. Benchmarks with previously published tunnel ionization results were made. Our ionization module works in 1D, 2D and 3D simulations with barrier suppression ionization or the ADK ionization model, and allows for moving ions. Several illustrative 3D numerical simulations were performed, namely of the propagation of a SLAC beam in a Li gas cell, for the parameters of [2]. We compare the performance of OSIRIS with/without the ionization module, concluding that much less simulation time is usually required when using the ionization module. A novel diagnostic over the electric field is implemented, the Wigner transform, that provides information on the local spectral content of the field. This diagnostic is applied to the analysis of the chirp induced in an ionizing laser pulse. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002). [2] S. Deng et al., Phys. Rev. E 68, 047401 (2003).

  12. Engineering design of the Regolith X-ray Imaging Spectrometer (REXIS) instrument: an OSIRIS-REx student collaboration

    NASA Astrophysics Data System (ADS)

    Jones, Michael; Chodas, Mark; Smith, Matthew J.; Masterson, Rebecca A.

    2014-07-01

    OSIRIS-REx is a NASA New Frontiers mission scheduled for launch in 2016 that will travel to the asteroid Bennu and return a pristine sample of the asteroid to Earth. The REgolith X-ray Imaging Spectrometer (REXIS) is a student collaboration instrument on-board the OSIRIS-REx spacecraft. REXIS is a NASA risk Class D instrument, and its design and development is largely student led. The engineering team consists of MIT graduate and undergraduate students and staff at the MIT Space Systems Laboratory. The primary goal of REXIS is the education of science and engineering students through participation in the development of light hardware. In light, REXIS will contribute to the mission by providing an elemental abundance map of the asteroid and by characterizing Bennu among the known meteorite groups. REXIS is sensitive to X-rays between 0.5 and 7 keV, and uses coded aperture imaging to map the distribution of iron with 50 m spatial resolution. This paper describes the science goals, concept of operations, and overall engineering design of the REXIS instrument. Each subsystem of the instrument is addressed with a high-level description of the design. Critical design elements such as the Thermal Isolation Layer (TIL), radiation cover, coded-aperture mask, and Detector Assembly Mount (DAM) are discussed in further detail.

  13. Particle-in-Cell Modeling of Magnetron Sputtering Devices

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.

    2017-10-01

    In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.

  14. Compton scattering collision module for OSIRIS

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Fabrizio; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luís

    2017-10-01

    Compton scattering plays a fundamental role in a variety of different astrophysical environments, such as at the gaps of pulsars and the stagnation surface of black holes. In these scenarios, Compton scattering is coupled with self-consistent mechanisms such as pair cascades. We present the implementation of a novel module, embedded in the self-consistent framework of the PIC code OSIRIS 4.0, capable of simulating Compton scattering from first principles and that is fully integrated with the self-consistent plasma dynamics. The algorithm accounts for the stochastic nature of Compton scattering reproducing without approximations the exchange of energy between photons and unbound charged species. We present benchmarks of the code against the analytical results of Blumenthal et al. and the numerical solution of the linear Kompaneets equation and good agreement is found between the simulations and the theoretical models. This work is supported by the European Research Council Grant (ERC- 2015-AdG 695088) and the Fundao para a Céncia e Tecnologia (Bolsa de Investigao PD/BD/114323/2016).

  15. REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K; Chodas, Mark; Smith, Matthew W; Bautz, Mark W.; Kissel, Steven E; Villasenor, Jesus Noel; Oprescu, Antonia

    2014-06-01

    The REgolith X-Ray Imaging Spectrometer (REXIS) is a student-led instrument being designed, built, and operated as a collaborative effort involving MIT and Harvard. It is a part of NASA's OSIRIS-REx mission, which is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of the primitive carbonaceous chondrite-like asteroid 101955 Bennu in 2019. REXIS will determine spatial variations in elemental composition of Bennu's surface through solar-induced X-ray fluorescence. REXIS consists of four X-ray CCDs in the detector plane and an X-ray mask. It is the first coded-aperture X-ray telescope in a planetary mission, which combines the benefit of high X-ray throughput of wide-field collimation with imaging capability of a coded-mask, enabling detection of elemental surface distributions at approximately 50-200 m scales. We present an overview of the REXIS instrument and the expected performance.

  16. UCLA Final Technical Report for the "Community Petascale Project for Accelerator Science and Simulation”.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Warren

    The UCLA Plasma Simulation Group is a major partner of the “Community Petascale Project for Accelerator Science and Simulation”. This is the final technical report. We include an overall summary, a list of publications, progress for the most recent year, and individual progress reports for each year. We have made tremendous progress during the three years. SciDAC funds have contributed to the development of a large number of skeleton codes that illustrate how to write PIC codes with a hierarchy of parallelism. These codes cover 2D and 3D as well as electrostatic solvers (which are used in beam dynamics codesmore » and quasi-static codes) and electromagnetic solvers (which are used in plasma based accelerator codes). We also used these ideas to develop a GPU enabled version of OSIRIS. SciDAC funds were also contributed to the development of strategies to eliminate the Numerical Cerenkov Instability (NCI) which is an issue when carrying laser wakefield accelerator (LWFA) simulations in a boosted frame and when quantifying the emittance and energy spread of self-injected electron beams. This work included the development of a new code called UPIC-EMMA which is an FFT based electromagnetic PIC code and to new hybrid algorithms in OSIRIS. A new hybrid (PIC in r-z and gridless in φ) algorithm was implemented into OSIRIS. In this algorithm the fields and current are expanded into azimuthal harmonics and the complex amplitude for each harmonic is calculated separately. The contributions from each harmonic are summed and then used to push the particles. This algorithm permits modeling plasma based acceleration with some 3D effects but with the computational load of an 2D r-z PIC code. We developed a rigorously charge conserving current deposit for this algorithm. Very recently, we made progress in combining the speed up from the quasi-3D algorithm with that from the Lorentz boosted frame. SciDAC funds also contributed to the improvement and speed up of the quasi-static PIC code QuickPIC. We have also used our suite of PIC codes to make scientific discovery. Highlights include supporting FACET experiments which achieved the milestones of showing high beam loading and energy transfer efficiency from a drive electron beam to a witness electron beam and the discovery of a self-loading regime a for high gradient acceleration of a positron beam. Both of these experimental milestones were published in Nature together with supporting QuickPIC simulation results. Simulation results from QuickPIC were used on the cover of Nature in one case. We are also making progress on using highly resolved QuickPIC simulations to show that ion motion may not lead to catastrophic emittance growth for tightly focused electron bunches loaded into nonlinear wakefields. This could mean that fully self-consistent beam loading scenarios are possible. This work remains in progress. OSIRIS simulations were used to discover how 200 MeV electron rings are formed in LWFA experiments, on how to generate electrons that have a series of bunches on nanometer scale, and how to transport electron beams from (into) plasma sections into (from) conventional beam optic sections.« less

  17. Implementation of a 3D version of ponderomotive guiding center solver in particle-in-cell code OSIRIS

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2016-10-01

    Laser-driven accelerators gained an increased attention over the past decades. Typical modeling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) simulations. PIC simulations, however, are very computationally expensive due to the disparity of the relevant scales ranging from the laser wavelength, in the micrometer range, to the acceleration length, currently beyond the ten centimeter range. To minimize the gap between these despair scales the ponderomotive guiding center (PGC) algorithm is a promising approach. By describing the evolution of the laser pulse envelope separately, only the scales larger than the plasma wavelength are required to be resolved in the PGC algorithm, leading to speedups in several orders of magnitude. Previous work was limited to two dimensions. Here we present the implementation of the 3D version of a PGC solver into the massively parallel, fully relativistic PIC code OSIRIS. We extended the solver to include periodic boundary conditions and parallelization in all spatial dimensions. We present benchmarks for distributed and shared memory parallelization. We also discuss the stability of the PGC solver.

  18. Direct Simulation of Friction Forces for Heavy Ions Interacting with a Warm Magnetized Electron Distribution

    NASA Astrophysics Data System (ADS)

    Bruhwiler, D. L.; Busby, R.; Fedotov, A. V.; Ben-Zvi, I.; Cary, J. R.; Stoltz, P.; Burov, A.; Litvinenko, V. N.; Messmer, P.; Abell, D.; Nieter, C.

    2005-06-01

    A proposed luminosity upgrade to RHIC includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. High-current bunched electron beams are required for the RHIC cooler, resulting in very high transverse temperatures and relatively low values for the magnetized cooling logarithm. The accuracy of analytical formulae in this regime requires careful examination. Simulations of the friction coefficient, using the VORPAL code, for single gold ions passing once through the interaction region, are compared with theoretical calculations. Charged particles are advanced using a fourth-order Hermite predictor-corrector algorithm. The fields in the beam frame are obtained from direct calculation of Coulomb's law, which is more efficient than multipole-type algorithms for less than ˜106 particles. Because the interaction time is so short, it is necessary to suppress the diffusive aspect of the ion dynamics through the careful use of positrons in the simulations.

  19. The SAGE II/OSIRIS/OMPS-LP USask 2D Deseasonalized Anomaly Ozone Data Record for Use in Trend Analysis

    NASA Astrophysics Data System (ADS)

    Degenstein, D. A.; Bourassa, A. E.; Zawada, D.; Roth, C.; McLinden, C. A.

    2017-12-01

    The SAGE II/OSIRIS/OMPS-LP USask 2D ozone deseasonalized anomaly data record spans over three decades, from 1984 to the present, and has been used extensively for the determination of stratospheric ozone trends in the post Montreal Protocol era. Radiance measurements made by the three instruments have all been used to produce ozone data profiles whose native units are number density as a function of altitude. Therefore, during the merging process required to produce the extended data record it is not necessary to use meteorological data for unit conversion and all trends contained within the data record come directly from the data products themselves. Although the SAGE II occultation data record ended in 2005, both the OMPS-LP and OSIRIS limb scattered sunlight data records continue. OSIRIS has been in operation since 2001 and is well beyond its lifetime but OMPS-LP is scheduled for launch on future spacecraft so the data record should continue for many years, or even decades. It is also anticipated that SAGE III ISS data will be added to the existing record to further enhance its utility for trend analysis. This paper will outline the process used to produce the deseasonalized ozone anomaly data record detailing the issues associated with merging data records that have different biases and sampling characteristics. Issues associated with SAGE II and OSIRIS measurements that are made at different local times will also be discussed. Finally, this paper will present trend results produced using variations of the official LOTUS analysis code. These results cover an altitude range from the tropopause to 55 km and from 60 South to 60 North in ten-degree bins. It will be shown that the new OMPS-LP USask 2D data record is of excellent quality and can be used to extend the ozone data records for the purpose of trend analysis.

  20. On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caffrey, Gus J.; Egger, Ann E.; Krebs, Kenneth M.

    2015-09-01

    We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analysesmore » of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.« less

  1. The OTELO Project

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Alfaro, E. J.; Castañeda, H. O.; Gallego, J.; González-Serrano, J. I.; González, J. J.; Jones, D. H.; Pérez-García, A. M.; Sánchez-Portal, M.

    2007-06-01

    OSIRIS is the Spanish Day One instrument for the GTC 10.4-m telescope. OSIRIS is a general purpose instrument for imaging, low-resolution long slit and multi-object spectroscopy (MOS). OSIRIS has a field of view of 8.6×8.6 arcminutes, which makes it ideal for deep surveys, and operates in the optical wavelength range from 365 through 1000nm. The main characteristic that makes OSIRIS unique amongst other instruments in 8-10m class telescopes is the use of Tunable Filters (Bland-Hawthorn & Jones 1998). These allow a continuous selection of both the central wavelength and the width, thus providing scanning narrow band imaging within the OSIRIS wavelength range. The combination of the large GTC aperture, large OSIRIS field of view and availability of the TFs makes OTELO a truly unique emission line survey.

  2. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  3. NASA's OSIRIS-REx Spacecraft In Thermal Vacuum Testing

    NASA Image and Video Library

    2017-12-08

    The OSIRIS-REx spacecraft being lifted into the thermal vacuum chamber at Lockheed Martin for environmental testing. Credits: Lockheed Martin Read more: www.nasa.gov/feature/goddard/2016/osiris-rex-in-thermal-vac

  4. OSIRIS-REx Prelaunch News Conference

    NASA Image and Video Library

    2016-09-06

    In the Kennedy Space Center’s Press Site auditorium, Scott Messer, program manager for NASA missions at United Launch Alliance in Centennial, Colorado; Michael Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Rich Kuhns, OSIRIS-REx program manager for Lockheed Martin Space Systems in Denver; speak to members of the media at a prelaunch news conference for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft.

  5. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

    NASA Technical Reports Server (NTRS)

    Reuter, D. C.; Simon-Miller, A. A.

    2012-01-01

    The OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) Mission is a planetary science mission to study, and return a sample from, the carbonaceous asteroid 1999 RQ-36. The third mission selected under NASA's New Frontiers Program, it is scheduled to be launched in 2016. It is led by PI Dante Lauretta at the University of Arizona and managed by NASA's Goddard Space Flight Center. The spacecraft and the asteroid sampling mechanism, TAGSAM (Touch-And-Go Sample Acquisition Mechanism) will be provided by Lockheed Martin Space Systems. Instrumentation for studying the asteroid include: OCAMS (the OSIRIS-REx Camera Suite), OLA (the OSIRIS-REx Laser Altimeter, a scanning LIDAR), OTES (The OSIRIS-REx Thermal Emission Spectrometer, a 4-50 micron point spectrometer) and OVIRS (the OSIRIS-REx Visible and IR Spectrometer, a 0.4 to 4.3 micron point spectrometer). The payload also includes REXIS (the Regolith X-ray Imaging Spectrometer) a student provided experiment. This paper presents a description of the OVIRS instrument.

  6. The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument

    NASA Astrophysics Data System (ADS)

    Daly, M. G.; Barnouin, O. S.; Dickinson, C.; Seabrook, J.; Johnson, C. L.; Cunningham, G.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Aslam, I.; Taylor, A.; Bierhaus, E. B.; Boynton, W.; Nolan, M.; Lauretta, D. S.

    2017-10-01

    The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the OSIRIS-REx Laser Altimeter (OLA). The OSIRIS-REx mission will sample asteroid 101955 Bennu, the first B-type asteroid to be visited by a spacecraft. Bennu is thought to be primitive, carbonaceous, and spectrally most closely related to CI and/or CM meteorites. As a scanning laser altimeter, the OLA instrument will measure the range between the OSIRIS-REx spacecraft and the surface of Bennu to produce digital terrain maps of unprecedented spatial scales for a planetary mission. The digital terrain maps produced will measure ˜7 cm per pixel globally, and ˜3 cm per pixel at specific sample sites. In addition, OLA data will be used to constrain and refine the spacecraft trajectories. Global maps and highly accurate spacecraft trajectory estimates are critical to infer the internal structure of the asteroid. The global and regional maps also are key to gain new insights into the surface processes acting across Bennu, which inform the selection of the OSIRIS-REx sample site. These, in turn, are essential for understanding the provenance of the regolith sample collected by the OSIRIS-REx spacecraft. The OLA data also are important for quantifying any hazards near the selected OSIRIS-REx sample site and for evaluating the range of tilts at the sampling site for comparison against the capabilities of the sample acquisition device.

  7. OSIRIS-REx NASA Social

    NASA Image and Video Library

    2016-09-07

    Social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth, during a NASA Social presentation in the Operations Support Building II at the agency’s Kennedy Space Center in Florida. The presentation took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. From the left, are Dante Lauretta, OSIRIS-REx principal investigator from the University of Arizona at Tucson, and Christina Richey, OSIRIS-REx deputy program scientists at NASA Headquarters in Washington.

  8. OSIRIS-REx A NASA Mission to a Near Earth Asteroid!...and Other Recent Happenings in the Solar System

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.

    2015-01-01

    The OSIRIS-REx Mission launches in 2016 Arrives at Asteroid Bennu-2018 Returns a sample to Earth -2023 The mission, OSIRIS-REx, will visit an asteroid and return a sample from the early Solar System to help us understand how our Solar System formed.

  9. OSIRIS-REx NASA Social

    NASA Image and Video Library

    2016-09-07

    Daniel Glavin, OSIRIS-REx co-investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, talks to social media followers during a NASA Social in the Operations Support Building II at the agency’s Kennedy Space Center in Florida. The presentation took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft.

  10. OSIRIS-REx NASA Social

    NASA Image and Video Library

    2016-09-07

    Tim Linn, chief system engineer with Lockheed Martin, discusses the unique design of the OSIRIS-REx spacecraft during a NASA Social with social media followers in the Operations Support Building II at NASA’s Kennedy Space Center in Florida. The presentation took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft.

  11. OSIRIS-REx NASA Social

    NASA Image and Video Library

    2016-09-07

    Social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth, during a NASA Social presentation in the Operations Support Building II at the agency’s Kennedy Space Center in Florida. The presentation took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. From the left, are Jarmaine Ollivierre, OSIRIS-REx lead flight designs with NASA’s Launch Services Program; and Gordon McLemore, with United Launch Alliance (ULA). OSIRIS-REx will launch aboard a ULA Atlas V rocket from Space Launch Complex 41 at NASA’s Kennedy Space Center.

  12. Optical Navigation Simulation and Performance Analysis for Osiris-Rex Proximity Operations

    NASA Technical Reports Server (NTRS)

    Jackman, Coralie D.; Nelson, Derek S.; Mccarthy, Leilah K.; Liounis, Andrew J.; Leonard, Jason M.; Antreasian, Peter G.; Getzandanner, Kenneth M.; Moreau, Michael C.

    2017-01-01

    The OSIRIS-REx mission timeline with OpNav milestones is presented in Figure 1. The first three proximity operations (ProxOps) mission phases focus on Navigation. During these phases, OSIRIS-REx approaches Bennu, conducts equatorial and polar flybys in Preliminary Survey, and inserts into the first mission orbit: Orbit A. During these phases, the OpNav techniques evolve from point-source to resolved-body centroiding to landmark tracking.

  13. Retrieval of stratospheric ozone and nitrogen dioxide profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Haley, Craig Stuart

    2009-12-01

    Key to understanding and predicting the effects of global environmental problems such as ozone depletion and global warming is a detailed understanding of the atmospheric processes, both dynamical and chemical. Essential to this understanding are accurate global data sets of atmospheric constituents with adequate temporal and spatial (vertical and horizontal) resolutions. For this purpose the Canadian satellite instrument OSIRIS (Optical Spectrograph and Infrared Imager System) was launched on the Odin satellite in 2001. OSIRIS is primarily designed to measure minor stratospheric constituents, including ozone (O3) and nitrogen dioxide (NO2), employing the novel limb-scattered sunlight technique, which can provide both good vertical resolution and near global coverage. This dissertation presents a method to retrieve stratospheric O 3 and NO2 from the OSIRIS limb-scatter observations. The retrieval method incorporates an a posteriori optimal estimator combined with an intermediate spectral analysis, specifically differential optical absorption spectroscopy (DOAS). A detailed description of the retrieval method is presented along with the results of a thorough error analysis and a geophysical validation exercise. It is shown that OSIRIS limb-scatter observations successfully produce accurate stratospheric O3 and NO2 number density profiles throughout the stratosphere, clearly demonstrating the strength of the limb-scatter technique. The OSIRIS observations provide an extremely useful data set that is of particular importance for studies of the chemistry of the middle atmosphere. The long OSIRIS record of stratospheric ozone and nitrogen dioxide may also prove useful for investigating variability and trends.

  14. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  15. The OSIRIS-REx Asteroid Sample Return Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan S.; Cheuvront, Allan

    2015-01-01

    OSIRIS-REx is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will thoroughly characterize near-Earth asteroid Bennu (Previously known as 1019551999 RQ36). The OSIRIS-REx Asteroid Sample Return Mission delivers its science using five instruments and radio science along with the Touch-And-Go Sample Acquisition Mechanism (TAGSAM). All of the instruments and data analysis techniques have direct heritage from flown planetary missions. The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the mission's science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the Sample Return Capsule (SRC) lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis. Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together spacecraft, instrument and operations scenarios. Asteroid Touch and Go (TAG) has various options varying from ground only to fully automated (natural feature tracking). Spacecraft constraints such as thermo and high gain antenna pointing impact the timeline. The mission is sensitive to navigation errors, so a late command update has been implemented. The project implemented lessons learned from other "small body" missions. The key lesson learned was 'expect the unexpected' and implement planning tools early in the lifecycle. This paper summarizes the ground and spacecraft design as presented at OSIRIS-REx Critical Design Review(CDR) held April 2014.

  16. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  17. Development of CCDs for REXIS on OSIRIS-REx

    NASA Astrophysics Data System (ADS)

    Ryu, Kevin K.; Burke, Barry E.; Clark, Harry R.; Lambert, Renee D.; O'Brien, Peter; Suntharalingam, Vyshnavi; Ward, Christopher M.; Warner, Keith; Bautz, Mark W.; Binzel, Richard P.; Kissel, Steven E.; Masterson, Rebecca A.

    2014-07-01

    The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a 2×2 array of backilluminated 1k×1k frame transfer CCDs with a flight heritage to Suzaku and Chandra. The back surface has a thin p+-doped layer deposited by molecular-beam epitaxy (MBE) for maximum quantum efficiency and energy resolution at low x-ray energies. The CCDs also feature an integrated optical-blocking filter (OBF) to suppress visible and near-infrared light. The OBF is an aluminum film deposited directly on the CCD back surface and is mechanically more robust and less absorptive of x-rays than the conventional free-standing aluminum-coated polymer films. The CCDs have charge transfer inefficiencies of less than 10-6, and dark current of 1e-/pixel/second at the REXIS operating temperature of -60 °C. The resulting spectral resolution is 115 eV at 2 KeV. The extinction ratio of the filter is ~1012 at 625 nm.

  18. Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.

    2006-03-01

    A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.

  19. The OSIRIS-REx Mission Sample Site Selection Process

    NASA Astrophysics Data System (ADS)

    Beshore, Edward C.; Lauretta, Dante

    2014-11-01

    In September of 2016, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, REgolith eXplorer) spacecraft will depart for asteroid (101955) Bennu, and in doing so, will turn an important corner in the exploration of the solar system. After arriving at Bennu in the fall of 2018, OSIRIS-REx will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023. The third mission in NASA’s New Frontiers program, OSIRIS-REx will return over 60 grams from Bennu’s surface.OSIRIS-REx is unique because the science team will have an operational role to play in preparing data products needed to select a sample site. These include products used to ensure flight system safety — topographic maps and shape models, temperature measurements, maps of hazards — as well as assessments of sampleability and science value. The timing and production of these will be presented, as will the high-level decision-making tools and processes for the interim and final site selection processes.

  20. BENNU’S JOURNEY Poster

    NASA Image and Video Library

    2017-12-08

    The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Thermal assessment of sunlight impinging on OSIRIS-REx OCAMS PolyCam, OTES, and IMU-sunshade MLI blankets in flight

    NASA Astrophysics Data System (ADS)

    Choi, Michael K.

    2017-09-01

    The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go sample acquisition, and Return Cruise mission phases.

  2. Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends

    NASA Astrophysics Data System (ADS)

    Bourassa, Adam E.; Roth, Chris Z.; Zawada, Daniel J.; Rieger, Landon A.; McLinden, Chris A.; Degenstein, Douglas A.

    2018-01-01

    A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS) stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS) ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984-2013, which were derived by merging the altitude-number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II satellite instrument (1984-2005) and from OSIRIS (2002-2013), are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.

  3. The Activity of Comet 67P/Churyumov-Gerasimenko as Seen by Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Rickman, H.; Koschny, D.

    2015-12-01

    The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. OSIRIS consists of a Narrow Angle Camera (NAC) for the nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field gas and dust coma investigations. OSIRIS observed the coma and the nucleus of comet 67P/C-G during approach, arrival, and landing of PHILAE. OSIRIS continued comet monitoring and mapping of surface and activity in 2015 with close fly-bys with high resolution and remote, wide angle observations. The scientific results reveal a nucleus with two lobes and varied morphology. Active regions are located at steep cliffs and collapsed pits which form collimated gas jets. Dust is accelerated by the gas, forming bright jet filaments and the large scale, diffuse coma of the comet. We will present activity and surface changes observed in the Northern and Southern hemisphere and around perihelion passage.

  4. The ZPIC educational code suite

    NASA Astrophysics Data System (ADS)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  5. OSiRIS: a distributed Ceph deployment using software defined networking for multi-institutional research

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Kissel, Ezra; Meekhof, Benjeman; Swany, Martin; Miller, Charles; Gregorowicz, Michael

    2017-10-01

    We report on the first year of the OSiRIS project (NSF Award #1541335, UM, IU, MSU and WSU) which is targeting the creation of a distributed Ceph storage infrastructure coupled together with software-defined networking to provide high-performance access for well-connected locations on any participating campus. The projects goal is to provide a single scalable, distributed storage infrastructure that allows researchers at each campus to read, write, manage and share data directly from their own computing locations. The NSF CC*DNI DIBBS program which funded OSiRIS is seeking solutions to the challenges of multi-institutional collaborations involving large amounts of data and we are exploring the creative use of Ceph and networking to address those challenges. While OSiRIS will eventually be serving a broad range of science domains, its first adopter will be the LHC ATLAS detector project via the ATLAS Great Lakes Tier-2 (AGLT2) jointly located at the University of Michigan and Michigan State University. Part of our presentation will cover how ATLAS is using the OSiRIS infrastructure and our experiences integrating our first user community. The presentation will also review the motivations for and goals of the project, the technical details of the OSiRIS infrastructure, the challenges in providing such an infrastructure, and the technical choices made to address those challenges. We will conclude with our plans for the remaining 4 years of the project and our vision for what we hope to deliver by the projects end.

  6. Optical property retrievals of subvisual cirrus clouds from OSIRIS limb-scatter measurements

    NASA Astrophysics Data System (ADS)

    Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.

    2012-08-01

    We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  7. OSIRIS-REx Asteroid Sample-Return Mission

    NASA Astrophysics Data System (ADS)

    DellaGiustina, D. N.; Lauretta, D. S.

    2016-12-01

    Launching in September 2016, the primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of asteroid (101955) Bennu to Earth for sample analysis. Bennu is a carbonaceous primitive near-Earth object, and is expected to be rich in volatile and organic material leftover from the formation of the Solar System. OSIRIS-REx will return a minimum of 60 g of bulk surface material from this body using a novel "touch-and-go" sample acquisition mechanism. Analyses of these samples will provide unprecedented knowledge about presolar history, from the initial stages of planet formation to the origin of life. Before sample acquisition, OSIRIS-REx will perform global mapping of Bennu, detailing the asteroid's composition and texture, resolving surface features, revealing its geologic and dynamic history, and providing context for the returned samples. The mission will also document the sampling site in situ at sub-centimeter scales, as well as the asteroid sampling event. In addition, OSIRIS-REx will measure the Yarkovsky effect, a non-Keplerian force affecting the orbit of this potentially hazardous asteroid, and provide a ground truth data for the interpretation of telescopic observations of carbonaceous asteroids.

  8. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power-producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  9. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power -producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  10. Comparison between layers stacks of 67P/CG comet and spectrophotometric variability obtained from OSIRIS data

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Barucci, M. A.; Lucchetti, A.; Pajola, M.; Frattin, E.; Bertini, I.; Ferri, F.; Cremonese, G.

    2017-09-01

    The Rosetta/OSIRIS cameras unveiled the layered nature of comet 67P/Churyumov-Gerasimenko, suggesting that the comet bilobate shape results from the low-velocity merging of two independent onion-like objects. Several physiographical regions of the southern-hemisphere big lobe show stacks of layers forming high scarps, terraces and mesas. A spectrophotometric analysis of OSIRIS images based on multispectral data classifications was conducted in order to identify possible morphological, textural and/or compositional characters that allow to distinguish regional stacks of layers.

  11. Osiris9a is a major component of silk fiber in lepidopteran insects.

    PubMed

    Liu, Chun; Hu, Wenbo; Cheng, Tingcai; Peng, Zhangchuan; Mita, Kazuei; Xia, Qingyou

    2017-10-01

    In a previous high-throughput proteomics study, it was found that the silkworm cocoon contains hundreds of complex proteins, many of which have unknown functions, in addition to fibroins, sericins, and some protease inhibitors. Osiris was one of the proteins with no known function. In this study, we identified the Osiris gene family members and constructed a phylogenetic tree based on the sequences from different species. Our results indicate that the Osiris9 gene subfamily contains six members; it is specifically expressed in lepidopteran insects and has evolved by gene duplication. An Osiris gene family member from Bombyx mori was designated as BmOsiris9a (BmOsi9a) on the basis of its homology to Drosophila melanogaster Osiris9. The expression pattern of BmOsi9a showed that it was highly expressed only in the middle silk gland of silkworm larvae, similar to Sericin1 (Ser1). BmOsi9a was visualized as two bands in western blot analysis, implying that it probably undergoes post-translational modifications. Immunohistochemistry analysis revealed that BmOsi9a was synthesized and secreted into the lumen of the middle silk gland, and was localized in the sericin layer in the silk fiber. BmOsi9a was found in the silk fibers of not only three Bombycidae species, viz. B. mori, B. mandarina, and B. huttoni, but also in the fibers collected from Saturniidae species, including Antheraea assama, Antheraea mylitta, and Samia cynthia. Although the exact biological function of Osi9a in the silk fibers is unknown, our results are important because they demonstrate that Osi9a is a common structural component of silk fiber and is expressed widely among the silk-producing Bombycidae and Saturniidae insects. Our results should help in understanding the role of Osi9a in silk fibers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Communicating Science on YouTube and Beyond: OSIRIS-REx Presents 321Science!

    NASA Astrophysics Data System (ADS)

    Spitz, Anna H.; Dykhuis, Melissa; Platts, Symeon; Keane, James T.; Tanquary, Hannah E.; Zellem, Robert; Hawley, Tiffany; Lauretta, Dante; Beshore, Ed; Bottke, Bill; Hergenrother, Carl; Dworkin, Jason P.; Patchell, Rose; Spitz, Sarah E.; Bentley, Zoe

    2014-11-01

    NASA’s OSIRIS-REx asteroid sample return mission launched OSIRIS-REx Presents 321Science!, a series of short videos, in December 2013 at youtube.com/osirisrex. A multi-disciplinary team of communicators, film and graphic arts students, teens, scientists, and engineers produces one video per month on a science and engineering topic related to the OSIRIS-REx mission. The format is designed to engage all members of the public, but especially younger audiences with the science and engineering of the mission. The videos serve as a resource for team members and others, complementing more traditional formats such as formal video interviews, mission animations, and hands-on activities. In creating this new form of OSIRIS-REx engagement, we developed 321Science! as an umbrella program to encourage expansion of the concept and topics beyond the OSIRIS-REx mission through partnerships. Such an expansion strengthens and magnifies the reach of the OSIRIS-REx efforts.321Science! has a detailed proposed schedule of video production through launch in 2016. Production plans are categorized to coincide with the course of the mission beginning with Learning the basics - about asteroids and the mission - and proceeding to Building the spacecraft, Run up to launch, Cruising to Bennu, Run up to rendezvous, Mapping Bennu, Sampling, Analyzing data, Cruising home and Returning and analyzing the sample. The video library will host a combination of videos on broad science topics and short specialized concepts with an average length of 2-3 minutes. Video production also takes into account external events, such as other missions’ milestones, to draw attention to our videos. Production will remain flexible and responsive to audience interests and needs and to developments in the mission, science, and external events. As of August 2014, 321Science! videos have over 22,000 views. We use YouTube analytics to evaluate our success and we are investigating additional and more rigorous evaluation methods for future analysis.

  13. OSIRIS-REx Contamination Control Strategy and Implementation

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; hide

    2017-01-01

    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This manuscript describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at Level 100 A/2 and less than 180 nanograms per square centimeter of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication between scientists, engineers, managers, and technicians.

  14. OSIRIS-REx Contamination Control Strategy and Implementation

    NASA Astrophysics Data System (ADS)

    Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; Burton, A. S.; Callahan, M. P.; Castro-Wallace, S. L.; Clark, B. C.; Clemett, S. J.; Connolly, H. C.; Cutlip, W. E.; Daly, S. M.; Elliott, V. E.; Elsila, J. E.; Enos, H. L.; Everett, D. F.; Franchi, I. A.; Glavin, D. P.; Graham, H. V.; Hendershot, J. E.; Harris, J. W.; Hill, S. L.; Hildebrand, A. R.; Jayne, G. O.; Jenkens, R. W.; Johnson, K. S.; Kirsch, J. S.; Lauretta, D. S.; Lewis, A. S.; Loiacono, J. J.; Lorentson, C. C.; Marshall, J. R.; Martin, M. G.; Matthias, L. L.; McLain, H. L.; Messenger, S. R.; Mink, R. G.; Moore, J. L.; Nakamura-Messenger, K.; Nuth, J. A.; Owens, C. V.; Parish, C. L.; Perkins, B. D.; Pryzby, M. S.; Reigle, C. A.; Righter, K.; Rizk, B.; Russell, J. F.; Sandford, S. A.; Schepis, J. P.; Songer, J.; Sovinski, M. F.; Stahl, S. E.; Thomas-Keprta, K.; Vellinga, J. M.; Walker, M. S.

    2018-02-01

    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

  15. OSIRIS-REx Contamination Control Strategy and Implementation

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L. A.; Ajluni, T. M.; Andronikov, A. V.; Aponte, J. S.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; hide

    2017-01-01

    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and less than 180 ng/cm(exp 2) of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

  16. Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx's Arrival at Bennu

    NASA Technical Reports Server (NTRS)

    Donaldson Hanna, K. L.; Schrader, D. L.; Bowles, N. E.; Clark, B. E.; Cloutis, E. A.; Connolly, H. C., Jr.; Hamilton, V. E.; Keller, L. P.; Lauretta, D. S.; Lim, L. F.; hide

    2017-01-01

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission successfully launched on September 8th, 2016. During its rendezvous with near-Earth asteroid (101955) Bennu beginning in 2018, OSIRIS-REx will characterize the asteroid's physical, mineralogical, and chemical properties in an effort to globally map the properties of Bennu, a primitive carbonaceous asteroid, and choose a sampling location [e.g. 1]. In preparation for these observations, we spectrally characterized a suite of analog samples across visible, near- and thermal-infrared wavelengths and used these in initial tests of phase detection and abundance determination software algorithms. Here we present the thermal infrared laboratory measurements of the analog sample suite measured under asteroidlike conditions, which are relevant to the interpretation of spectroscopic observations by the OSIRIS-REx Thermal Emission Spectrometer (OTES) [2, 3]. This suite of laboratory measurements of asteroid analogs under asteroid-like conditions is the first of their kind.

  17. Making limb and nadir measurements comparable: A common volume study of PMC brightness observed by Odin OSIRIS and AIM CIPS

    NASA Astrophysics Data System (ADS)

    Benze, Susanne; Gumbel, Jörg; Randall, Cora E.; Karlsson, Bodil; Hultgren, Kristoffer; Lumpe, Jerry D.; Baumgarten, Gerd

    2018-01-01

    Combining limb and nadir satellite observations of Polar Mesospheric Clouds (PMCs) has long been recognized as problematic due to differences in observation geometry, scattering conditions, and retrieval approaches. This study offers a method of comparing PMC brightness observations from the nadir-viewing Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument and the limb-viewing Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). OSIRIS and CIPS measurements are made comparable by defining a common volume for overlapping OSIRIS and CIPS observations for two northern hemisphere (NH) PMC seasons: NH08 and NH09. We define a scattering intensity quantity that is suitable for either nadir or limb observations and for different scattering conditions. A known CIPS bias is applied, differences in instrument sensitivity are analyzed and taken into account, and effects of cloud inhomogeneity and common volume definition on the comparison are discussed. Not accounting for instrument sensitivity differences or inhomogeneities in the PMC field, the mean relative difference in cloud brightness (CIPS - OSIRIS) is -102 ± 55%. The differences are largest for coincidences with very inhomogeneous clouds that are dominated by pixels that CIPS reports as non-cloud points. Removing these coincidences, the mean relative difference in cloud brightness reduces to -6 ± 14%. The correlation coefficient between the CIPS and OSIRIS measurements of PMC brightness variations in space and time is remarkably high, at 0.94. Overall, the comparison shows excellent agreement despite different retrieval approaches and observation geometries.

  18. Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx's Arrival at Bennu

    NASA Technical Reports Server (NTRS)

    Donaldson Hanna, K. L.; Schrader, D. L.; Bowles, N. E.; Clark, B. E.; Cloutis, E. A.; Connolly, H. C., Jr.; Hamilton, V. E.; Keller, L. P.; Lauretta, D. S.; Lim, L. F.; hide

    2017-01-01

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission successfully launched on September 8th, 2016. During its rendezvous with near-Earth asteroid (101955) Bennu beginning in 2018, OSIRIS-REx will characterize the asteroid's physical, mineralogical, and chemical properties in an effort to globally map the properties of Bennu, a primitive carbonaceous asteroid, and choose a sampling location]. In preparation for these observations, analog samples were spectrally characterized across visible, near- and thermal-infrared wavelengths and were used in initial tests on mineral-phase-detection and abundance-determination software algorithms.

  19. KSC-20160908-RV-ANG01_0001-OSIRIS_REx_Launch_Broadcast_UCS_3_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  20. KSC-20160908-RV-GEB01_0001-OSIRIS_REx_Launch_Broadcast_Van_1_People_Cutaways_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  1. KSC-20160908-RV-CSH01_0001-OSIRIS_REx_Launch_Broadcast_Van_2_NASA_Causeway_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  2. KSC-20160908-RV-GMM01_0003-OSIRIS_REx_Launch_Broadcast_Ground_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  3. KSC-20160908-RV-GMM01_0002-OSIRIS_REx_Launch_Broadcast_VIF_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  4. KSC-20160908-RV-GMM01_0001-OSIRIS_REx_Launch_Broadcast_VAB_Roof_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  5. KSC-20160908-RV-ULA01_0001-OSIRIS_REx_Launch_Broadcast_Rocket_Cam_Ascent_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  6. Scientific assessment of the quality of OSIRIS images

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Güttler, C.; Kovacs, G.; Bertini, I.; Bodewits, D.; Fornasier, S.; Lara, L.; La Forgia, F.; Magrin, S.; Pajola, M.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Gutiérrez, P. J.; Hoekzema, N.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Massironi, M.; Michalik, H.; Moissl, R.; Naletto, G.; Oklay, N.; Scholten, F.; Shi, X.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. OSIRIS, the scientific imaging system onboard the ESA Rosetta spacecraft, has been imaging the nucleus of comet 67P/Churyumov-Gerasimenko and its dust and gas environment since March 2014. The images serve different scientific goals, from morphology and composition studies of the nucleus surface, to the motion and trajectories of dust grains, the general structure of the dust coma, the morphology and intensity of jets, gas distribution, mass loss, and dust and gas production rates. Aims: We present the calibration of the raw images taken by OSIRIS and address the accuracy that we can expect in our scientific results based on the accuracy of the calibration steps that we have performed. Methods: We describe the pipeline that has been developed to automatically calibrate the OSIRIS images. Through a series of steps, radiometrically calibrated and distortion corrected images are produced and can be used for scientific studies. Calibration campaigns were run on the ground before launch and throughout the years in flight to determine the parameters that are used to calibrate the images and to verify their evolution with time. We describe how these parameters were determined and we address their accuracy. Results: We provide a guideline to the level of trust that can be put into the various studies performed with OSIRIS images, based on the accuracy of the image calibration.

  7. OsiriX software as a preoperative planning tool in cranial neurosurgery: A step-by-step guide for neurosurgical residents

    PubMed Central

    Spiriev, Toma; Nakov, Vladimir; Laleva, Lili; Tzekov, Christo

    2017-01-01

    Background: OsiriX (Pixmeo, Switzerland) is an open-source Digital Imaging and Communications in Medicine (DICOM) viewer that is gaining more and more attention in the neurosurgical community because of its user-friendly interface, powerful three-dimensional (3D) volumetric rendering capabilities, and various options for data integration. This paper presents in detail the use of OsiriX software as a preoperative planning tool in cranial neurosurgery. Methods: In January 2013, OsiriX software was introduced into our clinical practice as a preoperative planning tool. Its capabilities are being evaluated on an ongoing basis in routine elective cranial cases. Results: The program has proven to be highly effective at volumetrically representing data from radiological examinations in 3D. Among its benefits in preoperative planning are simulating the position and exact location of the lesion in 3D, tailoring the skin incision and craniotomy bone flap, enhancing the representation of normal and pathological anatomy, and aiding in planning the reconstruction of the affected area. Conclusion: OsiriX is a useful tool for preoperative planning and visualization in neurosurgery. The software greatly facilitates the surgeon's understanding of the relationship between normal and pathological anatomy and can be used as a teaching tool. PMID:29119039

  8. An Architecture for Real-Time Processing of OSIRIS-REx Engineering and Science Data, from Raw Telemetry to PDS

    NASA Astrophysics Data System (ADS)

    Selznick, S. H.

    2017-06-01

    Herein we describe an architecture developed for processing engineering and science data for the OSIRIS-REx mission. The architecture is soup-to-nuts, starting with raw telemetry and ending with submission to PDS.

  9. Correction: Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source.

    PubMed

    Telling, Mark T F; Campbell, Stuart I; Engberg, Dennis; Martín Y Marero, David; Andersen, Ken H

    2016-03-21

    Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.

  10. Particle-in-cell simulations on graphic processing units

    NASA Astrophysics Data System (ADS)

    Ren, C.; Zhou, X.; Li, J.; Huang, M. C.; Zhao, Y.

    2014-10-01

    We will show our recent progress in using GPU's to accelerate the PIC code OSIRIS [Fonseca et al. LNCS 2331, 342 (2002)]. The OISRIS parallel structure is retained and the computation-intensive kernels are shipped to GPU's. Algorithms for the kernels are adapted for the GPU, including high-order charge-conserving current deposition schemes with few branching and parallel particle sorting [Kong et al., JCP 230, 1676 (2011)]. These algorithms make efficient use of the GPU shared memory. This work was supported by U.S. Department of Energy under Grant No. DE-FC02-04ER54789 and by NSF under Grant No. PHY-1314734.

  11. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  12. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    NASA Astrophysics Data System (ADS)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding regarding the functionality of the camera system, which will in turn aid in the fly-down to the asteroid, as it will allow the pick of a suitable landing and sample location.

  13. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tran, H. D.; Goodrich, R.; Berriman, G. B.; Gelino, C. R.; KOA Team

    2014-05-01

    By the end of 2013, the Keck Observatory Archive (KOA) will serve data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions, which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the 200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  14. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Holt, J.; Goodrich, R. W.; Lyke, J. E.; Gelino, C. R.; Berriman, G. B.; KOA Team

    2014-01-01

    Since the end of 2013, the Keck Observatory Archive (KOA) has served data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the adaptive optics (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the ~200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  15. Comparative assessment of a real-time particle monitor against the reference gravimetric method for PM10 and PM2.5 in indoor air

    NASA Astrophysics Data System (ADS)

    Tasić, Viša; Jovašević-Stojanović, Milena; Vardoulakis, Sotiris; Milošević, Novica; Kovačević, Renata; Petrović, Jelena

    2012-07-01

    Accurate monitoring of indoor mass concentrations of particulate matter is very important for health risk assessment as people in developed countries spend approximately 90% of their time indoors. The direct reading, aerosol monitoring device, Turnkey, OSIRIS Particle Monitor (Model 2315) and the European reference low volume sampler, LVS3 (Sven/Leckel LVS3) with size-selective inlets for PM10 and PM2.5 fractions were used to assess the comparability of available optical and gravimetric methods for particulate matter characterization in indoor air. Simultaneous 24-hour samples were collected in an indoor environment for 60 sampling periods in the town of Bor, Serbia. The 24-hour mean PM10 levels from the OSIRIS monitor were well correlated with the LVS3 levels (R2 = 0.87) and did not show statistically significant bias. The 24-hour mean PM2.5 levels from the OSIRIS monitor were moderately correlated with the LVS3 levels (R2 = 0.71), but show statistically significant bias. The results suggest that the OSIRIS monitor provides sufficiently accurate measurements for PM10. The OSIRIS monitor underestimated the indoor PM10 concentrations by approximately 12%, relative to the reference LVS3 sampler. The accuracy of PM10 measurements could be further improved through empirical adjustment. For the fine fraction of particulate matter, PM2.5, it was found that the OSIRIS monitor underestimated indoor concentrations by approximately 63%, relative to the reference LVS3 sampler. This could lead to exposure misclassification in health effects studies relying on PM2.5 measurements collected with this instrument in indoor environments.

  16. Modeling electron emission and surface effects from diamond cathodes

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-01

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  17. The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Reuter, D. C.; Simon, A. A.; Hair, J.; Lunsford, A.; Manthripragada, S.; Bly, V.; Bos, B.; Brambora, C.; Caldwell, E.; Casto, G.; Dolch, Z.; Finneran, P.; Jennings, D.; Jhabvala, M.; Matson, E.; McLelland, M.; Roher, W.; Sullivan, T.; Weigle, E.; Wen, Y.; Wilson, D.; Lauretta, D. S.

    2018-03-01

    The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.

  18. OSIRIS-REx Atlas V Wet Dress Rehearsal

    NASA Image and Video Library

    2016-08-25

    The booster and Centaur upper stage of a United Launch Alliance Atlas V vent gaseous propellant during a “wet dress rehearsal” test at Space Launch Complex 41 on Florida’s Cape Canaveral Air Force Station. The rocket will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-REx will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  19. OSIRIS-REx Launch Event at Goddard Visitor Center. NASA's first

    NASA Image and Video Library

    2016-09-08

    OSIRIS-REx Launch Event at Goddard Visitor Center. NASA's first asteroid sampling mission launched into space at 7:05 p.m. EDT Thursday from Cape Canaveral Air Force Station in Florida, beginning a journey that could revolutionize our understanding of the early solar system.

  20. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. OSIRIS-REx Launch Event at Goddard Visitor Center. NASA's first

    NASA Image and Video Library

    2016-09-08

    OSIRIS-REx Launch Event at Goddard Visitor Center. NASA's first asteroid sampling mission launched into space at 7:05 p.m. EDT Thursday from Cape Canaveral Air Force Station in Florida beginning a journey that could revolutionize our understanding of the early solar system. Lucy McFadden

  2. Object-oriented design of medical imaging software.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  3. The Osiris-Rex Mission - Sample Acquisitions Strategy and Evidence for the Nature of Regolith on Asteroid (101955) 1999 RQ36

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Barucci, M. A.; Bierhaus, E. B.; Brucato, J. R.; Campins, H.; Christensen, P. R.; Clark, B. C.; Connolly, H. C.; Dotto, E.; Dworkin, J. P.; hide

    2012-01-01

    NASA selected the OSIRIS-REx Asteroid Sample Return Mission as the third New Frontiers mission in May 2011 [I]. The mission name is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will characterize near-Earth asteroid (101955) 1999 RQ36, which is both the most accessible carbonaceous asteroid [2,3] and one of the most potentially hazardous asteroids known [4]. The primary objective of the mission is to return a pristine sample from this bod, to advance our understanding of the generation, evolution, and maturation of regolith on small bodies.

  4. South Carolina Student Accountability System OSIRIS Instruction Manual.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia.

    This manual expresses the South Carolina State Department of Education's understanding of the new, computerized school administration system called OSIRIS and the policy regarding its use with the Student Accountability System (SAS). The SAS is a method used to obtain a cumulative headcount of students served in certain programs specified in the…

  5. OSIRIS-REx Launch Event at Goddard Visitor Center. NASA's first

    NASA Image and Video Library

    2016-09-08

    OSIRIS-REx Launch Event at Goddard Visitor Center. NASA's first asteroid sampling mission launched into space at 7:05 p.m. EDT Thursday from Cape Canaveral Air Force Station in Florida beginning a journey that could revolutionize our understanding of the early solar system. Dr. Jim Glavin.Lucy McFadden.Dr. Jose Aponte

  6. Precision estimate for Odin-OSIRIS limb scatter retrievals

    NASA Astrophysics Data System (ADS)

    Bourassa, A. E.; McLinden, C. A.; Bathgate, A. F.; Elash, B. J.; Degenstein, D. A.

    2012-02-01

    The limb scatter measurements made by the Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on the Odin spacecraft are used to routinely produce vertically resolved trace gas and aerosol extinction profiles. Version 5 of the ozone and stratospheric aerosol extinction retrievals, which are available for download, are performed using a multiplicative algebraic reconstruction technique (MART). The MART inversion is a type of relaxation method, and as such the covariance of the retrieved state is estimated numerically, which, if done directly, is a computationally heavy task. Here we provide a methodology for the derivation of a numerical estimate of the covariance matrix for the retrieved state using the MART inversion that is sufficiently efficient to perform for each OSIRIS measurement. The resulting precision is compared with the variability in a large set of pairs of OSIRIS measurements that are close in time and space in the tropical stratosphere where the natural atmospheric variability is weak. These results are found to be highly consistent and thus provide confidence in the numerical estimate of the precision in the retrieved profiles.

  7. BENNU’S JOURNEY

    NASA Image and Video Library

    2017-12-08

    Asteroid Bennu is a time capsule, containing the raw ingredients of the solar system. Bennu has settled in a near-Earth orbit. Today, a NASA spacecraft OSIRIS-REx is going to retrieve a sample to learn more about our Solar System’s history. OSIRIRS-REx is a NASA sample return mission to visit Asteroid Bennu. We plan to grab a piece of Bennu, because it’s a time capsule that can tell us about the origins of our planet and our entire solar system. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Modelling of the outburst on July 29th , 2015 observed with OSIRIS in the southern hemisphere of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, Adeline; Vincent, Jean-Baptiste; Sierks, Holger; Rose, Martin; Agarwal, Jessica; Deller, Jakob; Guettler, Carsten; Hoefner, Sebastian; Hofmann, Marc; Hu, Xuanyu; Kovacs, Gabor; Oklay Vincent, Nilda; Shi, Xian; Tubiana, Cecilia; Barbieri, Cesare; Lamy, Phylippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; OSIRIS Team

    2016-10-01

    Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov- Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras system since March 2014 using both the wide angle camera (WAC) and the narrow angle camera (NAC). We are using the NAC camera to study the bright outburst observed on July 29th, 2015 in the southern hemisphere. The NAC camera's wavelength ranges between 250-1000 nm with a combination of 12 filters. The high spatial resolution is needed to localize the source point of the outburst on the surface of the nucleus. At the time of the observations, the heliocentric distance was 1.25AU and the distance between the spacecraft and the comet was 126 km. We aim to understand the physics leading to such outgassing: Is the jet associated to the outbursts controlled by the micro-topography? Or by ice suddenly exposed? We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The goal of the DSMC code is to reproduce the opening angle of the jet, and constrain the outgassing ratio between outburst source and local region. The results of this model will be compared to the images obtained with the NAC camera.

  9. Implementation of a hybrid particle code with a PIC description in r–z and a gridless description in ϕ into OSIRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, A., E-mail: davidsoa@physics.ucla.edu; Tableman, A., E-mail: Tableman@physics.ucla.edu; An, W., E-mail: anweiming@ucla.edu

    2015-01-15

    For many plasma physics problems, three-dimensional and kinetic effects are very important. However, such simulations are very computationally intensive. Fortunately, there is a class of problems for which there is nearly azimuthal symmetry and the dominant three-dimensional physics is captured by the inclusion of only a few azimuthal harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield acceleration, by expanding the fields and currents in azimuthal harmonics and truncating the expansion. The complex amplitudes of the fundamental and first harmonic for the fields were solved on an r–z grid and a procedure for calculating the complexmore » current amplitudes for each particle based on its motion in Cartesian geometry was presented using a Marder's correction to maintain the validity of Gauss's law. In this paper, we describe an implementation of this algorithm into OSIRIS using a rigorous charge conserving current deposition method to maintain the validity of Gauss's law. We show that this algorithm is a hybrid method which uses a particles-in-cell description in r–z and a gridless description in ϕ. We include the ability to keep an arbitrary number of harmonics and higher order particle shapes. Examples for laser wakefield acceleration, plasma wakefield acceleration, and beam loading are also presented and directions for future work are discussed.« less

  10. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  11. The implementation of multi-task geophysical survey to locate Cleopatra Tomb at Tap-Osiris Magna, Borg El-Arab, Alexandria, Egypt “Phase II”

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas M.; Khalil, Mohamed A.; Massoud, Usama; Santos, Fernando M.; Mesbah, Hany A.; Lethy, Ahmed; Soliman, Mamdouh; Ragab, El Said A.

    2012-06-01

    According to some new discoveries at Tap-Osiris Magna temple (West of Alexandria), there is potentiality to uncover a remarkable archeological finding at this site. Three years ago many significant archeological evidences have been discovered sustaining the idea that the tomb of Cleopatra and Anthony may be found in the Osiris temple inside Tap-Osiris Magna temple at a depth from 20 to 30 m. To confirm this idea, PHASE I was conducted in by joint application of Ground Penetrating Radar “GPR”, Electrical Resistivity Tomography “ERT” and Magnetometry. The results obtained from PHASE I could not confirm the existence of major tombs at this site. However, small possible cavities were strongly indicated which encouraged us to proceed in investigation of this site by using another geophysical approach including Very Low Frequency Electro Magnetic (VLF-EM) technique. VLF-EM data were collected along parallel lines covering the investigated site with a line-to-line spacing of 1 m. The point-to-point distance of 1 m along the same line was employed. The data were qualitatively interpreted by Fraser filtering process and quantitatively by 2-D VLF inversion of tipper data and forward modeling. Results obtained from VLF-EM interpretation are correlated with 2-D resistivity imaging and drilling information. Findings showed a highly resistive zone at a depth extended from about 25-45 m buried beneath Osiris temple, which could be indicated as the tomb of Cleopatra and Anthony. This result is supported by Fraser filtering and forward modeling results. The depth of archeological findings as indicated from the geophysical survey is correlated well with the depth expected by archeologists, as well as, the depth of discovered tombs outside Tap-Osiris Magna temple. This depth level has not been reached by drilling in this site. We hope that the site can be excavated in the future based on these geophysical results.

  12. OSIRIS-REx Asterod Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messinger, Keiki; Connolly, Harold C. Jr.; Messenger, Scott; Lauretta, Dante S.

    2017-01-01

    OSIRIS-REx is NASA's third New Frontiers Program mission, following New Horizons that completed a flyby of Pluto in 2015 and the Juno mission to Jupiter that has just begun science operations. The OSIRIS-REx mission's primary objective is to collect pristine surface samples of a carbonaceous asteroid and return to Earth for analysis. Carbonaceous asteroids and comets are 'primitive' bodies that preserved remnants of the Solar System starting materials and through their study scientists can learn about the origin and the earliest evolution of the Solar System. The OSIRIS-REx spacecraft was successfully launched on September 8, 2016, beginning its seven year journey to asteroid 101955 Bennu. The robotic arm will collect 60-2000 grams of material from the surface of Bennu and will return to Earth in 2023 for worldwide distribution by the Astromaterials Curation Facility at NASA Johnson Space Center. The name OSIRIS-REx embodies the mission objectives (1) Origins: Return and analyze a sample of a carbonaceous asteroid, (2) Spectral Interpretation: Provide ground-truth for remote observation of asteroids, (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid (4) Security: Measure the non-gravitational that changes asteroidal orbits and (5) Regolith Explorer: Determine the properties of the material covering an asteroid surface. Asteroid Bennu may preserve remnants of stardust, interstellar materials and the first solids to form in the Solar System and the molecular precursors to the origin of life and the Earth's oceans. Bennu is a potentially hazardous asteroid, with an approximately 1 in 2700 chance of impacting the Earth late in the 22nd century. OSIRIS-REx collects from Bennu will help formulate the types of operations and identify mission activities that astronauts will perform during their expeditions. Such information is crucial in preparing for humanity's next steps beyond low Earthy orbit and on to deep space destinations.

  13. VizieR Online Data Catalog: QSO eHAQ0111+0641 spectra (Fynbo+, 2017)

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Krogager, J.-K.; Heintz, K. E.; Geier, S.; Moller, P.; Noterdaeme, P.; Christensen, L.; Ledoux, C.; Jakobsson, P.

    2017-09-01

    eHAQ0111+0641 was observed with the OSIRIS instrument at the Gran Telescopio Canarias (GTC) as part of a larger sample of candidate red quasars. We secured spectroscopy with OSIRIS and a range of grisms to better constrain the spectral energy distribution, metal lines, and hydrogen Lyα line. (2 data files).

  14. OSIRIS-REx Touch-And-Go (TAG) Mission Design and Analysis

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Sutter, Brian; May, Alex; Williams, Ken; Barbee, Brent W.; Beckman, Mark; Williams, Bobby

    2013-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) 1999 RQ36 in late 2018. After several months in formation with and orbit about the asteroid, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid s surface to obtain a regolith sample. This paper describes the mission design of the TAG sequence and the propulsive maneuvers required to achieve the trajectory. This paper also shows preliminary results of orbit covariance analysis and Monte-Carlo analysis that demonstrate the ability to arrive at a targeted location on the surface of RQ36 within a 25 meter radius with 98.3% confidence.

  15. Rosetta/OSIRIS - Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafael; Koschny, Detlef

    2015-04-01

    ESA's Rosetta mission arrived on August 6, 2014, at target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations. OSIRIS imaged the nucleus and coma of the comet from the arrival throughout the mapping phase, PHILAE landing, early escort phase and close fly-by. The overview paper will discuss the surface morpholo-gy and activity of the nucleus as seen in gas, dust, and local jets as well as small scale structures in the local topography.

  16. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  17. Modeling electron emission and surface effects from diamond cathodes

    DOE PAGES

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  18. Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pace, Lisa F.; Messenger, Keiko

    2018-01-01

    Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.

  19. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  20. Emission-line maps with OSIRIS-TF: The case of M101

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.

    2013-05-01

    We investigate the suitability of GTC/OSIRIS Tunable Filters (TFs) for obtaining emission-line maps of extended objects. We developed a technique to reconstruct an emission-line image from a set of images taken at consecutive central wavelengths. We demonstrate the feasibility of the reconstruction method by generating a flux calibrated Hα image of the well-known spiral galaxy M101. We tested our emission-line fluxes and ratios by using data present in the literature. We found that the differences in both Hα fluxes and N II/Hα line ratios are ~15% and ~50%, respectively. These results are fully in agreement with the expected values for our observational setup. The proposed methodology will allow us to use OSIRIS/GTC to perform accurate spectrophotometric studies of extended galaxies in the local Universe.

  1. OSIRIS-REx, Returning the Asteroid Sample

    NASA Technical Reports Server (NTRS)

    Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua

    2015-01-01

    This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful rendezvous with Bennu characterization of Bennus properties delivery of the sampler to the surface, and return of the spacecraft to the vicinity of the Earth sample collection, performed by the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), to acquire a regolith sample from the surface Earth re-entry and SRC recovery. Following sample collection, OSIRIS-REx drifts away from Bennu until the Asteroid Departure Maneuver is commanded on March 4, 2021, sending OSIRIS-REx on a ballistic return cruise to Earth. No additional large deterministic maneuvers are required to return the SRC to Earth. During the cruise, tracking and trajectory correction maneuvers (TCMs) are performed as necessary to precisely target the entry corridor. As OSIRIS-REx approaches Earth, the reentry plans are reviewed starting about a year before arrival, and preparations begin. The spacecraft is targeted away from the Earth until 7 days before entry. The final two trajectory correction maneuvers bring the spacecraft on target toward the Utah Test and Training Range (UTTR), with sufficient time for contingency resolution. The SRC releases 4 hours prior to atmospheric entry interface and, using the Stardust capsule heritage design, employs a traditional drogue and main parachute descent system for a soft touchdown.

  2. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L. Sabau, N. Thomas, C. Tubiana, J-B. Vincent, P. Wenzel, Associate Scientists & Assistants.

  3. The planetary spatial data infrastructure for the OSIRIS-REx mission

    NASA Astrophysics Data System (ADS)

    DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.

    2017-12-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity operations.The SPOC is a live system that handles inputs from spacecraft and science instrument telemetry, and science data producers. It includes multiple levels of validation, both automated and manual to process all data in a robust and reliable manner and eventually deliver it to the NASA Planetary Data System for archive.

  4. The dust environment of 67P/Churyumov-Gerasimenko as seen through Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tubiana, Cecilia; Bertini, Ivano; Deller, Jakob; Drolshagen, Esther; Frattin, Elisa; Güttler, Carsten; Hofmann, Marc; Koschny, Detlef; Oklay, Nilda; Ott, Theresa; Shi, Xian; Sierks, Holger; Vincent, Jean-Baptiste; OSIRIS Team

    2016-10-01

    The ESA's Rosetta spacecraft had the unique opportunity to stay in the vicinity of the comet for two years, observing how the comet evolved while approaching the Sun, passing through perihelion and then moving outwards. OSIRIS, the Optical, Spectroscopic, and Infrared Remote Imaging System onboard Rosetta, imaged the nucleus and the dust environment of 67/Churyumov-Gerasimenko since the beginning of post-hibernation operations in March 2014. We focus here on dust studies carried on with OSIRIS.Images obtained in different filters in the visible wavelength range have been used to study the unresolved dust coma, investigating its diurnal and seasonal variations and providing insights into the dust composition. A correlation has been found between the level of diurnal activity and the region of the nucleus surface in sunlight, suggesting that the topography and/or composition of the surface play an important role. The overall activity increases while the comet is approaching the Sun, peaking about a month after perihelion. Comparison with ground-based observations will allow to understand if the dust coma behaves in similar ways at small scales - as observed by Rosetta/OSIRIS - and at large scales - as observed from ground. Several times during the mission, we acquired images spanning the phase angle range 0-165 degrees. They are used to determine the dust phase function in different wavelengths, its evolution with heliocentric distance and to investigate the intimate nature of cometary dust aggregates by solving the inverse scattering problem. A large amount of individual aggregates is present in the vicinity of 67P/Churyumov-Gerasimenko. We used OSIRIS NAC and WAC images to determine the aggregate properties: size and distance distributions, colors and rotation. Thanks to observations performed at different heliocentric distances, we address how those properties are changing with heliocentric distance.

  5. Improved OSIRIS NO2 retrieval algorithm: description and validation

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.

    2017-03-01

    A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.

  6. A historical hypothesis of the first recorded neurosurgical operation: Isis, Osiris, Thoth, and the origin of the djed cross.

    PubMed

    Filler, Aaron G

    2007-01-01

    A new textual analysis of the central religious aspect of the ancient Egyptian creation myth reveals what appears to be a description of the oldest recorded neurosurgical operation, occurring circa 3000 BC. The analysis results in a hypothesis suggesting that traction reduction was used successfully to reverse a paralyzing cervical spine injury of an early Egyptian leader (Osiris), which inspired the story of his resurrection. The Egyptian mother god Isis, working with the god Thoth (the inventor of medicine), resurrects Osiris by treating his damaged cervical spine. Numerous references in the Papyrus of Ani (Book of the Dead) to Osiris regaining the strength and control of his legs are linked textually to the treatment of his spine. The connection between the intact spine and the ability to rise and stand is used as a distinct metaphor for life and death by the spinal representation of the "djed column" painted on the back of the numerous Egyptian sarcophagi for thousands of years. Controversy over the translation of the vertebral references in Egyptian texts is clarified by considering the specific neurosurgical meanings of hieroglyphs appearing in both the Edwin Smith medical papyrus and in the Papyrus of Ani, and in light of recent scholarly reassessments of those hieroglyphs in the Egyptological literature.

  7. Designing to Sample the Unknown: Lessons from OSIRIS-REx Project Systems Engineering

    NASA Technical Reports Server (NTRS)

    Everett, David; Mink, Ronald; Linn, Timothy; Wood, Joshua

    2017-01-01

    On September 8, 2016, the third NASA New Frontiers mission launched on an Atlas V 411. The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) will rendezvous with asteroid Bennu in 2018, collect a sample in 2020, and return that sample to Earth in September 2023. The development team has overcome a number of challenges in order to design and build a system that will make contact with an unexplored, airless, low-gravity body. This paper will provide an overview of the mission, then focus in on the system-level challenges and some of the key system-level processes. Some of the lessons here are unique to the type of mission, like discussion of operating at a largely-unknown, low-gravity object. Other lessons, particularly from the build phase, have broad implications. The OSIRIS-REx risk management process was particularly effective in achieving an on-time and under-budget development effort. The systematic requirements management and verification and the system validation also helped identify numerous potential problems. The final assessment of the OSIRIS-REx performance will need to wait until the sample is returned in 2023, but this post-launch assessment will capture some of the key systems-engineering lessons from the development team.

  8. The OSIRIS-Rex Asteroid Sample Return: Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Cheuvront, Allan

    2014-01-01

    The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the missions science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the SRC lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis.Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together space craft, instrument and operations scenarios. The project implemented lessons learned from other small body missions: APLNEAR, JPLDAWN and ESARosetta. The key lesson learned was expected the unexpected and implement planning tools early in the lifecycle. In preparation to PDR, the project changed the asteroid arrival date, to arrive one year earlier and provided additional time margin. STK is used for Mission Design and STKScheduler for instrument coverage analysis.

  9. Bright ice spots on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta; Fulchignoni, Marcello; Pommerol, Antoine; Erard, Stéphane; Oklay, Nilda; Tosi, Federico; Capaccioni, Fabrizio; Sierks, Holger; Filacchione, Gianrico; Bockelee-Morvan, Dominique; Guettler, Carsten; Fornasier, Sonia; Raponi, Andrea; Deshapriya, J. D. P.; Feller, Clement; Ciarniello, Mauro; Leyrat, Cedric

    2016-07-01

    Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on August 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), and VIRTIS (Visible Infrared Thermal Imaging Spectrometer) acquiring a huge quantity of surface's images and spectra, producing the most detailed maps at the highest spatial resolution of a cometary nucleus. The OSIRIS imaging system (NAC & WAC) has a set of filters at different wavelengths from the ultraviolet (269 nm) to the near-infrared (989 nm). The OSIRIS imaging system has been the first instrument with the capability to map a comet surface at a high resolution reaching a maximum resolution of 11cm/px during the closest fly-by on February 14, 2015 at a distance of about 6 km from the nucleus surface while the VIRTIS spectro-imager (with two channels M and H) operates from 0.25 to 5m with medium and high spectral resolution. The spectral analysis on global scale from the VIRTIS data indicates that the nucleus presents different terrains covered by a very dark and dehydrated organic-rich material [1]. OSIRIS images indicate a morphologically complex and dark surface with a variety of terrain types and several intricate features [2]. The surface shows albedo variation and from the spectrophotometric analysis a large heterogeneity on the surface properties [3, 4, 5]. Limited evidences of exposed H2O ice have been found on the surface of 67/P C-G up to now [6, 7, 8], even though ices are considered to be a major constituent of cometary nuclei. The aim of this work is, taking advantage of the high resolution of the OSIRIS images, i) to detect the bright spots at all dimensions by albedo and spectral slope analyses, ii) to select those spots which could be resolved by VIRTIS and iii ) to deeply analyse the corresponding spectra. The OSIRIS analysis has been carried out on the colours and spectrophotometry of the whole 67/P C-G nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the end of 2015. The bright spots are spread everywhere on the surface. The analysis of the VIRTIS spectra on the selected positions by OSIRIS allowed us to detect eight spots with positive H2O ice signatures detection. The obtained results with the computed models will be presented and discussed. References : [1] Capaccioni et al. 2015. Science 347, DOI: 10.1126/science.aaa0628 [2] Sierks et al. 2015. Science 347, DOI: 10.1126/science.aaa1044 [3] Fornasier et al. 2015. A&A, 583, A30 [4] Ciarniello et al., 2015, A&A, 583, A31 [5] Oklay et al. 2016. A&A 586, A80 [6] Pommerol et al. 2015. A&A, 583, A25 [7] De Sanctis et al. 2015. Nature 525, 500 [8] Filacchione et al. 2016. Nature 529, 368.

  10. Use of OsiriX in developing a digital radiology teaching library.

    PubMed

    Shamshuddin, S; Matthews, H R

    2014-10-01

    Widespread adoption of digital imaging in clinical practice and for the image-based examinations of the Royal College of Radiologists has created a desire to provide a digital radiology teaching library in many hospital departments around the UK. This article describes our experience of using OsiriX software in developing digital radiology teaching libraries. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta.

    PubMed

    Keller, H U; Barbieri, C; Koschny, D; Lamy, P; Rickman, H; Rodrigo, R; Sierks, H; A'Hearn, M F; Angrilli, F; Barucci, M A; Bertaux, J-L; Cremonese, G; Da Deppo, V; Davidsson, B; De Cecco, M; Debei, S; Fornasier, S; Fulle, M; Groussin, O; Gutierrez, P J; Hviid, S F; Ip, W-H; Jorda, L; Knollenberg, J; Kramm, J R; Kührt, E; Küppers, M; Lara, L-M; Lazzarin, M; Lopez Moreno, J; Marzari, F; Michalik, H; Naletto, G; Sabau, L; Thomas, N; Wenzel, K-P; Bertini, I; Besse, S; Ferri, F; Kaasalainen, M; Lowry, S; Marchi, S; Mottola, S; Sabolo, W; Schröder, S E; Spjuth, S; Vernazza, P

    2010-01-08

    The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote( )imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.

  12. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  13. Thermophysical Characteristics of OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Yu, Liangliang; Ji, Jianghui

    2016-01-01

    In this work, we investigate the thermophysical properties, including thermal inertia, roughness fraction and surface grain size of OSIRIS-REx target asteroid (101955) Bennu by using a thermophysical model with the recently updated 3D radar-derived shape model (Nolan et al., 2013) and mid-infrared observations (Müller et al. 2012, Emery et al., 2014). We find that the asteroid bears an effective diameter of 510+6 -40 m, a geometric albedo of 0.047+0.0083 -0.0011, a roughness fraction of 0.04+0.26 -0.04, and thermal inertia of 240+440 -60 Jm-2s-0.5K-1 for our best-fit solution. The best-estimate thermal inertia suggests that fine-grained regolith may cover a large portion of Bennu's surface, where a grain size may vary from 1.3 to 31 mm. Our outcome suggests that Bennu is suitable for the OSIRIS-REx mission to return samples to Earth.

  14. E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Barbieri, C.; Koschny, D.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; A'Hearn, M. F.; Angrilli, F.; Barucci, M. A.; Bertaux, J.-L.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L.-M.; Lazzarin, M.; Moreno, J. Lopez; Marzari, F.; Michalik, H.; Naletto, G.; Sabau, L.; Thomas, N.; Wenzel, K.-P.; Bertini, I.; Besse, S.; Ferri, F.; Kaasalainen, M.; Lowry, S.; Marchi, S.; Mottola, S.; Sabolo, W.; Schröder, S. E.; Spjuth, S.; Vernazza, P.

    2010-01-01

    The European Space Agency’s Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.

  15. An Independent Orbit Determination Simulation for the OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Getzandanner, Kenneth; Rowlands, David; Mazarico, Erwan; Antreasian, Peter; Jackman, Coralie; Moreau, Michael

    2016-01-01

    After arriving at the near-Earth asteroid (101955) Bennu in late 2018, the OSIRIS-REx spacecraft will execute a series of observation campaigns and orbit phases to accurately characterize Bennu and ultimately collect a sample of pristine regolith from its surface. While in the vicinity of Bennu, the OSIRIS-REx navigation team will rely on a combination of ground-based radiometric tracking data and optical navigation (OpNav) images to generate and deliver precision orbit determination products. Long before arrival at Bennu, the navigation team is performing multiple orbit determination simulations and thread tests to verify navigation performance and ensure interfaces between multiple software suites function properly. In this paper, we will summarize the results of an independent orbit determination simulation of the Orbit B phase of the mission performed to test the interface between the OpNav image processing and orbit determination software packages.

  16. Diamond fly cutting of aluminum thermal infrared flat mirrors for the OSIRIS-REx Thermal Emission Spectrometer (OTES) instrument

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher E.; Underhill, Matthew; Farkas, Zoltan; Pelham, Daniel

    2016-07-01

    We present the fabrication and measurement of monolithic aluminum flat mirrors designed to operate in the thermal infrared for the OSIRIS-Rex Thermal Emission Spectrometer (OTES) space instrument. The mirrors were cut using a conventional fly cutter with a large radius diamond cutting tool on a high precision Kern Evo 3-axis CNC milling machine. The mirrors were measured to have less than 150 angstroms RMS surface error.

  17. Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    NASA Astrophysics Data System (ADS)

    Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.

    2013-01-01

    We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  18. Stellar Occultations in the Coma of Comet 67/P Chuyumov-Gerasimenko Observed by the OSIRIS Camera System

    NASA Astrophysics Data System (ADS)

    Moissl, Richard; Kueppers, Michael

    2016-10-01

    In this paper we present the results of an analysis on a large part of the existing Image data from the OSIRIS camera system onboard the Rosetta Spacecraft, in which stars of sufficient brightness (down to a limiting magnitude of 6) have been observed through the coma of Comet 67/P Churyumov-Gerasimenko ("C-G"). Over the course of the Rosetta main mission the Coma of the comet underwent large changes in density and structure, owed to the changing insolation along the orbit of C-G. We report on the changes of the stellar signals in the wavelength ranges, covered by the filters of the OSIRIS Narrow-Angle (NAC) and Wide-Angle (WAC) cameras.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.

  19. Modelling observations of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: First results

    NASA Astrophysics Data System (ADS)

    Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Wu, J. S.; Jorda, L.; Preusker, F.; Scholten, F.; Gracia-Berná, A.; Gicquel, A.; Naletto, G.; Shi, X.; Vincent, J.-B.

    2016-05-01

    Context. This paper describes the initial modelling of gas and dust data acquired in August and September 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims: This work is an attempt to provide a self-consistent model of the innermost gas and dust coma of the comet, as constrained by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data set for the gas and by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) data set for the dust. Methods: The model uses a previously developed shape model for the nucleus, and from this the water sublimation rate and gas temperatures at the surface are computed with a simple thermal model. The gas expansion is modelled with a 3D parallel implementation of a Direct Simulation Monte Carlo algorithm. A dust drag algorithm is then used to produce dust densities in the coma, which are then converted to brightnesses using Mie theory and a line-of-sight integration. Results: We show that a purely insolation-driven model for surface outgassing does not produce a reasonable fit to ROSINA/COPS data. A stronger source in the "neck" region of the nucleus (region Hapi) is needed to match the observed modulation of the gas density in detail. This agrees with OSIRIS data, which shows that the dust emission from the "neck" was dominant in the August-September 2014 time frame. The current model matches this observation reasonably if a power index of 2-3 for the dust size distribution is used. A better match to the OSIRIS data is seen by using a single large particle size for the coma. Conclusions: We have shown possible solutions to the gas and dust distributions in the inner coma, which are consistent with ROSINA and OSIRIS data.

  20. Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.

    2016-10-01

    The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past temperature of the samples, and predict the past orbital and thermal history of Bennu.

  1. Limb-Nadir Matching Using Non-Coincident NO2 Observations: Proof of Concept and the OMI-minus-OSIRIS Prototype Product

    NASA Technical Reports Server (NTRS)

    Adams, Cristen; Normand, Elise N.; Mclinden, Chris A.; Bourassa, Adam E.; Lloyd, Nicholas D.; Degenstein, Douglas A.; Krotkov, Nickolay A.; Rivas, Maria Belmonte; Boersma, K. Folkert; Eskes, Henk

    2016-01-01

    A variant of the limb-nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical boxmodel. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical column densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product - referred to as OMI-minus-OSIRIS (OmO) - was generated through limb-nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60 deg S to 60 deg N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2, including a background value of about 0.3 x 10(exp 15) molecules per sq cm over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb-nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.

  2. PaDe - The particle detection program

    NASA Astrophysics Data System (ADS)

    Ott, T.; Drolshagen, E.; Koschny, D.; Poppe, B.

    2016-01-01

    This paper introduces the Particle Detection program PaDe. Its aim is to analyze dust particles in the coma of the Jupiter-family comet 67P/Churyumov-Gerasimenko which were recorded by the two OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras onboard the ESA spacecraft Rosetta, see e.g. Keller et al. (2007). In addition to working with the Rosetta data, the code was modified to work with images from meteors. It was tested with data recorded by the ICCs (Intensified CCD Cameras) of the CILBO-System (Canary Island Long-Baseline Observatory) on the Canary Islands; compare Koschny et al. (2013). This paper presents a new method for the position determination of the observed meteors. The PaDe program was written in Python 3.4. Its original intent is to find the trails of dust particles in space from the OSIRIS images. For that it determines the positions where the trail starts and ends. They were found using a fit following the so-called error function (Andrews, 1998) for the two edges of the profiles. The positions where the intensities fall to the half maximum were found to be the beginning and end of the particle. In the case of meteors, this method can be applied to find the leading edge of the meteor. The proposed method has the potential to increase the accuracy of the position determination of meteors dramatically. Other than the standard method of finding the photometric center, our method is not influenced by any trails or wakes behind the meteor. This paper presents first results of this ongoing work.

  3. OSIRIS-REx Touch-And-Go (TAG) Navigation Performance

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIES-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper will summarize the Monte-Carlo simulation of the TAG sequence and present analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and +-2 cms of the targeted contact velocity. The paper will describe some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  4. OSIRI-REx Touch and Go (TAG) Navigation Performance

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive maneuvers required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper also summarizes the Monte-Carlo simulation of the TAG sequence and presents analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and 2 cm/s of the targeted contact velocity. The paper describes some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  5. Lessons Learned from Preparing OSIRIS-REx Spectral Analog Samples for Bennu

    NASA Technical Reports Server (NTRS)

    Schrader, D. L.; McCoy, T. J.; Cody, G. D.; King, A. J.; Schofield, P. F.; Russell, S. S.; Connolly, H. C., Jr.; Keller, L. P.; Donaldson Hanna, K.; Bowles, N.; hide

    2017-01-01

    NASA's OSIRIS-REx sample return mission launched on September 8th, 2016 to rendezvous with B-type asteroid (101955) Bennu in 2018. Type C and B asteroids have been linked to carbonaceous chondrites because of their similar visible - to - near infrared (VIS-NIR) spectral properties [e.g., 1,2]. The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) and the Thermal Emission Spectrometer (OTES) will make spectroscopic observations of Bennu during the encounter. Constraining the presence or absence of hydrous minerals (e.g., Ca-carbonate, phyllosilicates) and organic molecules will be key to characterizing Bennu [3] prior to sample site selection. The goal of this study was to develop a suite of analog and meteorite samples and obtain their spectral properties over the wavelength ranges of OVIRS (0.4- 4.3 micrometer) and OTES (5.0-50 micrometer). These spectral data were used to validate the mission science-data processing system. We discuss the reasoning behind the study and share lessons learned.

  6. NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy

    2017-01-01

    The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.

  7. Bunch modulation in LWFA blowout regime

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Vieira, Jorge; Korn, Georg

    2015-05-01

    Laser wakefield acceleration (LWFA) is able to produce high quality electron bunches interesting for many applications ranging from coherent light sources to high energy physics. The blow-out regime of LWFA provides excellent accelerating structure able to maintain small transverse emittance and energy spread of the accelerating electron beam if combined with localised injection. A modulation of the back of a self-injected electron bunch in the blowout regime of Laser Wakefield Acceleration appears 3D Particle-in-Cell simulations with the code OSIRIS. The shape of the modulation is connected to the polarization of the driving laser pulse, although the wavelength of the modulation is longer than that of the pulse. Nevertheless a circularly polarized laser pulse leads to a corkscrew-like modulation, while in the case of linear polarization, the modulation lies in the polarization plane.

  8. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  9. The Nature of C Asteroid Regolith from Meteorite Observations

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  10. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  11. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  12. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth. Photo credit: NASA/Kim Shiflett

  13. Thermal Assessment of Sunlight Impinging on OSIRIS-REx OCAMS PolyCam, OTES, and IMU-Sunshade MLI Blankets in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2017-01-01

    The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go (TAG) sample acquisition, and Return Cruise mission phases.The OSIRIS-REx Outbound Cruise flight temperature telemetry and USM_3_DPC_0_CURRENT flight currenttelemetry data have been analyzed. It is evident that at the nominal Outbound Cruise spacecraft Sun-pointing attitude(i.e., Sun on +X), sunlight impinging on the PolyCam, OTES, IMU-sunshade and OLA-sunshade MLIs is reflected orscattered to the forward deck and components on the forward deck. It illuminates the forward deck. The StowCam imageof Day 265 2016 also provided an evidence. The reflected or scattered sunlight cause warming to the forward deck andcomponents on its +Z side. It may also contribute to degradation of thermal coatings over the mission life. It is a factorthat the OVIRS detector operating temperature exceeds the 105K maximum AFT limit. The OVIRS PrincipalInvestigator indicated that it is not optimum but acceptable for science. With exception of the OVIRS detector, thecorrelated flight system thermal model predictions for the components on the forward deck have adequate margins in theProximity Ops, TAG and Return Cruise phases. The margins are expected to cover the warming caused by the solarimpingement and the contribution to degradation of thermal coatings. The solar impingement is not expected to be athermal risk to the OSIRIS-REx mission. The second SRC Optical Properties characterization will be repeated in theReturn Cruise to provide a good characterization of any changes in optical properties that might have occurred duringthe TAG, or during several years in space. If the SRC battery runs much warmer than that of the first characterization inthe Outbound Cruise, it will be necessary to make some changes to the SRC Release timeline to assure the SRC batterytemperature are within limits. If GBK, instead of microporous black PTFE, were used on the PolyCam sunshade MLI,much more sunlight would have been reflected or scattered to the forward deck and components on its +Z side.Microporous black PTFE should be considered to mitigate the optical and thermal issues of sunlight reflected/scatteredby MLI blankets in future missions.

  14. PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pajola, M.; Magrin, S.; Bertini, I.

    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie and Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterizationmore » of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie and Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional similarities between Phobos and D-type asteroids.« less

  15. [Neurosurgical planning using osirix software].

    PubMed

    Jaimovich, Sebastián Gastón; Guevara, Martin; Pampin, Sergio; Jaimovich, Roberto; Gardella, Javier Luis

    2014-01-01

    Anatomical individuality is key to reduce surgical trauma and obtain a better outcome. Nowadays, the advances in neuroimaging has allowed us to analyze this anatomical individuality and to plan the surgery. With this objective, we present our experience with the OsiriX software. We present three different applications as example of forty procedures performed. Case 1: Patient with a premotor cortex convexity parasagittal meningioma; Case 2: Patient with a nonfunctioning pituitary macroadenoma operated on 2 years ago in another institution, achieving a partial resection by a transsphenoidal approach; Case 3: Patient with bilateral middle cerebellar peduncles lesions. OsiriX Software was used for surgical planning. Volumetric CT and MRI images were fused and 3D reconstruction images obtained, to analyze anatomical relationships, measure distances, coordinates and trajectories, among other features. OsiriX software is a useful, open-source and free software tool that provides the surgeon with valuable information. It allows to study individual patient's anatomy and plan a surgical approach in a fast, simple, inexpensive and safety way. In Case 1 the software let us analyze the relationship of the tumor with the surrounding structures in order to minimize the approach's morbidity. In Case 2, to understand the unique anatomic characteristics of an already operated patient giving us important information regarding pathways and need for extra bone removal, achieving a complete tumor resection by an endoscopic transnasal approach. In Case 3, allowed us to obtain the stereotactic coordinates and trajectory for a not visualizable CT scan lesion. When expensive neuronavigation systems are not available, OsiriX is an alternative for neurosurgical planning, with the aim of reducing trauma and surgical morbidity.

  16. You can't touch this: touch-free navigation through radiological images.

    PubMed

    Ebert, Lars C; Hatch, Gary; Ampanozi, Garyfalia; Thali, Michael J; Ross, Steffen

    2012-09-01

    Keyboards, mice, and touch screens are a potential source of infection or contamination in operating rooms, intensive care units, and autopsy suites. The authors present a low-cost prototype of a system, which allows for touch-free control of a medical image viewer. This touch-free navigation system consists of a computer system (IMac, OS X 10.6 Apple, USA) with a medical image viewer (OsiriX, OsiriX foundation, Switzerland) and a depth camera (Kinect, Microsoft, USA). They implemented software that translates the data delivered by the camera and a voice recognition software into keyboard and mouse commands, which are then passed to OsiriX. In this feasibility study, the authors introduced 10 medical professionals to the system and asked them to re-create 12 images from a CT data set. They evaluated response times and usability of the system compared with standard mouse/keyboard control. Users felt comfortable with the system after approximately 10 minutes. Response time was 120 ms. Users required 1.4 times more time to re-create an image with gesture control. Users with OsiriX experience were significantly faster using the mouse/keyboard and faster than users without prior experience. They rated the system 3.4 out of 5 for ease of use in comparison to the mouse/keyboard. The touch-free, gesture-controlled system performs favorably and removes a potential vector for infection, protecting both patients and staff. Because the camera can be quickly and easily integrated into existing systems, requires no calibration, and is low cost, the barriers to using this technology are low.

  17. J0815+4729: A Chemically Primitive Dwarf Star in the Galactic Halo Observed with Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Aguado, David S.; González Hernández, Jonay I.; Allende Prieto, Carlos; Rebolo, Rafael

    2018-01-01

    We report the discovery of the carbon-rich hyper metal-poor unevolved star J0815+4729. This dwarf star was selected from SDSS/BOSS as a metal-poor candidate and follow-up spectroscopic observations at medium resolution were obtained with the Intermediate dispersion Spectrograph and Imaging System (ISIS) at William Herschel Telescope and the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy (OSIRIS) at Gran Telescopio de Canarias. We use the FERRE code to derive the main stellar parameters, {T}{eff}=6215+/- 82 K, and {log}g=4.7+/- 0.5, an upper limit to the metallicity of [Fe/H] ≤ ‑5.8, and a carbon abundance of [C/Fe] ≥ +5.0, while [α /{Fe}]=0.4 is assumed. The metallicity upper limit is based on the Ca II K line, which at the resolving power of the OSIRIS spectrograph cannot be resolved from possible interstellar calcium. The star could be the most iron-poor unevolved star known and also be among the ones with the largest overabundances of carbon. High-resolution spectroscopy of J0815+4729 will certainly help to derive other important elemental abundances, possibly providing new fundamental constraints on the early stages of the universe, the formation of the first stars, and the properties of the first supernovae. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Program ID GTC90-15B and the Discretionary Director Time GTC03-16ADDT and also based on observations made with the William Herschel Telescope (WHT).

  18. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] < -3.3 regime. We report the recognition of J173403+644632, a carbon-enhanced ultra metal-poor dwarf star with [Fe/H] = -4.3 and [C/Fe] = + 3.1. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  19. Modelling of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data - First results

    NASA Astrophysics Data System (ADS)

    Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Wu, J. S.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Jorda, L.; Preusker, F.; Scholten, F.; Gicquel, A.; Gracia-Berná, A.; Naletto, G.

    2015-10-01

    The physics of the outflow above the surface of comets is somewhat complex. Ice sublimating into vacuum forms a non-equilibrium boundary layer, the "Knudsen layer" (Kn-layer), with a scale height of #20 mean free paths. If the production rate is low, the Kn-layer becomes infinitely thick and the velocity distribution function (VDF) remains strongly non-Maxwellian. Thus our preferred method for gas dynamics simulations of the coma is Direct Simulation Monte Carlo DSMC. Here we report on the first results of models of the outflow from the Rosetta target, comet67P/Churyumov-Gerasimenko (C-G). Our aims are to (1) determine the gas flow-field of H2O and CO2 in the innermost coma and compare the results to the in-situ measurements of the ROSINA/COPS instrument (2) produce artificial images of the dust brightnesses that can be compared to the OSIRIS cameras. The comparison with ROSINA/COPS and OSIRIS data help to constrain the initial conditions of the simulations and thus yield information on the surface processes.

  20. BENNU’S JOURNEY

    NASA Image and Video Library

    2017-12-08

    This large asteroid, a proto-star undergoes fusion and our sun is born. This is the parent of Asteroid Bennu. Today, a NASA Spacecraft has the chance to retrieve a sample from Bennu to reveal the history of our solar system. OSIRIRS-REx is a NASA sample return mission to visit Asteroid Bennu. We plan to grab a piece of Bennu, because it’s a time capsule that can tell us about the origins of our planet and our entire solar system. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data

    NASA Astrophysics Data System (ADS)

    Drolshagen, E.; Ott, T.; Koschny, D.; Güttler, C.; Tubiana, C.; Agarwal, J.; Sierks, H.; Barbieri, C.; Lamy, P. I.; Rodrigo, R.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; da Deppo, V.; Davidsson, B.; Debei, S.; de Cecco, M.; Deller, J.; Feller, C.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Shi, X.; Thomas, N.; Poppe, B.

    2017-09-01

    The ESA Rosetta spacecraft has been tracking its target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, in close vicinity for over two years. It hosts the OSIRIS instruments: the Optical, Spectroscopic, and Infrared Remote Imaging System composed of two cameras, see e.g. Keller et al. (2007). In some imaging sequences dedicated to observe dust particles in the comet's coma, the two cameras took images at the same time. The aim of this work is to use these simultaneous double camera observations to calculate the dust particles' distance to the spacecraft. As the two cameras are mounted on the spacecraft with an offset of 70 cm, the distance of particles observed by both cameras can be determined by a shift of the particles' apparent trails on the images. This paper presents first results of the ongoing work, introducing the distance determination method for the OSIRIS instrument and the analysis of an example particle. We note that this method works for particles in the range of about 500-6000 m from the spacecraft.

  2. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 <<λp studies. We present the 3d version of a PGC solver in the massively parallel, fully relativistic PIC code OSIRIS. Further, a discussion and characterization of the validity of the PGC solver for injection schemes on the plasma scale lengths, such as down-ramp injection, magnetic injection and ionization injection, through parametric studies, full PIC simulations and theoretical scaling, is presented. This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  3. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  4. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  5. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  6. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    In a view from above, a United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  7. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  8. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket has left the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  9. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket has made the trek from the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  10. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  11. A Collision Avoidance Strategy for a Potential Natural Satellite around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Carpenter, J. Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  12. Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer Planning (OSIRIS-REx)

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Messenger, Scott; Keller, Lindsay; Righter, Kevin

    2014-01-01

    Scientists at ARES are preparing to curate and analyze samples from the first U.S. mission to return samples from an asteroid. The Origins-Spectral Interpretation- Resource Identification-Security-Regolith Explorer, or OSIRIS-REx, was selected by NASA as the third mission in its New Frontiers Program. The robotic spacecraft will launch in 2016 and rendezvous with the near-Earth asteroid Bennu, in 2020. A robotic arm will collect at least 60 grams of material from the surface of the asteroid to be returned to Earth in 2023 for worldwide distribution by the NASA Astromaterials Curation Facility at ARES.

  13. A Collision Avoidance Strategy for a Potential Natural Satellite Around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Carpenter, Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  14. Material strength on 67P/Churyumov-Gerasimenko and its influence on cliff stability

    NASA Astrophysics Data System (ADS)

    Hofmann, Marc; Güttler, Carsten; Vincent, Jean-Baptiste; Prasanna Deshapriya, J. D.; Pajola, Maurizio; Tubiana, Cecilia; Feller, Clément; Barucci, Maria A.; Sierks, Holger

    2017-04-01

    The OSIRIS scientific camera system [1] on board ESA's Rosetta spacecraft has been observing comet 67P/Churyumov-Gerasimenko since its arrival in August 2014. Visible on the OSIRIS images are cliff structures with associated taluses at their bottom. It is likely that these taluses were created during a (partial) collapse of the neighboring cliff. Several of these taluses display individual boulders with different brightness and spectral slope than the rest of the boulders, indicating a varying content of volatiles. A possible cause for the collapse of cliffs is thermal stresses and heat that intensify the fracturing of possibly pre-fractured walls or form new fractures. This results in sublimation with a progressively eroding cliff. The direct consequence is the occurrence of gravitational events and formation of boulder fields at the foot of the cliffs [2,3]. Both of these processes serve to weaken the structural integrity of the cliff but it is unclear how large the relative contribution of these processes is. In this study we investigate how the depletion of volatiles and damage to the cliff structure introduced by cracks will change the integrity and stability of the cliff. We aim to derive limits to the material strength to be compared to those found from observed cliffs and cliff collapses [4,5] using the DEM software ESyS Particle [6]. Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politécnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. References: [1] Keller, H. U. et al.: OSIRIS The Scientific Camera System Onboard Rosetta, Space Sci. Rev., 128, pp. 433-506, 2007; [2] Vincent, J.-B. et al.: Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko, A&A, 587:A14, 2016; [3] Pajola, M. et al.: Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry, A&A, 592:A69, 2016; [4] Sierks, H. et al.: On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko, Science, 347, 2015; [5] Groussin, O. et al.: Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations, A&A, 583:A32, 2015; [6] https://launchpad.net/esys-particle

  15. The Particle-in-Cell and Kinetic Simulation Software Center

    NASA Astrophysics Data System (ADS)

    Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; An, W.; Dalichaouch, T. N.; Davidson, A.; Hildebrand, L.; Joglekar, A.; May, J.; Miller, K.; Touati, M.; Xu, X. L.

    2017-10-01

    The UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) aims to support an international community of PIC and plasma kinetic software developers, users, and educators; to increase the use of this software for accelerating the rate of scientific discovery; and to be a repository of knowledge and history for PIC. We discuss progress towards making available and documenting illustrative open-source software programs and distinct production programs; developing and comparing different PIC algorithms; coordinating the development of resources for the educational use of kinetic software; and the outcomes of our first sponsored OSIRIS users workshop. We also welcome input and discussion from anyone interested in using or developing kinetic software, in obtaining access to our codes, in collaborating, in sharing their own software, or in commenting on how PICKSC can better serve the DPP community. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  16. Controlling Laser Plasma Instabilities Using Temporal Bandwidths Under Shock Ignition Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2017-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.

  17. The OSIRIS-REx laser altimeter (OLA): Development progress

    NASA Astrophysics Data System (ADS)

    Daly, M.; Barnouin, O.; Johnson, C.; Bierhaus, E.; Seabrook, J.; Dickinson, C.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Cunningham, G.; Lauretta, D.; Boynton, W.; Beshore, E.

    2014-07-01

    Introduction: The NASA New Frontiers Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission will be the first to sample the B-type asteroid (101955) Bennu [1]. This asteroid is thought to be primitive and carbonaceous, and is probably closely related to CI and/or CM meteorites [2]. The OSIRIS-REx mission hopes to better understand both the physical and geochemical origin and evolution of carbonaceous asteroids through its investigation of Bennu. The OSIRIS-REx spacecraft will launch in September 2016, and arrive at Bennu two years later. The Canadian Space Agency is contributing a scanning lidar system known as the OSIRIS-REx Laser Altimeter (OLA), to the OSIRIS-REx Mission. The OLA instrument is part of suite of onboard instruments [3] including cameras (OCAMS) [4], a visible and near- infrared spectrometer (OVIRS) [5], a thermal emission spectrometer (OTES), and an X-ray imaging spectrometer (REXIS) [6]. OLA Objectives: The OLA instrument has a suite of scientific and mission operations purposes. At a global scale, it will update the shape and mass of Bennu to provide insights on the geological origin and evolution of Bennu, by, for example, further refining constraints on its bulk density. With a carefully undertaken geodesy campaign, OLA-based precision ranges, constraints from radio science (2-way tracking) data and stereo OCAMS images, it will yield broad-scale, quantitative constraints on any internal heterogeneity of Bennu and hence provide further clues to Bennu's origin and subsequent collisional evolution. OLA-derived global asteroid maps of slopes, elevation relative to the asteroid geoid, and vertical roughness will provide quantitative insights on how local-regional surfaces on Bennu evolved subsequent to the formation of the asteroid. In addition, OLA data and derived products support the assessment of the safety and sampleability of potential sample sites. At the sample-site scale, the OLA instrument will provide detailed information on the geological and geophysical processes which influence the surface regolith at scales relevant to the samples that will be collected. High resolution (meter-scale) spatial measurements of surface topographic slopes, center-of-mass referenced elevation, and vertical roughness within the sample ellipse will provide quantitative data on regolith processes such as surface granular flows that could have displaced the regolith sampled by OSIRIS-REx spacecraft. The OLA system will also be responsible for assessing hazards at any proposed sample site. Specifically, the OLA system will measure the slope distribution within the sample ellipse and characterize backscatter roughness at or below the scale of the OLA spot size. Technical Specifications: The completed OLA instrument is expected to achieve all these objectives through its specifications that are based on the characteristics of Bennu and operational considerations: Maximum Operational Range, 7.5 km; Minimum Operational Range, 0.150 km; Range Accuracy, 5--20 cm (range dependent); Range Resolution, <4 cm; Scanner Field of Regard, ±10 deg. (each axis); Laser Spot Size (on surface), 0.015--2 m (range dependent). Progress To-date: A prototype of the OLA system has been developed and successfully tested. Results from this testing will be presented and compared with the instrument requirements. Simulated OLA datasets will be presented along with the first engineering model hardware and test results.

  18. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  19. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  20. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. a, A.A. Kutepov, W.D. Pesnell, In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  1. Asteroid Bennu Temperature Maps for OSIRIS-REx Spacecraft and Instrument Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.; Emery, Josh; Delbo, Marco

    2014-01-01

    A thermophysical model has been developed to generate asteroid Bennu surface temperature maps for OSIRIS-REx spacecraft and instrument thermal design and analyses at the Critical Design Review (CDR). Two-dimensional temperature maps for worst hot and worst cold cases are used in Thermal Desktop to assure adequate thermal design margins. To minimize the complexity of the Bennu geometry in Thermal Desktop, it is modeled as a sphere instead of the radar shape. The post-CDR updated thermal inertia and a modified approach show that the new surface temperature predictions are more benign. Therefore the CDR Bennu surface temperature predictions are conservative.

  2. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    In a view from ground level looking up, a United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  3. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  4. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket is reflected in the water as it rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  5. Strategy for Ranking the Science Value of the Surface of Asteroid 101955 Bennu for Sample Site Selection for Osiris-REx

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Connolly, H. C., Jr.; Lauretta, D. S.

    2014-01-01

    OSRIS-REx is NASA's New Frontiers 3 sample return mission that will return at least 60 g of pristine surface material from near-Earth asteroid 101955 Bennu in September 2023. The scientific value of the sample increases enormously with the amount of knowledge captured about the geological context from which the sample is collected. The OSIRIS-REx spacecraft is highly maneuverable and capable of investigating the surface of Bennu at scales down to the sub-cm. The OSIRIS-REx instruments will characterize the overall surface geology including spectral properties, microtexture, and geochemistry of the regolith at the sampling site in exquisite detail for up to 505 days after encountering Bennu in August 2018. The mission requires at the very minimum one acceptable location on the asteroid where a touch-and-go (TAG) sample collection maneuver can be successfully per-formed. Sample site selection requires that the follow-ing maps be produced: Safety, Deliverability, Sampleability, and finally Science Value. If areas on the surface are designated as safe, navigation can fly to them, and they have ingestible regolith, then the scientific value of one site over another will guide site selection.

  6. The big lobe of 67P/Churyumov-Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data

    NASA Astrophysics Data System (ADS)

    Ferrari, Sabrina; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Hasselmann, P. H.; Lucchetti, A.; Pajola, M.; Ferri, F.; Cambianica, P.; Oklay, N.; Tubiana, C.; Sierks, H.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Davidsson, B.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Deller, J.; Franceschi, M.; Frattin, E.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Küppers, M.; Lara, L. M.; López-Moreno, J. J.; Marzari, F.; Shi, X.; Simioni, E.; Thomas, N.; Vincent, J.-B.

    2018-06-01

    Between 2014 and 2016, ESA's Rosetta OSIRIS cameras acquired multiple-filters images of the layered nucleus of comet 67P/Churyumov-Gerasimenko, ranging from ultraviolet to near-infrared wavelengths. No correlation between layers disposition and surface spectral variegation has been observed so far. This paper investigates possible spectral differences among decametre-thickness outcropping layers of the biggest lobe of the comet by means of OSIRIS image dataset. A two-classes Maximum Likelihood classification was applied on consolidated outcrops and relative deposits identified on post-perihelion multispectral images of the big lobe. We distinguished multispectral data on the basis of the structural elevation of the onion-shell Ellipsoidal Model of 67P. The spatial distribution of the two classes displays a clear dependence on the structural elevation, with the innermost class resulting over 50% brighter that the outermost one. Consolidated cometary materials located at different structural levels are characterized by different brightness and revealed due to the selective removal of large volumes. This variegation can be attributed to a different texture of the outcrop surface and/or to a different content of refractory materials.

  7. Quantifying emissions of CO and NOx using observations from MOPITT, OMI, TES, and OSIRIS

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jones, D. B. A.; Keller, M.; Walker, T. W.; Jiang, Z.; Henze, D. K.; Bourassa, A. E.; Degenstein, D. A.; Rochon, Y. J.

    2016-12-01

    We use the GEOS-Chem four-dimensional variational (4D-var) data assimilation with satellite observations of multiple chemical species to estimate emissions of CO and NOx, as well as the tropospheric concentrations of O3. In doing so, we utilize CO retrievals from The Measurements of Pollution In The Troposphere (MOPITT), O3 retrievals from the Tropospheric Emission Spectrometer (TES), O3 retrievals from the Optical Spectrograph and InfraRed Imager System (OSIRIS), and NO2 columns from the Ozone Monitoring Instrument (OMI). By integrating these data in the 4D-Var scheme, we obtain a chemical state in the model that is consistent with all of the data over the assimilation period. In this context, for example, we find that combining TES and OSIRIS improves O3, particularly in the tropical upper troposphere (by 10-20%), which leads to a reduction in the uncertainty of the NOx emission estimates. However, although assimilating multiple chemical species provides a stronger constraint on the chemical, state, there are still large uncertainties on the CO and NOx emission estimates, due to the dependence of the results on the selection of the assimilation window and how the datasets are weighted in the cost function.

  8. A structured approach to Exposure Based Waiving of human health endpoints under REACH developed in the OSIRIS project.

    PubMed

    Marquart, Hans; Meijster, Tim; Van de Bovenkamp, Marja; Ter Burg, Wouter; Spaan, Suzanne; Van Engelen, Jacqueline

    2012-03-01

    Exposure Based Waiving (EBW) is one of the options in REACH when there is insufficient hazard data on a specific endpoint. Rules for adaptation of test requirements are specified and a general option for EBW is given via Appendix XI of REACH, allowing waiving of repeated dose toxicity studies, reproductive toxicity studies and carcinogenicity studies under a number of conditions if exposure is very low. A decision tree is described that was developed in the European project OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-Test and Test Information) to help decide in what cases EBW can be justified. The decision tree uses specific criteria as well as more general questions. For the latter, guidance on interpretation and resulting conclusions is provided. Criteria and guidance are partly based on an expert elicitation process. Among the specific criteria a number of proposed Thresholds of Toxicological Concern are used. The decision tree, expanded with specific parts on absorption, distribution, metabolism and excretion that are not described in this paper, is implemented in the OSIRIS webtool on integrated testing strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Cliffs versus plains: Can ROSINA/COPS and OSIRIS data of comet 67P/Churyumov-Gerasimenko in autumn 2014 constrain inhomogeneous outgassing?

    NASA Astrophysics Data System (ADS)

    Marschall, R.; Mottola, S.; Su, C. C.; Liao, Y.; Rubin, M.; Wu, J. S.; Thomas, N.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Skorov, Y.; Jorda, L.; Preusker, F.; Scholten, F.; Vincent, J.-B.; Osiris Team; Rosina Team

    2017-09-01

    Context. This paper describes the modelling of gas and dust data acquired in the period August to October 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims: With our 3D gas and dust comae models this work attempts to test the hypothesis that cliff activity on comet 67P/Churyumov-Gerasimenko can solely account for the local gas density data observed by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the dust brightnesses seen by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) in the considered time span. Methods: The model uses a previously developed shape model of the nucleus. From this, the water sublimation rates and gas temperatures at the surface are computed. The gas expansion is modelled with a 3D Direct Simulation Monte Carlo algorithm. A dust drag algorithm is then used to compute dust volume number densities in the coma, which are then converted to brightnesses using Mie theory and a line-of-sight integration. Furthermore we have studied the impact of topographic re-radiation on the models. Results: We show that gas activity from only cliff areas produces a fit to the ROSINA/COPS data that is as statistically good as a purely insolation-driven model. In contrast, pure cliff activity does not reproduce the dust brightness observed by OSIRIS and can thus be ruled out. On the other hand, gas activity from the Hapi region in addition to cliff activity produces a statistically better fit to the ROSINA/COPS data than purely insolation-driven outgassing and also fits the OSIRIS observations rather well. We found that topographic re-radiation does not contribute significantly to the sublimation behaviour of H2O but plays an important role in how the gas flux interacts with the irregular shape of the nucleus. Conclusions: We demonstrate that fits to the observations are non-unique. We can conclude however that gas and dust activity from cliffs and the Hapi region are consistent with the ROSINA/COPS and OSIRIS data sets for the considered time span and are thus a plausible solution. Models with activity from low gravitational slopes alone provide a statistically inferior solution.

  10. Dr. Jason Dworkin, Project Scientist

    NASA Image and Video Library

    2017-12-08

    Dr. Jason Dworkin, Project Scientist for NASA's OSIRIS-Rex mission is seen hear sealing a glass test tube with a sample of Allende meteorite dust which is 4.567 BILLION years old. Jason is the Chief of NASA Goddard's Astrochemistry Lab. Read more about the mission here: www.nasa.gov/mission_pages/osiris-rex Credit: NASA/Goddard/Debbie Mccallum NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Initial experience with a handheld device digital imaging and communications in medicine viewer: OsiriX mobile on the iPhone.

    PubMed

    Choudhri, Asim F; Radvany, Martin G

    2011-04-01

    Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians.

  12. The dust environment of 67P/Churyumov-Gerasimenko as seen through Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Güttler, C.; Sierks, H.; Bertini, I.; Osiris Team

    2017-09-01

    The ESA's Rosetta spacecraft had the unique opportunity to be in the vicinity of comet 67P/Churyumov-Gerasimenko for 2.5 years, observing how the comet evolved while approaching the Sun, passing through perihelion and then moving back into the outer solar system. OSIRIS, the scientific camera system onboard Rosetta, imaged the nucleus and the comet dust environment during the entire mission. We studied the unresolved dust coma, investigating its diurnal and seasonal variations and providing insights into the dust composition. Hundreds of individual particles, identified in the thousands of images dedicated to dust studies, have been characterized in terms of color, size distribution, distance, light curves and orbits.

  13. Surface compositional variation on the comet 67P/Churyumov-Gerasimenko by OSIRIS data

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Fornasier, S.; Feller, C.; Perna, D.; Hasselmann, H.; Deshapriya, J. D. P.; Fulchignoni, M.; Besse, S.; Sierks, H.; Forgia, F.; Lazzarin, M.; Pommerol, A.; Oklay, N.; Lara, L.; Scholten, F.; Preusker, F.; Leyrat, C.; Pajola, M.; Osiris-Rosetta Team

    2015-10-01

    Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on July 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System, [1]) NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) acquiring a huge quantity of surface's images at different wavelength bands, under variable illumination conditions and spatial resolution, and producing the most detailed maps at the highest spatial resolution of a comet nucleus surface.67/P C-G's nucleus shows an irregular bi-lobed shape of complex morphology with terrains showing intricate features [2, 3] and a heterogeneity surface at different scales.

  14. The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Bertini, I.; Della Corte, V.; Güttler, C.; Ivanovski, S.; La Forgia, F.; Lasue, J.; Levasseur-Regourd, A. C.; Marzari, F.; Moreno, F.; Mottola, S.; Naletto, G.; Palumbo, P.; Rinaldi, G.; Rotundi, A.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Fornasier, S.; Groussin, O.; Gutiérrez, P. J.; Hviid, H. S.; Ip, W. H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, M. L.; Lazzarin, M.; López-Moreno, J. J.; Shi, X.; Thomas, N.; Tubiana, C.

    2018-05-01

    The OSIRIS camera onboard Rosetta measured the phase function of both the coma dust and the nucleus. The two functions have a very different slope versus the phase angle. Here, we show that the nucleus phase function should be adopted to convert the brightness to the size of dust particles larger than 2.5 mm only. This makes the dust bursts observed close to Rosetta by OSIRIS, occurring about every hour, consistent with the fragmentation on impact with Rosetta of parent particles, whose flux agrees with the dust flux observed by GIADA. OSIRIS also measured the antisunward acceleration of the fragments, thus providing the first direct measurement of the solar radiation force acting on the dust fragments and thus of their bulk density, excluding any measurable rocket effect by the ice sublimation from the dust. The obtained particle density distribution has a peak matching the bulk density of most COSIMA particles, and represents a subset of the density distribution measured by GIADA. This implies a bias in the elemental abundances measured by COSIMA, which thus are consistent with the 67P dust mass fractions inferred by GIADA, i.e. (38 ± 8) {per cent} of hydrocarbons versus the (62 ± 8) {per cent} of sulphides and silicates.

  15. Modeling the expected performance of the REgolith X-ray Imaging Spectrometer (REXIS)

    NASA Astrophysics Data System (ADS)

    Inamdar, Niraj K.; Binzel, Richard P.; Hong, Jae Sub; Allen, Branden; Grindlay, Jonathan; Masterson, Rebecca A.

    2014-09-01

    OSIRIS-REx is the third spacecraft in the NASA New Frontiers Program and is planned for launch in 2016. OSIRIS-REx will orbit the near-Earth asteroid (101955) Bennu, characterize it, and return a sample of the asteroid's regolith back to Earth. The Regolith X-ray Imaging Spectrometer (REXIS) is an instrument on OSIRIS-REx designed and built by students at MIT and Harvard. The purpose of REXIS is to collect and image sun-induced fluorescent X-rays emitted by Bennu, thereby providing spectroscopic information related to the elemental makeup of the asteroid regolith and the distribution of features over its surface. Telescopic reflectance spectra suggest a CI or CM chondrite analog meteorite class for Bennu, where this primitive nature strongly motivates its study. A number of factors, however, will influence the generation, measurement, and interpretation of the X-ray spectra measured by REXIS. These include: the compositional nature and heterogeneity of Bennu, the time-variable solar state, X-ray detector characteristics, and geometric parameters for the observations. In this paper, we will explore how these variables influence the precision to which REXIS can measure Bennu's surface composition. By modeling the aforementioned factors, we place bounds on the expected performance of REXIS and its ability to ultimately place Bennu in an analog meteorite class.

  16. Spectral slope variations for OSIRIS-REx target Asteroid (101955) Bennu: Possible evidence for a fine-grained regolith equatorial ridge

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; DeMeo, Francesca E.; Burt, Brian J.; Cloutis, Edward A.; Rozitis, Ben; Burbine, Thomas H.; Campins, Humberto; Clark, Beth Ellen; Emery, Joshua P.; Hergenrother, Carl W.; Howell, Ellen S.; Lauretta, Dante S.; Nolan, Michael C.; Mansfield, Megan; Pietrasz, Valerie; Polishook, David; Scheeres, Daniel J.

    2015-08-01

    Ongoing spectroscopic reconnaissance of the OSIRIS-REx target Asteroid (101955) Bennu was performed in July 2011 and May 2012. Near-infrared spectra taken during these apparitions display slightly more positive ("redder") spectral slopes than most previously reported measurements. While observational systematic effects can produce such slope changes, and these effects cannot be ruled out, we entertain the hypothesis that the measurements are correct. Under this assumption, we present laboratory measurements investigating a plausible explanation that positive spectral slopes indicate a finer grain size for the most directly observed sub-Earth region on the asteroid. In all cases, the positive spectral slopes correspond to sub-Earth latitudes nearest to the equatorial ridge of Bennu. If confirmed by OSIRIS-REx in situ observations, one possible physical implication is that if the equatorial ridge is created by regolith migration during episodes of rapid rotation, that migration is most strongly dominated by finer grain material. Alternatively, after formation of the ridge (by regolith of any size distribution), larger-sized equatorial material may be more subject to loss due to centrifugal acceleration relative to finer grain material, where cohesive forces can preferentially retain the finest fraction (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176).

  17. Spectrophotometry of the Khonsu region on the comet 67P/Churyumov-Gerasimenko in the context of OSIRIS images

    NASA Astrophysics Data System (ADS)

    Prasanna Deshapriya, Jasinghege Don; Barucci, Maria Antonieta; Fornasier, Sonia; Feller, Clement; Hasselmann, Pedro Henrique; Sierks, Holger; Ramy El-Maarry, Mohammed; OSIRIS Team

    2016-10-01

    Since the Rosetta spacecraft rendezvoused with the comet 67P/Churyumov-Gerasimenko in August 2014, OSIRIS (Optical,Spectroscopic and Infrared Remote Imaging System) has been instrumental in characterising and studying both the nucleus as well as the coma of the comet. OSIRIS has thus far contributed to a plethora of scientific results. OSIRIS observations have revealed a bilobate nucleus accreted from a pair of cometesimals each having an irregular shape and a size, populated with numerous geomorphological features. Among the well defined 26 regions of the comet, Khonsu region inherits a heterogeneous terrain composed of smooth areas, scarps, outcroppings, large boulders, an intriguing 'pancake' feature, both transient and long-lived bright patches plus many other geological features.Our work focuses on the spectrophotometric analysis of some selected terrain and bright patches in the Khonsu region. Despite the variety of geological features, their spectrophotometric properties appear to share a similar composition. It is noticeable also that the smooth areas in Khonsu possess similar spectrophotometric behaviour to some other regions of the comet. By comparing the spectrophotometric characteristics of observed bright patches on Khonsu with those described and attributed to the presence of H2O ice on the comet by Barucci et al. (2016) utilising infrared data, we suggest that the bright patches we present could plausibly be derived from H2O ice. One of the studied bright patches has been observed to exist on the surface for more than 4 months without a major diminution of its size, which implies the existence of potential subsurface icy layers. The location of this feature is strongly correlated with a cometary outburst during the perihelion passage of the comet in August 2015, and we interpret it to have triggered the surface modifications necessary to unearth the stratified icy layers beneath the surface.

  18. Comet 67P as seen by Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Guettler, Carsten; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe L.; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; OSIRIS Team

    2016-10-01

    In September 2016, the ESA Rosetta mission will come to its ending. Having escorted comet 67P for more than two years, the scientific camera system OSIRIS onboard Rosetta witnessed all important milestones of the mission: after the first characterization and the Philae landing we saw the comet's activity increasing while it was approaching the Sun. During the peak of activity around perihel in August 2015, the spacecraft had to retreat to a safe distance but we witnessed strong but predictable jet activity and, at the same time, short lived eruptions, some of these being big outbursts. When the activity declined post perihelion and allowed the spacecraft to go back closer, comparison with the early characterization revealed numerous morphologic changes on the surface, which can be attributed to the strong activity during perihelion passage.The paper will give an overview of latest OSIRIS science and discoveries including the morphology, activity, and surface changes mentioned above. Implications on the nature of the comet and its mechanisms will be drawn from these. The current plan for the mission is to go to very close distances in August and September 2016 and finally land the spacecraft on 67P.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.We thank the Rosetta Science Ground Segment at ESAC, the Rosetta Mission Operations Centre at ESOC and the Rosetta Project at ESTEC for their outstanding work enabling the science return of the Rosetta Mission.

  19. The spatially resolved stellar population and ionized gas properties in the merger LIRG NGC 2623

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Sánchez, S. F.; Cid Fernandes, R.; de Amorim, A. L.; Di Matteo, P.; García-Benito, R.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.; Villar-Martín, M.; Roth, M. M.

    2017-10-01

    We report on a detailed study of the stellar populations and ionized gas properties in the merger LIRG NGC 2623, analyzing optical integral field spectroscopy from the CALIFA survey and PMAS LArr, multiwavelength HST imaging, and OSIRIS narrow band Hα and [NII]λ6584 imaging. The spectra were processed with the starlight full spectral fitting code, and the results are compared with those for two early-stage merger LIRGs (IC 1623 W and NGC 6090), together with CALIFA Sbc/Sc galaxies. We find that NGC 2623 went through two periods of increased star formation (SF), a first and widespread episode, traced by intermediate-age stellar populations ISP (140 Myr-1.4 Gyr), and a second one, traced by young stellar populations YSP (<140 Myr), which is concentrated in the central regions (<1.4 kpc). Our results are in agreement with the epochs of the first peri-center passage ( 200 Myr ago) and coalescence (<100 Myr ago) predicted by dynamical models, and with high-resolution merger simulations in the literature, consistent with NGC 2623 representing an evolved version of the early-stage mergers. Most ionized gas is concentrated within <2.8 kpc, where LINER-like ionization and high-velocity dispersion ( 220 km s-1) are found, consistent with the previously reported outflow. As revealed by the highest-resolution OSIRIS and HST data, a collection of HII regions is also present in the plane of the galaxy, which explains the mixture of ionization mechanisms in this system. It is unlikely that the outflow in NGC 2623 will escape from the galaxy, given the low SFR intensity ( 0.5 M⊙ yr-1 kpc-2), the fact that the outflow rate is three times lower than the current SFR, and the escape velocity in the central areas is higher than the outflow velocity.

  20. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  1. Follow up observationes of extremely metal-poor stars identified from SDSS and LAMOST

    NASA Astrophysics Data System (ADS)

    Aguado, David; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2017-06-01

    The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or very few supernovae. Here we present a program to search for and characterize new ultra metal-poor stars in the Galactic halo. These stars are extremely rare; despite significant efforts, only a handful of stars have been identified with a metallicity [Fe/H]< -5. We select candidates from SDSS and LAMOST. Dozens of them have already been observed with the ISIS spectrograph on the 4.2 m William Herschel Telescope. The most interesting objects have been confirmed with OSIRIS on the 10.4m-GTC and HRS on the 9.2 m HET. Our analysis is highly automated, and based on the FERRE code. We report the discovery of a new carbon-rich ultra metal-poor (CRUMP) dwarf star at [Fe/H]~ -5.8 with an extreme carbon over-abundance [C/Fe]~ +5.0.

  2. OSIRIS-REx OCAMS detector assembly characterization

    NASA Astrophysics Data System (ADS)

    Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.

    2013-09-01

    The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.

  3. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.; Hughes, Kyle M.; Mashiku, Alinda K.; Longuski, James M.

    2015-01-01

    Solar radiation pressure is one of the largest perturbing forces on the OSIRISRex trajectory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model accounts for Bennu's non-spherical gravity field, third-body gravity forces from the Sun and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such high-fidelity simulations indicate significant solar radiation pressure perturbations from the nominal orbit. Modifications to the initial design of the nominal orbit are found using a variation of parameters approach that reduce the perturbation in eccentricity by a factor of one-half.

  4. OSIRIS-REx Executes First Deep Space Maneuver

    NASA Image and Video Library

    2017-12-08

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer, OSIRIS-REx, spacecraft executed its first deep space maneuver Dec. 28, 2016, putting it on course for an Earth flyby in September 2017. The team will continue to examine telemetry and tracking data as it becomes available at the current low data rate and will have more information in January. Image credit: University of Arizona NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Multiscale three-dimensional simulations of charge gain and transport in diamond

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Busby, R.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Chang, X.; Keister, J. W.; Wu, Q.; Muller, E.

    2010-10-01

    A promising new concept of a diamond-amplified photocathode for generation of high-current, high-brightness, and low thermal emittance electron beams was recently proposed and is currently under active development. Detailed understanding of physical processes with multiple energy and time scales is required to design reliable and efficient diamond-amplifier cathodes. We have implemented models, within the VORPAL computational framework, to simulate secondary electron generation and charge transport in diamond in order to facilitate the investigation of the relevant effects involved. The models include inelastic scattering of electrons and holes for generation of electron-hole pairs, elastic, phonon, and charge impurity scattering. We describe the integrated modeling capabilities we developed and present results on charge gain and collection efficiency as a function of primary electron energy and applied electric field. We compare simulation results with available experimental data. The simulations show an overall qualitative agreement with the observed charge gain from transmission mode experiments and have enabled better understanding of the collection efficiency measurements.

  6. Open source software in a practical approach for post processing of radiologic images.

    PubMed

    Valeri, Gianluca; Mazza, Francesco Antonino; Maggi, Stefania; Aramini, Daniele; La Riccia, Luigi; Mazzoni, Giovanni; Giovagnoni, Andrea

    2015-03-01

    The purpose of this paper is to evaluate the use of open source software (OSS) to process DICOM images. We selected 23 programs for Windows and 20 programs for Mac from 150 possible OSS programs including DICOM viewers and various tools (converters, DICOM header editors, etc.). The programs selected all meet the basic requirements such as free availability, stand-alone application, presence of graphical user interface, ease of installation and advanced features beyond simple display monitor. Capabilities of data import, data export, metadata, 2D viewer, 3D viewer, support platform and usability of each selected program were evaluated on a scale ranging from 1 to 10 points. Twelve programs received a score higher than or equal to eight. Among them, five obtained a score of 9: 3D Slicer, MedINRIA, MITK 3M3, VolView, VR Render; while OsiriX received 10. OsiriX appears to be the only program able to perform all the operations taken into consideration, similar to a workstation equipped with proprietary software, allowing the analysis and interpretation of images in a simple and intuitive way. OsiriX is a DICOM PACS workstation for medical imaging and software for image processing for medical research, functional imaging, 3D imaging, confocal microscopy and molecular imaging. This application is also a good tool for teaching activities because it facilitates the attainment of learning objectives among students and other specialists.

  7. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    NASA Technical Reports Server (NTRS)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  8. The global topography of Bennu: altimetry, photoclinometry, and processing

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Barnouin, O. S.; Daly, M. G.; Seabrook, J.; Palmer, E. E.; Gaskell, R. W.; Craft, K. L.; Roberts, J. H.; Philpott, L.; Asad, M. Al; Johnson, C. L.; Nair, A. H.; Espiritu, R. C.; Nolan, M. C.; Lauretta, D. S.

    2017-09-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will spend two years observing (101955) Bennu and will then return pristine samples of carbonaceous material from the asteroid [1]. Launched in September 2016, OSIRISREx arrives at Bennu in August 2018, acquires a sample in July 2020, and returns the sample to Earth in September 2023. The instruments onboard OSIRIS-REx will measure the physical and chemical properties of this B-class asteroid, a subclass within the larger group of C-complex asteroids that might be organic-rich. At approximately 500m in average diameter [2], Bennu is sufficiently large to retain substantial regolith and as an Apollo asteroid with a low inclination (6°), it is one of the most accessible primitive near-Earth asteroid.

  9. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists for this conversation are, from the left, Ellen Stofan, NASA chief scientist; Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate; Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate.

  10. OSIRIS Detectors

    NASA Astrophysics Data System (ADS)

    Joven, E.; Gigante, J.; Beigbeder, F.

    OSIRIS (Optical System for Imaging and Low-Resolution Integrated Spectroscopy) is an instrument designed to obtain images and low-resolution spectra of astronomical objects in the optical domain (from 365-1000 nm). It will be installed on Day One (2004) in the Nasmyth focus of the 10-m Spanish GTC Telescope. The mosaic is composed of two abuttable 2Kx4K CCDs to yield a total of 4Kx4K pixels, 15 μm/pixel, 0.1252 plate scale. The arrangement allows the linking of a classical ARC-GenII controller to a PMC frame-grabber, plugged into a VME-CPU card, where a RTOS (VxWorks from Wind River) is running. Some tests and results, carried out with a couple of MAT44-82 engineering grade devices at room temperature, are given.

  11. Coupling of laser energy into plasma channels

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-04-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.

  12. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Hasselmann, P. H.; Barucci, M. A.; Feller, C.; Besse, S.; Leyrat, C.; Lara, L.; Gutierrez, P. J.; Oklay, N.; Tubiana, C.; Scholten, F.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Güttler, C.; Hviid, S. F.; Ip, W.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Matz, K.-D.; Michalik, H.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Preusker, F.; Shi, X.; Snodgrass, C.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims: We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods: The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results: The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with local variations of up to ~16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions. Table 1 is available in electronic form at http://www.aanda.org

  13. The OSIRIS-REx Thermal Emission Spectrometer (OTES)

    NASA Astrophysics Data System (ADS)

    Hamilton, Victoria; Christensen, Philip

    2014-05-01

    The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission is a planetary science mission that will study and return a sample from the carbonaceous asteroid Bennu (1999 RQ36). It is the third mission selected under NASA's New Frontiers Program, and is scheduled to be launched in September of 2016 [1]. The spacecraft will carry a suite of instruments designed to map the physical and mineralogical/chemical properties of Bennu at extremely high spatial resolution (down to cm-scales) to both characterize the asteroid in detail (providing context for the returned sample and data for comparison to astronomical observations) and select a safe and scientifically compelling sample site. The OSIRIS-REx Thermal Emission Spectrometer (OTES) is an uncooled, FTIR point spectrometer that will map the thermal flux and spectral properties of the asteroid Bennu to characterize the Yarkovsky effect and map the surface mineralogy. OTES measures from ~5 - 50 µm with a signal to noise ratio (SNR) of >325 between 7.4 and 33.3 μm for a 325 K target. The design of the spectrometer is heritage from the Mars Global Surveyor TES and the Mars Exploration Rovers Mini-TES instruments. The heart of the instrument is a Michelson interferometer that collects one interferogram every two seconds (where each two-second data acquisition is called an ICK, for Incremental Counter Keeper). OTES's spectral resolution is 10 cm-1 and its field of view is 8 mrad, which is achieved with a 15.2-cm f/3.91 Ritchey-Chretien telescope. At Bennu, OTES will have an accuracy of better than 3% and a precision (noise equivalent spectral radiance, NESR) of ≤2.3x10-8 W cm-2 sr-1 /cm-1 between 300 and 1350 cm-1. These values are sufficient to quantify the thermal flux responsible for the Yarkovsky effect and detect signatures of key minerals having band depths ≥5%. OTES in-flight calibration will be achieved via a two-point calibration that uses space and an internal, conical blackbody calibration target. The first in-flight observations will be collected during Earth gravity assist, which also will permit verification of co-alignment with the OSIRIS-REx OVIRS (visible and near infrared) spectrometer [2]. Mapping of the thermal and compositional variation of Bennu will take place at global (~40 m/pixel) and sample site (~4 m/pixel) scales over several mission phases and at multiple times of day, providing a comprehensive data set for thermophysical and compositional studies. [1] Lauretta, D. S. and the OSIRIS-REx Team (2012) Lunar and Planet. Sci., 43, #2491. [2] Simon-Miller, A. A. and D. C. Reuter (2013) Lunar and Planet. Sci., 44, #1100.

  14. Convergence of the Ponderomotive Guiding Center approximation in the LWFA

    NASA Astrophysics Data System (ADS)

    Silva, Thales; Vieira, Jorge; Helm, Anton; Fonseca, Ricardo; Silva, Luis

    2017-10-01

    Plasma accelerators arose as potential candidates for future accelerator technology in the last few decades because of its predicted compactness and low cost. One of the proposed designs for plasma accelerators is based on Laser Wakefield Acceleration (LWFA). However, simulations performed for such systems have to solve the laser wavelength which is orders of magnitude lower than the plasma wavelength. In this context, the Ponderomotive Guiding Center (PGC) algorithm for particle-in-cell (PIC) simulations is a potent tool. The laser is approximated by its envelope which leads to a speed-up of around 100 times because the laser wavelength is not solved. The plasma response is well understood, and comparison with the full PIC code show an excellent agreement. However, for LWFA, the convergence of the self-injected beam parameters, such as energy and charge, was not studied before and has vital importance for the use of the algorithm in predicting the beam parameters. Our goal is to do a thorough investigation of the stability and convergence of the algorithm in situations of experimental relevance for LWFA. To this end, we perform simulations using the PGC algorithm implemented in the PIC code OSIRIS. To verify the PGC predictions, we compare the results with full PIC simulations. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 653782.

  15. GSFC_20170504_2017-13985_015

    NASA Image and Video Library

    2017-05-04

    Canadian Minister of Science, Honourable Kirsty Duncan and staff visited Goddard on May 4, 2017. They toured Hyperwall with talks on Terra, CloudSat, OSIRIS-REx and JWST then visited Robotic Operations Center.

  16. Curating NASA's Astromaterials Collections: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan

    2015-01-01

    Planning for the curation of samples from future sample return missions must begin during the initial planning stages of a mission. Waiting until the samples have been returned to Earth, or even when you begin to physically build the spacecraft is too late. A lack of proper planning could lead to irreversible contamination of the samples, which in turn would compromise the scientific integrity of the mission. For example, even though the Apollo missions first returned samples in 1969, planning for the curation facility began in the early 1960s, and construction of the Lunar Receiving Laboratory was completed in 1967. In addition to designing the receiving facility and laboratory that the samples will be characterized and stored in, there are many aspects of contamination that must be addressed during the planning and building of the spacecraft: planetary protection (both outbound and inbound); cataloging, documenting, and preserving the materials used to build spacecraft (also known as coupons); near real-time monitoring of the environment in which the spacecraft is being built using witness plates for critical aspects of contamination (known as contamination control); and long term monitoring and preservation of the environment in which the spacecraft is being built for most aspects of potential contamination through the use of witness plates (known as contamination knowledge). The OSIRIS REx asteroid sample return mission, currently being built, is dealing with all of these aspects of contamination in order to ensure they return the best preserved sample possible. Coupons and witness plates from OSIRIS REx are currently being studied and stored (for future studies) at the Johnson Space Center. Similarly, planning for the clean room facility at Johnson Space Center to house the OSIRIS-REx samples is well advanced, and construction of the facility should begin in early 2017 (despite a nominal 2023 return date for OSIRIS-REx samples). Similar development is being done, in concert with JAXA, for the return of Hayabusa 2 samples (nominally in 2020). We are also actively developing advanced techniques like cold curation and organically clean curation in anticipation of future sample return missions such as comet nucleus sample return and Mars sample return.

  17. SPCOLA: Combining laser altimetry and stereophotoclinometery to obtain topography for Bennu

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Barnouin, O. S.; Palmer, E. E.; Gaskell, R. W.; Weirich, J. R.; Daly, M. G.; Seabrook, J.; Nair, H.; Espiritu, R. C.; Lauretta, D. S.; Perry, M. E.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will return pristine samples of carbonaceous material from the surface of asteroid (101955) Bennu. Two instruments on OSIRIS-REx enable independent determination of topography: the OSIRIS-REx Laser Altimeter (OLA) and the OSIRIS-REx Camera Suite (OCAMS). OLA is a scanning lidar that ranges to the surface, returning altimetry information. OCAMS returns imaging data that are used to perform stereophotoclinometery (SPC) on these images to construct slope and albedo "maplets", small patches of the surface with central control points. Here we present a technique to combine topographic maplets generated using SPC with a compatible set of "mapolas" generated from OLA data. This "SPCOLA" process leverages the strengths of both while mitigating their respective weaknesses. A key advantage of SPC is that it allows a solution of the topography at accuracies similar to those of the best images used. SPC can make use of images at a wide range of viewing geometries and resolutions to simultaneously solve for slope and albedo. SPC also provides precise control point location from large stereo separation over multiple trajectories and can fill in gaps where point-based lidar data may not exist. Key strengths of lidar ranging include the ability to operate under any illumination conditions (including in the dark), insensitivity to albedo variations, robustness over large changes in slope, and provision of an absolute measurement of the range constraint to the surface. This range can be used to derive a control network for SPC, to improve the knowledge of the spacecraft position, to provide an independent scale for imagery and spectral data, and to provide constraints for any gravity solution obtained with radio science. Our goal in combining OLA data sets with image-based data is to generate Digital Elevation Models (DEMs) with higher accuracy than those using either data set alone. However, this combination requires careful coordination to ensure compatible formats, and some care in appropriately weighting them to achieve meaningful improvement of the DEMs.

  18. OMPS Limb Profiler: Extending SAGE and CALIPSO Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Taha, G.; Bhartia, P. K.; Chen, Z.; Xu, P.; Loughman, R. P.; Jaross, G.

    2017-12-01

    The OMPS LP instrument is designed to provide high vertical resolution ozone and aerosol profiles from measurements of the scattered solar radiation in the 290-1000 nm spectral range. It collected its first Earth limb measurement in January 10, 2012, and continues to provide daily global measurements of ozone and aerosol profiles from the cloud top up to 60 km and 40 km respectively. The relatively high vertical and spatial sampling allow detection and tracking periodic events when aerosol particles are injected into the stratosphere, such as volcanic eruptions or meteor explosions. OMPS LP can extend the long-term records of stratospheric aerosol at high vertical resolution produced by variety of sensors, such as SAGEII, GOMOS, OSIRIS and CALIPSO. Most of these instruments ceased to operate or well beyond their designed lifetime. After an absence of over a decade, SAGE III/ISS was launched earlier this year and expected to resume the high quality aerosol data record. OMPS LP is also schedule to fly on JPSS-2 and 3. In this study we will examine the suitability of using LP profiles to continue the stratospheric aerosol records beyond SAGE, OSIRIS, and CALIPSO. We will compare OMPS LP released V1.0 aerosol extinction measurements to OSIRIS and CALIPSO. Initial results shows good agreement with OSIRIS measurements to within 20%, with larger bias in the southern hemisphere. To test the effect of the assumed aerosol size model (ASD) and phase function, we compare measurements taken at similar location and time with different viewing geometry. Comparison of ascending and descending aerosol extinction daily zonal means at high latitudes shows systematic bias that is well correlated with the solar scattering angle, indicating ASD uncertainties up to 30%. In addition, results showing latitudinal, and temporal variability of stratospheric aerosol extinction and optical depth for the three instruments will also be presented and compared. We will also present OMPS LP aerosol observations of the dispersal of volcanic aerosols in the stratosphere following the eruptions of Kelut and Calbuco in 2014 and 2015 respectively.

  19. GSFC_20170504_2017-13985_005

    NASA Image and Video Library

    2017-05-04

    Canadian Minister of Science Honourable Kirsty Duncan and staff visited Goddard on May 4, 2017. They toured Hyperwall with talks on Terra, CloudSat, OSIRIS-Rex and JWST and had overview of Robotic Operations Center.

  20. GSFC_20170504_2017-13985_029

    NASA Image and Video Library

    2017-05-04

    Canadian Minister of Science Honourable Kirsty Duncan and staff visited Goddard on May 4, 2017. They toured Hyperwall with talks on Terra, CloudSat, OSIRIS-REx and JWST and had an overview of Robotic Operations Center.

  1. Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016

    NASA Image and Video Library

    2016-09-09

    On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!

  2. Telescope and mirrors development for the monolithic silicon carbide instrument of the osiris narrow angle camera

    NASA Astrophysics Data System (ADS)

    Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel

    2017-11-01

    The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.

  3. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists in view are, from the left, Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate. Also participating in the panel discussion are Ellen Stofan, NASA chief scientist and Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate.

  4. The OSIRIS-REx Contamination Control and Witness Strategy

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L.; Ajluni, T. M.; Andronikov, A. V.; Ballou, D. M.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Boynton, W. V.; Brucato, J. R.; hide

    2015-01-01

    The OSIRIS-REx mission (Origins, Spectral Interpretation, Resource Identification, and Security Regolith Explorer) is the third NASA New Frontiers mission. It is scheduled for launch in 2016. The primary objective of the mission is to return at least 60 g of "pristine" material from the B-type near- Earth asteroid (101955) Bennu, which is spectrally similar to organic-rich CI or CM meteorites [1]. The study of these samples will advance our understanding of materials available for the origin of life on Earth or elsewhere. The spacecraft will rendezvous with Bennu in 2018 and spend at least a year characterizing the asteroid before executing a maneuver to recover a sample of regolith in the touch-and-go sample acquisition mechanism (TAGSAM). The TAGSAM and sample is stowed in the sample return capsule (SRC) and returned to Earth in 2023.

  5. OCAMS: The OSIRIS-REx Camera Suite

    NASA Astrophysics Data System (ADS)

    Rizk, B.; Drouet d'Aubigny, C.; Golish, D.; Fellows, C.; Merrill, C.; Smith, P.; Walker, M. S.; Hendershot, J. E.; Hancock, J.; Bailey, S. H.; DellaGiustina, D. N.; Lauretta, D. S.; Tanner, R.; Williams, M.; Harshman, K.; Fitzgibbon, M.; Verts, W.; Chen, J.; Connors, T.; Hamara, D.; Dowd, A.; Lowman, A.; Dubin, M.; Burt, R.; Whiteley, M.; Watson, M.; McMahon, T.; Ward, M.; Booher, D.; Read, M.; Williams, B.; Hunten, M.; Little, E.; Saltzman, T.; Alfred, D.; O'Dougherty, S.; Walthall, M.; Kenagy, K.; Peterson, S.; Crowther, B.; Perry, M. L.; See, C.; Selznick, S.; Sauve, C.; Beiser, M.; Black, W.; Pfisterer, R. N.; Lancaster, A.; Oliver, S.; Oquest, C.; Crowley, D.; Morgan, C.; Castle, C.; Dominguez, R.; Sullivan, M.

    2018-02-01

    The OSIRIS-REx Camera Suite (OCAMS) will acquire images essential to collecting a sample from the surface of Bennu. During proximity operations, these images will document the presence of satellites and plumes, record spin state, enable an accurate model of the asteroid's shape, and identify any surface hazards. They will confirm the presence of sampleable regolith on the surface, observe the sampling event itself, and image the sample head in order to verify its readiness to be stowed. They will document Bennu's history as an example of early solar system material, as a microgravity body with a planetesimal size-scale, and as a carbonaceous object. OCAMS is fitted with three cameras. The MapCam will record color images of Bennu as a point source on approach to the asteroid in order to connect Bennu's ground-based point-source observational record to later higher-resolution surface spectral imaging. The SamCam will document the sample site before, during, and after it is disturbed by the sample mechanism. The PolyCam, using its focus mechanism, will observe the sample site at sub-centimeter resolutions, revealing surface texture and morphology. While their imaging requirements divide naturally between the three cameras, they preserve a strong degree of functional overlap. OCAMS and the other spacecraft instruments will allow the OSIRIS-REx mission to collect a sample from a microgravity body on the same visit during which it was first optically acquired from long range, a useful capability as humanity reaches out to explore near-Earth, Main-Belt and Jupiter Trojan asteroids.

  6. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  7. Ohio State Infrared Imager/Spectrograph (OSIRIS) | SOAR

    Science.gov Websites

    opperate at wavelengths from 0.9 to 2.4 microns. Internal optics allow for two plate scales and a variety of spectroscopic resolutions. Internal mechanisms control the selected filter, focal plane mask

  8. SOAR Optical Imager (SOI) | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR ?: ADS link to SOI instrument SPIE paper Last update: C. Briceño, Aug 23, 2017 SOAR Optical Imager

  9. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  10. A detailed examination of the LWFA in the Self-Guided Nonlinear Blowout Regime for 15-100 Joule Lasers

    NASA Astrophysics Data System (ADS)

    Davidson, Asher; Tableman, Adam; Yu, Peicheng; An, Weiming; Tsung, Frank; Mori, Warren; Lu, Wei; Fonseca, Ricardo

    2017-10-01

    We examine scaling laws for LWFA in the regime nonlinear, self-guided regime in detail using the quasi-3D version of the particle-in-cell code OSIRIS. We find that the scaling laws continue to work well when we fix the normalized laser amplitude while reducing plasma density. It is further found that the energy gain for fixed laser energy can be improved by shortening the pulse length until self-guiding almost no longer occurs and that the energy gain can be optimized by using lasers with asymmetric longitudinal profiles. We find that when optimized, a 15 J laser may yield particle energies as high as 5.3 GeV without the need of any external guiding. Detailed studies for optimizing energy gains from 30 J and 100 J lasers will also presented which indicate that energies in excess of 10 GeV can be possible in the near term without the need for external guiding. This work is supported by the NSF and DOE.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen

    The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less

  12. Taming parallel I/O complexity with auto-tuning

    DOE PAGES

    Behzad, Babak; Luu, Huong Vu Thanh; Huchette, Joseph; ...

    2013-11-17

    We present an auto-tuning system for optimizing I/O performance of HDF5 applications and demonstrate its value across platforms, applications, and at scale. The system uses a genetic algorithm to search a large space of tunable parameters and to identify effective settings at all layers of the parallel I/O stack. The parameter settings are applied transparently by the auto-tuning system via dynamically intercepted HDF5 calls. To validate our auto-tuning system, we applied it to three I/O benchmarks (VPIC, VORPAL, and GCRM) that replicate the I/O activity of their respective applications. We tested the system with different weak-scaling configurations (128, 2048, andmore » 4096 CPU cores) that generate 30 GB to 1 TB of data, and executed these configurations on diverse HPC platforms (Cray XE6, IBM BG/P, and Dell Cluster). In all cases, the auto-tuning framework identified tunable parameters that substantially improved write performance over default system settings. In conclusion, we consistently demonstrate I/O write speedups between 2x and 100x for test configurations.« less

  13. VizieR Online Data Catalog: GTC transit light curves of HAT-P-32b (Nortmann+, 2016)

    NASA Astrophysics Data System (ADS)

    Nortmann, L.; Palle, E.; Murgas, F.; Dreizler, S.; Iro, N.; Cabrera-Lavers, A.

    2016-05-01

    We provide two transit light curves of the hot Jupiter HAT-P-32b obtained on the nights of 2012/09/15 and 2012/09/30 using the OSIRIS instrument at the 10.4-m GTC telescope. The data was obtained by using OSIRIS in broad slit spectroscopy mode and covering the wavelength region between 518nm-918nm. For the night of 2012/09/30 we further provide twenty narrowband light curves which were created by summing the flux over 20-nm-wide channels instead over the whole wavelength region. We provide several auxiliary parameters of the observations which we have used to correct the data from correlated noise. These auxiliary parameters are the position drift of the stars on the CCD detector in spatial and dispersion direction, air mass and seeing (FWHM). (23 data files).

  14. A mask quality control tool for the OSIRIS multi-object spectrograph

    NASA Astrophysics Data System (ADS)

    López-Ruiz, J. C.; Vaz Cedillo, Jacinto Javier; Ederoclite, Alessandro; Bongiovanni, Ángel; González Escalera, Víctor

    2012-09-01

    OSIRIS multi object spectrograph uses a set of user-customised-masks, which are manufactured on-demand. The manufacturing process consists of drilling the specified slits on the mask with the required accuracy. Ensuring that slits are on the right place when observing is of vital importance. We present a tool for checking the quality of the process of manufacturing the masks which is based on analyzing the instrument images obtained with the manufactured masks on place. The tool extracts the slit information from these images, relates specifications with the extracted slit information, and finally communicates to the operator if the manufactured mask fulfills the expectations of the mask designer. The proposed tool has been built using scripting languages and using standard libraries such as opencv, pyraf and scipy. The software architecture, advantages and limits of this tool in the lifecycle of a multiobject acquisition are presented.

  15. Maneuver Strategy for OSIRIS-REx Proximity Operations

    NASA Technical Reports Server (NTRS)

    Wibben, Daniel R.; Williams, Kenneth E.; McAdams, James V.; Antreasian, Peter G.; Leonard, Jason M.; Moreau, Michael C.

    2017-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) asteroid sample return mission will study and observe asteroid (101955) Bennu (previously known as 1999 RQ36) and subsequently collect and return a sample from the asteroid to Earth for further detailed analysis. After a successful launch in September 2016, the spacecraft will be in cruise phase for two years until arrival at asteroid Bennu in late 2018. At that time, aseries of critical maneuvers will provide an initial characterization of Bennu and the dynamical environment surrounding it, ultimately concluding with a successful capture into orbit about the small asteroid. This paper discusses some of the unique navigation challenges presented by these early operational phases in close proximity to Bennu and shares key observations and results from operational tests that have prepared the operations team and help mitigate the risks posed by these challenges.

  16. Spatially Resolved Emission of a z~3 Damped Lyman Alpha Galaxy with Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Jorgenson, Regina

    2017-01-01

    The damped Lyman alpha (DLA) class of galaxies contains most of the neutral hydrogen gas over cosmic time. Few DLAs have been detected directly, which limits our knowledge of fundamental properties like size and mass. We present Keck/OSIRIS infrared integral field spectroscopy (IFU) observations of a DLA that was first detected in absorption toward a background quasar. Our observations use the Keck Laser Guide Star Adaptive Optics system to reduce the point-spread function of the quasar, making it possible to spatially resolve the DLA emission. We map this emission in O[III] 5007 Å. At redshift z~3, this DLA represents one of the highest redshift DLAs mapped with IFU spectroscopy. We present measurements of the star formation rate, metallicity, and gas mass of the galaxy.This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  17. Monte-Carlo Simulations of the Nuclear Energy Deposition Inside the CARMEN-1P Differential Calorimeter Irradiated into OSIRIS Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Reynard-Carette, C.; Carette, M.

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR),more » under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less

  18. Education and training in the field of nuclear instrumentation and measurement: CEA/INSTN (National Institute for Nuclear Sciences and Technologies) strategy to improve and develop new pedagogical tools and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitart, Xavier; Foulon, Francois; Bodineau, Jean Christophe

    Part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) is a higher education institution whose mission is to provide students and professionals a high level of scientific and technological qualification in all disciplines related to nuclear energy applications. In this frame, INSTN carries out education and training (E and T) programs in nuclear instrumentation and radioprotection. Its strategy has always been to complete theoretical courses by training courses and laboratory works carried out on an extensive range of training tools that includes a large panel of nuclear instrumentation asmore » well as software applications. Since its creation in 1956, the INSTN has conducted both education and vocational programs on ionizing radiation detection. An extensive range of techniques have commonly been used during practical works with students and employees of companies who need to get the knowledge and specialization in this field. Today, the INSTN is mainly equipped with usual detectors and electronics in large numbers in order to be able to accommodate up to 48 trainees at the same time in two classrooms, with only two trainees for one workstation in order to optimize their learning. In the field of the neutron detection systems, the INSTN has strongly developed its offer taking advantage of the use of research reactors, such as ISIS reactor (700 kW) at Saclay. The implementation of neutron detection systems specific to the courses offers a unique way of observing and analysing the signal coming from neutron detectors, as well as learning how to set the parameters of the detection system in real conditions. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and their integration in the safety system of nuclear reactors. It also gives a solid background for the follow up and the development of the neutron detection systems. Another field of activity of the INSTN is the development of new teaching tools using software applications. We describe hereafter two applications that have recently been developed by the institute, O.S.I.R.I.S and DOSIMEX. The INSTN and the company OREKA have developed an innovative teaching tool named O.S.I.R.I.S. The tool is built on a virtual 3D environment in which users operate in a totally free way. The action is located in a pressurised water reactor in the environment of a steam generator building. The users are students or professionals who want to learn and train on concrete situations on how to protect the workers against radiation. Through the use of this serious game, users must: establish a predictive dose evaluation, implement the principles of radiation protection, perform the dose result of the operation, analyse the gap between the predictive collective dose and the collective dose achieved, and decide about the lessons to provide feedback. Taking into account the increasing constraints related to radiation protection, it is essential to use computer codes to evaluate the dose rates generated by sources of ionizing radiation. Many powerful codes exist but are often relatively complex to implement and are dedicated to experts. In addition, these codes are often 'black boxes' that does not allow the user to understand the underlying physics. The objective of DOSIMEX codes developed by the INSTN is to give, by the means of a VBA code with a simple interface, the ability to easily conduct a wide range of radiological exposure situations: calculation of gamma, beta, neutron equivalent dose rate, calculation of internal contamination and atmospheric transfer.« less

  19. Three-dimensional reconstruction of the topographical cerebral surface anatomy for presurgical planning with free OsiriX Software.

    PubMed

    Harput, Mehmet V; Gonzalez-Lopez, Pablo; Türe, Uğur

    2014-09-01

    During surgery for intrinsic brain lesions, it is important to distinguish the pathological gyrus from the surrounding normal sulci and gyri. This task is usually tedious because of the pia-arachnoid membranes with their arterial and venous complexes that obscure the underlying anatomy. Moreover, most tumors grow in the white matter without initially distorting the cortical anatomy, making their direct visualization more difficult. To create and evaluate a simple and free surgical planning tool to simulate the anatomy of the surgical field with and without vessels. We used free computer software (OsiriX Medical Imaging Software) that allowed us to create 3-dimensional reconstructions of the cerebral surface with and without cortical vessels. These reconstructions made use of magnetic resonance images from 51 patients with neocortical supratentorial lesions operated on over a period of 21 months (June 2011 to February 2013). The 3-dimensional (3-D) anatomic images were compared with the true surgical view to evaluate their accuracy. In all patients, the landmarks determined by 3-D reconstruction were cross-checked during surgery with high-resolution ultrasonography; in select cases, they were also checked with indocyanine green videoangiography. The reconstructed neurovascular structures were confirmed intraoperatively in all patients. We found this technique to be extremely useful in achieving pure lesionectomy, as it defines tumor's borders precisely. A 3-D reconstruction of the cortical surface can be easily created with free OsiriX software. This technique helps the surgeon perfect the mentally created 3-D picture of the tumor location to carry out cleaner, safer surgeries.

  20. Recovery of Bennu's orientation for the OSIRIS-REx mission: implications for the spin state accuracy and geolocation errors

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Rowlands, David D.; Sabaka, Terence J.; Getzandanner, Kenneth M.; Rubincam, David P.; Nicholas, Joseph B.; Moreau, Michael C.

    2017-10-01

    The goal of the OSIRIS-REx mission is to return a sample of asteroid material from near-Earth asteroid (101955) Bennu. The role of the navigation and flight dynamics team is critical for the spacecraft to execute a precisely planned sampling maneuver over a specifically selected landing site. In particular, the orientation of Bennu needs to be recovered with good accuracy during orbital operations to contribute as small an error as possible to the landing error budget. Although Bennu is well characterized from Earth-based radar observations, its orientation dynamics are not sufficiently known to exclude the presence of a small wobble. To better understand this contingency and evaluate how well the orientation can be recovered in the presence of a large 1° wobble, we conduct a comprehensive simulation with the NASA GSFC GEODYN orbit determination and geodetic parameter estimation software. We describe the dynamic orientation modeling implemented in GEODYN in support of OSIRIS-REx operations and show how both altimetry and imagery data can be used as either undifferenced (landmark, direct altimetry) or differenced (image crossover, altimetry crossover) measurements. We find that these two different types of data contribute differently to the recovery of instrument pointing or planetary orientation. When upweighted, the absolute measurements help reduce the geolocation errors, despite poorer astrometric (inertial) performance. We find that with no wobble present, all the geolocation requirements are met. While the presence of a large wobble is detrimental, the recovery is still reliable thanks to the combined use of altimetry and imagery data.

  1. Spectral methods to detect cometary minerals with OSIRIS on board Rosetta

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.

    2013-09-01

    Comet 67P/Churyumov-Gerasimenko is going to be observed by the OSIRIS scientific imager (Keller et al. 2007) on board ESA's spacecraft Rosetta in the wavelength range of 250-1000 nm with a combination of 12 filters for the narrow angle camera (NAC) and 14 combination of 12 filters for the narrow angle camera (NAC) and 14 filters in the wavelength range of 240-720 nm for the wide angle camera (WAC). NAC filters are suitable to surface composition studies, while WAC filters are designed for gas and radical emission studies. In order to investigate the composition of the comet surface from the observed images, we need to understand how to detect different minerals and which compositional information can be derived from the NAC filters. Therefore, the most common cometary silicates e.g. enstatite, forsterite are investigated with two hydrated silicates (serpentine and smectite) for the determina- tion of the spectral methods. Laboratory data of those selected minerals are collected from RELAB database (http://www.planetary.brown.edu/relabdocs/relab.htm) and absolute spectra of the minerals observed by OSIRIS NAC filters are calculated. Due to the limited spectral range of the laboratory data, Far-UV and Neutral density filters of NAC are excluded from this analysis. Considered NAC filters in this study are represented in Table 1 and the number of collected laboratory data are presented in Table 2. Detection and separation of the minerals will not only allow us to study the surface composition but also to study observed composition changes due to the cometary activity during the mission.

  2. Dust mass distribution around comet 67P/Churyumov-Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras

    NASA Astrophysics Data System (ADS)

    Ott, T.; Drolshagen, E.; Koschny, D.; Güttler, C.; Tubiana, C.; Frattin, E.; Agarwal, J.; Sierks, H.; Bertini, I.; Barbieri, C.; Lamy, P. I.; Rodrigo, R.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Feller, C.; Fornasier, S.; Fulle, M.; Geiger, B.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lin, Z.-Y.; López-Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Shi, X.; Thomas, N.; Vincent, J.-B.; Poppe, B.

    2017-07-01

    The OSIRIS (optical, spectroscopic and infrared remote imaging system) instrument on board the ESA Rosetta spacecraft collected data of 67P/Churyumov-Gerasimenko for over 2 yr. OSIRIS consists of two cameras, a Narrow Angle Camera and a Wide Angle Camera. For specific imaging sequences related to the observation of dust aggregates in 67P's coma, the two cameras were operating simultaneously. The two cameras are mounted 0.7 m apart from each other, as a result this baseline yields a parallax shift of the apparent particle trails on the analysed images directly proportional to their distance. Thanks to such shifts, the distance between observed dust aggregates and the spacecraft was determined. This method works for particles closer than 6000 m to the spacecraft and requires very few assumptions. We found over 250 particles in a suitable distance range with sizes of some centimetres, masses in the range of 10-6-102 kg and a mean velocity of about 2.4 m s-1 relative to the nucleus. Furthermore, the spectral slope was analysed showing a decrease in the median spectral slope of the particles with time. The further a particle is from the spacecraft the fainter is its signal. For this reason, this was counterbalanced by a debiasing. Moreover, the dust mass-loss rate of the nucleus could be computed as well as the Afρ of the comet around perihelion. The summed-up dust mass-loss rate for the mass bins 10-4-102 kg is almost 8300 kg s-1.

  3. OsiriX: an open-source software for navigating in multidimensional DICOM images.

    PubMed

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-09-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix.

  4. Advancing Astronomical Instrumentation: an Adaptive Optics Kinematic Study of z 1 Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Mieda, Etsuko

    This thesis has a dual focus on improving ground-based astronomical instruments and an observational study of distant star-forming galaxies to study galaxy formation and evolution. Of fundamental importance to this work are adaptive optics (AO) technology and integral field spectrographs (IFSs), both of which offer powerful means of studying high redshift galaxies. First, I describe the design and development of an instrument to characterize the vertical atmospheric turbulence using the SLODAR (SLOpe Detection and Ranging) method. This instrument was used in a campaign at Ellesmere island ( 80 degN) nd determined that the site has half of the total turbulence residing in the ground layer (< 1 km), and that the median seeing at Ellesmere is comparable to the best worldwide observing sites. Secondly, I present the design and implementation of an experimental setup to evaluate a new grating designed for OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), an IFS at the Keck I telescope. I tested and installed a new grating in OSIRIS, and the improved sensitivity with the new grating is a factor of 1.83 between 1-2.4 um. Finally, taking direct advantage of the improved OSIRIS performance, I built-up the currently largest sample of z 1 star-forming galaxies taken with an IFS coupled with AO. I present the first results of IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey), a spatially resolved Halpha survey containing sixteen z 1 and one z 1.5 star-forming galaxies. The Halpha kinematics and morphologies of these galaxies were investigated, including resolved star-forming clumps. These IROCKS results show that z 1 star-forming galaxies have elevated line-of-sight velocity dispersions (sigma_ave 60 km/s) compared to local galaxies yet have lower dispersions compared to their counterparts at higher redshift (z > 1.5). Four of the z 1 galaxies are well-fit to an inclined disk model, and the disk fraction is similar to high-z samples. The size-luminosity relation of clumps at z 1 is consistent with a scaled-up relation from local HII regions, but with orders of magnitude higher Halpha luminosities and sizes. I confirm that the mean star formation rate surface density in clumps increases with redshift, and suggest that this favors disk fragmentation as the main clump formation mechanism.

  5. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    NASA Astrophysics Data System (ADS)

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets for geometric calibration control. Results from the CharMEX (June-July 2013) and Caliosiris (October 2014) OSIRIS campaigns will be presented. Finally, we will present the available products developed and produced by LOA/University of Lille/CNRS, as compared to the scheduled level 1B and 1C 3MI products.

  6. Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko - Stereo-photogrammetric analysis of Rosetta/OSIRIS image data

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Scholten, F.; Matz, K.-D.; Roatsch, T.; Willner, K.; Hviid, S. F.; Knollenberg, J.; Jorda, L.; Gutiérrez, P. J.; Kührt, E.; Mottola, S.; A'Hearn, M. F.; Thomas, N.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Groussin, O.; Güttler, C.; Ip, W.-H.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Oklay, N.; Tubiana, C.; Vincent, J.-B.

    2015-11-01

    We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9-2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km3 ± 0.1 km3. With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet's center-of-mass, we extrapolated this value to an overall volume of18.7 km3± 1.2 km3, and, with a current best estimate of 1.0 × 1013 kg for the mass, we derive a bulk density of 535 kg/m3± 35 kg/m3. Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 ± 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14°, a cone center position at 69.54°/64.11° (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35° right-hand-rule eastern longitude and -0.28° latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission. Appendices are available in electronic form at http://www.aanda.org

  7. Shape and rotational elements of comet 67P/ Churyumov-Gerasimenko derived by stereo-photogrammetric analysis of OSIRIS NAC image data

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Scholten, Frank; Matz, Klaus-Dieter; Roatsch, Thomas; Willner, Konrad; Hviid, Stubbe; Knollenberg, Jörg; Kührt, Ekkehard; Sierks, Holger

    2015-04-01

    The European Space Agency's Rosetta spacecraft is equipped with the OSIRIS imaging system which consists of a wide-angle and a narrow-angle camera (WAC and NAC). After the approach phase, Rosetta was inserted into a descent trajectory of comet 67P/Churyumov-Gerasimenko (C-G) in early August 2014. Until early September, OSIRIS acquired several hundred NAC images of C-G's surface at different scales (from ~5 m/pixel during approach to ~0.9 m/pixel during descent). In that one month observation period, the surface was imaged several times within different mapping sequences. With the comet's rotation period of ~12.4 h and the low spacecraft velocity (< 1 m/s), the entire NAC dataset provides multiple NAC stereo coverage, adequate for stereo-photogrammetric (SPG) analysis towards the derivation of 3D surface models. We constrained the OSIRIS NAC images with our stereo requirements (15° < stereo angles < 45°, incidence angles <85°, emission angles <45°, differences in illumination < 10°, scale better than 5 m/pixel) and extracted about 220 NAC images that provide at least triple stereo image coverage for the entire illuminated surface in about 250 independent multi-stereo image combinations. For each image combination we determined tie points by multi-image matching in order to set-up a 3D control network and a dense surface point cloud for the precise reconstruction of C-G's shape. The control point network defines the input for a stereo-photogrammetric least squares adjustment. Based on the statistical analysis of adjustments we first refined C-G's rotational state (pole orientation and rotational period) and its behavior over time. Based upon this description of the orientation of C-G's body-fixed reference frame, we derived corrections for the nominal navigation data (pointing and position) within a final stereo-photogrammetric block adjustment where the mean 3D point accuracy of more than 100 million surface points has been improved from ~10 m to the sub-meter range. We finally applied point filtering and interpolation techniques to these surface 3D points and show the resulting SPG-based 3D surface model with a lateral sampling rate of about 2 m.

  8. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar, photometric, spectroscopic, thermal, regolith, and asteroid environmental properties. We have captured this information in a mission configuration-controlled document called the Design Reference Asteroid. This information is used across the project to establish the environmental requirements for the flight system and for overall mission design. Maintaining a Pristine Sample: OSIRIS-REx is driven by the top-level science objective to return >60 g of pristine, carbonaceous regolith from asteroid Bennu. We define a "pristine sample" to mean that no foreign material introduced into the sample hampers our scientific analysis. Basically, we know that some contamination will take place --- we just have to document it so that we can subtract it from our analysis of the returned sample. Engineering contamination requirements specify cleanliness in terms of particle counts and thin- films residues --- scientists define it in terms of bulk elemental and organic abundances. After initial discussions with our Contamination Engineers, we agreed on known, albeit challenging, particle and thin-film contamination levels for the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) and the Sample Return Capsule. These levels are achieved using established cleaning procedures while minimizing interferences for sample analysis. Selecting a Sample Site: The Sample Site Selection decision is based on four key data products: Deliverability, Safety, Sampleability, and Science Value Maps. Deliverability quantifies the probability that the Flight Dynamics team can deliver the spacecraft to the desired location on the asteroid surface. Safety maps assess candidate sites against the capabilities of the spacecraft. Sampleability requires an assessment of the asteroid surface properties vs. TAGSAM capabilities. Scientific value maximizes the probability that the collected sample contains organics and volatiles and can be placed in a geological context definitive enough to determine sample history. Science and engineering teams work collaboratively to produce these key decision-making maps.

  9. SMARTS 0.9-m Telescope | CTIO

    Science.gov Websites

    Travel Information Questionnaire Vistor Support Questionaire Telescope Schedules Astronomer's Tools Contact Acknowledgments TS4 History ISPI ISPI Exposure Time Calculator OSIRIS Spartan Optical Imagers Filter list for more information on the available filters. Time Synchronization For projects that require

  10. Mechanism controller system for the optical spectroscopic and infrared remote imaging system instrument on board the Rosetta space mission

    NASA Astrophysics Data System (ADS)

    Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.

    2001-05-01

    The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.

  11. Photometric Uncertainties

    NASA Astrophysics Data System (ADS)

    Zou, Xiao-Duan; Li, Jian-Yang; Clark, Beth Ellen; Golish, Dathon

    2018-01-01

    The OSIRIS-REx spacecraft, launched in September, 2016, will study the asteroid Bennu and return a sample from its surface to Earth in 2023. Bennu is a near-Earth carbonaceous asteroid which will provide insight into the formation and evolution of the solar system. OSIRIS-REx will first approach Bennu in August 2018 and will study the asteroid for approximately two years before sampling. OSIRIS-REx will develop its photometric model (including Lommel-Seelinger, ROLO, McEwen, Minnaert and Akimov) of Bennu with OCAM and OVIRS during the Detailed Survey mission phase. The model developed during this phase will be used to photometrically correct the OCAM and OVIRS data.Here we present the analysis of the error for the photometric corrections. Based on our testing data sets, we find:1. The model uncertainties is only correct when we use the covariance matrix to calculate, because the parameters are highly correlated.2. No evidence of domination of any parameter in each model.3. And both model error and the data error contribute to the final correction error comparably.4. We tested the uncertainty module on fake and real data sets, and find that model performance depends on the data coverage and data quality. These tests gave us a better understanding of how different model behave in different case.5. L-S model is more reliable than others. Maybe because the simulated data are based on L-S model. However, the test on real data (SPDIF) does show slight advantage of L-S, too. ROLO is not reliable to use when calculating bond albedo. The uncertainty of McEwen model is big in most cases. Akimov performs unphysical on SOPIE 1 data.6. Better use L-S as our default choice, this conclusion is based mainly on our test on SOPIE data and IPDIF.

  12. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  13. An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited.

    PubMed

    Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald

    2016-01-14

    Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.

  14. OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity

    NASA Astrophysics Data System (ADS)

    Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.

    2017-06-01

    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.

  15. Asteroid (2867) Steins: Shape, topography and global physical properties from OSIRIS observations

    NASA Astrophysics Data System (ADS)

    Jorda, L.; Lamy, P. L.; Gaskell, R. W.; Kaasalainen, M.; Groussin, O.; Besse, S.; Faury, G.

    2012-11-01

    The Rosetta spacecraft flew by Asteroid (2867) Steins on 5 September 2008, allowing the onboard OSIRIS cameras to collect the first images of an E-type asteroid. We implemented several three-dimensional reconstruction techniques to retrieve its shape. Limb profiles, combined with stereo control points, were used to reconstruct an approximate shape model. This model was refined using a stereophotoclinometry technique to accurately retrieve the topography of the hemisphere observed by OSIRIS. The unseen part of the surface was constrained by the technique of light curves inversion. The global shape resembles a top with dimensions along the principal axes of inertia of 6.83 × 5.70 × 4.42 km. It is conspicuously more regular than other small asteroids like (233) Eros and (25143) Itokawa. Its mean radius is Rm = 2.70 km and its equivalent radius (radius of a sphere of equivalent volume) is Rv = 2.63 km. The north pole is oriented at RA = 99 ± 5° and Dec = -59 ± 5°, which implies a very large obliquity of 172° and a retrograde rotation. Maps of the gravitational field and slopes were calculated for the well-imaged part of the asteroid. Together with the shape, they helped characterizing the most prominent topographic features identified at the surface of (2867) Steins: an equatorial ridge restricted to the extremities of the long axis, a large crater having dimensions of 2100 × 1800 m in the southern hemisphere, and an elongated hill in the northern hemisphere. We conjecture that the equatorial ridge was formed by centrifugal acceleration as the asteroid was spun up by the Yarkovsky-O’Keefe-Radzievskii-Paddack effect.

  16. Can REDD+ Help the Conservation of Restricted-Range Island Species? Insights from the Endemism Hotspot of São Tomé

    PubMed Central

    de Lima, Ricardo Faustino; Olmos, Fábio; Dallimer, Martin; Atkinson, Philip W.; Barlow, Jos

    2013-01-01

    REDD+ aims to offset greenhouse gas emissions through “Reduced Emissions from Deforestation and forest Degradation”. Some authors suggest that REDD+ can bring additional benefits for biodiversity, namely for the conservation of extinction-prone restricted-range species. Here, we assess this claim, using São Tomé Island (Democratic Republic of São Tomé and Príncipe) as a case study. We quantified the abundance of bird and tree species, and calculated the aboveground carbon stocks across a gradient of land-use intensity. We found a strong spatial congruence between carbon and the presence and abundance of endemic species, supporting the potential of REDD+ to protect these taxa. We then assessed if REDD+ could help protect the forests of São Tomé and Príncipe. To do so, we used OSIRIS simulations to predict country-level deforestation under two different REDD+ designs. These simulations showed that REDD+ could promote the loss of forests in São Tomé and Príncipe through leakage. This happened even when additional payments for biodiversity were included in the simulations, and despite São Tomé and Príncipe having the fourth highest carbon stocks per land area and the second highest biodiversity values according to the OSIRIS database. These results show weaknesses of OSIRIS as a planning tool, and demonstrate that the benefits that REDD+ might bring for biodiversity are strongly dependent on its careful implementation. We recommend that payment for ecosystem services programmes such as REDD+ develop safeguards to ensure that biodiversity co-benefits are met and perverse outcomes are avoided across all tropical countries. In particular, we advise specific safeguards regarding the conservation of extinction-prone groups, such as island restricted-range species. PMID:24066109

  17. Dark Side of Comet 67P/Churyumov-Gerasimenko Saturated

    NASA Image and Video Library

    2014-11-06

    This image of comet 67P/Churyumov-Gerasimenko was obtained on October 30, 2014 by the OSIRIS scientific imaging system on the Rosetta spacecraft. The saturation of the image allows the viewer to see some surface structures on dark side of the comet.

  18. The OSIRIS-REx Radio Science Experiment at Bennu

    NASA Astrophysics Data System (ADS)

    McMahon, J. W.; Scheeres, D. J.; Hesar, S. G.; Farnocchia, D.; Chesley, S.; Lauretta, D.

    2018-02-01

    The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.

  19. RoboDIMM | CTIO

    Science.gov Websites

    Travel Information Questionnaire Vistor Support Questionaire Telescope Schedules Astronomer's Tools Contact Acknowledgments TS4 History ISPI ISPI Exposure Time Calculator OSIRIS Spartan Optical Imagers accuracy of 3.8% in the image size. Exposure time: the error caused by the finite exposure time is

  20. Study of cliff activity dominating the gas and dust comae of comet 67P/Churyumov-Gerasimenko during the early phase of the Rosetta mission using ROSINA/COPS and OSIRIS data

    NASA Astrophysics Data System (ADS)

    Marschall, Raphael; Su, Cheng-Chin; Liao, Ying; Rubin, Martin; Wu, Jong-Shinn; Thomas, Nicolas; altwegg, kathrin; Sierks, Holger; OSIRIS, ROSINA

    2016-10-01

    The study by [1] has proposed the idea that the cometary dust jets in the northern hemisphere of comet 67P/Churyumov-Gerasimenko arise mainly from rough cliff like terrain. Using our 3D gas and dust dynamics coma model [2] we have run simulations targeting the question whether areas with high gravitational slopes alone can indeed account for both the ROSINA/COPS and the OSIRIS data obtained for mid August to end October 2014.The basis of our simulations is the shape model "SHAP4S" of [3]. Surface temperatures have been defined using a simple 1-D thermal model (including insolation, shadowing, thermal emission, sublimation but neglecting conduction) computed for each facet of the shape model allowing a consistent and known description of the gas flux and its initial temperature. In a next step we use the DSMC program PDSC++ [4] to calculate the gas properties in 3D space. The gas solution can be compared with the in situ measurements by ROSINA/COPS. In a subsequent step dust particles are introduced into the gas flow to determine dust densities and with a column integrator and Mie theory dust brightnesses that can be compared to OSIRIS data.To examine cliff activity we have divided the surface into two sets. One with gravitational slopes larger than 30° which we call cliffs and one with slopes less than 30° which we shall call plains. We have set up two models, "cliff only" and "plains only" where the respective set of areas are active and the others inert. The outgassing areas are assumed to be purely insolation driven. The "cliffs only" model is a statistically equally good fit to the ROSINA/COPS data as the global insolation driven model presented in [2]. The "plains only" model on the other hand is statistically inferior to the "cliffs only" model. We found in [2] that increased activity in the Hapi region (called inhomogeneous model) of the comet improves the fit of the gas results significantly. We can show in this study that a "cliffs + Hapi" model fits the ROSINA/COPS data equally well as the inhomogeneous model. These results are consistent with OSIRIS data.[1] Vincent et al., 2016, A&A, 587, A14[2] Marschall et al., 2016; A&A, 589, A90[3] Preusker et al., 2015, A&A 583, A33[4] Su, C. C., 2013

  1. Goodman High Throughput Spectrograph | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR 320-850 nm wavelength range. The paper describing the instrument is Clemens et al. (2004) Applying for IRAF. Publishing results based on Goodman data?: ADS link to 2004 SPIE Goodman Spectrograph paper

  2. Geomorphological and Spectrophotometric Study of Philae Landing Site A

    NASA Astrophysics Data System (ADS)

    Pajola, M.; La Forgia, F.; Giacomini, L.; Oklay, N.; Massironi, M.; Bertini, I.; Simioni, E.; Marzari, F.; Barbieri, C.; Naletto, G.; Groussin, O.; Lazzarin, M.; Scholten, F.; Preusker, F.; Fornasier, S.; Vincent, J. B.; Sierks, H.

    2015-10-01

    On August 6, 2014, the European Space Agency's Rosetta spacecraft started orbiting the Jupiter family comet 67P/Churyumov-Gerasimenko (hereafter 67P). Afterwards, the OSIRIS instrument (Optical, Spectroscopic and Infrared Remote Imaging System [1]), got the highest-resolution-ever images of a cometary nucleus, reaching the unprecedented scale of 50 cm/px. A brief description of OSIRIS early analysis on the nucleus structure and activity of 67P is available in [2]. Despite its small dimensions, #4 km diameter, 67P shows a morphological diversity that is still puzzling the cometary community: boulders [3], highreflectivity particle clusters [4], local fracturing [5], pits [6], as well as dust covered terrains [7], are only few examples that can be found on 67P. Since the Rosetta arrival, an extremely detailed analysis of 67P surface has been performed to select five different landing sites candidates for the lander Philae. By using the OSIRIS images the comet shape model [8] has been produced to study the slope constraints, as well as the identification and measurements of boulders and production of hazard maps of the landing spots [3]. A final landing site, called Agilkia and located on the smaller lobe of the comet, was announced on October 15, 2014. Here, Philae, on November 12, 2014, made its historic comet touchdown [9]. Despite its unique scientific potential, one of the five finalists, called "site A", was avoided due to higher risks with respect to Agilkia, during both the landing phase and the surface operations. This area is located on the bigger lobe of the comet, on the Seth region [10] facing the Hathor cliff. Site A (Fig. 1) is close to the 'neck' region, i.e. the connecting bridge between the two lobes, where the main dust jet activity has been observed since the Rosetta arrival. This area is the biggest terrace of Seth region, delimited in the upper part by a steep wall showing multiple niches, strata heads and smaller terraces. Moreover, between the 5 finalists, this site has the unique value to provide detailed analysis of the multiple fractures present on its cliff and on the neighboring Hathor. Figure 1: Site A as imaged by the OSIRIS NAC camera on 6 August 2014 at 02:20:12 UT. The distance from the comet center is 117.24 km, the scale is 2.17 m/px. EPSC Abstracts Vol. 10, EPSC2015-526, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress We here present the geomorphological map coupled with the size-frequency distributions of boulders # 2 m located on the different types of terrains here identified, such as outcropping layered terrains, gravitational accumulation deposits, taluses and fine particle deposits. Gravitational slopes, derived through the 67P shape model by assuming uniform density, have been used to characterize and better interpret the various terrains. Moreover, we show the spectrophotometric properties of the area, studied through images taken by OSIRIS NAC with a scale of 50 cm/px. Albedo maps, as well as surface reflectance spectra have been obtained by taking advantage of the shape model and DTM in order to correct for the illumination and observing conditions of the terrain. This multidisciplinary analysis highlights that different types of deposits show different photometric properties.

  3. Osiris-REx Spacecraft Current Status and Forward Plans

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.

    2017-01-01

    The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy with which the navigation team can deliver the spacecraft to and from specific sites on the asteroid surface. The Sampleability map quantifies the regolith properties, providing an estimation of how much material would be sampled at different points on the surface. The final Science Value map synthesizes the chemical, mineralogical, and geological, observations to identify the areas of the asteroid surface with the highest science value. Here, priority is given to organic, water-rich regions that have been minimally altered by surface processes. Asteroid surface samples will be acquired with a touch-and-go sample acquisition system (TAGSAM) that uses high purity pressurized N2 gas to mobilize regolith into a stainless steel canister. Although the mission requirement is to collect at least 60 g of material, tests of the TAGSAM routinely exceeded 300 g of simulant in micro-gravity tests. After acquiring the sample, the spacecraft will depart Bennu in 2021 to begin its return journey, with the sample return capsule landing at the Utah Test and Training Range on September 23, 2023. The OSIRIS-REx science team will carry out a series of detailed chemical, mineralogical, isotopic, and spectral studies that will be used to determine the origin and history of Bennu and to relate high spatial resolution sample studies to the global geological context from remote sensing. The outline of the sample analysis plan is described in a companion abstract.

  4. SPARTAN Near-IR Camera | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "

  5. NASA Sample Return Missions: Recovery Operations

    NASA Technical Reports Server (NTRS)

    Pace, L. F.; Cannon, R. E.

    2017-01-01

    The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.

  6. OSIRIS-REx Flight Dynamics and Navigation Design

    NASA Astrophysics Data System (ADS)

    Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.

    2018-06-01

    OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).

  7. Large Scale Morphological Changes in the Hapi Region on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, B. J. R.; Lee, S.; Von Allmen, P. A. A.; Schloerb, F. P.; Hofstadter, M. D.; Sierks, H.; Barbieri, C.; Gulkis, S.; Keller, H. U.; Koschny, D.; Philippe, L.; Rickman, H.; Rodrigo, R.

    2017-12-01

    The Hapi region is located on the northern hemisphere of comet 67P/C-G at the neck that joins the twolobes of the nucleus. It primarily consists of granular material that is unresolved at 0.35 m/pixel resolutionand that forms a smooth surface with small slopes with respect to local gravity. The OSIRIS cameras on theESA spacecraft Rosetta observed Hapi regularly since its rendezvous with the comet in August 2014.No changes were seen during the first five months in orbit, but on December 30, 2014 two spots appeared in Hapi.Over the course of two months they grew gradually into a 110 by 70 meter shallow depression with a depth of about 0.5 meters.We use OSIRIS observations to characterize the morphology and spectrophotometry of the region. We usemeasurements of the thermal emission of the comet by the MIRO millimeter and submillimeter radiometer incombination with thermophysical modeling to characterize the surface temperature, near surface temperaturegradient, and thermal inertia of the region. The formation mechanism of the depression is discussed in view ofthese empirical data.

  8. Large scale morphological changes in the Hapi region on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, Bjorn; Lee, Seungwon; von Allmen, Paul; Schloerb, Peter; Hofstadter, Mark; Sierks, Holger; Barbieri, Cesare; Gulkis, Samuel; Keller, Horst Uwe; Koschny, Detlef; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafa; MIRO Team; OSIRIS Team

    2017-10-01

    The Hapi region is located on the northern hemisphere of comet 67P/C-G at the neck that joins the two lobes of the nucleus. It primarily consists of granular material that is unresolved at 0.35 m/pixel resolution and that forms a smooth surface with small slopes with respect to local gravity. The OSIRIS cameras on the ESA spacecraft Rosetta observed Hapi regularly since its rendezvous with the comet in August 2014. No changes were seen during the first five months in orbit but on December 30, 2014, two spots appeared in Hapi. Over the course of two months they grew gradually into a 110 by 70 meter shallow depression with a depth of about 0.5 meters. We use OSIRIS observations to characterize the morphology and spectrophotometry of the region. We use measurements of the thermal emission of the comet by the MIRO millimeter and submillimeter radiometer in combination with thermophysical modeling to characterize the surface temperature, near surface temperature gradient, and thermal inertia of the region. The formation mechanism of the depression is discussed in view of these empirical data.

  9. Estimations of natural variability between satellite measurements of trace species concentrations

    NASA Astrophysics Data System (ADS)

    Sheese, P.; Walker, K. A.; Boone, C. D.; Degenstein, D. A.; Kolonjari, F.; Plummer, D. A.; von Clarmann, T.

    2017-12-01

    In order to validate satellite measurements of atmospheric states, it is necessary to understand the range of random and systematic errors inherent in the measurements. On occasions where the measurements do not agree within those errors, a common "go-to" explanation is that the unexplained difference can be chalked up to "natural variability". However, the expected natural variability is often left ambiguous and rarely quantified. This study will look to quantify the expected natural variability of both O3 and NO2 between two satellite instruments: ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and OSIRIS (Optical Spectrograph and Infrared Imaging System). By sampling the CMAM30 (30-year specified dynamics simulation of the Canadian Middle Atmosphere Model) climate chemistry model throughout the upper troposphere and stratosphere at times and geolocations of coincident ACE-FTS and OSIRIS measurements at varying coincidence criteria, height-dependent expected values of O3 and NO2 variability will be estimated and reported on. The results could also be used to better optimize the coincidence criteria used in satellite measurement validation studies.

  10. Moderate Resolution Spectroscopy of Substellar Companion Kappa Andromeda B

    NASA Astrophysics Data System (ADS)

    Wilcomb, Kielan; Konopacky, Quinn; Barman, Travis; Brown, Jessie; Brock, Laci; Macintosh, Bruce; Ruffio, Jean-Baptiste; Marois, Christian

    2018-01-01

    Recent direct imaging of exoplanets has revealed a population of Jupiter-like objects that orbit at large separations (~10-100 AU) from their host stars. These planets, with masses of ~2-14 MJup and temperatures of ~500-2000 K, remain a problem for the two main planet formation models—core accretion and gravitational instability. OSIRIS observations of directly imaged planets have expanded our understanding of their atmospheres, alluded to their formation, and uncovered individual molecular lines. Here, we present OSIRIS K band spectra of the “super-Jupiter,” Kappa Andromeda b. Kappa Andromeda b has a lower mass limit at the deuterium burning limit, but also has an uncertain age which may indicate the source is a higher mass brown dwarf. The spectra reveal resolved molecular lines from water and CO. We will present atmospheric properties of this object derived from comparison to PHOENIX atmosphere models, and measure a best fit C/O ratio for the source. We will compare our results to atmospheric properties of other brown dwarfs and gas giant planets in an effort to improve our knowledge of intricate atmospheres of young, substellar objects.

  11. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion.

    PubMed

    Volonté, Francesco; Pugin, François; Bucher, Pascal; Sugimoto, Maki; Ratib, Osman; Morel, Philippe

    2011-07-01

    New technologies can considerably improve preoperative planning, enhance the surgeon's skill and simplify the approach to complex procedures. Augmented reality techniques, robot assisted operations and computer assisted navigation tools will become increasingly important in surgery and in residents' education. We obtained 3D reconstructions from simple spiral computed tomography (CT) slides using OsiriX, an open source processing software package dedicated to DICOM images. These images were then projected on the patient's body with a beamer fixed to the operating table to enhance spatial perception during surgical intervention (augmented reality). Changing a window's deepness level allowed the surgeon to navigate through the patient's anatomy, highlighting regions of interest and marked pathologies. We used image overlay navigation for laparoscopic operations such cholecystectomy, abdominal exploration, distal pancreas resection and robotic liver resection. Augmented reality techniques will transform the behaviour of surgeons, making surgical interventions easier, faster and probably safer. These new techniques will also renew methods of surgical teaching, facilitating transmission of knowledge and skill to young surgeons.

  12. Numerical and Experimental Thermal Responses of Single-cell and Differential Calorimeters: from Out-of-Pile Calibration to Irradiation Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Carette, M.

    2015-07-01

    The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less

  13. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, T.; Muller, E.; Federici, E.

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for fivemore » cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)« less

  14. First Results of Exoplanet Observations with the Gran Telescopio Canarias: Narrow-Band Transit Photometry Capable of Detecting Super-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.

    2010-01-01

    We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  15. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  16. Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Da Deppo, V.; Lazzarin, M.; Bertini, I.; Ferri, F.; Pajola, M.; Barbieri, M.; Naletto, G.; Barbieri, C.; Tubiana, C.; Küppers, M.; Fornasier, S.; Jorda, L.; Sierks, H.

    2015-02-01

    Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims: A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods: The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results: We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions: The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics.

  17. IR Instruments | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments ‹› You are here CTIO Home » Astronomers » Instruments » IR Instruments IR Instruments Infrared Imaging ANDICAM - Ohio State Visual/IR Imager (on SMARTS 1.3m Telescope) OSIRIS - The Ohio State

  18. Analyzing NPS Scheduling Using OSIRIS

    DTIC Science & Technology

    1993-03-01

    School TEACHER SCHEDULE BLOCKS REPORT Date: 2/19/93 Period Name ID Term Days 1234 Adragna , Joe 170401 1 F xx Agrawal, Brij 120101 1 F xx Almquist...LOAD REPORT Date: 3/18/93 Total Max Consec Total Teacher ID Term Classes Classes Stud Adragna , Joe 170401 1 1 1 3 Agrawal, Brij 120101 1 2 2 98 Aiello

  19. The Star Formation History of read and dead galaxies at z=[1.0--1.5

    NASA Astrophysics Data System (ADS)

    Domínguez Sánchez, H.; Pérez González, P.; Esquej, P.; Eliche Moral, C.; Alcalde Pampliega, B.; SHARDS Team

    2015-05-01

    We analyse the star formation histories (SFH) of M > 10^{10} M_⊙ read and dead galaxies at intermediate redshift (z=1.0-1.5). Current hierarchical models of galaxy formation predict many less massive high-z systems than observed. By combining SHARDS deep spectro-photometric optical data (25 contiguous OSIRIS/GTC medium band filters with R ˜ 50 at 4500-900 nm) with HST-WFC3 grism in the NIR (G141, 1.1-1.6 μm) and broad-band photometry (from FUV to FIR) we construct well-sampled optical SEDs with up to 150 photometric points and sufficient spectral resolution to obtain reliable stellar population parameters such as ages, star formation timescales, dust extinctions and metallicities. We define a complete and uncontaminated sample of red & dead galaxies by combining the color-color UVJ selection with a cut in sSFR (SFR/Mass). We check the robustness of the results depending on different stellar population models (Bruzual & Charlot 2003, Maraston 2005), SED fitting-codes (synthesizer, FAST) or star formation histories (exp{-t/τ}, t exp{-t/τ}). Finally, the dependence of the SFH with the galaxy stellar mass will be studied, to actually measure if more massive galaxies are formed earlier and more rapidly as downsizing suggests.

  20. Injection of externally produced kinetic electrons into a self-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Ralph, Joseph; Albert, Felicie; Shaw, Jessica; Clayton, Christopher; Marsh, Ken; Joshi, Chan; Mori, Warren; Kesler, Leigh; Mills, Sarah; Severson, Brian; Rigby, Alexandra; Glenzer, Siegfried

    2012-10-01

    A two-stage laser wakefield accelerator is being developed at the Lawrence Livermore National Laboratory using the Callisto laser system. The first stage is a high density (˜10^19 cm-3), 5 mm He gas jet plasma which is driven by 30 TW of 800 nm laser light focused to an a0˜ 2. The <100 MeV electrons produced in this stage are deflected by a 0.5 T dipole magnet onto the axis of the second stage, which is a low density (˜10^18 cm-3), 15 mm He gas cell driven by 200 TW of 800 nm light also focused to an a0˜ 2; no additional electrons are trapped in this stage. Electrons injected into the second stage can then be further accelerated to higher energy without increasing the energy spread. Measurements of the transmitted laser profile and spectrum from the second stage indicate that the laser pulse is self-guided throughout the gas cell and that a strong wake is driven. These results compare well with particle-in-cell (PIC) simulations performed with the code OSIRIS. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA-27344.

  1. 2018 USA Science and Engineering Festival

    NASA Image and Video Library

    2018-04-06

    Attendees listen as a NASA staff member speaks about NASA's Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer, or OSIRIS-REx, mission during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)

  2. Results from Radio Tracking the Rosetta Spacecraft: Gravity, Internal Structure and Nucleus Composition of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Andert, T.; Asmar, S.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Weissman, P. R.; Barriot, J. P.; Sierks, H.

    2017-12-01

    When Rosetta arrived at its target comet 67P/Churyumov-Gerasimenko it first performed a series of distant flybys (100 - 30 km). During this mission phase the mass of the comets nucleus could be determined by analyzing the RSI radio tracking data. In combination with the volume from images of the OSIRIS camera this resulted in a precise bulk density determination. That already gave first insights into the comets interior structure. The nucleus appears to be a low-density, highly porous dusty body. From bound orbits with distances below 30 km the low degree and order gravity field coefficients could be derived. The gravity field coefficients strongly depend on the nucleus irregular shape and on the interior mass distribution. The shape is very well reconstructed from of the OSIRIS camera images. Various models of the interior nucleus structure and density distributions are used to compute simulated values of the gravity field coefficients. A comparison with the observed coefficients yields the feasibility of the theoretical interior structure. Thus, the gravity field helps constraining models of the internal structure, the composition and also of the origin and formation of the comets nucleus.

  3. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  4. Cleared for Launch - Lessons Learned from the OSIRIS-REx System Requirements Verification Program

    NASA Technical Reports Server (NTRS)

    Stevens, Craig; Adams, Angela; Williams, Bradley; Goodloe, Colby

    2017-01-01

    Requirements verification of a large flight system is a challenge. It is especially challenging for engineers taking on their first role in space systems engineering. This paper describes our approach to verification of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) system requirements. It also captures lessons learned along the way from developing systems engineers embroiled in this process. We begin with an overview of the mission and science objectives as well as the project requirements verification program strategy. A description of the requirements flow down is presented including our implementation for managing the thousands of program and element level requirements and associated verification data. We discuss both successes and methods to improve the managing of this data across multiple organizational interfaces. Our approach to verifying system requirements at multiple levels of assembly is presented using examples from our work at instrument, spacecraft, and ground segment levels. We include a discussion of system end-to-end testing limitations and their impacts to the verification program. Finally, we describe lessons learned that are applicable to all emerging space systems engineers using our unique perspectives across multiple organizations of a large NASA program.

  5. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  6. The terminal Velocity of the Deep Impact dust Ejecta

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.

    2009-05-01

    The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.

  7. Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, V.; Naletto, G.; Nicolosi, P.; Zambolin, P.; De Cecco, M.; Debei, S.; Parzianello, G.; Ramous, P.; Zaccariotto, M.; Fornasier, S.; Verani, S.; Thomas, N.; Barthol, P.; Hviid, S. F.; Sebastian, I.; Meller, R.; Sierks, H.; Keller, H. U.; Barbieri, C.; Angrilli, F.; Lamy, P.; Rodrigo, R.; Rickman, H.; Wenzel, K. P.

    2017-11-01

    Rosetta is one of the cornerstone missions of the European Space Agency for having a rendezvous with the comet 67P/Churyumov-Gerasimenko in 2014. The imaging instrument on board the satellite is OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System), a cooperation among several European institutes, which consists of two cameras: a Narrow (NAC) and a Wide Angle Camera (WAC). The WAC optical design is an innovative one: it adopts an all reflecting, unvignetted and unobstructed two mirror configuration which allows to cover a 12° × 12° field of view with an F/5.6 aperture and gives a nominal contrast ratio of about 10-4. The flight model of this camera has been successfully integrated and tested in our laboratories, and finally has been integrated on the satellite which is now waiting to be launched in February 2004. In this paper we are going to describe the optical characteristics of the camera, and to summarize the results so far obtained with the preliminary calibration data. The analysis of the optical performance of this model shows a good agreement between theoretical performance and experimental results.

  8. Diurnal and seasonal variations of gas emissions in the inner coma of comet 67P/Churyumov-Gerasimenko observed with OSIRIS/Rosetta

    NASA Astrophysics Data System (ADS)

    La Forgia, F.; Lazzarin, M.; Bodewits, D.; A'Hearn, M. F.; Bertini, I.; Penasa, L.; Naletto, G.; Cremonese, G.; Massironi, M.; Ferri, F.; Frattin, E.; Lucchetti, A.; Ferrari, S.; Barbieri, C.

    2017-09-01

    The gas filters of OSIRIS/Wide Angle Camera (WAC) on board Rosetta spacecraft allowed to study the gaseous emissions of the inner coma of comet 67P/Churyumov-Gerasimenko. OH, NH, CN, NH2 and OI gas species have been monitored between January and September 2015, i.e. from 2.47 AU pre-perihelion, to 1.37 AU post-perihelion, allowing the study of seasonal variations. Each gas sequence covers slightly more than one comet rotation period allowing also the study of diurnal changes. We measured the gas column density between 1 and 3 km from the nucleus limb in the sunward direction. Results will be presented on the gas diurnal light curves and on the long-term variations such as the dependence and correlation with time, heliocentric distance, range, phase angle and sub-solar point. Gas ratios are studied searching for evidence of any compositional change with time and orbital evolution. We searched for connections between particular "active zones" on the nucleus surface. This study will be helpful in connecting ground based observations of 67P with Rosetta in situ observations.

  9. Advanced instrumentation and analysis methods for in-pile thermal and nuclear measurements: from out-of-pile studies to irradiation campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Lyoussi, A.

    Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices thatmore » contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify nuclear heating. The last one consists in the development of accurate measurement and analysis methods. The paper will be dedicated to a complete review of the experimental and numerical works performed since 2009 thanks to two parts. The first part will detail a new thermal approach implemented to improve nuclear heating measurements by radiometric calorimeters. New experimental tools (calorimeter prototypes and set-ups such BETHY Bench) developed to perform preliminary out-of-pile studies under suitable conditions will be presented (temperature and velocity of the external cooling fluid, heat source localization and intensity inside the calorimetric cells). Then the response of two kinds of sensors, their calibrations curves and their thermal behaviors will be compared for various parameters. Finally validated numerical thermal and Monte Carlo works will be discussed to propose new improvements. The second parts of the paper will focus on works realized in order to design, develop and test the first prototype of the multi-sensor device called CARMEN [7-9]. The two mock-ups dedicated respectively to neutron measurements and photon measurements will be detailed. The results obtained during two irradiation campaigns inside the periphery of OSIRIS reactor will be shown. The new analysis method will be discussed. (authors)« less

  10. Comparative study of icy patches on comet nuclei

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio

    2016-07-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed on comet 67P. Additionally jets rising from the same clustered bright feature were detected visually [4]. We analyzed bright patches on the surface of comets 9P, 103P and 67P using multispectral data obtained by the high-resolution instrument (HRI), medium- resolution instrument (MRI) and OSIRIS NAC using various spectral analysis techniques. Clustered bright features on comet 67P have similar visible spectra to the bright patches on comets 9P and 103P. The comparison of the bright patches includes the published results of the IR spectra. References: [1] Sunshine et al., 2006, Science, 311, 1453 [2] Pommerol et al., 2015, A&A, 583, A25 [3] Filacchione et al., 2016, Nature, 529, 368-372 [4] Oklay et al., 2016, A&A, 586, A80 [5] Sunshine et al. 2012, ACM [6] Keller et al., 2007, Space Sci. Rev., 128, 433 [7] Barucci et al., 2016, COSPAR, B04

  11. Tissue Engineering Research

    DTIC Science & Technology

    2002-01-01

    al. 1999; Petersen et al. 1999); the differentiation (Pittenger et al. 1999) and clinical use of mesenchymal stem cells (Osiris Therapeutics...endothelialization of vascular prostheses, and use of mesenchymal stem cells for bone repair. Current Condition Factors determining cell source and design...the use of mesenchymal stem cells for bone repair. The UK has taken an active interest in further research on the use of ES cells . This is aided by

  12. Sample Handling Considerations for a Europa Sample Return Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Calaway, M. L.; Evans, C. A.; McCubbin, F. M.

    2015-01-01

    The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately.

  13. The OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Beshore, Edward; Lauretta, Dante; Boynton, William; Shinohara, Chriss; Sutter, Brian; Everett, David; Gal-Edd, Jonathan S.; Mink, Ronald G.; Moreau, Michael; Dworkin, Jason

    2015-01-01

    Interpretation, Resource Identification, Security, Regolith EXplorer) spacecraft will depart for asteroid (101955) Bennu, and when it does, humanity will turn an important corner in the exploration of the Solar System. After arriving at the asteroid in the Fall of 2018, it will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023..

  14. Lessons Learned from OSIRIS-Rex Autonomous Navigation Using Natural Feature Tracking

    NASA Technical Reports Server (NTRS)

    Lorenz, David A.; Olds, Ryan; May, Alexander; Mario, Courtney; Perry, Mark E.; Palmer, Eric E.; Daly, Michael

    2017-01-01

    The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (Osiris-REx) spacecraft is scheduled to launch in September, 2016 to embark on an asteroid sample return mission. It is expected to rendezvous with the asteroid, Bennu, navigate to the surface, collect a sample (July 20), and return the sample to Earth (September 23). The original mission design called for using one of two Flash Lidar units to provide autonomous navigation to the surface. Following Preliminary design and initial development of the Lidars, reliability issues with the hardware and test program prompted the project to begin development of an alternative navigation technique to be used as a backup to the Lidar. At the critical design review, Natural Feature Tracking (NFT) was added to the mission. NFT is an onboard optical navigation system that compares observed images to a set of asteroid terrain models which are rendered in real-time from a catalog stored in memory on the flight computer. Onboard knowledge of the spacecraft state is then updated by a Kalman filter using the measured residuals between the rendered reference images and the actual observed images. The asteroid terrain models used by NFT are built from a shape model generated from observations collected during earlier phases of the mission and include both terrain shape and albedo information about the asteroid surface. As a result, the success of NFT is highly dependent on selecting a set of topographic features that can be both identified during descent as well as reliably rendered using the shape model data available. During development, the OSIRIS-REx team faced significant challenges in developing a process conducive to robust operation. This was especially true for terrain models to be used as the spacecraft gets close to the asteroid and higher fidelity models are required for reliable image correlation. This paper will present some of the challenges and lessons learned from the development of the NFT system which includes not just the flight hardware and software but the development of the terrain models used to generate the onboard rendered images.

  15. Planificación Neuroquirúrgica con Software Osirix

    PubMed Central

    Jaimovich, Sebastián Gastón; Guevara, Martin; Pampin, Sergio; Jaimovich, Roberto; Gardella, Javier Luis

    2014-01-01

    Introducción: La individualidad anatómica es clave para reducir el trauma quirúrgico y obtener un mejor resultado. Actualmente, el avance en las neuroimágenes ha permitido objetivar esa individualidad anatómica, permitiendo planificar la intervención quirúrgica. Con este objetivo, presentamos nuestra experiencia con el software Osirix. Descripción de la técnica: Se presentan 3 casos ejemplificadores de 40 realizados. Caso 1: Paciente con meningioma de la convexidad parasagital izquierda en área premotora; Caso 2: Paciente con macroadenoma hipofisario, operada previamente por vía transeptoesfenoidal en otra institución con una resección parcial; Caso 3: Paciente con lesiones en pedúnculo cerebeloso medio bilateral. Se realizó la planificación prequirúrgica con el software OsiriX, fusionando y reconstruyendo en 3D las imágenes de TC e IRM, para analizar relaciones anatómicas, medir distancias, coordenadas y trayectorias, entre otras funciones. Discusión: El software OsiriX de acceso libre y gratuito permite al cirujano, mediante la fusión y reconstrucción en 3D de imágenes, analizar la anatomía individual del paciente y planificar de forma rápida, simple, segura y económica cirugías de alta complejidad. En el Caso 1 se pudo analizar las relaciones del tumor con las estructuras adyacentes para minimizar el abordaje. En el Caso 2 permitió comprender la anatomía post-operatoria previa del paciente, para determinar la trayectoria del abordaje transnasal endoscópico y la necesidad de ampliar su exposición, logrando la resección tumoral completa. En el Caso 3 permitió obtener las coordenadas estereotáxicas y trayectoria de una lesión sin representación tomográfica. Conclusión: En casos de no contar con costosos sistemas de neuronavegación o estereotáxia el software OsiriX es una alternativa a la hora de planificar la cirugía, con el objetivo de disminuir el trauma y la morbilidad operatoria. PMID:25165617

  16. The Physical, Geological, and Dynamical Nature of Asteroid (101955) Bennu - Target of OSIRIS-REx

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante

    2014-11-01

    OSIRIS-REx will survey asteroid (101955) Bennu to understand its properties, assess its resource potential, refine the impact hazard, and return a sample to Earth. This mission launches in 2016. Bennu is different from all other near-Earth asteroids previously visited by spacecraft. (433) Eros, target of the NEAR-Shoemaker mission, and (25143) Itokawa, target of Hayabusa, are both high-albedo, S-type asteroids with irregular shapes. In contrast, Bennu has a low albedo, is a B-type asteroid, and has a distinct spheroidal shape. While Eros and Itokawa are similar to ordinary chondrites, Bennu is likely related to carbonaceous chondrites, meteorites that record the history of volatiles and organic compounds in the early Solar System.We performed an extensive campaign to determine the properties of Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. Combining these data with cosmochemical and dynamical models yields a hypothetical timeline for Bennu’s formation and evolution. Bennu is an ancient object that has witnessed over 4.5 Gyr of Solar System history. Its chemistry and mineralogy were established within the first 10 Myr of the Solar System. It likely originated as a discrete asteroid in the main belt ~0.7 - 2 Gyr ago as a fragment from the catastrophic disruption of a large, carbonaceous asteroid. It was delivered to near-Earth space via a combination of Yarkovsky-induced drift and interaction with giant-planet resonances. During its journey, YORP processes and planetary encounters modified Bennu’s spin state, potentially reshaping and resurfacing the asteroid. Bennu is a Potentially Hazardous Asteroids with an ~1-in-2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner Solar System after a close encounter with Jupiter. OSIRIS-REx will return samples from this intriguing asteroid in September 2023.

  17. The 67P nucleus composition and temporal variations observed by the OSIRIS cameras onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Fornasier, Sonia; Barucci, Maria Antonietta; Feller, Clement; Deshapriya, Prasanna J. D.; Pommerol, Antoine; Lara, Luisa; Oklay, Nilda; A'Hearn, Mike; Davidsson, Bjorn; Perna, Davide; Sierks, Holger

    2015-11-01

    Since August 2014, the comet 67P/Churyumov-Gerasimenko has been mapped by the NAC and WAC cameras of the OSIRIS imaging system in the 250-1000 nm wavelength range. OSIRIS got the most detailed maps at the highest spatial resolution of a comet nucleus surface. Here we report on the colors and spectrophotometry of the whole 67P nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the comet perihelion passage. Globally, the nucleus shows a red spectral behavior and it has spectrophotometric properties similar to those of bare cometary nuclei, of primitive D-type asteroids such us Jupiter Trojans, and of the moderately red Transneptunians. No clear absorption bands have been identified yet in the UV-VIS-NIR range, except for a potential absorption centered at 290 nm, possibly due to SO2 ice. The nucleus shows an important phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3-54° phase angle range. On the basis of the spectral slope, we identified three different groups of regions, characterized by a low, medium, and high spectral slope, respectively. The three groups are distributed everywhere on the nucleus, with no evident distinction between the two lobes of the comet. The comet southern hemisphere, that has been observed by Rosetta since April 2015, shows a lack of spectrally red regions associated to the absence of wide spread smooth or dust covered terrains. Several local bright and spectrally blue patches have been identified on the nucleus and attributed to exposed water ice on the surface. In particular we observed big (> 1500 m2) bright ice rich areas in the southern hemisphere which completely sublimated in a few weeks. We see evidence of very bright patches in the NUV-blue region close to the morning shadows that are compatible with the presence of frosts/ices. These patches disappear when fully illuminated by the Sun indicating that important processes of sublimation and recondensation of volatiles are taking place on the nucleus.

  18. Performance Based Design of a New Virtual Locomotion Control

    DTIC Science & Technology

    2000-11-01

    constraints on movements, caloric energy expenditure , etc.). (2) The control action should interact with other actions (looking, manipulation, posturing...velocity, natural cadence, caloric expenditure , etc.) but it is unlikely that one set of tuning parameters will satisfy all criteria. Experimental...tethered for safety. OSIRIS, developed by the US Army’s Night Vision Laboratory, is a stair -stepper device that can only be used upright [Lorenzo et al

  19. OSIRIS-REx Orbit Determination Covariance Studies at Bennu

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Moreau, M.; Jackman, C.; Williams, K.; Page, B.; Leonard, J. M.

    2016-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the small, Earth-crossing asteroid (101955) Bennu in late 2018, and ultimately return a sample of regolith to Earth. Approximately 3 months before the encounter with Bennu, the asteroid finally becomes detectable in the narrow field PolyCam imager. The spacecraft's rendezvous with Bennu begins with a series of four Asteroid Approach Maneuvers, which slow the spacecraft's speed relative to Bennu beginning two and a half months prior to closest approach, ultimately delivering the spacecraft to a point 18 km from Bennu on Nov 18, 2018. An extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site will follow. This paper will discuss the challenges of navigating near a small 500-m diameter asteroid. The navigation at close proximity is dependent on the accurate mathematical model or digital terrain map of the asteroids shape. Predictions of the spacecraft state are very sensitive to spacecraft small forces, solar radiation pressure, and mis-modeling of Bennu's gravity field. Uncertainties in the physical parameters of the central body Bennu create additional challenges. The navigation errors are discussed and their impact on science planning will be presented.

  20. OSIRIS-REx Orbit Determination Covariance Studies at Bennu

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Moreau, M.; Jackman, C.; Williams, K.; Page, B.; Leonard, J. M.

    2016-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the small, Earth-crossing asteroid (101955) Bennu in late 2018, ultimately returning a sample of regolith to Earth. Approximately three months before the encounter with Bennu, the asteroid becomes detectable in the narrow field PolyCam imager. The spacecraft's rendezvous with Bennu begins with a series of four Asteroid Approach Maneuvers, slowing the spacecraft's speed relative to Bennu beginning two and a half months prior to closest approach, ultimately delivering the spacecraft to a point 18 km from Bennu in Nov, 2018. An extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site will follow. This paper will discuss the challenges of navigating near a small 500-m diameter asteroid. The navigation at close proximity is dependent on the accurate mathematical model or digital terrain map of the asteroid's shape. Predictions of the spacecraft state are very sensitive to spacecraft small forces, solar radiation pressure, and mis-modeling of Bennu's gravity field. Uncertainties in the physical parameters of the central body Bennu create additional challenges. The navigation errors are discussed and their impact on science planning will be presented.

  1. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Osiris Team

    2017-09-01

    In a Rosetta/OSIRIS imaging activity in June 2015, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS Wide Angle Camera (WAC), these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 108 dust aggregates over a 130 minutes long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 m and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. We prefer a scenario where centimeter-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel when rotated towards the sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the sun and can be explain by a rocket effect, which requires a minimum ice fraction in the order of 0.1%

  2. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bodewits, D.; Bertaux, J.-L.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Geiger, B.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; López-Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Shi, X.; Thomas, N.; Vincent, J.-B.

    2017-07-01

    In a Rosetta/OSIRIS imaging activity in 2015 June, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS wide angle camera, these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 109 dust aggregates over a 130 min long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. In the likeliest of the three scenarios, centimetre-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel (remote instrument viewing direction) when rotated towards the Sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the Sun and can be explain by a rocket effect, which requires a minimum ice fraction of the order of 0.1 per cent.

  3. Spatial Variations of Spectral Properties of (21) Lutetia as Observed by OSIRIS/Rosetta

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Sierks, H.; Barbieri, C.; Barucci, A.; Da Deppo, V.; De Leon, J.; Fulchignoni, M.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Jorda, L.; Keller, H. U.; La Forgia, F.; Lara, L.; Lazzarin, M.; Magrin, S.; Marchi, S.; Thomas, N.; Schroder, S. E.; OSIRIS Team

    2010-10-01

    On July 10, 2010, the Rosetta ESA/NASA spacecraft successfully flew by the asteroid (21) Lutetia, which becomes the largest asteroid observed by a space probe. The closest approach occurred at 15H45 UTC at a relative speed of 15km/s and a relative distance of 3160 km. The Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) of the OSIRIS instrument onboard Rosetta acquired images at different phase angles ranging from almost zero to more than 150 degrees. The best spatial resolution (60 m/pixel) allowed to reveal a very complex topography with several features and different crater's surface densities. Spectrophotometric analysis of the data could suggest spatial variations of the albedo and spectral properties at the surface of the asteroid, at least in the northern hemisphere. Numerous sets of data have been obtained at different wavelengths from 270nm to 980nm. We will first present a color-color analysis of data in order to locate landscapes where surface variegation is present. We will also present a more accurate study of spectral properties using the shape model and different statistical methods. Possible variations of the surface spectral properties with the slope of the ground and the gravity field orientation will be discussed as well.

  4. The distribution of gas and ions in the inner coma of 67P/Churyumov-Gerasimenko between 3 AU before and after its perihelion

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Lara, Luisa; La Forgia, Fiorangela; A'Hearn, Michael F.; Knollenberg, Jörg; Lazzarin, Monica; Li, Zhong-Yi; Osiris Team

    2016-10-01

    Rosetta explored a regime not accessible before: the inner coma of a low-activity comet at a large range of heliocentric distances. The Wide Angle Camera (WAC) of the OSIRIS instrument on board the Rosetta spacecraft is equipped with several narrowband filters that are centered on the emission lines and bands of various molecules and ions. These filters center on fragment species that are relatively bright and that have been used for numerous comet studies from the ground (e.g. A'Hearn et al. 1995). Surprisingly, we found that outside 2 AU pre-perihelion, the emission in the filters was dominated by emission from dissociative electron impact excitation (Bodewits et al. 2016). Closer to perihelion, higher gas densities reduced electron temperatures in the inner coma and photo-processes drove much if not most of the emission from the comet. Our observations allowed us to study changes in the physical environment of the inner coma, and Rosetta's excursions as far as 1000 km from the surface allowed us to study different regions of the coma.In this contribution, we will summarize the results of our OSIRIS observations from approximately 3 AU before to 3 AU after perihelion.

  5. Multielemental analysis of Migori (Southwest, Kenya) artisanal gold mine ores and sediments by EDX-ray fluorescence technique: implications of occupational exposure and environmental impact.

    PubMed

    Odumo, O B; Mustapha, A O; Patel, J P; Angeyo, H K

    2011-05-01

    The results of heavy element profiling of the gold ores and sediments associated with the artisanal gold mining activities of the Migori gold belt of Southwestern Nyanza, Kenya, were reported in this paper. The analysis was made to assess the occupational exposure of the miners as well as to investigate the environmental impact of toxic heavy metals. Gold ores and sediments from the artisanal gold processing were sampled in four artisanal gold mining areas: Osiri A, Osiri B, Mikei and Macalder (Makalda) and analyzed for heavy elemental content using (109)Cd radioisotope excited EDXRF spectrometry technique. Analysis consisted of direct irradiating of sample pellets. The concentrations of major elements detected were: titanium (711.41-10,766.67 mg/kg); cobalt (82.65-1,010.00 mg/kg); zinc (29.90-63,210 mg/kg); arsenic (29.30-8,246.59 mg/kg); gold (14.07-73.48 mg/kg); lead (16.31-14,999.40 mg/kg) and mercury (16.10-149.93 mg/kg). The average concentration of the heavy toxic metals i.e. arsenic, lead, titanium and zinc were found to be above 50 mg/Kg as recommended by World Health Organization. © Springer Science+Business Media, LLC 2011

  6. Using Quasi-3D OSIRIS simulations of LWFA to study generating high brightness electron beams using ionization and density downramp injection

    NASA Astrophysics Data System (ADS)

    Dalichaouch, Thamine; Davidson, Asher; Xu, Xinlu; Yu, Peicheng; Tsung, Frank; Mori, Warren; Li, Fei; Zhang, Chaojie; Lu, Wei; Vieira, Jorge; Fonseca, Ricardo

    2016-10-01

    In the past few decades, there has been much progress in theory, simulation, and experiment towards using Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as a controllable injection scheme for creating higher quality and ultra-bright relativistic electron beams using LWFA. However, full-3D simulations of plasma-based accelerators are computationally intensive, sometimes taking 100 millions of core-hours on today's computers. A more efficient quasi-3D algorithm was developed and implemented into OSIRIS using a particle-in-cell description with a charge conserving current deposition scheme in r - z and a gridless Fourier expansion in ϕ. Due to the azimuthal symmetry in LWFA, quasi-3D simulations are computationally more efficient than 3D cartesian simulations since only the first few harmonics in are needed ϕ to capture the 3D physics of LWFA. Using the quasi-3D approach, we present preliminary results of ionization and down ramp triggered injection and compare the results against 3D LWFA simulations. This work was supported by DOE and NSF.

  7. 3D PIC SIMULATIONS OF COLLISIONLESS SHOCKS AT LUNAR MAGNETIC ANOMALIES AND THEIR ROLE IN FORMING LUNAR SWIRLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamford, R. A.; Kellett, B. J.; Alves, E. P.

    Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit)more » collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the “lunar swirls” and “dark lanes.” Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.« less

  8. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Abell, D.; Amundson, J.; Bruhwiler, D. L.; Busby, R.; Carlsson, J. A.; Dimitrov, D. A.; Kashdan, E.; Messmer, P.; Nieter, C.; Smithe, D. N.; Spentzouris, P.; Stoltz, P.; Trines, R. M.; Wang, H.; Werner, G. R.

    2006-09-01

    As the size and cost of particle accelerators escalate, high-performance computing plays an increasingly important role; optimization through accurate, detailed computermodeling increases performance and reduces costs. But consequently, computer simulations face enormous challenges. Early approximation methods, such as expansions in distance from the design orbit, were unable to supply detailed accurate results, such as in the computation of wake fields in complex cavities. Since the advent of message-passing supercomputers with thousands of processors, earlier approximations are no longer necessary, and it is now possible to compute wake fields, the effects of dampers, and self-consistent dynamics in cavities accurately. In this environment, the focus has shifted towards the development and implementation of algorithms that scale to large numbers of processors. So-called charge-conserving algorithms evolve the electromagnetic fields without the need for any global solves (which are difficult to scale up to many processors). Using cut-cell (or embedded) boundaries, these algorithms can simulate the fields in complex accelerator cavities with curved walls. New implicit algorithms, which are stable for any time-step, conserve charge as well, allowing faster simulation of structures with details small compared to the characteristic wavelength. These algorithmic and computational advances have been implemented in the VORPAL7 Framework, a flexible, object-oriented, massively parallel computational application that allows run-time assembly of algorithms and objects, thus composing an application on the fly.

  9. Penning plasma based simultaneous light emission source of visible and VUV lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less

  10. Investigating the correlations between water coma emissions and active regions in comet 67P/ Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; Filacchione, Gianrico; Capaccioni, Fabrizio; Piccioni, Giuseppe; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; Combi, Michael R.; Fougere, Nicolas; Rinaldi, Giovanna; VIRTIS Team

    2016-10-01

    Vibrational emission lines of H2O and CO2 at 2.67 and 4.27 μm, respectively, were identified by the VIRTIS spectrometer (Bockelée-Morvan et al., 2015; Migliorini et al., 2016; Fink et al., 2016) and mapped from the surface up to about 10 km altitude with a spatial resolution on the order of tens of meters per pixel (Migliorini et al., 2016).Data acquired in April 2015 with the VIRTIS spectrometer on board the Rosetta mission, provided information on the possible correlation between the H2O emission in the inner coma and the exposed water deposits detected in the Hapi region on the 67P/Churyumov-Gerasimenko surface (Migliorini et al., 2106; De Sanctis et al., 2015). Further bright spots attributed to exposed water ice have been identified in other regions by OSIRIS at visible wavelengths (Pommerol, et al., 2015) and confirmed in the infrared by VIRTIS-M in the Imothep region (Filacchione et al., 2016). The small dimensions of these icy spots - approximately 100x100 m (Filacchione et al., 2016) - and the relatively small amount of water ice (about 5%) make uncertain the correlation with the strong emissions in the coma.However, VIRTIS data show that the distribution of jet-like emissions seems to follow the distribution of cliffs and exposed areas identified in the North hemisphere with OSIRIS camera (Vincent et al., 2015). These areas are mainly concentrated in correspondence of comet's rough terrains, while a lack of active regions is observed in the comet's neck. Nevertheless, strong H2O emission is observed above the neck with VIRTIS. This might be a consequence of gas jets that are originated in the surrounding of the neck but converging towards the neck itself. This gaseous activity is the main driver of the dust upwelling (Migliorini et al, 2016; Rinaldi et al., in preparation)In this paper, we investigate the relationship between H2O vapour observed with VIRTIS within 5 km from the 67P/C-G nucleus and the exposed regions identified by OSIRIS on the surface (in the timeframe March to April 2015) with an attempt to address possible variations with the heliocentric distance.

  11. Detection of outbursts and modeling of the activity during the summer of 2015 with Rosetta

    NASA Astrophysics Data System (ADS)

    Gicquel, Adeline; von Allmen, Paul; Hofstadter, Mark; MIRO, OSIRIS

    2017-10-01

    The ESA (European Space Agency) Rosetta spacecraft was launched on March 2, 2004 and reached comet 67P/Churyumov-Gerasimenko (67P) in August 2014.Close to perihelion in August 2015, a display of outbursts on 67P, known as the summer fireworks (Vincent et al. 2016), was observed with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and the NAVCAM. Vincent et al. (2016) reported the detection of 34 outbursts with one on average every 2.4 nucleus rotations.In the case of the Microwave Instrument for the Rosetta Orbiter (MIRO), the most useful scan pattern for tracking gas abundance before, during, and after an outburst was a series of raster scans across the nucleus along the comet-Sun direction. We identified a spectral feature that is indicative of high velocity gas moving toward the spacecraft as being associated with outbursts. In this particular study, we will report the detection of 6 outbursts with MIRO during the summer of 2015. One of the outbursts detected by MIRO was not observed with OSIRIS or the NAVCAM. We will present results for the gas production rate, as obtained from the H216O emission line observed with MIRO and a numerical model of the radiative transfer in the coma.Our goal is to better understand the physics of outbursts and how the dust is lifted by the gas, by comparing model results to OSIRIS images (sensitive to the dust abundance) and MIRO spectra (sensitive to the gas abundance and velocity). We used a Collisionless Gas Simulation tool developed at JPL to study the gas flow close to the nucleus and the dust trajectories as determined by the three main forces acting on the grains: the drag force, gravity and the radiative pressure. Our main objective is to understand the mechanisms responsible for the outburst and the activity. Past studies have shown that outbursts are in fact a combination of both gas and dust, in which the active surface at the source of the outburst is believed to be approximately 10 times more active than the average rate found in the surrounding areas (Gicquel et al. 2017). Preliminary results show that the activity follows the insolation/illumination pattern.

  12. The OSIRIS-REx Sample Return Mission from Asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante; Clark, Benton

    2016-07-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security‒Regolith Explorer (OSIRIS-REx) mission is to return and analyze a sample of pristine regolith from asteroid 101955 Bennu, a primitive carbonaceous asteroid and also a potentially hazardous near-Earth object. Returned samples are expected to contain primitive ancient Solar System materials formed in planetary, nebular, interstellar, and circumstellar environments. In addition, the OSIRIS-REx mission will obtain valuable information on sample context by imaging the sample site; characterize its global geology; map global chemistry and mineralogy; investigate dynamic history by measuring the Yarkovsky effect; and advance asteroid astronomy by characterizing surface properties for direct comparison with ground-based telescopic observations of the entire asteroid population. Following launch in September 2016, the spacecraft will encounter Bennu in August 2018, then embark on a systematic study of geophysical and morphological characteristics of this ~500-meter-diameter object, including a systematic search for satellites and plumes. For determination of context, composition, and sampleability of various candidate sites, advanced instruments for remote global observations include OVIRS (visible to mid-IR spectrometric mapper), OTES (mid- to far-IR mineral and thermal emission mapper), OLA (mapping laser altimeter), and a suite of scientific cameras (OCAMS) with sub-cm pixel size from low-altitude Reconnaissance passes. A unique sample acquisition mechanism (SAM) capable of collecting up to one liter of regolith under ideal conditions (abundant small particulates < 2 cm) is expected to obtain at least 60 g of bulk regolith as well as surface grains on contact pads for analysis upon return to Earth. Using touch-and-go (TAG), a few seconds of contact is adequate for the gas-driven collection technique to acquire sample. This TAGSAM system has been developed and extensively tested in ground tests, and also on reduced-gravity airplane flights, to evaluate collection efficiency for various surfaces. Special cleaning techniques and contamination monitoring with in-flight witness plates are employed to assure a pristine sample. In September 2023, the entire TAGSAM end-effector stowed inside a Stardust-heritage Sample Return Capsule (SRC) will land on the Utah Test and Training Range (UTTR). The samples will then be transported to the NASA Johnson Space Center (JSC) curatorial facility for analysis and distribution to laboratories worldwide.

  13. 67P Through the Lens of Art

    NASA Astrophysics Data System (ADS)

    Smirnova, Ekaterina; ESA, The Open University, OSIRIS

    2016-10-01

    I am an artist, who is deeply inspired by science. Since the landing of the robotic probe Philae on the comet I have been working on an art project called 67P. Having a goal of discovering our place in the universe, I chose ESA's Rosetta mission as a successful example of such discovery. During the conference I'd like to expand the dialogue to include an artistic research of the comet 67P. I invite the participants to explore 67P through the lens of art and create inspirational reciprocity in between two spheres, creative and scientific. New ideas often originate when two vocabularies are smashed together. Via this path we perhaps will be able to get a new way of exploring the topic of cometary science.During the conference I'd like to present:- 67p artwork in the art section- poster outlining the major focuses of my projectArt project focuses:- 67P water:In the art studio I re-create water that is close in composition to the water on the comet, by enriching it with D2O. With this water I paint large scale paintings, based on the photographs by Rosetta (OSIRIS, Nav. Cam.).- spectroscopic data:Inspired by data from OSIRIS, I create an additional layer to my work using augmented reality to reveal a "hidden" from the view layer. I am making a parallel with the idea that some scientific information could be viewed only by using special instruments, in this case - instruments on board of Rosetta spacecraft, such as OSIRIS. You will be able to see a virtual layer on top of my paintings using a readily available instrument - your cellphone. Red, Green and Blue colors, of particular wavelength, will be introduced to the monochromatic paintings.- magnetometer readings:International music collaboration inspired by the "Singing comet" composition, based on the magnetometer data of 67P will be offered for any interested spectators.- 67P smell:In collaboration with The Open University, UK, postcards with a smell of the comet were created, introducing the chemical components of the comet. The cards will be also presented during the conference.View my work:paintings: http://ekaterina-smirnova.com/67p/music: http://www.ekaterina-smirnova.com/67p-music/50 ESLAB symposium: http://bit.ly/2aYpaKs

  14. Lightcurve, Color and Phase Function Photometry of the OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Hergenrother, Carl W.; Nolan, Michael C.; Binzel, Richard P.; Cloutis, Edward A.; Barucci, Maria Antonietta; Michel, Patrick; Scheeres, Daniel J.; d'Aubigny, Christian Drouet; Lazzaro, Daniela; Pinilla-Alonso, Noemi; Campins, Humberto; Licandro, Javier; Clark, Beth E.; Rizk, Bashar; Beshore, Edward C.; Lauretta, Dante S.

    2013-09-01

    The NASA OSIRIS-REx mission will retrieve a sample of the carbonaceous near-Earth Asteroid (101955) Bennu and return it to Earth in 2023. Photometry in the Eight Color Asteroid Survey (ECAS) filter system and Johnson-Cousins V and R filters were conducted during the two most recent apparitions in 2005/2006 and 2011/2012. Lightcurve observations over the nights of September 14-17, 2005 yielded a synodic rotation period of 4.2905 ± 0.0065 h, which is consistent with the results of Nolan et al. (2013). ECAS color measurements made during the same nights confirm the B-type classification of Clark et al. (Clark, B.E., Binzel, R.P., Howell, E.S., Cloutis, E.A., Ockert-Bell, M., Christensen, P., Barucci, M.A., DeMeo, F., Lauretta, D.S., Connolly, H., Soderberg, A., Hergenrother, C., Lim, L., Emery, J., Mueller, M. [2011]. Icarus 216, 462-475). A search for the 0.7 μm hydration feature using the method of Vilas (Vilas, F. [1994]. Icarus 111, 456-467) did not reveal its presence. Photometry was obtained over a range of phase angles from 15° to 96° between 2005 and 2012. The resulting phase function slope of 0.040 magnitudes per degree is consistent with the phase slopes of other low albedo near-Earth asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105).

  15. Stratospheric Ozone Trends and Variability as Seen by SCIAMACHY from 2002 to 2012

    NASA Technical Reports Server (NTRS)

    Gebhardt, C.; Rozanov, A.; Hommel, R.; Weber, M.; Bovensmann, H.; Burrows, J. P.; Degenstein, D.; Froidevaux, L.; Thompson, A. M.

    2014-01-01

    Vertical profiles of the rate of linear change (trend) in the altitude range 15-50 km are determined from decadal O3 time series obtained from SCIAMACHY/ENVISAT measurements in limb-viewing geometry. The trends are calculated by using a multivariate linear regression. Seasonal variations, the quasi-biennial oscillation, signatures of the solar cycle and the El Nino-Southern Oscillation are accounted for in the regression. The time range of trend calculation is August 2002-April 2012. A focus for analysis are the zonal bands of 20 deg N - 20 deg S (tropics), 60 - 50 deg N, and 50 - 60 deg S (midlatitudes). In the tropics, positive trends of up to 5% per decade between 20 and 30 km and negative trends of up to 10% per decade between 30 and 38 km are identified. Positive O3 trends of around 5% per decade are found in the upper stratosphere in the tropics and at midlatitudes. Comparisons between SCIAMACHY and EOS MLS show reasonable agreement both in the tropics and at midlatitudes for most altitudes. In the tropics, measurements from OSIRIS/Odin and SHADOZ are also analysed. These yield rates of linear change of O3 similar to those from SCIAMACHY. However, the trends from SCIAMACHY near 34 km in the tropics are larger than MLS and OSIRIS by a factor of around two.

  16. Measuring Environmental and Socio-economic Impact of Deforestation at Kalimantan Island

    NASA Astrophysics Data System (ADS)

    Nahib, Irmadi; Trenggana, Soma; Turmudi; Suryanta, Jaka; Lestari Munajati, Sri; Windiastuti, Rizka

    2018-05-01

    Indonesia’s forests in the period of 2000-2009 has been deforested by about 15.158 million ha out of 103.309 milion ha. Deforestation caused carbon emissions. One method for measuring emissions from deforestation and forest degradation is GeOSIRIS model. A modeled GeOSIRIS policy used a carbon payment system to incentivize emission reductions. Data used in this study were maps of forest cover in 2005 and 2010, map of deforestation 2005-2010, carbon and agricultural price and driver variables for deforestation such as slope, elevation, logarithmic distance to the nearest road or provincial capital, or the amount of area per pixel included in a national park, or a timber plantation. The result of this study showed rate of deforestation was 1.417 million ha/5 years (observed). The REDD policy could decrease deforestation in Kalimantan Island by 0.170 million ha (16.70%), with assumption that international carbon price of US 10/tCO2e. The change of emissions due to REDD was 22.29%, or reduced emissions by 245.03 million tCO2e/5 years. Finally, Gross National Revenue from carbon payments (NPV 5 years) was US 2,450.34 billion, where incentivize emission reductions to sub-national entities (NPV, 5 years) was US 2,150.07 million and net central government surplus from carbon payments was US 300.26 million (NPV, 5 years).

  17. Nucifer: A small electron-antineutrino detector for fundamental and safeguard studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letourneau, A.; Bui, V. M.; Cribier, M.

    The Nucifer detector will be deployed in the next few months at the Osiris research reactor in France. Nucifer is a 1-ton Gd-doped liquid scintillator detector devoted to reactor antineutrino studies. It will be installed 7 m away from the compact core of the Osiris reactor. The design of such small volume detector has been focused on high detection efficiency and good background rejection. Over the last decades, our understanding of the neutrino properties has been improved and allows today the possibility to apply the detection of antineutrinos to automatic and to non intrusively survey nuclear power plant. This hasmore » triggered the interest of the International Atomic Energy Agency (IAEA), which is interested by developing new safeguard techniques for next generation reactors. The sensitivity of such technique has to be proved and demonstrated. On the other hand there is still some issues in our understanding of the neutrino properties as the observed deficit in the antineutrino rate at short distances (< 100 m) that can not be explained by oscillations in the 3-flavors neutrino model. If a global systematic error is rejected, such anomaly opens the door to new physic that can be assessed with small detectors placed close to the core. Here we review the Nucifer detector in this context and the tests we are performing. (authors)« less

  18. Distributed file management for remote clinical image-viewing stations

    NASA Astrophysics Data System (ADS)

    Ligier, Yves; Ratib, Osman M.; Girard, Christian; Logean, Marianne; Trayser, Gerhard

    1996-05-01

    The Geneva PACS is based on a distributed architecture, with different archive servers used to store all the image files produced by digital imaging modalities. Images can then be visualized on different display stations with the Osiris software. Image visualization require to have the image file physically present on the local station. Thus, images must be transferred from archive servers to local display stations in an acceptable way, which means fast and user friendly where the notion of file must be hidden to users. The transfer of image files is done according to different schemes including prefetching and direct image selection. Prefetching allows the retrieval of previous studies of a patient in advance. A direct image selection is also provided in order to retrieve images on request. When images are transferred locally on the display station, they are stored in Papyrus files, each file containing a set of images. File names are used by the Osiris viewing software to open image sequences. But file names alone are not explicit enough to properly describe the content of the file. A specific utility has been developed to present a list of patients, and for each patient a list of exams which can be selected and automatically displayed. The system has been successfully tested in different clinical environments. It will be soon extended on a hospital wide basis.

  19. Observations of the global haze redistribution on Titan from 2006 to 2015 with OSIRIS at Keck

    NASA Astrophysics Data System (ADS)

    Ádámkovics, Máté; de Pater, Imke

    2017-07-01

    We observed Titan with the OH Suppressing InfraRed Imaging Spectrograph (OSIRIS) at the W. M. Keck observatory from 2006 through 2015 using adaptive optics. The sunlight scattered by atmospheric haze was spatially resolved in the 2.0 μm (K) band window, and the spectra were analyzed with a radiative transfer model to determine the vertical (altitude) and meridional (latitudinal) variation in the haze distribution over this time period. This study complements recent work by Karkoschka (2016) in the season of observations, in the time span and sampling interval, in wavelength coverage and spectral resolution, as well as in the radiative transfer methodology and analysis. We observe the largest meridional gradient in haze opacity above 20 km toward the northern hemisphere in January 2010. Individual observations can show significant deviations from a relatively smooth linear gradient in haze across the entire disk. The variation in haze below 20 km is rarely well-described by a simple model and there is a systematically smaller amount of haze opacity retrieved from the equator to 10° S when observing the disk with a sub-observer longitude near 150° W. This correlation with longitude suggests one of the following; a localized decrease in haze scattering, a localized increase in gas opacity, or a systematic over-estimate of the surface albedo in this region.

  20. 67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Bertini, I.; Mottola, S.; Vincent, J.-B.; Lara, L.; Fornasier, S.; Knollenberg, J.; Thomas, N.; Fulle, M.; Agarwal, J.; Bodewits, D.; Ferri, F.; Güttler, C.; Gutierrez, P. J.; La Forgia, F.; Lowry, S.; Magrin, S.; Oklay, N.; Pajola, M.; Rodrigo, R.; Sierks, H.; A'Hearn, M. F.; Angrilli, F.; Barbieri, C.; Barucci, M. A.; Bertaux, J.-L.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Groussin, O.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Koschny, D.; Kramm, R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lamy, P. L.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Rickman, H.; Sabau, L.; Wenzel, K.-P.

    2015-01-01

    Aims: 67P/Churyumov-Gerasimenko is the target comet of the ESA's Rosetta mission. After commissioning at the end of March 2014, the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard Rosetta, started imaging the comet and its dust environment to investigate how they change and evolve while approaching the Sun. Methods: We focused our work on Narrow Angle Camera (NAC) orange images and Wide Angle Camera (WAC) red and visible-610 images acquired between 2014 March 23 and June 24 when the nucleus of 67P was unresolved and moving from approximately 4.3 AU to 3.8 AU inbound. During this period the 67P - Rosetta distance decreased from 5 million to 120 thousand km. Results: Through aperture photometry, we investigated how the comet brightness varies with heliocentric distance. 67P was likely already weakly active at the end of March 2014, with excess flux above that expected for the nucleus. The comet's brightness was mostly constant during the three months of approach observations, apart from one outburst that occurred around April 30 and a second increase in flux after June 20. Coma was resolved in the profiles from mid-April. Analysis of the coma morphology suggests that most of the activity comes from a source towards the celestial north pole of the comet, but the outburst that occurred on April 30 released material in a different direction.

  1. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  2. The use of a computed tomographic application for mobile devices in the diagnosis of oral and maxillofacial surgery.

    PubMed

    Aoki, Eduardo Massaharu; Cortes, Arthur Rodriguez Gonzalez; Arita, Emiko Saito

    2015-01-01

    The aim of the current technical report was to introduce a computed tomographic (CT) application for mobile devices as a diagnostic tool for analyzing CT images. An iPad and an iPhone (Apple, Cuppertino, CA) were used to navigate through multiplanar reconstructions of cone beam CT scans, using an application derived from the OsiriX CT software. Tools and advantages of this method were recorded. In addition, images rendered in the iPad were manipulated during dental implant placement and grafting procedures to follow up and confirm the implant digital planning in real time. The study population consisted of 10 patients. In all cases, it was possible to use image manipulation tools, such as changing contrast and brightness, zooming, rotating, panning, performing both linear and area measurements, and analyzing gray-scale values of a region of interest. Furthermore, it was possible to use the OsiriX application in the dental clinic where the study was conducted, to follow-up the analyzed implant placement and grafting procedures at the chairside. The current findings suggest that technological and practical methods to visualize radiographic images are invaluable resources to improve training, teaching, networking, and the performance of real-time follow-up of oral and maxillofacial surgical procedures. This article discusses the advantages and disadvantages of introducing this new technology in the clinical routine.

  3. OB stars at the lowest Local Group metallicity. GTC-OSIRIS observations of Sextans A

    NASA Astrophysics Data System (ADS)

    Camacho, I.; Garcia, M.; Herrero, A.; Simón-Díaz, S.

    2016-01-01

    Context. Massive stars play an important role in the chemical and dynamical evolution of the Universe. The first metal-poor stars may have started the reionization of the Universe. To understand these early epochs it is necessary to know the behavior and the physical properties of massive stars in very metal-poor environments. We focus on the massive stellar content of the metal-poor irregular galaxy Sextans A. Aims: Our aim is to find and classify OB stars in Sextans A, so as to later determine accurate stellar parameters of these blue massive stars in this low-metallicity region (Z ~ 0.1 Z⊙). Methods: Using UBV photometry, the reddening-free index Q and GALEX imaging, we built a list of blue massive star candidates in Sextans A. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and carried out spectral classification. For the confirmed O-stars, we derived preliminary stellar parameters. Results: The target selection criteria and observations were successful and have produced the first spectroscopic atlas of OB-type stars in Sextans A. From the whole sample of 18 observed stars, 12 were classified as early OB-types, including 5 O-stars. The radial velocities of all target stars are in agreement with their Sextans A membership, although three of them show significant deviations. We determined the stellar parameters of the O-type stars using the stellar atmosphere code FASTWIND and revisited the sub-SMC temperature scale. Two of the O-stars are consistent with relatively strong winds and enhanced helium abundances, although results are not conclusive. We discuss the position of the OB stars in the HRD. Initial stellar masses run from slightly below 20 up to 40 solar masses. Conclusions: The target selection method worked well for Sextans A. The stellar temperatures are consistent with findings in other galaxies. Some of the targets deserve follow-up spectroscopy because of indications of a runaway nature, an enhanced helium abundance, or a relatively strong wind. We observe a correlation between HI and OB associations similar to the irregular galaxy IC 1613, confirming the previous result that the most recent star formation of Sextans A is currently ongoing near the rim of the H I cavity. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-12A.The data are available through the GTC archive: http://https://gtc.sdc.cab.inta-csic.es/gtc/jsp/searchres.jsp

  4. Advantages and Disadvantages in Image Processing with Free Software in Radiology.

    PubMed

    Mujika, Katrin Muradas; Méndez, Juan Antonio Juanes; de Miguel, Andrés Framiñan

    2018-01-15

    Currently, there are sophisticated applications that make it possible to visualize medical images and even to manipulate them. These software applications are of great interest, both from a teaching and a radiological perspective. In addition, some of these applications are known as Free Open Source Software because they are free and the source code is freely available, and therefore it can be easily obtained even on personal computers. Two examples of free open source software are Osirix Lite® and 3D Slicer®. However, this last group of free applications have limitations in its use. For the radiological field, manipulating and post-processing images is increasingly important. Consequently, sophisticated computing tools that combine software and hardware to process medical images are needed. In radiology, graphic workstations allow their users to process, review, analyse, communicate and exchange multidimensional digital images acquired with different image-capturing radiological devices. These radiological devices are basically CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. Nevertheless, the programs included in these workstations have a high cost which always depends on the software provider and is always subject to its norms and requirements. With this study, we aim to present the advantages and disadvantages of these radiological image visualization systems in the advanced management of radiological studies. We will compare the features of the VITREA2® and AW VolumeShare 5® radiology workstation with free open source software applications like OsiriX® and 3D Slicer®, with examples from specific studies.

  5. Writing instrument interfaces with xf/tktcl

    NASA Technical Reports Server (NTRS)

    Henden, A. A.

    1992-01-01

    Tcl is an embedded control language written in C, running primarily under Unix and with an interpreted C look-and-feel. Tk is an X11 toolkit based on tcl. Xf is an application builder for tk. The entire package is public domain and available from sprite.berkeley.edu. This paper discusses the use of tk to develop a user interface for OSIRIS, an infrared camera/spectrograph now operational on the OSU Perkins 1.8m telescope. The good and bad features of the development process are described.

  6. Swift J1822.3-1606: Optical spectroscopy of the counterpart candidates from the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Munoz-Darias, T.

    2011-07-01

    We have performed optical spectroscopy of the two objects (S1 and S2; ATEL #3496, #3502) present within the Swift/XRT error circle of the Soft Gamma-ray Repeater (SGR) candidate, Swift J1822.3-1606 (ATEL #3488, #3489, #3490, #3491, #3493, #3501, #3503). Observations were performed on July 20, 2011 using the OSIRIS spectrograph at the 10.4m Gran Telescopio de Canarias (GTC) telescope in La Palma, Spain.

  7. OSIRIX: open source multimodality image navigation software

    NASA Astrophysics Data System (ADS)

    Rosset, Antoine; Pysher, Lance; Spadola, Luca; Ratib, Osman

    2005-04-01

    The goal of our project is to develop a completely new software platform that will allow users to efficiently and conveniently navigate through large sets of multidimensional data without the need of high-end expensive hardware or software. We also elected to develop our system on new open source software libraries allowing other institutions and developers to contribute to this project. OsiriX is a free and open-source imaging software designed manipulate and visualize large sets of medical images: http://homepage.mac.com/rossetantoine/osirix/

  8. Visible spectra of (474640) 2004 VN112-2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    de León, J.; de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2017-05-01

    The existence of significant anisotropies in the distributions of the directions of perihelia and orbital poles of the known extreme trans-Neptunian objects (ETNOs) has been used to claim that trans-Plutonian planets may exist. Among the known ETNOs, the pair (474640) 2004 VN112-2013 RF98 stands out. Their orbital poles and the directions of their perihelia and their velocities at perihelion/aphelion are separated by a few degrees, but orbital similarity does not necessarily imply common physical origin. In an attempt to unravel their physical nature, visible spectroscopy of both targets was obtained using the OSIRIS camera-spectrograph at the 10.4 m Gran Telescopio Canarias (GTC). From the spectral analysis, we find that 474640-2013 RF98 have similar spectral slopes (12 versus 15 per cent/0.1 μm), very different from Sedna's but compatible with those of (148209) 2000 CR105 and 2012 VP113. These five ETNOs belong to the group of seven linked to the Planet Nine hypothesis. A dynamical pathway consistent with these findings is dissociation of a binary asteroid during a close encounter with a planet and we confirm its plausibility using N-body simulations. We thus conclude that both the dynamical and spectroscopic properties of 474640-2013 RF98 favour a genetic link and their current orbits suggest that the pair was kicked by a perturber near aphelion.

  9. Peer-to-peer architecture for multi-departmental distributed PACS

    NASA Astrophysics Data System (ADS)

    Rosset, Antoine; Heuberger, Joris; Pysher, Lance; Ratib, Osman

    2006-03-01

    We have elected to explore peer-to-peer technology as an alternative to centralized PACS architecture for the increasing requirements for wide access to images inside and outside a radiology department. The goal being to allow users across the enterprise to access any study anytime without the need for prefetching or routing of images from central archive. Images can be accessed between different workstations and local storage nodes. We implemented "bonjour" a new remote file access technology developed by Apple allowing applications to share data and files remotely with optimized data access and data transfer. Our Open-source image display platform called OsiriX was adapted to allow sharing of local DICOM images through direct access of each local SQL database to be accessible from any other OsiriX workstation over the network. A server version of Osirix Core Data database also allows to access distributed archives servers in the same way. The infrastructure implemented allows fast and efficient access to any image anywhere anytime independently from the actual physical location of the data. It also allows benefiting from the performance of distributed low-cost and high capacity storage servers that can provide efficient caching of PACS data that was found to be 10 to 20 x faster that accessing the same date from the central PACS archive. It is particularly suitable for large hospitals and academic environments where clinical conferences, interdisciplinary discussions and successive sessions of image processing are often part of complex workflow or patient management and decision making.

  10. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, D. S.; Balram-Knutson, S. S.; Beshore, E.; Boynton, W. V.; Drouet d'Aubigny, C.; DellaGiustina, D. N.; Enos, H. L.; Golish, D. R.; Hergenrother, C. W.; Howell, E. S.; Bennett, C. A.; Morton, E. T.; Nolan, M. C.; Rizk, B.; Roper, H. L.; Bartels, A. E.; Bos, B. J.; Dworkin, J. P.; Highsmith, D. E.; Lorenz, D. A.; Lim, L. F.; Mink, R.; Moreau, M. C.; Nuth, J. A.; Reuter, D. C.; Simon, A. A.; Bierhaus, E. B.; Bryan, B. H.; Ballouz, R.; Barnouin, O. S.; Binzel, R. P.; Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.; Chesley, S. R.; Christensen, P. R.; Clark, B. E.; Connolly, H. C.; Crombie, M. K.; Daly, M. G.; Emery, J. P.; McCoy, T. J.; McMahon, J. W.; Scheeres, D. J.; Messenger, S.; Nakamura-Messenger, K.; Righter, K.; Sandford, S. A.

    2017-10-01

    In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu's resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  11. Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.

  12. Making the PACS workstation a browser of image processing software: a feasibility study using inter-process communication techniques.

    PubMed

    Wang, Chunliang; Ritter, Felix; Smedby, Orjan

    2010-07-01

    To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.

  13. Photometric models of disk-integrated observations of the OSIRIS-REx target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Clark, Beth Ellen; Drouet d'Aubigny, Christian; Hergenrother, Carl W.; Li, Jian-Yang; Lauretta, Dante S.; Binzel, Richard P.

    2015-05-01

    We used ground-based photometric phase curve data of the OSIRIS-REx target Asteroid (101955) Bennu and low phase angle data from Asteroid (253) Mathilde as a proxy to fit Bennu data with Minnaert, Lommel-Seeliger, (RObotic Lunar Orbiter) ROLO, Hapke, and McEwen photometric models, which capture the global light scattering properties of the surface and subsequently allow us to calculate the geometric albedo, phase integral, spherical Bond albedo, and the average surface normal albedo for Bennu. We find that Bennu has low reflectance and geometric albedo values, such that multiple scattering is expected to be insignificant. Our photometric models relate the reflectance from Bennu's surface to viewing geometry as functions of the incidence, emission, and phase angles. Radiance Factor functions (RADFs) are used to model the disk-resolved brightness of Bennu. The Minnaert, Lommel-Seeliger, ROLO, and Hapke photometric models work equally well in fitting the best ground-based photometric phase curve data of Bennu. The McEwen model works reasonably well at phase angles from 20° to 70°. Our calculated geometric albedo values of 0.047-0.014+0.012,0.047-0.014+0.005 , and 0.048-0.022+0.012 for the Minnaert, the Lommel-Seeliger, and the ROLO models respectively are consistent with the geometric albedo of 0.045 ± 0.015 computed by Emery et al. (Emery, J.P. et al. [2014]. Icarus 234, 17-35) and Hergenrother et al. (Hergenrother, C.W. et al. [2014].

  14. The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Barbieri, C.; Keller, H. U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K. P.; Cremonese, G.; Jorda, L.; Küppers, M.; Marchi, S.; Marzari, F.; Massironi, M.; Preusker, F.; Scholten, F.; Stephan, K.; Barucci, M. A.; Besse, S.; El-Maarry, M. R.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Koschny, D.; Kührt, E.; Martellato, E.; Moissl, R.; Snodgrass, C.; Tubiana, C.; Vincent, J.-B.

    2012-06-01

    The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object.

  15. OSIRIS Modeling of High Energy Electron Transport in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    May, J.; Yabuuchi, T.; McGuffey, C.; Wei, Ms; Beg, F.; Mori, Wb

    2016-10-01

    In experiments on the Omega EP laser, a high intensity laser beam (eA /me c > 1) is focused onto a gold foil, generating relativistic electrons. Behind the Au foil is a layer of plastic foam through which the electrons are allowed to transport, and on the far side of the CH from the gold is a copper foil; electron fluence is measured by recording the k- α from that foil. The foam layer is either pre-ionized via a shock launched from an ablator irradiated earlier with a beam perpendicular to the high intensity beam; or the foam is in the solid state when the high intensity beam is switched on. In the latter case the foam - which has an initial density of 200mg /cm3 - heats to a temperature of 40eV and rarifies to a density of 30mg /cm3 . Results show an order of magnitude decrease in k- α when the CH layer is pre-ionized compared to cold CH. OSIRIS simulations indicate that the primary explanation for the difference in transport seen in the experiment is the partial resistive collimation of the beam in the higher density material, caused by collisional resistivity. The effect seems to be mostly caused by the higher density itself, with temperature having minimal effect. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  16. Radar Observations of Asteroid 101955 Bennu and the OSIRIS-REx Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Nolan, M. C.; Benner, L.; Giorgini, J. D.; Howell, E. S.; Kerr, R.; Lauretta, D. S.; Magri, C.; Margot, J. L.; Scheeres, D. J.

    2017-12-01

    On September 24, 2023, the OSIRIS-REx spacecraft will return a sample of asteroid (101955) Bennu to the Earth. We chose the target of this mission in part because of the work we did over more than a decade using the Arecibo and Goldstone planetary radars to observe this asteroid. We observed Bennu (then known as 1999 RQ36) at Arecibo and Goldstone in 1999 and 2005, and at Arecibo in 2011. Radar imaging from the first two observing epochs provided a shape and size for Bennu, which greatly simplified mission planning. We know that the spacecraft will encounter a roundish asteroid 500 m in diameter with a distinct equatorial ridge [Nolan et al., 2013]. Bennu does not have the dramatic concavities seen in Itokawa and comet 67P/Churyumov-Gerasimenko, the Hayabusa and Rosetta mission targets, respectively, which would have been obvious in radar imaging. Further radar ranging in 2011 provided a detection of the Yarkovsky effect, allowing us to constrain Bennu's mass and bulk density from radar measurement of non-gravitational forces acting on its orbit [Chesley et al., 2014]. The 2011 observations were particularly challenging, occurring during a management transition at the Arecibo Observatory, and would not have been possible without significant extra cooperation between the old and new managing organizations. As a result, we can predict Bennu's position to within a few km over the next 100 years, until its close encounter with the Earth in 2135. We know its shape to within ± 10 m (1σ) on the long and intermediate axes and ± 52 m on the polar diameter, and its pole orientation to within 5 degrees. The bulk density is 1260 ± 70 kg/m3 and the rotation is retrograde with a 4.297 ± 0.002 h period The OSIRIS-REx team is using these constraints to preplan the initial stages of proximity operations and dramatically reduce risk. The Figure shows the model and Arecibo radar images from 1999 (left), 2005 (center), and 2011 (right). Bennu is the faint dot near the center of the circles in the three images from 2011, which are at much lower resolution - 300 m instead of the 15 m (1999) and 7.5 m (2005) of the earlier observations. Bennu is about 500m in dimeter. The left and center panels show the derived shape model (left), the simulated radar data (center), and the actual radar data (right) for two example radar images (of approximately 700 images used in the modelling).

  17. Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Lara, L. M.; Lowry, S.; Vincent, J.-B.; Gutiérrez, P. J.; Rożek, A.; La Forgia, F.; Oklay, N.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; Auger, A.-T.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Besse, S.; Bodewits, D.; Cremonese, G.; Davidsson, B.; Da Deppo, V.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Ferri, F.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lin, Z.-Y.; López-Moreno, J. J.; Magrin, S.; Marzari, F.; Michalik, H.; Moissl-Fraund, R.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Thomas, N.; Sabau, M. D.; Tubiana, C.

    2015-11-01

    Context. During the most recent perihelion passage in 2009 of comet 67P/Churyumov-Gerasimenko (67P), ground-based observations showed an anisotropic dust coma where jet-like features were detected at ~ 1.3 AU from the Sun. The current perihelion passage is exceptional as the Rosetta spacecraft is monitoring the nucleus activity since March 2014, when a clear dust coma was already surrounding the nucleus at 4.3 AU from the Sun. Subsequently, the OSIRIS camera also witnessed an outburst in activity between April 27 and 30, and since mid-July, the dust coma at rh ~ 3.7-3.6 AU preperihelion is clearly non-isotropic, pointing to the existence of dust jet-like features. Aims: We aim to ascertain on the nucleus surface the origin of the dust jet-like features detected as early as in mid-July 2014. This will help to establish how the localized comet nucleus activity compares with that seen in previous apparitions and will also help following its evolution as the comet approaches its perihelion, at which phase most of the jets were detected from ground-based observations. Determining these areas also allows locating them in regions on the nucleus with spectroscopic or geomorphological distinct characteristics. Methods: Three series of dust images of comet 67P obtained with the Wide Angle Camera (WAC) of the OSIRIS instrument onboard the Rosetta spacecraft were processed with different enhancement techniques. This was made to clearly show the existence of jet-like features in the dust coma, whose appearance toward the observer changed as a result of the rotation of the comet nucleus and of the changing observing geometry from the spacecraft. The position angles of these features in the coma together with information on the observing geometry, nucleus shape, and rotation, allowed us to determine the most likely locations on the nucleus surface where the jets originate from. Results: Geometrical tracing of jet sources indicates that the activity of the nucleus of 67P gave rise during July and August 2014 to large-scale jet-like features from the Hapi, Hathor, Anuket, and Aten regions, confirming that active regions may be present on the nucleus localized at 60° northern latitude as deduced from previous comet apparitions. There are also hints that large-scale jets observed from the ground are possibly composed, at their place of origin on the nucleus surface, of numerous small-scale features.

  18. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT/Finite Difference solver. This scheme also requires a current correction and filtering which require FFTs. However, we show that in this case the FFTs can be done locally on each parallel partition. We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher order finite difference/second order finite difference methods permit combining the Lorentz boosted frame simulation technique with another "speed up" technique, called the quasi-3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D algorithm the fields and currents are defined on an r--z PIC grid and expanded in azimuthal harmonics. The expansion is truncated with only a few modes so it has similar computational needs of a 2D r--z PIC code. We show that NCI has similar properties in r--z as in z-x slab geometry and show that the same strategies for eliminating the NCI in Cartesian geometry can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed up. We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT) solver. The new code includes implementation of a moving antenna that can launch lasers in the boosted frame. We also describe how the new hybrid algorithms were implemented into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and OSIRIS are given, including the comparisons against the lab frame results. We also describe how to efficiently obtain the boosted frame simulations data that are needed to generate the transformed lab frame data, as well as how to use a moving window in the boosted frame. The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds are colliding against each other. We show that the strategies for eliminating the NCI developed in this dissertation are enabling such simulations being run for much longer simulation times, which should open a path for major advances in relativistic shock research. (Abstract shortened by ProQuest.).

  19. The young stellar population of IC 1613. III. New O-type stars unveiled by GTC-OSIRIS

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Herrero, A.

    2013-03-01

    Context. Very low-metallicity massive stars are key to understanding the reionization epoch. Radiation-driven winds, chief agents in the evolution of massive stars, are consequently an important ingredient in our models of the early-Universe. Recent findings hint that the winds of massive stars with poorer metallicity than the SMC may be stronger than predicted by theory. Besides calling the paradigm of radiation-driven winds into question, this result would affect the calculated ionizing radiation and mechanical feedback of massive stars, as well as the role these objects play at different stages of the Universe. Aims: The field needs a systematic study of the winds of a large sample of very metal-poor massive stars. The sampling of spectral types is particularly poor in the very early types. This paper's goal is to increase the list of known O-type stars in the dwarf irregular galaxy IC 1613, whose metallicity is lower than the SMC's roughly by a factor 2. Methods: Using the reddening-free Q pseudo-colour, evolutionary masses, and GALEX photometry, we built a list of very likely O-type stars. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and performed spectral classification, the only way to unequivocally confirm candidate OB-stars. Results: We have discovered 8 new O-type stars in IC 1613, increasing the list of 7 known O-type stars in this galaxy by a factor of 2. The best quality spectra were analysed with the model atmosphere code FASTWIND to derive stellar parameters. We present the first spectral type - effective temperature scale for O-stars beyond the SMC. Conclusions: The target selection method is successful. From the pre-selected list of 13 OB star candidates, we have found 8 new O-stars and 4 early-B stars and provided a similar type for a formerly known early-O star. Further tests are needed, but the presented procedure can eventually make preliminary low-resolution spectroscopy to confirm candidates unnecessary. The derived effective temperature calibration for IC 1613 is about 1000 K hotter than the scale at the SMC. The analysis of an increased list of O-type stars will be crucial for studies of the winds and feedback of massive stars at all ages of the Universe. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-11B.Figures 4, 6 and Appendix A are available in electronic form at http://www.aanda.orgSpectra as FITS files are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A74

  20. Modeling Transport of Relativistic Electrons through Warm-Dense Matter Using Collisional PIC

    NASA Astrophysics Data System (ADS)

    May, J.; McGuffey, C.; Yabuuchi, T.; Wei, Ms; Beg, F.; Mori, Wb

    2017-10-01

    In electron transport experiments performed on the OMEGA EP laser system, a relativistic electron beam was created by focusing a high intensity (eA /me c > 1) laser onto a gold (Au) foil. Behind the Au foil was a layer of plastic (CH) foam, with an initial density of 200mg /cm3 . Before the high intensity laser was switched on, this foam was either left unperturbed; or it was shocked using a lower intensity laser (eA /me c 10-4) with beam path perpendicular to the high intensity laser, which left the CH layer in a warm dense matter (WDM) state with temperature of 40 eV and density of 30mg /cm3 . The electron beam was imaged by observing the k- α signal from a copper foil on the far side from the Au. The result was that transport was decreased by an order of magnitude in the WDM compared to the cold foam. We have modeled this experiment using the PIC code OSIRIS, with also a Monte Carlo Coulomb collision package. Our simulations indicate that the main cause of the differences in transport is a collimating magnetic field in the higher density, cold foam, created by collisional resistivity. The plasma density of the Au layer, difficult to model fully in PIC, appears to effect the heat capacity and therefore temperature and resistivity of the target. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  1. Phase control and fast start-up of a magnetron using modulation of an addressable faceted cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, J., E-mail: JimBrowning@BoiseState.edu; Fernandez-Gutierrez, S.; Lin, M. C.

    The use of an addressable, faceted cathode has been proposed as a method of modulating current injection in a magnetron to improve performance and control phase. To implement the controllable electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters are considered as these emitters could be fabricated on flat substrates. For demonstration, the conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL, has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and benchmarked against a typical continuous current source. For the modulated, ten-sided faceted cathode case, the electrons are injected frommore » three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one time to drive the five electron spokes of the π-mode. The emitter duty cycle is then 1/6th the Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35 ns for the modulated case compared to 100 ns for the continuous current cases. Analysis of the RF phase using the electron spoke locations and the RF magnetic field components shows that the phase is controlled for the modulated case while it is random, as typical, for the continuous current case. Active phase control during oscillation was demonstrated by shifting the phase of the electron injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles.« less

  2. Post-perihelion photometry of dust grains in the coma of 67P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Frattin, E.; Cremonese, G.; Simioni, E.; Bertini, I.; Lazzarin, M.; Ott, T.; Drolshagen, E.; La Forgia, F.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Ferrari, S.; Ferri, F.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lopez Moreno, J. J.; Lucchetti, A.; Marzari, F.; Massironi, M.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Penasa, L.; Shi, X.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2017-07-01

    We present a photometric analysis of individual dust grains in the coma of comet 67P/Churyumov-Gerasimenko using OSIRIS images taken from 2015 July to 2016 January. We analysed a sample of 555 taken during 18 d at heliocentric distances ranging between 1.25 and 2.04 au and at nucleocentric distances between 80 and 437 km. An automated method to detect the tracks was specifically developed. The images were taken by OSIRIS NAC in four different filters: Near-IR (882 nm), Orange (649 nm), FarOrange (649 nm) and Blue (480 nm). It was not always possible to recognize all the grains in the four filters, hence we measured the spectral slope in two wavelengths ranges: in the interval [480-649] nm, for 1179 grains, and in the interval [649-882] nm, for 746 grains. We studied the evolution of the two populations' average spectral slopes. The data result scattered around the average value in the range [480-649] nm, while in the [649-882] nm we observe a slight decreasing moving away from the Sun as well as a slight increasing with the nucleocentric distance. A spectrophotometric analysis was performed on a subsample of 339 grains. Three major groups were defined, based on the spectral slope between [535-882] nm: (I) the steep spectra that may be related with organic material, (II) the spectra with an intermediate slope, likely a mixture of silicates and organics and (III) flat spectra that may be associated with a high abundance of water ice.

  3. Online monitoring of the Osiris reactor with the Nucifer neutrino detector

    NASA Astrophysics Data System (ADS)

    Boireau, G.; Bouvet, L.; Collin, A. P.; Coulloux, G.; Cribier, M.; Deschamp, H.; Durand, V.; Fechner, M.; Fischer, V.; Gaffiot, J.; Gérard Castaing, N.; Granelli, R.; Kato, Y.; Lasserre, T.; Latron, L.; Legou, P.; Letourneau, A.; Lhuillier, D.; Mention, G.; Mueller, Th. A.; Nghiem, T.-A.; Pedrol, N.; Pelzer, J.; Pequignot, M.; Piret, Y.; Prono, G.; Scola, L.; Starzinski, P.; Vivier, M.; Dumonteil, E.; Mancusi, D.; Varignon, C.; Buck, C.; Lindner, M.; Bazoma, J.; Bouvier, S.; Bui, V. M.; Communeau, V.; Cucoanes, A.; Fallot, M.; Gautier, M.; Giot, L.; Guilloux, G.; Lenoir, M.; Martino, J.; Mercier, G.; Milleto, T.; Peuvrel, N.; Porta, A.; Le Quéré, N.; Renard, C.; Rigalleau, L. M.; Roy, D.; Vilajosana, T.; Yermia, F.; Nucifer Collaboration

    2016-06-01

    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second-shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides a new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the International Agency for Atomic Energy to enhance the safeguards of civil nuclear reactors. Deployed at only 7.2 m away from the compact Osiris research reactor core (70 MW) operating at the Saclay research center of the French Alternative Energies and Atomic Energy Commission, the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the ˜0.85 m3 detector remotely operating at a shallow depth equivalent to ˜12 m of water and under intense background radiation conditions. Based on 145 (106) days of data with the reactor on (off), leading to the detection of an estimated 40760 ν¯ e , the mean number of detected antineutrinos is 281 ±7 (stat )±18 (syst )ν¯ e/day , in agreement with the prediction of 277 ±23 ν¯ e/day . Because of the large background, no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.

  4. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents

    PubMed Central

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A.

    2015-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a–k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a–k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski’s rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  5. Visible spectroscopy of the Sulamitis and Clarissa primitive families: a possible link to Erigone and Polana

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí

    2018-02-01

    The low-inclination (i < 8∘) primitive asteroid families in the inner main belt, that is, Polana-Eulalia, Erigone, Sulamitis, and Clarissa, are considered to be the most likely sources of near-Earth asteroids (101955) Bennu and (162173) Ryugu. These two primitive NEAs will be visited by NASA OSIRIS-REx and JAXA Hayabusa 2 missions, respectively, with the aim of collecting samples of material from their surfaces and returning them back to Earth. In this context, the PRIMitive Asteroid Spectroscopic Survey (PRIMASS) was born, with the main aim to characterize the possible origins of these NEAs and constrain their dynamical evolution. As part of the PRIMASS survey we have already studied the Polana and Erigone collisional families in previously published works. The main goal of the work presented here is to compositionally characterize the Sulamitis and Clarissa families using visible spectroscopy. We have observed 97 asteroids (64 from Sulamitis and 33 from Clarissa) with the OSIRIS instrument (0.5-0.9 μm) at the 10.4 m Gran Telescopio Canarias (GTC). We found that about 60% of the sampled asteroids from the Sulamitis family show signs of aqueous alteration on their surfaces. We also found that the majority of the Clarissa members present no signs of hydration. The results obtained here show similarities between Sulamitis-Erigone and Clarissa-Polana collisional families. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A25

  6. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.

    PubMed

    Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol

    2013-11-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  7. Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on board Rosetta

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Agarwal, J.; A'Hearn, M. F.; Bertini, I.; Bodewits, D.; Sierks, H.; Lin, Z.-Y.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; Deller, J.; De Cecco, M.; Frattin, E.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marquez, P.; Güttler, C.; Höfner, S.; Hofmann, M.; Hu, X.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Lowry, S.; Marzari, F.; Masoumzadeh, N.; Massironi, M.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-11-01

    Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this paper was that through the sublimation of the aggregates of dirty grains (radius a between 5 and 50 μm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data, we needed to inject a number of aggregates between 8.5 × 1013 and 8.5 × 1010 for a = 5 and 50 μm, respectively, or an initial mass of H2O ice around 22 kg.

  8. Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images

    NASA Astrophysics Data System (ADS)

    Masoumzadeh, N.; Oklay, N.; Kolokolova, L.; Sierks, H.; Fornasier, S.; Barucci, M. A.; Vincent, J.-B.; Tubiana, C.; Güttler, C.; Preusker, F.; Scholten, F.; Mottola, S.; Hasselmann, P. H.; Feller, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; De Cecco, M.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Shi, X.; Thomas, N.

    2017-03-01

    Aims: We aim to explore the behavior of the opposition effect as an important tool in optical remote sensing on the nucleus of comet 67P/ Churyumov-Gerasimenko (67P), using Rosetta-OSIRIS images acquired in different filters during the approach phase, July-August 2014 and the close flyby images on 14 of February 2015, which contain the spacecraft shadow. Methods: We based our investigation on the global and local brightness from the surface of 67P with respect to the phase angle, also known as phase curve. The local phase curve corresponds to a region that is located at the Imhotep-Ash boundary of 67P. Assuming that the region at the Imhotep-Ash boundary and the entire nucleus have similar albedo, we combined the global and local phase curves to study the opposition-surge morphology and constrain the structure and properties of 67P. The model parameters were furthermore compared with other bodies in the solar system and existing laboratory study. Results: We found that the morphological parameters of the opposition surge decrease monotonically with wavelength, whereas in the case of coherent backscattering this behavior should be the reverse. The results from comparative analysis place 67P in the same category as the two Mars satellites, Phobos and Deimos, which are notably different from all airless bodies in the solar system. The similarity between the surface phase function of 67P and a carbon soot sample at extremely small angles is identified, introducing regolith at the boundary of the Imhotep-Ash region of 67P as a very dark and fluffy layer.

  9. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.

  10. Global and Spatially Resolved Photometric Properties of the Nucleus of Comet 67P/C-G from OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Lamy, P.

    2014-04-01

    Following the successful wake-up of the ROSETTA spacecraft on 20 January 2014, the OSIRIS imaging system was fully re-commissioned at the end of March 2014 confirming its initial excellent performances. The OSIRIS instrument includes two cameras: the Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) with respective fieldsofview of 2.2° and 12°, both equipped with 2K by 2K CCD detectors and dual filter wheels. The NAC filters allow a spectral coverage of 270 to 990 nm tailored to the investigation of the mineralogical composition of the nucleus of comet P/Churyumov- Gerasimenko whereas those of the WAC (245-632 nm) aim at characterizing its coma [1]. The NAC has already secured a set of four complete light curves of the nucleus of 67P/C-G between 3 March and 24 April 2014 with a primary purpose of characterizing its rotational state. A preliminary spin period of 12.4 hours has been obtained, similar to its very first determination from a light curve obtained in 2003 with the Hubble space telescope [2]. The NAC and WAC will be recalibrated in the forthcoming weeks using the same stellar calibrators VEGA and the solar analog 16 Cyg B as for past inflight calibration campaigns in support of the flybys of asteroids Steins and Lutetia. This will allow comparing the pre- and post-hibernation performances of the cameras and correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters) if required. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appear as either slightly defocused images offset from the primary images or large round or elliptical halos. We will first present results on the global photometric properties of the nucleus of comet 67P/C-G, albedo, phase function and spectral reflectivity and compare with previous results obtained with the Hubble and Spitzer space telescopes [2, 3, 4]. Then observations during the approach and first bound orbits in July-August 2014 will allow mapping the surface of the nucleus with OSIRIS at a scale of up to 1 meter per pixel. The images will be used to reconstruct the 3D surface of the nucleus at highresolution allowing separating true photometric variations from topographic effects. We will present results on the spatially resolved photometric properties of the nucleus based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins [5] has the advantage of automatically tracking the same local surface element on a series of images. The analysis will then proceed with the determination of the global Hapke and other standard photometric parameters as well as their two-dimensional variations across the surface. This allows defining, in the body-fixed reference frame, ``high residual regions'' (HRRs) which correspond to significant relative differences between the observed and modeled photometric parameters such as the singlescattering albedo (SSA), the mean roughness slope angle, and the reflectivity gradient. Of particular interest will be the search for ice patches and possible mineralogical differences resulting from the past activity of the comet.

  11. Design of Quasi-Terminator Orbits near Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Lantoine, Gregory; Broschart, Stephen B.; Grebow, Daniel J.

    2013-01-01

    Quasi-terminator orbits are a class of quasi-periodic orbits around a primitive body that exist in the vicinity of the well-known terminator orbits. The inherent stability of quasi-terminator trajectories and their wide variety of viewing geometries make them a very compelling option for primitive body mapping missions. In this paper, we discuss orbit design methodologies for selection of an appropriate quasi-terminator orbit that would meet the needs of a specific mission. Convergence of these orbits in an eccentric, higher-fidelity model is also discussed with an example case at Bennu, the target of the upcoming NASA's OSIRIS-REx mission.

  12. Global Precipitation Measurement mission data released on This Week @NASA - September 5, 2014

    NASA Image and Video Library

    2014-09-05

    Precipitation information from the first six months of the Global Precipitation Measurement Core Observatory mission now is fully available to the public. Launched from Japan in February, the joint NASA and Japan Aerospace Exploration Agency mission works with international partner satellites to produce precise and standardized data sets on worldwide rainfall, snowfall and other precipitation. The data can be used to improve forecasts of extreme weather events like floods and help decision makers worldwide better manage water resources. Also, Earthquake data from the air, Next ISS crew trains, Talking STEM with students and OSIRIS-REx time capsule!

  13. Ah, Sweet Mystery of Life, OSIRIS-REx May Find You

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.

    2015-01-01

    The nature of the origin of life is a topic that has engaged people since ancient times. Where did we come from? What was the first life? How are we related? Are we alone? The study of biologic remains and environments preserved in rocks (fossils) and biochemical pathways and structures found across organisms (molecular fossils) can address these questions. Molecular evidence shows that all life on Earth is related fundamentally, biology shares a genetic language, related molecular machinery, and common chemistry By looking at the details of genetic and protein sequences more detailed relationships can be determined for modern organisms.

  14. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  15. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  16. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    NASA Astrophysics Data System (ADS)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  17. Metre-size bright spots at the surface of comet 67P/Churyumov-Gerasimenko: Interpretation of OSIRIS data using laboratory experiments

    NASA Astrophysics Data System (ADS)

    Pommerol, Antoine; Thomas, Nicolas; Antonella Barucci, M.; Bertaux, Jean-Loup; Davidsson, Björn; Ramy El-Maarry, Mohamed; La Forgia, Fiorengela; Fornasier, Sonia; Gracia, Antonio; Groussin, Olivier; Jost, Bernhard; Keller, Horst Uwe; Kuehrt, Ekkehard; Marschall, Raphael; Massironi, Matteo; Motolla, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Poch, Olivier

    2015-04-01

    Since the beginning of Rosetta's orbital observations, over a hundred small bright spots have been identified in images returned by its OSIRIS NAC camera, in all types of morphological regions on the nucleus. Bright spots are found as clusters of several tens of individuals in the vicinity of cliffs, or isolated without clear structural relation to the surrounding terrain. They are however mostly observed in the areas of the nucleus currently receiving the lowest amount of insolation and some of the best examples appear completely surrounded by shadows. Their typical sizes are of the order of a few metres and they are often observed at the surfaces of boulders of larger dimension. The brightness of these spots is up to ten times the average brightness of the surrounding terrain and multi-spectral analyses show a significantly bluer spectrum over the 0.3-1µm range. Comparisons of images taken in September and November 2014 under similar illumination conditions do not show any significant change of these features. Analysis of the results of past and present laboratory experiments with H2O-ice/dust mixtures provide interesting insights about the nature and origin of the bright spots. In particular, recent sublimation experiments conducted at the University of Bern reproduce the spectro-photometric variability observed at the surface of the nucleus by sequences of formation and ejection of a mantle of refractory organic-rich dust at the surface of the icy material. The formation of hardened layers of ice by sintering/re-condensation below the uppermost dust layer can also have strong implications for both the photometric and mechanical properties of the subsurface layer. Based on the comparison between OSIRIS observations and laboratory results, our favoured interpretation of the observed features is that the bright spots are exposures of water ice, resulting from the removal of the uppermost layer of refractory dust that covers the rest of the nucleus. Some of the observations of clusters of bright spots are very indicative of a formation process, which involves the breakage and collapse of brittle layers of ice to form fields of large boulders, some of them showing bright spots on part of their surface. Some of the isolated spots observed elsewhere on the nucleus might as well have been formed by similar processes and then have been transported over large distances by multiple bounces. These surface exposures of water ice must be more recent than the last passage at perihelion, as they would rapidly sublimate at short heliocentric distance. The hypothesis formulated here will thus easily be tested as the comet approaches the Sun, by checking if and how fast the bright spots vanish and disappear.

  18. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    NASA Astrophysics Data System (ADS)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  19. Hazards on Hazards, Ensuring Spacecraft Safety While Sampling Asteroid Surface Materials

    NASA Astrophysics Data System (ADS)

    Johnson, C. A.; DellaGiustina, D. N.

    2016-12-01

    The near-Earth object Bennu is a carbonaceous asteroid that is a remnant from the earliest stages of the solar-system formation. It is also a potentially hazardous asteroid with a relatively high probability of impacting Earth late in the 22nd century. While the primary focus of the NASA funded OSIRIS-REx mission is the return of pristine organic material from the asteroid's surface, information about Bennu's physical and chemical properties gleaned throughout operations will be critical for a possible future impact mitigation mission. In order to ensure a regolith sample can be successfully acquired, the sample site and surrounding area must be thoroughly assessed for any potential hazards to the spacecraft. The OSIRIS-REx Image Processing Working Group has been tasked with generating global and site-specific hazard maps using mosaics and a trio of fea­­­ture identification techniques. These techniques include expert-lead manual classification, internet-based amateur classification using the citizen science platform CosmoQuest, and automated classification using machine learning and computer vision tools. Because proximity operations around Bennu do not begin until the end of 2018, we have an opportunity to test t­­­he performance of our software on analogue surfaces of other asteroids from previous NASA and other space agencies missions. The entire pipeline from image processing and mosaicking to hazard identification, analysis and mapping will be performed on asteroids of varying size, shape and surface morphology. As a result, upon arrival at Bennu, we will have the software and processes in place to quickly and confidently produce the hazard maps needed to ensure the success of our mission.

  20. Reconstructing merger timelines using star cluster age distributions: the case of MCG+08-11-002

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Medling, Anne M.; U, Vivian; Max, Claire E.; Sanders, David; Kewley, Lisa J.

    2016-05-01

    We present near-infrared imaging and integral field spectroscopy of the centre of the dusty luminous infrared galaxy merger MCG+08-11-002, taken using the Near InfraRed Camera 2 (NIRC2) and the OH-Suppressing InfraRed Imaging Spectrograph (OSIRIS) on Keck II. We achieve a spatial resolution of ˜25 pc in the K band, allowing us to resolve 41 star clusters in the NIRC2 images. We calculate the ages of 22/25 star clusters within the OSIRIS field using the equivalent widths of the CO 2.3 μm absorption feature and the Br γ nebular emission line. The star cluster age distribution has a clear peak at ages ≲ 20 Myr, indicative of current starburst activity associated with the final coalescence of the progenitor galaxies. There is a possible second peak at ˜65 Myr which may be a product of the previous close passage of the galaxy nuclei. We fit single and double starburst models to the star cluster age distribution and use Monte Carlo sampling combined with two-sided Kolmogorov-Smirnov tests to calculate the probability that the observed data are drawn from each of the best-fitting distributions. There is a >90 per cent chance that the data are drawn from either a single or double starburst star formation history, but stochastic sampling prevents us from distinguishing between the two scenarios. Our analysis of MCG+08-11-002 indicates that star cluster age distributions provide valuable insights into the timelines of galaxy interactions and may therefore play an important role in the future development of precise merger stage classification systems.

  1. Using Cross Correlation for Evaluating Shape Models of Asteroids

    NASA Astrophysics Data System (ADS)

    Palmer, Eric; Weirich, John; Barnouin, Olivier; Campbell, Tanner; Lambert, Diane

    2017-10-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) sample return mission to Bennu will be using optical navigation during its proximity operations. Optical navigation is heavily dependent upon having an accurate shape model to calculate the spacecraft's position and pointing. In support of this, we have conducted extensive testing of the accuracy and precision of shape models. OSIRIS-REx will be using the shape models generated by stereophotoclinometry (Gaskell, 2008). The most typical technique to evaluate models is to subtract two shape models and produce the differences in the height of each node between the two models. During flight, absolute accuracy cannot be determined; however, our testing allowed us to characterize both systematic and non-systematic errors. We have demonstrated that SPC provides an accurate and reproducible shape model (Weirich, et al., 2017), but also that shape model subtraction only tells part of the story. Our advanced shape model evaluation uses normalized cross-correlation to show a different aspect of quality of the shape model. In this method, we generate synthetic images using the shape model and calculate their cross-correlation with images of the truth asteroid. This technique tests both the shape model's representation of the topographic features (size, shape, depth and relative position), but also estimates of the surface's albedo. This albedo can be used to determine both Bond and geometric albedo of the surface (Palmer, et al., 2014). A high correlation score between the model's synthetic images and the truth images shows that the local topography and albedo has been well represented over the length scale of the image. A global evaluation, such as global shape and size, is best shown by shape model subtraction.

  2. Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages

    PubMed Central

    Berg, Jordan A.; Merrill, Bryan D.; Crockett, Justin T.; Esplin, Kyle P.; Evans, Marlee R.; Heaton, Karli E.; Hilton, Jared A.; Hyde, Jonathan R.; McBride, Morgan S.; Schouten, Jordan T.; Simister, Austin R.; Thurgood, Trever L.; Ward, Andrew T.; Breakwell, Donald P.; Hope, Sandra; Grose, Julianne H.

    2016-01-01

    Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared. PMID:27304881

  3. General consumer communication tools for improved image management and communication in medicine.

    PubMed

    Rosset, Chantal; Rosset, Antoine; Ratib, Osman

    2005-12-01

    We elected to explore new technologies emerging on the general consumer market that can improve and facilitate image and data communication in medical and clinical environment. These new technologies developed for communication and storage of data can improve the user convenience and facilitate the communication and transport of images and related data beyond the usual limits and restrictions of a traditional picture archiving and communication systems (PACS) network. We specifically tested and implemented three new technologies provided on Apple computer platforms. (1) We adopted the iPod, a MP3 portable player with a hard disk storage, to easily and quickly move large number of DICOM images. (2) We adopted iChat, a videoconference and instant-messaging software, to transmit DICOM images in real time to a distant computer for conferencing teleradiology. (3) Finally, we developed a direct secure interface to use the iDisk service, a file-sharing service based on the WebDAV technology, to send and share DICOM files between distant computers. These three technologies were integrated in a new open-source image navigation and display software called OsiriX allowing for manipulation and communication of multimodality and multidimensional DICOM image data sets. This software is freely available as an open-source project at http://homepage.mac.com/rossetantoine/OsiriX. Our experience showed that the implementation of these technologies allowed us to significantly enhance the existing PACS with valuable new features without any additional investment or the need for complex extensions of our infrastructure. The added features such as teleradiology, secure and convenient image and data communication, and the use of external data storage services open the gate to a much broader extension of our imaging infrastructure to the outside world.

  4. A Magnified View of the Kinematics and Morphology of RCSGA 032727-132609: Zooming in on a Merger at z = 1.7

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Sharon, Keren

    2014-01-01

    We present a detailed analysis of multi-wavelength Hubble Space Telescope/Wide Field Camera 3 (WFC3) imaging and Keck/OSIRIS near-infrared adaptive optics-assisted integral field spectroscopy for a highly magnified lensed galaxy at z = 1.70. This young starburst is representative of ultraviolet-selected star-forming galaxies (SFGs) at z approx. 2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100 pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction and there is a clear signature of a tidal tail. We constrain the age, reddening, star formation rate, and stellar mass of the star-forming clumps from spectral energy distribution (SED) modeling of the WFC3 photometry and measure their H(alpha) luminosity, metallicity, and outflow properties from the OSIRIS data.With strong star-formation-driven outflows in four clumps, RCSGA0327 is the first high-redshift SFG at stellar mass <10(exp 10) Stellar Mass with spatially resolved stellar winds. We compare the H(alpha) luminosities, sizes, and dispersions of the star-forming regions with other high-z clumps as well as local giant H(II) regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local universe. Spatially resolved SED modeling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system that is not detected in H(alpha) emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.

  5. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  6. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.

    PubMed

    Volonté, Francesco; Buchs, Nicolas C; Pugin, François; Spaltenstein, Joël; Schiltz, Boris; Jung, Minoa; Hagen, Monika; Ratib, Osman; Morel, Philippe

    2013-09-01

    Computerized management of medical information and 3D imaging has become the norm in everyday medical practice. Surgeons exploit these emerging technologies and bring information previously confined to the radiology rooms into the operating theatre. The paper reports the authors' experience with integrated stereoscopic 3D-rendered images in the da Vinci surgeon console. Volume-rendered images were obtained from a standard computed tomography dataset using the OsiriX DICOM workstation. A custom OsiriX plugin was created that permitted the 3D-rendered images to be displayed in the da Vinci surgeon console and to appear stereoscopic. These rendered images were displayed in the robotic console using the TilePro multi-input display. The upper part of the screen shows the real endoscopic surgical field and the bottom shows the stereoscopic 3D-rendered images. These are controlled by a 3D joystick installed on the console, and are updated in real time. Five patients underwent a robotic augmented reality-enhanced procedure. The surgeon was able to switch between the classical endoscopic view and a combined virtual view during the procedure. Subjectively, the addition of the rendered images was considered to be an undeniable help during the dissection phase. With the rapid evolution of robotics, computer-aided surgery is receiving increasing interest. This paper details the authors' experience with 3D-rendered images projected inside the surgical console. The use of this intra-operative mixed reality technology is considered very useful by the surgeon. It has been shown that the usefulness of this technique is a step toward computer-aided surgery that will progress very quickly over the next few years. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta

    NASA Astrophysics Data System (ADS)

    Knollenberg, J.; Lin, Z. Y.; Hviid, S. F.; Oklay, N.; Vincent, J.-B.; Bodewits, D.; Mottola, S.; Pajola, M.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Davidsson, B.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Kührt, E.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Thomas, N.; Güttler, C.; Preusker, F.; Scholten, F.; Tubiana, C.

    2016-12-01

    Context. On 12 March 2015 the OSIRIS WAC camera onboard the ESA Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko observed a small outburst originating from the Imhotep region at the foot of the big lobe of the comet. These measurements are unique since it was the first time that the initial phase of a transient outburst event could be directly observed. Aims: We investigate the evolution of the dust jet in order to derive clues about the outburst source mechanism and the ejected dust particles, in particular the dust mass, dust-to-gas ratio and the particle size distribution. Methods: Analysis of the images and of the observation geometry using comet shape models in combination with gasdynamic modeling of the transient dust jet were the main tools used in this study. Synthetic images were computed for comparison with the observations. Results: Analysis of the geometry revealed that the source region was not illuminated until 1.5 h after the event implying true nightside activity was observed. The outburst lasted for less than one hour and the average dust production rate during the initial four minutes was of the order of 1 kg/s. During this time the outburst dust production rate was approximately constant, no sign for an initial explosion could be detected. For dust grains between 0.01-1 mm a power law size distribution characterized by an index of about 2.6 provides the best fit to the observed radiance profiles. The dust-to-gas ratio of the outburst jet is in the range 0.6-1.8.

  8. A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.

    2017-11-01

    Improving our capability to interpret observations of cometary dust is necessary to deepen our understanding of the role of dust in the formation of comets and in altering the cometary environments. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on the BATS-R-US code. This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is run in the rotating comet reference frame, the centrifugal and Coriolis forces are included. The boundary conditions on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real-shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the mesh is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. Our model achieved comparable results to the Direct Simulation Monte Carlo method and the Rosetta/OSIRIS observations. It is also applied to study the effects of the rotating nucleus and the cometary activity and offers interpretations of some dust observations of comet 67P/Churyumov-Gerasimenko.

  9. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  10. Simulations of ion acceleration from ultrathin targets with the VEGA petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2015-05-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 : 1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022Wcm-2 impinging normally on 5 - 40 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  11. Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.

    2015-10-01

    The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of the grain is higher close to the Sun). The grain temperatures will be derived by assuming equilibrium between the energy absorbed from the Sun, the energy re-radiated in the infrared, and the cooling by sublimation. We will use Mie theory [3, 4] to compute the scattering properties of an assumed grain (grain size, shape and composition, including mineralogy and porosity). We follow the evolution of grains until the icy layer sublimates completely. Once ejected in the gas flow, the generated molecules have no preferred direction. First results highlighted that the sublimation has a significant influence on the dust trajectories and generates a gas cloud that moves with the velocity of the icy grains. Our model can produce artificial images for a wide range of parameters, including outgassing rate, surface temperature, dust properties and sublimation of icy grains. The results of this model will be compared to the images obtained with OSIRIS camera and to the published data from other instruments.

  12. The Wide Angle Camera of the ROSETTA Mission

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Fornasier, S.; Verani, S.; Bertini, I.; Lazzarin, M.; Rampazzi, F.; Cremonese, G.; Ragazzoni, R.; Marzari, F.; Angrilli, F.; Bianchini, G. A.; Debei, S.; Dececco, M.; Guizzo, G.; Parzianello, G.; Ramous, P.; Saggin, B.; Zaccariotto, M.; Da Deppo, V.; Naletto, G.; Nicolosi, G.; Pelizzo, M. G.; Tondello, G.; Brunello, P.; Peron, F.

    This paper aims to give a brief description of the Wide Angle Camera (WAC), built by the Centro Servizi e AttivitàSpaziali (CISAS) of the University of Padova for the ESA ROSETTA Mission to comet 46P/Wirtanen and asteroids 4979 Otawara and 140 Siwa. The WAC is part of the OSIRIS imaging system, which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front cover mechanism for the NAC. The flight model of the WAC was delivered in December 2001, and has been already integrated on ROSETTA.

  13. Vice President Visits Marshall Space Flight Center on This Week @NASA – September 29, 2017

    NASA Image and Video Library

    2017-09-29

    Vice President Mike Pence visited our Marshall Space Flight Center on Sept. 25 to thank employees working on NASA’s human spaceflight programs. He also spoke to the three NASA astronauts currently serving onboard the International Space Station. During a tour, the Vice President also saw progress being made on our Space Launch System rocket, that will send astronauts in our Orion spacecraft on missions around the Moon and ultimately to Mars. Also, NASA Data and Tech Aid in Disaster Relief, Congressional Hearing on August 21 Solar Eclipse, OSIRIS-REx Views Earth During Flyby, and “Bladed Terrain” on Pluto Made of Frozen Methane!

  14. Optical observations of Swift J1822.3-1606 with the 10.4m Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Rea, N.; Mignani, R. P.; Israel, G. L.; Esposi, P.

    2011-07-01

    We observed the field of the new Soft Gamma-ray Repeater (SGR), Swift J1822.3-1606 (Cummings et al., Atel #3488) with the 10.4m Gran Telescopio Canarias (GranTeCan). Images have been taken with the OSIRIS camera, a two-chip CCD with a nominal 7.8'x7.8' arcmin field of view and a pixel size of 0.125". Observations have been taken in the z-Sloan-band on 2011 July 21st (unfortunately in bright lunar time, with a large sky background and a seeing ranging from 1-2.5") with exposure times of 54-108s.

  15. Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutiérrez, P.

    We compute the distribution of velocities of the particles ejected by the impact of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 on the successive 20 h following the collision. This is performed by the development and use of an ill-conditioned inverse problem approach, whose main ingredients are a set of observations taken by the Narrow Angle Camera (NAC) of OSIRIS onboard the Rosetta spacecraft, and a set of simple models of the expansion of the dust ejecta plume for different velocities. Terminal velocities are derived using a maximum likelihood estimator.

  16. Towards understanding the dynamical evolution of asteroid 25143 Itokawa: constraints from sample analysis

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Lauretta, Dante S.; Walsh, Kevin J.; Tachibana, Shogo; Bottke, William F.

    2015-01-01

    The data from the analysis of samples returned by Hayabusa from asteroid 25143 Itokawa are used to constrain the preaccretion history, the geological activity that occurred after accretion, and the dynamical history of the asteroid from the main belt to near-Earth space. We synthesize existing data to pose hypotheses to be tested by dynamical modeling and the analyses of future samples returned by Hayabusa 2 and OSIRIS-REx. Specifically, we argue that the Yarkosky-O'Keefe-Radzievskii-Paddack (YORP) effect may be responsible for producing geologically high-energy environments on Itokawa and other asteroids that process regolith and essentially affect regolith gardening.

  17. Temporal Evolution of Ice Spots on the Nucleus of Comet 67P/Churyumov-Gerasimenko as Observed by Rosetta

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Fornasier, S.; Filacchione, G.; Deshapriya, J. D. P.; Raponi, A.; Tosi, F.; Feller, C.; Ciarniello, M.; Fulchignoni, M.; Sierks, H.; Capaccioni, F.:

    2017-04-01

    During more than two years of observations on board of Rosetta spacecraft orbiting close to the comet 67P/Churyumov-Gerasimenko, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera acquired a huge quantity of resolved images of the comet, producing the most detailed maps at the highest spatial resolution ever made of a cometary nucleus surface. Comet 67P shows a body with a dark, dehydrated surface, rich in hetereogeneous geological structures [1]. The morphologically complex surface shows color and albedo variations with local time and perihelion distance. Numerous bright spots of different size with high visible albedo and flat visible slope have been identified by OSIRIS high resolution images [2, 3, 4, 5]. The detected bright spots are mostly situated on consolidated dust free areas distributed on the two lobes of 67P in locations which stay longer in shadow, mostly concentrated at equatorial latitudes Some of them have been observed also by VIRTIS (Visible InfraRed Thermal Imaging Spectrometer) which has detected the diagnostic absorption bands of ice in at 1.5 and 2.05 μm [6, 7]. Comparing the image data with near- infrared spectra and modeling the spectra as a mixture of H2O ice and the ubiquitious "Dark Material" associated to complex organic material present on the nucleus' surface [8, 9], we were able to study at the same time the morphological, thermal and compositional properties of these areas. With this complementary study we are able to confirm the presence of H2O ice on many brighter areas distributed on the two lobes of 67P. We analysed in detail the OSIRIS images in the areas where the spots have been identified. The majority of the detected H2O ice spots are located in the vicinity of previously detected cometary outbursts source areas. We investigated all the available observations of the selected areas to evaluate the lifetime of the ice spots. Some spots are stable for several months and others show temporal changes connected to diurnal and seasonal variations. The temporal variation of these spots will be presented and discussed as well as their stability in general, well corroborated by the temperature retrieved at the surface. References: [1] Sierks H. et al. (2015) Science, 347, 1044. [2] Pommerol A. et al. (2015) A&A, 583, A25. [3] Barucci M. A. et al. (2016) A&A., 595, A102. [4] Oklay N. et al. (2016) MNRAS, in press. [5] Fornasier S. et al. (2016) Science in press, DOI : 10.1126/science.aag2671. [6] Filacchione et al. (2016) Nature, 529, 368. [7] Filacchione et al. (2016) Icarus 274, 334- 349. [8] Capaccioni F. et al. (2015) Science, 347, 0628. [9] Quirico, E. et al. (2016) Icarus, 272, 32.

  18. Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Lurton, Thibaut; Jégou, Fabrice; Berthet, Gwenaël; Renard, Jean-Baptiste; Clarisse, Lieven; Schmidt, Anja; Brogniez, Colette; Roberts, Tjarda J.

    2018-03-01

    Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD). Besides large-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO2-particle-HCl processing and impacts following Sarychev Peak eruption, using the Community Earth System Model version 1.0 (CESM1) Whole Atmosphere Community Climate Model (WACCM) - Community Aerosol and Radiation Model for Atmospheres (CARMA) sectional aerosol microphysics model (with no a priori assumption on particle size). The Sarychev Peak 2009 eruption injected 0.9 Tg of SO2 into the upper troposphere and lower stratosphere (UTLS), enhancing the aerosol load in the Northern Hemisphere. The post-eruption evolution of the volcanic SO2 in space and time are well reproduced by the model when compared to Infrared Atmospheric Sounding Interferometer (IASI) satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions such as Sarychev on stratospheric chemistry. The model-simulated evolution of effective radius (reff) reflects new particle formation followed by particle growth that enhances reff to reach up to 0.2 µm on zonal average. Comparisons of the model-simulated particle number and size distributions to balloon-borne in situ stratospheric observations over Kiruna, Sweden, in August and September 2009, and over Laramie, USA, in June and November 2009 show good agreement and quantitatively confirm the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from the Optical Spectrograph and InfraRed Imager System (OSIRIS) when both the saturation bias of OSIRIS and the fact that extinction profiles may terminate well above the tropopause are taken into account. Previous modelling studies (involving assumptions on particle size) that reported agreement with (biased) post-eruption estimates of SAOD derived from OSIRIS likely underestimated the climate impact of the 2009 Sarychev Peak eruption.

  19. Radiation Generation from Ultra Intense Laser Plasma Interactions with Solid Density Plasmas for Active Interrogation of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Zulick, Calvin Andrew

    The development of short pulse high power lasers has led to interest in laser based particle accelerators. Laser produced plasmas have been shown to support quasi-static TeV/m acceleration gradients which are more than four orders of magnitude stronger than conventional accelerators. These high gradients have the potential to allow compact particle accelerators for active interrogation of nuclear material. In order to better understand this application, several experiments have been conducted at the HERCULES and Lambda Cubed lasers as the Center for Ultrafast Optical Science at the University of Michigan. Electron acceleration and bremsstrahlung generation were studied on the Lambda Cubed laser. The scaling of the intensity, angular, and material dependence of bremsstrahlung radiation from an intense (I > 10 18 W/cm2 ) laser-solid interaction has been characterized at energies between 100 keV and 1 MeV. These were the first high resolution (lambda / d lambda > 100) measurements of bremsstrahlung photons from a relativistic laser plasma interaction. The electron populations and bremsstrahlung temperatures were modeled in the particle-in-cell code OSIRIS and the Monte Carlo code MCNPX and were in good agreement with the experimental results. Proton acceleration was studied on the HERCULES laser. The effect of three dimensional perturbations of electron sheaths on proton acceleration was investigated through the use of foil, grid, and wire targets. Hot electron density, as measured with an imaging Cu Kalpha crystal, increased as the target surface area was reduced and was correlated to an increase in the temperature of the accelerated proton beam. Additionally, experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8 (+/-0.3) MeV using (d,n) and (p,n) reactions. Efficient (d,n) reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D2O layer on the surface of a thin film target. The measured neutron yield was up to 1.0 (+/-0.5) x 107 neutrons/sr with a flux 6.2 (+/-3.7) times higher in the forward direction than at 90 degrees . This demonstrated that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial DD generators with the advantage of a directional beam with picosecond bunch duration.

  20. GFEChutes Lo-Fi

    NASA Technical Reports Server (NTRS)

    Gist, Emily; Turner, Gary; Shelton, Robert; Vautier, Mana; Shaikh, Ashraf

    2013-01-01

    NASA needed to provide a software model of a parachute system for a manned re-entry vehicle. NASA has parachute codes, e.g., the Descent Simulation System (DSS), that date back to the Apollo Program. Since the space shuttle did not rely on parachutes as its primary descent control mechanism, DSS has not been maintained or incorporated into modern simulation architectures such as Osiris and Antares, which are used for new mission simulations. GFEChutes Lo-Fi is an object-oriented implementation of conventional parachute codes designed for use in modern simulation environments. The GFE (Government Furnished Equipment), low-fidelity (Lo-Fi) parachute model (GFEChutes Lo-Fi) is a software package capable of modeling the effects of multiple parachutes, deployed concurrently and/or sequentially, on a vehicle during the subsonic phase of reentry into planetary atmosphere. The term "low-fidelity" distinguishes models that represent the parachutes as simple forces acting on the vehicle, as opposed to independent aerodynamic bodies. GFEChutes Lo-Fi was created from these existing models to be clean, modular, certified as NASA Class C software, and portable, or "plug and play." The GFE Lo-Fi Chutes Model provides basic modeling capability of a sequential series of parachute activities. Actions include deploying the parachute, changing the reefing on the parachute, and cutting away the parachute. Multiple chutes can be deployed at any given time, but all chutes in that case are assumed to behave as individually isolated chutes; there is no modeling of any interactions between deployed chutes. Drag characteristics of a deployed chute are based on a coefficient of drag, the face area of the chute, and the local dynamic pressure only. The orientation of the chute is approximately modeled for purposes of obtaining torques on the vehicle, but the dynamic state of the chute as a separate entity is not integrated - the treatment is simply an approximation. The innovation in GFEChutes Lo-Fi is to use an object design that closely followed the mechanical characteristics and structure of a physical system of parachutes and their deployment mechanisms. Software objects represent the components of the system, and use of an object hierarchy allows a progression from general component outlines to specific implementations. These extra chutes were not part of the baseline deceleration sequence of drogues and mains, but still had to be simulated. The major innovation in GFEChutes Lo-Fi is the software design and architecture.

  1. This Week @NASA - September 22, 2017

    NASA Image and Video Library

    2017-09-22

    Satellite data continues to enable weather forecasters to look inside and outside of powerful hurricanes. Imagery from NOAA's GOES East satellite, captured Sept. 17 to Sept. 20, shows Hurricane Jose along the U.S. east coast, and Hurricane Maria, as it moved through the Leeward Islands, strengthening to a Category 5 hurricane, and making landfall in Puerto Rico. Meanwhile, The Global Precipitation Measurement (GPM) satellite found rain falling inside Maria at a rate of over 6.44 inches per hour in powerful storms that reached above 9.7 miles high. Also, SpaceX Dragon Returns with Science, Katherine Johnson Research Facility Opened, Earth’s Gravity Assist to OSIRIS-REx, Hubble Spots Asteroids Orbiting Each Other, and Engineering the Future!

  2. Investigating the surface brightness profiles, ejected mass and speed from the outburst events of comet 67P/Churyumov-Gerasmenko

    NASA Astrophysics Data System (ADS)

    Lin, Zhong-Yi; Vincent, Jean-Baptiste; A'Hearn, Mike; Lara, Luisa; Knollenberg, Joerg; Ip, Wing-Huen; Osiris Team

    2016-04-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) WAC and NAC camera onboard the ESA Rosetta spacecraft orbiting 67P/Churyumov-Gersimenko has captured a lot of outbursts since July, 2015. Most of their source regions were located at southern hemisphere of comet C-G. Including the March- and perihelion-outbursts, the detected events show a variety of morphological features (i.e. broad fan, collimated jet and so on). In this work, we investigate these events and characterize the physical properties, including the surface brightness profiles, ejected mass and speed if there were two or more images acquired by the same filter during the outburst timeframe.

  3. Oxygen and carbon discovered in exoplanet atmosphere `blow-off'

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Oxygen and carbon discovered in exoplanet atmosphere ‘blow-off’ hi-res Size hi-res: 1096 kb Credits: ESA/Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) Oxygen and carbon discovered in exoplanet atmosphere ‘blow-off’ This artist’s impression shows an extended ellipsoidal envelope - the shape of a rugby-ball - of oxygen and carbon discovered around the well-known extrasolar planet HD 209458b. An international team of astronomers led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) observed the first signs of oxygen and carbon in the atmosphere of a planet beyond our Solar System for the first time using the NASA/ESA Hubble Space Telescope. The atoms of carbon and oxygen are swept up from the lower atmosphere with the flow of escaping atmospheric atomic hydrogen - like dust in a supersonic whirlwind - in a process called atmospheric ‘blow off’. Oxygen and carbon have been detected in the atmosphere of a planet beyond our Solar System for the first time. Scientists using the NASA/ESA Hubble Space Telescope have observed the famous extrasolar planet HD 209458b passing in front of its parent star, and found oxygen and carbon surrounding the planet in an extended ellipsoidal envelope - the shape of a rugby-ball. These atoms are swept up from the lower atmosphere with the flow of the escaping atmospheric atomic hydrogen, like dust in a supersonic whirlwind. The team led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) reports this discovery in a forthcoming issue of Astrophysical Journal Letters. The planet, called HD 209458b, may sound familiar. It is already an extrasolar planet with an astounding list of firsts: the first extrasolar planet discovered transiting its sun, the first with an atmosphere, the first observed to have an evaporating hydrogen atmosphere (in 2003 by the same team of scientists) and now the first to have an atmosphere containing oxygen and carbon. Furthermore the ‘blow-off’ effect observed by the team during their October and November 2003 observations with Hubble had never been seen before. In honour of such a distinguished catalogue this extraordinary extrasolar planet has provisionally been dubbed 'Osiris'. Osiris was the Egyptian god who lost part of his body - like HD 209458b - after his brother killed and cut him into pieces to prevent his return to life. Oxygen is one of the possible indicators of life that is often looked for in experiments searching for extraterrestrial life (such as those onboard the Viking probes and the Spirit and Opportunity rovers), but according to Vidal-Madjar: “Naturally this sounds exciting - the possibility of life on Osiris - but it is not a big surprise as oxygen is also present in the giant planets of our Solar System, like Jupiter and Saturn.” What, on the other hand was surprising was to find the carbon and oxygen atoms surrounding the planet in an extended envelope. Although carbon and oxygen have been observed on Jupiter and Saturn, it is always in combined form as methane and water deep in the atmosphere. In HD 209458b the chemicals are broken down into the basic elements. But on Jupiter or Saturn, even as elements, they would still remain invisible low in the atmosphere. The fact that they are visible in the upper atmosphere of HD 209458b confirms that atmospheric ‘blow off’ is occurring. The scorched Osiris orbits ‘only’ seven million kilometres from its yellow Sun-like star and its surface is heated to about 1000 degrees Celsius. Whereas hydrogen is a very light element - the lightest in fact - oxygen and carbon are much heavier in comparison. This has enabled scientists to conclude that this phenomenon is more efficient than simple evaporation. The gas is essentially ripped away at a speed of more than 35 000 kilometres an hour. “We speculate that even heavier elements such as iron are blown off at this stage as well,” says team member Alain Lecavelier des Etangs (Institut d'Astrophysique de Paris, CNRS, France). The whole evaporation mechanism is so distinctive that there is reason to propose the existence of a new class of extrasolar planets - the chthonian planets, a reference to the Greek God Khtôn, used for Greek deities from the hot infernal underworld (also used in the French word autochton). The chthonian planets are thought to be the solid remnant cores of ‘evaporated gas giants’, orbiting even closer to their parent star than Osiris. The detection of these planets should soon be within reach of current telescopes both on the ground and in space. The discovery of the fierce evaporation process is, according to the scientists, 'highly unusual', but may indirectly confirm theories of our own Earth’s childhood. “This is a unique case in which such a hydrodynamic escape is directly observed. It has been speculated that Venus, Earth and Mars may have lost their entire original atmospheres during the early part of their lives. Their present atmospheres have their origins in asteroid and cometary impacts and outgassing from the planet interiors,” says Vidal-Madjar.

  4. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less

  5. Interpretation of spectrophotometric surface properties of comet 67P/Churyumov-Gerasimenko by laboratory simulations of cometary analogs

    NASA Astrophysics Data System (ADS)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2015-11-01

    The OSIRIS imaging system [1] onboard European Space Agency’s Rosetta mission has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014. It provides an enormous quantity of high resolution images of the nucleus in the visible spectral range. 67P revealed an unexpected diversity of complex surface structures and spectral properties have also been measured [2].To better interpret this data, a profound knowledge of laboratory analogs of cometary surfaces is essential. For this reason we have set up the LOSSy laboratory (Laboratory for Outflow Studies of Sublimating Materials) to study the spectrophotometric properties of ice-bearing cometary nucleus analogs. The main focus lies on the characterization of the surface evolution under simulated space conditions. The laboratory is equipped with two facilities: the PHIRE-2 radio-goniometer [3], designed to measure the bidirectional visible reflectance of samples under a wide range of geometries and the SCITEAS simulation chamber [4], designed to study the evolution of icy samples subliming under low pressure/temperature conditions by hyperspectral imaging in the VIS-NIR range. Different microscopes complement the two facilities.We present laboratory data of different types of fine grained ice particles mixed with non-volatile components (complex organic matter and minerals). As the ice sublimes, a deposition lag of non-volatile constituents is built-up on top of the ice, possibly mimic a cometary surface. The bidirectional reflectance of the samples have been characterized before and after the sublimation process.A comparison of our laboratory findings with recent OSIRIS data [5] will be presented.[1] Keller, H. U., et al., 2007, Space Sci. Rev., 128, 26[2] Thomas, N. , 2015, Science, 347, Issue 6220, aaa0440[3] Jost, B., submitted, Icarus[4] Pommerol, A., et al., 2015. Planet Space Sci 109:106-122.[5] Fornasier, S., et al., in press. Icarus, arXiv:1505.06888

  6. The Geomorphology of Comet Churymov-Gerasimenko As Revealed By Rosetta/Osiris: Implicationsfor Past Collisional Evolution

    NASA Astrophysics Data System (ADS)

    Marchi, S.; A'Hearn, M. F.; Barbieri, C.; Barucci, M. A.; Besse, S.; Cremonese, G.; Ip, W. H.; Keller, H. U.; Koschny, D.; Kuhrt, E.; Lamy, P. L.; Marzari, F.; Massironi, M.; Pajola, M.; Rickman, H.; Rodrigo, R.; Sierks, H.; Snodgrass, C.; Thomas, N.; Vincent, J. B.

    2014-12-01

    In this paper we present the major geomorphological features of comet Churymov-Gerasimenko (C-G), with emphasis on those that may have formed through collisional processes. The C-G nucleus has been imaged with the Rosetta/OSIRIS camera system at varying spatial resolution. At the moment of this writing the maximum spatial resolution achieved is ~20 meter per pixel, and it will improve to reach the unprecedented centimeter-scale in November 2014. This resolution should allow us to identify and characterize pits, lineaments and blocks that could be the result of collisional evolution. Indeed, C-G has spent some 1000 years on orbits crossing the main asteroid belt, and a much longer time in the outer solar system. Collisions may have, therefore, shaped the morphology of the nucleus in various ways. Previously imaged Jupiter Family Comets (e.g., Tempel 1) show significant numbers of pits and lineaments, some of which could be due to collisions. Additional proposed formation mechanisms are related to cometary activity processes, such as volatile outgassing.In addition to small scale features, the overall shape of C-G could also provide insights into the role of collisional processes. A striking feature is that C-G's shape is that of a contact binary. Similar shapes have been observed on rocky asteroids (e.g., Itokawa) and are generally interpreted as an indication of their rubble pile nature. A possibility is that C-G underwent similar processes, and therefore it may be constituted by reaccumulated fragments ejected from a larger precursor. An alternative view is that the current shape is the result of inhomogeneous outgassing activity, which may have dug a ~1-km deep trench responsible for the apparent contact binary shape.The role of the various proposed formation mechanisms (collisional vs outgassing) for both small scale and global features will be investigated and their implications for the evolution of C-G will be discussed.

  7. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    NASA Astrophysics Data System (ADS)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of OSIRIS-3U is to investigate the effects of space weather on the ionosphere. The spacecraft will use a pulsed Langmuir probe, an instrument now enabled on small-scale spacecraft through the techniques outlined in this research.

  8. Retrospective Methods Analysis of Semiautomated Intracerebral Hemorrhage Volume Quantification From a Selection of the STICH II Cohort (Early Surgery Versus Initial Conservative Treatment in Patients With Spontaneous Supratentorial Lobar Intracerebral Haematomas).

    PubMed

    Haley, Mark D; Gregson, Barbara A; Mould, W Andrew; Hanley, Daniel F; Mendelow, Alexander David

    2018-02-01

    The ABC/2 method for calculating intracerebral hemorrhage (ICH) volume has been well validated. However, the formula, derived from the volume of an ellipse, assumes the shape of ICH is elliptical. We sought to compare the agreement of the ABC/2 formula with other methods through retrospective analysis of a selection of the STICH II cohort (Early Surgery Versus Initial Conservative Treatment in Patients With Spontaneous Supratentorial Lobar Intracerebral Haematomas). From 390 patients, 739 scans were selected from the STICH II image archive based on the availability of a CT scan compatible with OsiriX DICOM viewer. ICH volumes were calculated by the reference standard semiautomatic segmentation in OsiriX software and compared with calculated arithmetic methods (ABC/2, ABC/2.4, ABC/3, and 2/3SC) volumes. Volumes were compared by difference plots for specific groups: randomization ICH (n=374), 3- to 7-day postsurgical ICH (n=206), antithrombotic-associated ICH (n=79), irregular-shape ICH (n=703) and irregular-density ICH (n=650). Density and shape were measured by the Barras ordinal shape and density groups (1-5). The ABC/2.4 method had the closest agreement to the semiautomatic segmentation volume in all groups, except for the 3- to 7-day postsurgical ICH group where the ABC/3 method was superior. Although the ABC/2 formula for calculating elliptical ICH is well validated, it must be used with caution in ICH scans where the elliptical shape of ICH is a false assumption. We validated the adjustment of the ABC/2.4 method in randomization, antithrombotic-associated, heterogeneous-density, and irregular-shape ICH. URL: http://www.isrctn.com/ISRCTN22153967. Unique identifier: ISRCTN22153967. © 2018 American Heart Association, Inc.

  9. Thermophysical properties and modeling of minor bodies regoliths

    NASA Astrophysics Data System (ADS)

    Delbo, M.

    2017-12-01

    I will review recent studies of atmosphere-less Solar System minor bodies in the thermal infrared wavelengths (> 5 micron), which have seen major advances in the last few years thanks to the observations from space telescopes such as NASA's WISE and Spitzer, JAXA's Akari and ESA's Herschel. Analysis of these observations by means of numerical models allowed not only the determination of sizes and albedos for more than hundred-thousands asteroids, but also to infer, for several of these objects, the values of their thermal inertia. The latter is a sensitive indicator for the presence (or absence) of surface regolith, its grain size, porosity, and degree of compaction. These data confirm presence of regolith on all the studied asteroids, even on the rapidly rotating (period < 3 hours) ones. To exaplain this latter result, researchers invoked electrostatic forces to retain the regolith, which otherwise would be lost in space. Furthermore, it appears that thermal inertia inversely correlates with asteroid sizes, and directly correlates with their rotation periods. This can be explained by regolith density increasing with increasing depth below the surface, a phenomenon already noted of our moon. These findings will soon be tested with unprecedented detail by data from NASA's OSIRIS-REx sample return mission to the asteroid Bennu. OSIRIS-REx's instruments will map temperatures of the entire surface at different local times of the day (between 3:20am and 8:40pm) allowing fine sampling of the diurnal temperature curve. This will result in maps of the thermal inertia of the surface at 40 m spatial scale. On atmosphere-less bodies, thermal inertia controls the amplitude and rate of changes of temperature cycles, which can reach several tens of degrees and several degrees per minute, respectively. Laboratory experiments on materials analogs to those expected on asteroids show that these repeated temperature excursions cause stress on the materials, leading to their fragmentation and the production of fresh regolith

  10. Constraining the Dynamical Formation and the Size of the Primordial Building Blocks for Comet 67P/Churyumov-Gerasimenko Using the CONSERT Observations

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Palmer, E. M.; Kofman, W. W.; Herique, A.; El Maarry, M. R.

    2017-12-01

    Rosetta's two-year orbital mission at comet 67P/Churyumov-Gerasimenko significantly improved our understanding of the Radar properties of cometary bodies and how they can be used to constrain the ambiguities associated to the dynamical formation of 67P by setting an upper limit on the size of the comet's initial building blocks using the CONSERT, VIRTIS and OSIRIS observations. We present here in an updated post-rendezvous three-dimensional dielectric, textural and structural model of the comet's surface and subsurface at VHF-, X- and S-band radar frequencies. We assess the radar properties of potential structural heterogeneities observed in the upper meters of the shallow subsurface as well as deeper structures across the comet head. We use CONSERT's bistatic radar sounding measurements of the nucleus `head' interior to constrain the dielectric properties and structure of the interior; VIRTIS' multi-spectral observations to constrain the surface mineralogy and the distribution of water-ice on the surface and the implications of the above on the spatial variability of the surface and shallow subsurface dielectric properties. Surface and shallow subsurface structural elements are derived from the OSIRIS' images of exposed outcrops and pit walls. Our dielectric analysis showing the lack of sufficient dielectric contrast correlated with the lack of signal broadening in the 90-MHz radar echoes observed by CONSERT suggests that the the apparent meter-sized inhomogeneities in the walls of deep pits originally interpreted as cometesimals forming the comet's primordial blocks, could be localized evolutionary features of high centered polygons caused by seasonal modifications to the near-subsurface ice formed through thermal expansion and contraction and may not be continuous through the head. Considering the three-dimensional dielectric variability of 67P as derived from CONSERT, VIRTIS, Arecibo observations and laboratory measurement we set an upper limit on the size of the comet's initial building blocks.

  11. GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    NASA Astrophysics Data System (ADS)

    Sing, D. K.; Huitson, C. M.; Lopez-Morales, M.; Pont, F.; Désert, J.-M.; Ehrenreich, D.; Wilson, P. A.; Ballester, G. E.; Fortney, J. J.; Lecavelier des Etangs, A.; Vidal-Madjar, A.

    2012-10-01

    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) instrument, enabling differential spectrophotometric transit light curves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300 Å. We find that sub-mmag-level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ˜1000 Å regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimizing the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50-Å bandpass centred on the Na I doublet, with absorption depths of Δ(Rpl/R★)2 = 0.049 ± 0.017 per cent using the R500R grism and 0.047 ± 0.011 per cent using the R500B grism (combined 5.2σ significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ˜800 Å region surrounding the doublet. Combined with narrow-band photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma, and part of the large European Southern Observatory (ESO) programme 182.C-2018.

  12. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  13. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  14. Linking surface morphology, composition and activity on the 67P/Churyumov-Gerasimenko’s nucleus

    NASA Astrophysics Data System (ADS)

    Fornasier, Sonia; Hoang, Van Hong; Hasselmann, Pedro H.; Barucci, Maria Antonieta; Feller, Clement; Prasanna Deshapriya, Jasinghege Don; Keller, Horst Uwe; OSIRIS Team

    2017-10-01

    The Rosetta mission orbited around the comet 67P/Churyumov-Gerasimenko for more than 2 years, getting an incredible amount of unique data of the comet nucleus and inner coma. This has enabled us to study its activity continuously from 4 AU inbound to 3.6 AU outbound, including the perihelion passage at 1.25 AU.This work focuses on the identification of the regions sources of faint jets and outbursts, and on the study of their spectrophotometric properties, from observations acquired with the OSIRIS/NAC camera during the July-October 2015 period, i.e. close to perihelion. More than 150 jets of different intensities were identified directly on the nucleus from NAC color sequences acquired in 7-11 filters covering the 250-1000 nm wavelength range, and their spectrophotometric properties studied for the first time. Some spectacular outbursts appear dominated by water ice particles, while fainter jets often show colors redder than the nucleus and appear dominated by dusty particles. Some jets are very faint and were identified on the nucleus thanks to the unprecedented spatial and temporal resolution of the ROSETTA/OSIRIS observations. Some of them have an extremely short lifetime, appearing on the cometary surface during the color sequence observations, reaching their peak in flux and then vanishing in less than a couple of minutes.We will present the results on the location, duration, and colors of active sources on the 67P nucleus from the relatively low resolution (i.e. 6-10 m/pixel) images acquired close to the perihelion passage. Some of this active regions were observed and investigated in higher resolution (up to few dm per pixel) during other phases of the mission. These observations allow us to study the morphological and spectral evolution of the regions found to be active and to further investigate the link between morphology, composition, and activity on cometary nuclei.

  15. Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery.

    PubMed

    Sugimoto, Maki; Yasuda, Hideki; Koda, Keiji; Suzuki, Masato; Yamazaki, Masato; Tezuka, Tohru; Kosugi, Chihiro; Higuchi, Ryota; Watayo, Yoshihisa; Yagawa, Yohsuke; Uemura, Shuichiro; Tsuchiya, Hironori; Azuma, Takeshi

    2010-09-01

    We applied a new concept of "image overlay surgery" consisting of the integration of virtual reality (VR) and augmented reality (AR) technology, in which dynamic 3D images were superimposed on the patient's actual body surface and evaluated as a reference for surgical navigation in gastrointestinal, hepatobiliary and pancreatic surgery. We carried out seven surgeries, including three cholecystectomies, two gastrectomies and two colectomies. A Macintosh and a DICOM workstation OsiriX were used in the operating room for image analysis. Raw data of the preoperative patient information obtained via MDCT were reconstructed to volume rendering and projected onto the patient's body surface during the surgeries. For accurate registration, OsiriX was first set to reproduce the patient body surface, and the positional coordinates of the umbilicus, left and right nipples, and the inguinal region were fixed as physiological markers on the body surface to reduce the positional error. The registration process was non-invasive and markerlesss, and was completed within 5 min. Image overlay navigation was helpful for 3D anatomical understanding of the surgical target in the gastrointestinal, hepatobiliary and pancreatic anatomies. The surgeon was able to minimize movement of the gaze and could utilize the image assistance without interfering with the forceps operation, reducing the gap from the VR. Unexpected organ injury could be avoided in all procedures. In biliary surgery, the projected virtual cholangiogram on the abdominal wall could advance safely with identification of the bile duct. For early gastric and colorectal cancer, the small tumors and blood vessels, which usually could not be found on the gastric serosa by laparoscopic view, were simultaneously detected on the body surface by carbon dioxide-enhanced MDCT. This provided accurate reconstructions of the tumor and involved lymph node, directly linked with optimization of the surgical procedures. Our non-invasive markerless registration using physiological markers on the body surface reduced logistical efforts. The image overlay technique is a useful tool when highlighting hidden structures, giving more information.

  16. Three-dimensional views of the nucleus of Comet 67P/Churyumov-Gerasimenko: an atlas of stereo anaglyphs from OSIRIS-NAC images

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe L.; Romeuf, David; Faury, Guillaume; Durand, Joelle; Beigbeder, Laurent; Groussin, Olivier

    2017-10-01

    The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA’s Rosetta spacecraft has acquired approximately 25000 images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at various spatial scales down to centimeters per pixel. The bulk of these images have been obtained in sequences and the combined displacement of the Rosetta orbiter along its trajectory and the rotation of the nucleus allow associating many pairs of images appropriate to stereoscopic viewing. This is achieved by constructing anaglyphs after rotating the images so that the relative shift appears horizontal. The shift is set to limit the parallax to approximately 2° (with a maximum value of 4°) for the foreground (to avoid image deformation) and the scene is placed behind the screen for optimal visual comfort. The rotation of the nucleus may have the adverse effect of introducing temporal incoherence, prominently from the variation of the cast shadows. Various solutions are implemented to circumvent this problem, usually by cropping the maximum extent of the shadows. A time of writing, approximately 900 anaglyphs have been produced and we expect to reach several thousand once the systematic search of suitable pairs will be completed. We will present examples of anaglyphs. They will be searchable thanks to a dedicated data base that will document each one including its location on a 3D numerical model of the nucleus. Many possibilities of querying the parameters will be offered. It is anticipated that this atlas available online in the near future will be a valuable tool for fostering our understanding of the complex morphology of the cometary surface and of the processes at work , as well as offering spectacular stereoscopic views of the nucleus enjoyable by a general public.

  17. OH Fluorescence and Prompt Emission in comet 103P/Hartley 2 observed by EPOXI mission and expected results for comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS WAC camera

    NASA Astrophysics Data System (ADS)

    La Forgia, F.; A'Hearn, M. F.; Lazzarin, M.; Magrin, S.; Bodewits, D.; Bertini, I.; Pajola, M.; Barbier, C.; Sierks, H.

    2014-04-01

    The OH radical, observed in cometary comae, is the direct dissociation product of water. Given the strong A2∑ - X2II (0, 0) emission band in the near-UV at 308.5 nm due to resonance fluorescence, the OH radical has been used, for years, as a tracer of the water parent molecule. Specifically, the OH fluorescence band provides an immediate tool to monitor the water production rate and its variations with the comet's heliocentric distance, rotational period and possible activity changes. Photolysis of water in cometary comae gives rise, with a non negligible branching ratio, to OH fragments in the first electronically excited state (OH*). This state is very unstable, with a lifetime of about 10-6s (Becker and Haaks, 1973), therefore OH* molecules promptly decay to the ground state. This process, generally referred to as prompt emission (PE), is responsible for an emission band in the near-UV ranging approximatelly from 306 to 325 nm. Original studies and tentative detections of OH PE have been put forth by Bertaux (1986), Budzien and Feldman (1991), Bonev et al. (2004), A'Hearn et al. (2007) using ground and space observations. Both from the above mentioned works together with our analysis, this process is expected to be prominent at short distances from the nucleus, where there is high density of water molecules, requiring the need of spacecraft observations to reach the necessary resolution. The hyperactive Jupiter family comet 103P/Hartley 2 has been visited by EPOXI spacecraft on 4 November 2010 at a minimum distance of 694 km, when it was at 1.064 AU from the Sun (A'Hearn et al. 2011). We present the analysis of photometric observations in OH filter acquired by MRI camera onboard EPOXI used to investigate the spatial distribution of OH in the coma of Hartley 2. The data revealed a radial OH structure within 35 km from the nucleus, appearing to be coming directly from the nucleus, in the region of the central waist. A theoretical computation evidencing a strong possibility that this OH structure could be partially associated with OH PE has been performed. This is strongly supported by the agreement of the OH spatial distribution with the water spatial distribution derived from HRI IR spectrometer observations (A'Hearn et al. 2011). Given the results on comet Hartley 2, we present our expectations and preliminary analysis of OH fluorescence and prompt emission mechanisms in the coma of 67P/Churyumov-Gerasimenko, target of the Rosetta mission. The OSIRIS WAC camera on board Rosetta is equipped with 7 narrowband filters centered on molecular emission bands, including the OH gas filter. This will enable us to investigate OH fluorescence and PE at increasing resolution as Rosetta will approach the comet. This analysis, supported by accompanying observations acquired by OSIRIS WAC camera in the forbidden OI band at 630 nm, will help in further constrain the water photochemistry and the fluorescence and PE processes occurring in the cometary comae.

  18. Thermal infrared observations and thermophysical characterization of the OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J.; Fernandez, Y.; Kelley, M.; Warden, K.; Hergenrother, C.; Lauretta, D.; Drake, M.; Campins, H.; Ziffer, J.

    2014-07-01

    Near-Earth asteroids (NEAs) have garnered ever-increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest, because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among the NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu's regolith to the Earth for detailed laboratory study. We present analysis of thermal infrared photometry and spectroscopy to test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range of 5.2-38 μ m and images at 16 and 22 μ m at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μ m, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484±10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492±20 m, Nolan et al. 2013) and a visible geometric albedo of 0.046±0.005 (using H_{V}=20.51, Hergenrother et al. 2013). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310±70 J m^{-2}K^{-1}s^{-1/2}, which is significantly lower than that for several other NEAs of comparable size. There may be a small variation of thermal inertia with rotational phase (±60 J m^{-2}K^{-1}s^{-1/2}). The spectral analysis is inconclusive in terms of surface mineralogy; the emissivity spectra have a relatively low signal-to-noise ratio and no spectral features are detected. The thermal inertia indicates average regolith grain size on the scale of several millimeters to about a centimeter. This moderate grain size is also consistent with low spectral contrast in the 7.5-20 μ m spectral range. If real, the rotational variation in thermal inertia would be consistent with a change in average grain size of only about a millimeter. The thermophysical properties of Bennu's surface appear to be fairly homogeneous longitudinally. A search for a dust coma failed to detect any extended emission, putting an upper limit of about 10^6 g of dust within 4750 km of Bennu. We predict that the OSIRIS-REx spacecraft will find a low-albedo surface with abundant sub-cm sized grains, fairly evenly distributed in longitude.

  19. Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods

    PubMed Central

    Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas

    2015-01-01

    Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. PMID:26657513

  20. A new multiresolution method applied to the 3D reconstruction of small bodies

    NASA Astrophysics Data System (ADS)

    Capanna, C.; Jorda, L.; Lamy, P. L.; Gesquiere, G.

    2012-12-01

    The knowledge of the three-dimensional (3D) shape of small solar system bodies, such as asteroids and comets, is essential in determining their global physical properties (volume, density, rotational parameters). It also allows performing geomorphological studies of their surface through the characterization of topographic features, such as craters, faults, landslides, grooves, hills, etc.. In the case of small bodies, the shape is often only constrained by images obtained by interplanetary spacecrafts. Several techniques are available to retrieve 3D global shapes from these images. Stereography which relies on control points has been extensively used in the past, most recently to reconstruct the nucleus of comet 9P/Tempel 1 [Thomas (2007)]. The most accurate methods are however photogrammetry and photoclinometry, often used in conjunction with stereography. Stereophotogrammetry (SPG) has been used to reconstruct the shapes of the nucleus of comet 19P/Borrelly [Oberst (2004)] and of the asteroid (21) Lutetia [Preusker (2012)]. Stereophotoclinometry (SPC) has allowed retrieving an accurate shape of the asteroids (25143) Itokawa [Gaskell (2008)] and (2867) Steins [Jorda (2012)]. We present a new photoclinometry method based on the deformation of a 3D triangular mesh [Capanna (2012)] using a multi-resolution scheme which starts from a sphere of 300 facets and yields a shape model with 100; 000 facets. Our strategy is inspired by the "Full Multigrid" method [Botsch (2007)] and consists in going alternatively between two resolutions in order to obtain an optimized shape model at a given resolution before going to the higher resolution. In order to improve the robustness of our method, we use a set of control points obtained by stereography. Our method has been tested on images acquired by the OSIRIS visible camera, aboard the Rosetta spacecraft of the European Space Agency, during the fly-by of asteroid (21) Lutetia in July 2010. We present the corresponding 3D shape model of its surface and compare it with models obtained with the SPG and SPC methods. We finally illustrate the practical interest of our approach in geomorphological studies through an analysis of depth to diameter ratio of several craters and topographic properties of other features. Botsch, M., et al., "Geometric modeling based on polygonal meshes," Proc. ACM SIGGRAPH Course Notes, 2007 Capanna, C., et al.: 3D Reconstruction of small solar system bodies using photoclinometry by deformation, IADIS International Journal on Computer Science and Information Systems, in press, 2012. Gaskell, R. W., et al.: Characterizing and navigating small bodies with imaging data, Meteoritics and Planetary Science, vol 43, p. 1049, 2008. Jorda, L., et al: Asteroid (2867) Steins: Shape, Topography and Global Physical Properties from OSIRIS observations, Icarus, in press, 2012. Oberst, J., et al.: The nucleus of Comet Borrelly: a study of morphology and surface brightness, Icarus, vol. 167, 2004. Preusker, F., et al.: The northern hemisphere of asteroid 21 Lutetia topography and orthoimages from Rosetta OSIRIS NAC image data, Planetary and Space Science, vol. 66, p. 54-63, 2012. Thomas, P. C., et al.: The shape, topography, and geology of Tempel 1 from Deep Impact observations, Icarus, vol. 187, Issue 1, p. 4-15, 2007

  1. OSIRIS-REx and mission sample science: The return of at least 60 g of pristine regolith from asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Connolly, H. C., Jr.; Lauretta, D. S.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission was selected by NASA in May 2011 as the third New Frontiers mission. The target, (101955) Bennu, is a B-type near-Earth asteroid (NEA), hypothesized to be similar to CI or CM carbonaceous chondrites. The key science objectives of the mission are summarized in [1]. To meet these science objectives, the science team is coordinated and governed by the Science Executive Council (SEC): A group of six persons that run various elements of mission science. Mission Sample Science (MSS) is charged with analysis of the returned sample. Mission Sample Science: MSS is run by a Mission Scientist and composed of the following working groups: Carbonaceous Meteorite Working Group (CMWG), Dynamical Evolution Working Group (DEWG), Regolith Development Working Group (RDWG), Sample Analysis Working Group (SampleWG), Sample Site Science Working Group (SSSWG), and TAGSAM Working Group (TAGSAMWG). CMWG works to define and create well-characterized test samples, both natural and synthetic, for the development of spectral test data. These data are used to verify the depth and accuracy of spectral analysis techniques for processing data collected by the OSIRIS-REx spectrometers (OVIRS and OTES). The DEWG is charged with constraining the history of asteroid Bennu from main-belt asteroid to NEA. They also work closely with the SampleWG to define the hypotheses for the dynamical evolution of Bennu through the analysis of the returned sample. The RDWG is focused on developing constraints on the origin and evolution of regolith on Bennu through investigations of the surface geology and, working with the SampleWG, test these hypotheses through sample analysis. RDWG is also focused on the analysis of the sampling event and reconstructing what occurred during the event. SampleWG is focused on documenting Contamination Knowledge, which is distinct but related to mission Contamination Control. The main deliverable for this working group is the Sample Analysis Plan, due in 2019. Furthermore, it is this working group that is responsible for constituting the Preliminary Examination Team (PET) and performing the analyses of the returned sample during the first six months after return. SSSWG has the main deliverable of providing to the project the Science Value Maps (SVMs), which are part of the sample site selection process. If we can deliver the spacecraft to candidate sample sites, if it is safe to sample at them, and if there is material that can be ingested, SVMs will be a semi-quantitative aid in picking the optimum site to meet mission science goals. Finally, TAGSAM (Touch And Go Sample Acquisition Mechanism) is the sampler for the mission and this working group is concerned primarily with characterizing TAGSAM capabilities against a range of regolith types. Mission Sample Science provides an over-arching structure to reconstruct the pre- and post-accretion history of Bennu from the formation of pre-solar grains, chondrules, up to geological activity within the asteroid to its final dynamical evolution through analysis of the returned sample using a wide range of disciplines and expertise.

  2. Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana

    2018-06-01

    We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.

  3. Validation of Ozone Profiles Retrieved from SAGE III Limb Scatter Measurements

    NASA Technical Reports Server (NTRS)

    Rault, Didier F.; Taha, Ghassan

    2007-01-01

    Ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements are compared with correlative measurements made by occultation instruments (SAGE II, SAGE III and HALOE [Halogen Occultation Experiment]), a limb scatter instrument (Optical Spectrograph and InfraRed Imager System [OSIRIS]) and a series of ozonesondes and lidars, in order to ascertain the accuracy and precision of the SAGE III instrument in limb scatter mode. The measurement relative accuracy is found to be 5-10% from the tropopause to about 45km whereas the relative precision is found to be less than 10% from 20 to 38km. The main source of error is height registration uncertainty, which is found to be Gaussian with a standard deviation of about 350m.

  4. Injection and trapping of tunnel-ionized electrons into laser-produced wakes.

    PubMed

    Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C

    2010-01-15

    A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

  5. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  6. Sippar Sulcus, Ganymede

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These two frames, derived from images of Jupiter's moon Ganymede by NASA's Galileo and Voyager spacecraft, show bright terrain types and topography within an area called Sippar Sulcus in Ganymede's southern hemisphere. All three dominant structural styles of the bright regions -- grooved terrain, smooth terrain and reticulate terrain -- are represented.

    The left frame (a) is a mosaic of images taken by Galileo with a resolution of 180 meters (590 feet) per pixel superimposed on lower-resolution Voyager images. A swath of smooth terrain crosses the scene diagonally from upper right to center left. Irregularly shaped enclosures are interpreted as calderas, which, on Earth, are depressions typically caused by collapse of subsurface lava reservoirs. The numerous bright patches are due to secondary impacts from creation of a large crater, Osiris, which is out of the frame to the right.

    The right frame (b) shows a digital elevation model of the three-dimensional shape of the same scene. Relative elevation values have been color-coded and merged with the Galileo image mosaic. The inset shows a geological map highlighting areas of grooved terrain (g, black), reticulate terrain (r, gray), smooth terrain (s, white), calderas (hatched), and locations for higher-resolution views PIA-XXC [fig3a] (upper box) and PIA-XXD [fig3b] (lower box).

    These images were prepared by the Lunar and Planetary Institute, Houston, and included in a report by Dr. Paul Schenk et al. in the March 1, 2001, edition of the journal Nature.

    The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo and Voyager missions for NASA's Office of Space Science, Washington, D.C.

    Images and data received from Galileo are posted on the Galileo mission home page at http://www.jpl.nasa.gov/galileo. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.

  7. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  8. Rethinking of the regolith transport on airless bodies in the Solar system

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Wang, X.; Seiss, M.; Schwan, J.; Sternovsky, Z.; Horanyi, M.

    2016-12-01

    Recent laboratory experiments provided important constraints on the characteristics of electrostatic dust transport on airless bodies. The proposed "patched charging model" illustrates how regolith particles acquire grain charges much higher than expected to drive the surface dust movements, including rotation and hopping of individual regolith particle as well as the overall smoothing of the regolith surface observed in the experiments. Here we apply the experimental results to re-examine the regolith transport on the airless bodies in the Solar systems, including both observation (e.g., dust ponds on Eros) and theoretical aspects (e.g., electrostatic dust levitation). We will also discuss the observational criteria and implications to be expected from current and future missions, such as Asteroid Redirect Mission, Cassini, Hayabusa 2, and OSIRIS-Rex.

  9. Circumnuclear Star Formation in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Marquette, Melissa; Hicks, Erin K.; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Davies, Richard

    2017-01-01

    We examine a group of Seyfert 1 and Seyfert 2 galaxies to determine whether there exists a correlation between the circumnuclear starburst age and the luminosity of the active galactic nucleus. Using data from the Keck OSIRIS Nearby AGN (KONA) survey, we have a sample size of 40 Seyfert galaxies (split between Seyfert 1s and 2s), in which we measure the circumnuclear properties down to a few tens of parsecs. We determine the age of the most recent episode of circumnuclear star formation by analyzing the equivalent width of the Br Gamma 2.16 micron emission line and further constrain the age using measurements of the K-band mass to light ratio. The results of these analyses will be presented, including a comparison of the Seyfert 1 and Seyfert 2 subsamples.

  10. Volatiles in asteroids

    NASA Astrophysics Data System (ADS)

    Campins, H.

    2014-07-01

    For more than three decades, hydrated minerals have been identified in asteroids. The distribution of these minerals among asteroid spectral types and heliocentric distance has been somewhat unexpected, and there is also diversity in the composition of these hydrated minerals (e.g., Takir and Emery 2012). In addition, water ice and organic molecules have been detected on two asteroids (Campins et al. 2010; Rivkin and Emery 2010; Licandro et al. 2011) and water vapor is emanating from (1) Ceres (Küppers et al. 2014). These discoveries have important implications on current views of primitive asteroids, the nature of active asteroids or main-belt comets, the dynamics of the early Solar System, and the delivery of water and organic molecules to the Earth. They are also relevant to several space missions, including Dawn, Gaia, Hayabusa2, OSIRIS-REx ,and WISE.

  11. From Bonaventure to Goddard: How I Got to NASA and What I Am Doing There

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.

    2014-01-01

    The presentation, accompanied by slides when appropriate, will describe how a young physics major travelled from the classrooms of Saint Bonaventure, to the graduate research laboratories of the University of Florida in Gainesville, and finally to the government laboratories of NASA at the Goddard Space Flight Center just north of Washington, D.C. The main portion of the presentation concerns NASA missions of interest to the general public and supported in part by research work he does. Such, for example, is the current flagship mission of NASA, the James Webb Space Telescope that is destined to replace very soon the Hubble Space Telescope. In addition to these NASA telescope missions, a mission to an asteroid, coined the OSIRIS REX program, is in process and will be described.

  12. Keck Observations of the Gas Dynamics at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Campbell, Randall; Ciurlo, Anna; Morris, Mark; Sitarski, Breann N.; Ghez, Andrea M.; Do, Tuan

    2018-06-01

    In the central parsec of the Milky Way Galaxy the environment of the super-massive black hole (SMBH) presents a complicated mixture of stars, gas, and dust. These inner few tens of arcseconds of the GC have been observed at high resolution with Keck for 20 years with the primary goal of monitoring stars orbiting the SMBH. However, the gas features and their dynamics can also be closely examined using this unique baseline of data. In particular, observations with the Keck OSIRIS integral field spectrometer allow us to examine of the dynamical properties of the gas and to possibly identify new “G-type” objects, or dusty stellar objects. We present a study of morphology and orbital dynamics of sub-parsec scale gas features in the central region.

  13. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  14. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Fernández, Y. R.; Kelley, M. S. P.; Warden, K. T.; Hergenrother, C.; Lauretta, D. S.; Drake, M. J.; Campins, H.; Ziffer, J.

    2014-05-01

    Near-Earth Asteroids (NEAs) have garnered ever increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu’s regolith to Earth for detailed laboratory study. This paper presents analysis of thermal infrared photometry and spectroscopy that test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range 5.2-38 μm and images at 16 and 22 μm at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μm, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484 ± 10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492 ± 20 m, Nolan, M.C., Magri, C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Hergenrother, C.W., Hudson, R.S., Lauretta, D.S., Margo, J.-L., Ostro, S.J., Scheeres, D.J. [2013]. Icarus 226, 629-640) and a visible geometric albedo of 0.046 ± 0.005 (using Hv = 20.51, Hergenrother, C.W. et al. [2013]. Icarus 226, 663-670). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310 ± 70 J m-2 K-1 s-1/2, which is significantly lower than several other NEAs of comparable size. There may be a small variation of thermal inertia with rotational phase (±60 J m-2 K-1 s-1/2). The spectral analysis is inconclusive in terms of surface mineralogy; the emissivity spectra have a relatively low signal-to-noise ratio and no spectral features are detected. The thermal inertia indicates average regolith grain size on the scale of several millimeters to about a centimeter. This moderate grain size is also consistent with low spectral contrast in the 7.5-20 μm spectral range. If real, the rotational variation in thermal inertia would be consistent with a change in average grain size of only about a millimeter. The thermophysical properties of Bennu’s surface appear to be fairly homogeneous longitudinally. A search for a dust coma failed to detect any extended emission, putting an upper limit of about 106 g of dust within 4750 km of Bennu. Three common methodologies for thermal modeling are compared, and some issues to be aware of when interpreting the results of such models are discussed. We predict that the OSIRIS-REx spacecraft will find a low albedo surface with abundant sub-cm sized grains, fairly evenly distributed in longitude.

  15. A versatile and interoperable network sensors for water resources monitoring

    NASA Astrophysics Data System (ADS)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act as shortcuts to the heart of the aquifer, causing water contamination much faster than what inferable from average infiltration rates. A new system has been set up, upgrading a legacy sensor network with new sensors to address the monitoring and emergency phase management. Where necessary sensors have been modified in order to manage the whole sensor network through SWE services. The network manage sensors for water parameters (physical and chemical) and for atmospheric ones (for supporting the management of accidental crises). A main property of the developed architecture is that it can be easily reconfigured to pass from the monitoring to the alert phase, by changing sampling frequencies of interesting parameters, or deploying specific additional sensors on identified optimal positions (as in case of the hydrocarbon spill). A hydrogeological model, coupled through a hydrological interface to the atmospheric forcing, has been implemented for the area. Model products (accessed through the same web interface than sensors) give a fundamental added value to the upgraded sensors network (e.g. for data merging procedures). Together with the available measurements, it is shown how the model improves the knowledge of the local hydrogeological system, gives a fundamental support to eventually reconfigure the system (e.g. support on transportable sensors position). The network, basically conceived for real-time monitoring, allow to accumulate an unprecedent amount of information for the aquifer. The availability of such a large set of data (in terms of continuously measured water levels, fluxes, precipitation, concentrations, etc.) from the system, gives a unique opportunity for studying the influences of hydrogeological and geopedological parameters on arsenic and concentrations of other chemicals that are naturally present in water.

  16. Scaled experimental investigation of the moderation of auroral cyclotron emissions by background plasma

    NASA Astrophysics Data System (ADS)

    McConville, S. L.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Koepke, M. E.; Whyte, C. G.; Matheson, K.; Robertson, C. W.; Cairns, R. A.; Vorgul, I.; Bingham, R.; Kellett, B. J.; Ronald, K.

    2012-04-01

    Scaled laboratory experiments have been conducted at Strathclyde University [1,2] to further the understanding of the naturally occurring generation of Auroral Kilometric Radiation (AKR) in the Earth's polar magnetosphere. At an altitude of around 3200km there exists a region of partial plasma depletion (the auroral density cavity), through which electrons descend towards the Earth's atmosphere and are subject to magnetic compression. Due to conservation of the magnetic moment these electrons sacrifice parallel velocity for perpendicular velocity resulting in a horseshoe shaped distribution in velocity space which is unstable to the cyclotron maser instability [3,4]. The radiation is emitted at frequencies extending down to the local electron cyclotron frequency with a peak in emission at ~300kHz. The wave propagation is in the X-mode with powers ~109W corresponding to radiation efficiencies of 1% of the precipitated electron kinetic energy [5]. The background plasma frequency within the auroral density cavity is approximately 9kHz corresponding to an electron plasma density ~106m-3. Previous laboratory experiments at Strathclyde have studied cyclotron radiation emission from electron beams which have horseshoe shaped velocity distributions. Radiation measurements showed emissions in X-like modes with powers ~20kW and efficiencies ~1-2%, coinciding with both theoretical and numerical predictions [6-9] and magnetospheric studies. To enhance the experimental reproduction of the magnetospheric environment a Penning trap was designed and incorporated into the existing apparatus [10]. The trap was placed in the wave generation region where the magnetic field would be maintained at ~0.21T. The trap allowed a background plasma to be generated and its characteristics were studied using a plasma probe. The plasma had a significant impact on the radiation generated, introducing increasingly sporadic behaviour with increasing density. The power and efficiency of the radiation generated was lower than with no plasma present. Plasma diagnostics established the plasma frequency on the order of 150-300MHz and electron density ranging from ~1014-1015m-3, whilst the cyclotron frequency of the electrons within the Penning trap was 5.87GHz giving fce/fpe ~19-40, comparable to the auroral density cavity. Numerical simulations coinciding with this part of the experimental research program are currently being carried out using the VORPAL code. Details of these simulations will be presented in a separate paper [Speirs et al] at this meeting. McConville SL et al 2008, Plasma Phys. Control. Fusion, 50, 074010 Ronald et al 2011, Plasma Phys. Control. Fusion, 53, 074015 Bingham R and Cairns RA, 2002, Phys. Scr., T98, 160-162 Ergun RE et al, 1998, Geophys. Res. Lett., 25, 2061 Gurnett DA et al, 1974, J. Geophys. Res., 79, 4227-4238 Cairns RA et al, 2011, Phys. Plasmas, 18, 022902 Gillespie KM et al, 2008, Plasma Phys. Control. Fusion, 50, 124038 Speirs et al 2010, Phys. Plasmas, 17, 056501 Vorgul et al 2011, Phys. Plasmas, 18, 056501 McConville SL et al 2011, Plasma Phys. Control. Fusion, 53, 124020

  17. Photometric Modeling of Simulated Surace-Resolved Bennu Images

    NASA Astrophysics Data System (ADS)

    Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the completeness of the data set for evaluating the phase and disk functions of the surface. Application of this software to simulated mission data has revealed limitations in the initial mission design, which has fed back into the planning process. The entire photometric pipeline further serves as an exercise of planned activities for proximity operations.

  18. Photometric analysis of Asteroid (21) Lutetia from Rosetta-OSIRIS images

    NASA Astrophysics Data System (ADS)

    Masoumzadeh, N.; Boehnhardt, H.; Li, Jian-Yang; Vincent, J.-B.

    2015-09-01

    We analyzed the photometric properties of Asteroid (21) Lutetia based on images captured by Rosetta during its flyby. We utilized the images recorded in the F17 filter (λ = 631.6 nm) of the Wide Angle Camera (WAC) and in the F82 & F22 filters (λ = 649.2 nm) of the Narrow Angle Camera (NAC) of the OSIRIS imaging system onboard the spacecraft. We present the results of Hapke and Minnaert modeling using disk-integrated and disk-resolved data derived from the surface of the asteroid. At 631.6 nm and 649.2 nm, the geometric albedo of Lutetia is 0.194 ± 0.002. The Bond albedo is 0.076 ± 0.002 at 649.2 nm, and 0.079 ± 0.002 at 631.6 nm. The roughness parameter is 28 ° ± 1 ° , the opposition surge parameters B0 and h are 1.79 ± 0.08 and 0.041 ± 0.003, respectively, and the asymmetry factor of the phase function is -0.28 ± 0.01. The single-scattering albedo is 0.226 ± 0.002 at 631.6 and 649.2 nm. The modeled Hapke parameters of Asteroid Lutetia are close to those of typical S-type asteroids. The Minnaert k parameter of Lutetia at opposition (0.526 ± 0.002) is comparable with other asteroids and comets. Albedo ratio images indicate no significant variation across the surface of Lutetia, apart from the so called NPCC region on Lutetia where a pronounced variation is seen at large phase angle. The small width of the albedo distribution of the surface (∼7% at half maximum) and the similarity between phase ratio maps derived from the measurements and from the modeling suggests that the light scattering property over the whole visible and illuminated surface of the asteroid is widely uniform. The comparison between the reflectance measurement of Lutetia and the available laboratory samples suggests that the regolith on Lutetia is concrete with possible grain size distribution of150 μm or larger.

  19. Observations of Uranus and Neptune in Spanish Telescopes: Calar Alto/PlanetCam, WHT/Ingrid y GTC/Osiris

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Ordonez-Etxeberria, I.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.

    2017-03-01

    The astronomical observation of the atmospheres of Uranus and Neptune poses unique challenges. Both planets are relatively dimm objects (visual magnitude of +5.3 and +7.7) and have small angular sizes (3.7” and 2.4” at opposition). Both worlds have atmospheres that are very dynamic, specially Neptune. These atmospheres are dominated by intense zonal winds that reach 450 m/s and where seasonal evolution changes the band patterns present in these planets. Thanks to the atmospheric methane gas, when observing Uranus and Neptune in near infrared wavelengths their upper clouds become well contrasted and bright and observations at different methane absorption bands allow to sample the atmosphere at different vertical layers. Both worlds are subject to the development of bright cloud patterns, some times of convective origin and whose activity can extend over weeks to several months or years. In the last few years we have surveyed the atmospheric activity of Uranus and Neptune with instruments able to improve the spatial resolution of the images beyond the limits impose by the atmospheric seeing. We use the Lucky Imaging technique (fast observation of several short-exposure frames combined with automatic selection of best frames and coregistration for stacking). We present image observations of Uranus and Neptune obtained with the instruments: OSIRIS at Grantecan as well as the AstraLux and PlanetCam UPV/EHU cameras on the 2.2m telescope at Calar Alto observatory. These observations are compared with other observations acquired by amateur astronomers able to obtain resolve cloud features in Uranus and Neptune. We compare these observations with images acquired with Adaptive Optics instruments at the William Herschel with the NAOMI+Ingrid instruments and Keck II and with Hubble Space Telescope images. We show the importance of surveying the atmospheric activity of these planets with a variety of telescopes. Two science cases are presented: The study of convective storms in Uranus in 2014 and the study of bright non convective features in Neptune in 2015.

  20. Variegation of active regions on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Vincent, Jean-Baptiste; Fornasier, Sonia; Pajola, Maurizio; Besse, Sebastien; Lara, Luisa M.; Barucci, Maria Antonietta; Mottola, Stefano; Sierks, Holger; Pommerol, Antoine; Masoumzadeh, Nafiseh; Lazzarin, Monica; Scholten, Frank; Preusker, Frank; Hall, Ian

    2015-11-01

    Since Rosetta spacecraft’s arrival to the comet 67P, the OSIRIS scientific imager (Optical, Spectroscopic, and Infrared Remote Imaging System, Keller et al. 2007) is successfully observing the nucleus with high spatial resolution in the 250-1000 nm range thanks to set of 26 dedicated filters.While 67P has a typical red spectral slope, the active areas tend to display bluer spectra (Sierks et al. 2015, Fornasier et al. 2015). We performed a spectral analysis of the active areas and derived spectral characteristics of them, possibly indicating the presence of material enriched in volatiles.The ‘activity thresholds’ spectral method (Oklay et al, 2015) is used for the identification of the active areas. In most cases, areas detected with this technique have been later on confirmed as active sources (Lara et al. 2015, Lin et al. 2015, Vincent et al. 2015) by direct detection of dust jets. This technique is therefore able to identify currently active areas, but also predicts which regions of the surface are likely to become activated once they receive enough insolation.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofi­sica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politechnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. We thank the Rosetta Science Ground Segment at ESAC, the Rosetta Mission Operations Centre at ESOC and the Rosetta Project at ESTEC for their outstanding work enabling the science return of the Rosetta Mission.Keller, et al. 2007, Space Sci. Rev., 128, 433Sierks et al. 2015, Science, 347,1Fornasier et al. 2015, A&A, published onlineLara et al. 2015, A&A, published onlineLin et al. 2015, A&A, published onlineVincent et al. 2015, A&A, submittedOklay et al. 2015, in preparation

  1. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2015-11-01

    Asteroid families are formed by the fragments produced by the disruption of a common parent body (Bendjoya & Zappalà 2002). Primitive asteroids in the solar system are believed to have undergone less thermal processing than the S-complex asteroids. Thus, study of primitive asteroid families provides information about the solar system formation period. The Erigone collisional family, together with other three families (Polana, Clarissa and Sulamitis), are believed to be the origin of the two primitive Near-Earth asteroids that are the main targets of the NASA’s OSIRIS-REx ((101955) Bennu) and JAXA’s Hayabusa 2 ((162173) 1999 JU3) missions (Campins et al. 2010; Campins et al. 2013; Lauretta et al. 2010; Tsuda et al. 2013). These spacecrafts will visit the asteroids, and a sample of their surface material will be returned to Earth. Understanding of the families that are considered potential sources will enhance the scientific return of the missions. The main goal of the work presented here is to characterize the Erigone collisional family. Asteroid (163) Erigone has been classified as a primitive object (Bus 1999; Bus & Binzel 2002), and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4m Gran Telescopio Canarias. We performed a taxonomical classification of these asteroids, finding that the number of primitive objects in our sample is in agreement with the hypothesis of a common parent body. In addition, we have found a significant fraction of asteroids in our sample that present evidences of aqueous alteration. Study of aqueous alterations is important, as it can give information on the heating processes of the early Solar System, and for the associated astrobiological implications (it has been suggested that the Earth’s present water supply was brought here by asteroids, instead of comets, in opposition to previous explanations (Morbidelli et al. 2000).

  2. Measurements in Vacuum of the Complex Permittivity of Planetary Regolith Analog Materials in Support of the OSIRIS-REx Mission

    NASA Astrophysics Data System (ADS)

    Boivin, A.; Hickson, D. C.; Cunje, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2017-12-01

    In preparation for the OSIRIS-REx sample return mission, ground based radar data have been used to help characterize the carbonaceous asteroid (101955) Bennu as well as to produce a 3-D shape model. Radar data have also been used to derive the near-surface bulk density of the asteroid, a key engineering factor for sample acquisition and return. The relationship between radar albedo and bulk density of the nearsurface depends on the relative permittivity of the material, in this case regolith. The relative permittivity is complex such that ɛ r = ɛ r' + i ɛ r'', where ɛ r' is the dielectric constant and ɛ r'' is the loss factor. Laboratory permittivity measurements have been made in the past on a myriad of samples including Earth materials, lunar Apollo and analog samples, Mars soil analog samples, some meteorites, and cometary analog samples in support of the Rosetta mission. These measurements have been made in different frequency bands and in various conditions; however, no measurements to date have systematically explored the effect of changes in mineralogy on the complex permittivity, and particularly the loss tangent (tanδ , the ratio of ɛ r'' to ɛ r'). The loss tangent controls the absorption of the signal by the material. Continuing our investigation of the effects of mineralogy on these properties, we will present for the first time results of complex permittivity measurements of the UCF/DSI-CI-2 CI asteroid regolith simulant produced by Deep Space Industries Inc. The simulant is mineralogically similar to the CI meteorite Orgueil. CI meteorites are the most spectrally similar meteorites to (101955) Bennu. Since the simulant has been provided to us un-mixed, several sub-samples will be created containing different amounts of carbon, thus allowing us to systematically investigate the effects of carbon content on the permittivity. In order to remove moisture from our samples, powders are baked at 250°C for 48hrs prior to being loaded into a coaxial transmission line and measured under vacuum. Measurements are made using a sweep of frequencies from 300 KHz to 8.5 GHz.

  3. Exposed bright features on the comet 67P/Churyumov-Gerasimenko: distribution and evolution

    NASA Astrophysics Data System (ADS)

    Deshapriya, J. D. P.; Barucci, M. A.; Fornasier, S.; Hasselmann, P. H.; Feller, C.; Sierks, H.; Lucchetti, A.; Pajola, M.; Oklay, N.; Mottola, S.; Masoumzadeh, N.; Tubiana, C.; Güttler, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; Cecco, M. De; Deller, J.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Hoang, H. V.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, R.; Kührt, E.; Küppers, M.; Lara, L.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Preusker, F.; Shi, X.; Thomas, N.; Vincent, J.-B.

    2018-05-01

    Context. Since its arrival at the comet 67P/Churyumov-Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta. Aims: We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance. Methods: We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel-Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest. Results: We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category. Conclusions: Although the nucleus of 67P/Churyumov-Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet's return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is preserved with consolidated cometary material, as observed on exposed patches resting on boulders. This is corroborated by our albedo calculations that attribute higher albedos for bright features with formations related to outbursts.

  4. Measurements of Regolith Simulant Thermal Conductivity Under Asteroid and Mars Surface Conditions

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Christensen, P. R.

    2017-12-01

    Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under rough to high vacuum and across a wide range of temperatures. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and eventually cementation. We present the experimental data and model results for a suite of samples that were selected to isolate and address regolith physical parameters that affect bulk conductivity. Spherical glass beads of various sizes were used to measure the effect of size frequency distribution. Spherical beads of polypropylene and well-rounded quartz sand have respectively lower and higher solid phase thermal conductivities than the glass beads and thus provide the opportunity to test the sensitivity of bulk conductivity to differences in solid phase conductivity. Gas pressure in our asteroid experimental chambers is held at 10^-6 torr, which is sufficient to negate gas thermal conduction in even our coarsest of samples. On Mars, the atmospheric pressure is such that the mean free path of the gas molecules is comparable to the pore size for many regolith particulates. Thus, subtle variations in pore size and/or atmospheric pressure can produce large changes in bulk regolith conductivity. For each sample measured in our martian environmental chamber, we repeat thermal measurement runs at multiple pressures to observe this behavior. Finally, we present conductivity measurements of angular basaltic simulant that is physically analogous to sand and gravel that may be present on Bennu. This simulant was used for OSIRIS-REx TAGSAM Sample Return Arm engineering tests. We measure the original size frequency distribution as well as several sorted size fractions. These results will support the efforts of the OSIRIS-REx team in selecting a site on asteroid Bennu that is safe for the spacecraft and meets grain size requirements for sampling.

  5. First In-Core Simultaneous Measurements of Nuclear Heating and Thermal Neutron Flux Obtained With the Innovative Mobile Calorimeter CALMOS Inside the OSIRIS Reactor

    NASA Astrophysics Data System (ADS)

    Carcreff, Hubert; Salmon, Laurent; Bubendorff, Jacques; Lepeltier, Valérie

    2016-10-01

    Nuclear heating inside a MTR reactor has to be known in order to design and run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. Calorimeter working modes, measurement procedures, main modeling and experimental results and expected advantages of this new technique have been already presented in previous papers. However, these first in-core measurements were not performed beyond 6 W · g-1, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 1014 n · cm-2 · s-1 and nuclear heating up to 12 W · g-1. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a comparison is made between results obtained by the probe calibration coefficient and the zero methods. Thermal neutron flux evaluation from SPND signal processing required a specific TRIPOLI-4 Monte Carlo calculation which has been performed with the precise CALMOS cell geometry. In addition, the Finite Element model for temperatures map prediction inside the calorimetric cell has been upgraded with recent experimental data obtained up to 12 W · g-1. Finally, the experience feedback led us to improvement perspectives. A second device is currently under manufacturing and main technical options are presented.

  6. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Spatially resolved emission of a high-redshift DLA galaxy with the Keck/OSIRIS IFU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgenson, Regina A.; Wolfe, Arthur M., E-mail: raj@ifa.hawaii.edu

    2014-04-10

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ∼ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222–0946 at a redshift of z ∼ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ±more » 1.0 M {sub ☉} yr{sup –1} and a dynamical mass of M {sub dyn} = 6.1 × 10{sup 9} M {sub ☉}. The average star formation rate surface density is (Σ{sub SFR}) = 0.55 M {sub ☉} yr{sup –1} kpc{sup –2}, with a central peak of 1.7 M {sub ☉} yr{sup –1} kpc{sup –2}. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σ{sub gas} = 243 M {sub ☉} pc{sup –2}. Integrating over the size of the galaxy, we find a total gas mass of M {sub gas} = 4.2 × 10{sup 9} M {sub ☉}. We estimate the gas fraction of DLA 2222–0946 to be f {sub gas} ∼ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ∼6 kpc away, ∼30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation.« less

  8. Calculation to experiment comparison of SPND signals in various nuclear reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien

    2015-07-01

    In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less

  9. Studies of Short Time Response Options for Potentially Hazardous Objects: Current and Forthcoming Results

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Greenaugh, Kevin C.; Seery, Bernard D.; Bambacus, Myra; Leung, Ronald Y.; Finewood, Lee; Dearborn, David S. P.; Miller, Paul L.; Weaver, Robert P.; Plesko, Catherine; hide

    2017-01-01

    NASA's Goddard Space Flight Center (GSFC) and the National Nuclear Security Administration (NNSA), Department of Energy (DOE) National Laboratories, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory(LANL), and Sandia National Laboratory (SNL) are collaborating on Planetary Defense Research. The research program is organized around three case studies: 1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36)[OSIRIS-REx mission target], 2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target], 3. Deflection of a scaled-down version of the comet 67PChuryumov-Gerasimenko [Rosetta mission target]. NASAGSFC is providing astrodynamics and spacecraft mission design expertise, while NNSA, DOE, LLNL, LANL and SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.

  10. Status of French reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballagny, A.

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (exceptmore » if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.« less

  11. Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment

    DOE PAGES

    Li, J.; Hu, S. X.; Ren, C.

    2017-02-28

    Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less

  12. An Overview of the MOS Capabilities of the 4-10 m Telescopes at La Palma Observatory for Investigating Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Rubiño-Martín, J. A.; Streblyanska, A.; Ferragamo, A.

    2016-10-01

    La Palma Observatory offers four multi-object spectrographs installed on 4 and 10 m class telescopes. We present an overview of these four instruments. As a scientific case for two of them, we present the optical follow-up of Sunyaev-Zeldovich (SZ) sources undertaken by the Planck collaboration, focused on the detection, redshifts determination and mass estimation of the (SZ) galaxies cluster candidates. After three years of observations we have found optical counterparts for 120 candidates confirmed spectroscopically. We have determined dynamical masses for more than 30 systems with redshifts of z<0.85. Our experience demonstrates that DOLORES (TNG) and OSIRIS (GTC) are the ideal multi-object spectroscopy (MOS) instruments to investigate galaxy clusters at z<0.45 and 0.45

  13. Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Hu, S. X.; Ren, C.

    Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less

  14. Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2018-03-01

    On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.

  15. Constellation Stick Figures Convey Information about Gravity and Neutrinos

    NASA Astrophysics Data System (ADS)

    Mc Leod, David Matthew; Mc Leod, Roger David

    2008-10-01

    12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.

  16. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  17. Physical process in the coma of comet 67P derived from narrowband imaging of fragment species

    NASA Astrophysics Data System (ADS)

    Perez Lopez, F.; Küppers, M.; Marín-Yaseli de la Parra, J.; Besse, S.; Moissl, R.

    2017-09-01

    During the rendezvous of the Rosetta spacecraft with comet 67P/Churyumov-Gerasimenko, the OSIRIS scientific cameras monitored the near-nucleus gas environment in various narrow-band filters, observing various fragment species. It turned out that the excitation processes in the innermost coma are significantly different from the overall coma, as observed from the ground [1]. In particular, some of the observed emissions of fragments (daughter molecules) are created by direct dissociation of parent molecules, and in those cases the spatial distribution of the emission directly maps the distribution of parent molecules. We investigate the evolution of the brightness and distribution of the emissions over time to improve our understanding of the underlying emission mechanisms and to derive the spatial distribution of H2O and CO2. The outcome will provide constraints on the homogeneity of the cometary nucleus.

  18. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo

    2017-10-01

    The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.

  19. 2016 Year in Review Video- NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2016-12-22

    The work underway today at NASA’s Marshall Space Flight Center is making it possible to send humans beyond Earth’s orbit and into deep space on bold new missions of space exploration. Marshall teams are designing and building NASA’s Space Launch System, the most powerful rocket ever built and the only launch vehicle capable of launching human explorers to Mars. Using the International Space Station’s orbiting lab, Marshall flight controllers provided round-the-clock oversight of science experiments, supporting the first-ever DNA sequencing in space, pioneering 3-D printing capabilities and advancing human health research. Several successful New Frontiers deep-space robotic missions including OSIRIS-REx, New Horizons and Juno, made new discoveries and refined theories of the solar system. And Marshall collaborations with outside partners are yielding innovative technologies and solving technical challenges that are making the Journey to Mars a reality.

  20. The Circumnuclear Molecular Gas in Seyfert 1 versus Seyfert 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Kade, Kiana

    2018-06-01

    The distribution and kinematics of the circumnuclear molecular gas in local Seyfert galaxies is investigated as part of the Keck OSIRIS Nearby AGN (KONA) survey. The two-dimensional distribution and kinematics of the molecular hydrogen, traced by 1-0 S(1) H2 2.12 micron emission, is probed down to scales of 5-30 parsecs in 20 type 1 and 20 type 2 Seyferts. Verifying previous studies with smaller samples, these Seyferts show evidence of a circumnuclear disk of molecular gas that is both geometrically and optically thick. A comparison of the molecular hydrogen characteristics in type 1 and type 2 Seyferts indicates there is no significant difference in the flux distribution, the velocity dispersion, or the velocity/velocity dispersion ratio with in the central 200 pc. We will also present upper limits on the central black hole mass based on the observed molecular gas kinematics.

  1. Diffusion processes in tumors: A nuclear medicine approach

    NASA Astrophysics Data System (ADS)

    Amaya, Helman

    2016-07-01

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  2. Irradiation behavior of LiAlO 2 and Li 2ZrO 3 ceramics in the ALICE 3 experiment

    NASA Astrophysics Data System (ADS)

    Rasneur, B.; Thevenot, G.; Bouilloux, Y.

    1992-09-01

    Within the framework of the investigation of ceramic breeders for the DEMO relevant solid blankets developed in Europe, the ALICE 3 experiment was foreseen to study the irradiation behavior of the ceramics. The irradiation was performed in the core of the OSIRIS reactor for 46 FPD (full power days) at 400°C and 600°C. The three ceramics in the configuration contemplated in the BIT and BOT concepts were tested, i.e. LiAlO 2 and Li 2ZrO 3 pellets, Li 4SiO 4 and Li 2ZrO 3 pebbles, respectively. In this paper are reported the results of the post-irradiation examination carried out at CEA on CEA Li 2ZrO 3 and LiAlO 2 specimens: dimensions, X-ray diffraction, ultimate bending strength, diametral compressive strength and residual tritium.

  3. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  4. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    NASA Astrophysics Data System (ADS)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with a focus on the driving thermal design challenges for the instrument. It is shown through both analysis and early testing that the REXIS instrument can perform successfully through all phases of its mission.

  5. Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records.

    PubMed

    Hubert, D; Lambert, J-C; Verhoelst, T; Granville, J; Keppens, A; Baray, J-L; Cortesi, U; Degenstein, D A; Froidevaux, L; Godin-Beekmann, S; Hoppel, K W; Kyrölä, E; Leblanc, T; Lichtenberg, G; McElroy, C T; Murtagh, D; Nakane, H; Querel, R; Russell, J M; Salvador, J; Smit, H G J; Stebel, K; Steinbrecht, W; Strawbridge, K B; Stübi, R; Swart, D P J; Taha, G; Thompson, A M; Urban, J; van Gijsel, J A E; von der Gathen, P; Walker, K A; Wolfram, E; Zawodny, J M

    2016-01-01

    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12% and the drifts are at most ±5% decade -1 (or even ±3 % decade -1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.

  6. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  7. 3-D Simulations of the Inner Dust Comae for Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Marschall, Raphael; Liao, Ying; Su, Cheng-Chin; Wu, Jong-Shinn; Thomas, Nicolas; Rubin, Martin; Lai, Ian Lin; Ip, Wing-Huen; Keller, Horst Uwe; Knollenberg, Jörg; Kührt, Ekkehard; Skorov, Yuri; Altwegg, Kathrin; Vincent, Jean-Baptiste; Gicquel, Adeline; Shi, Xian; Sierks, Holger; Naletto, Giampiero

    2015-04-01

    The aims of this study are to (1) model the gas flow-field in the innermost coma for a plausible activity distributions of ROSETTA's target comet 67P/Churyumov-Gerasimenko (67P) using the SHAP2 model, (2) compare this with the ROSINA/COPS gas density (3) investigate the acceleration of dust by gas drag and the resulting dust distribution, (4) produce artificial images of the dust coma brightness as seen from different viewing geometries for a range of heliocentric distances and (5) compare the artificial images quantitatively with observations by the OSIRIS imaging system. We calculate the dust distribution in the coma within the first ten kilometers of the nucleus by assuming the dust to be spherical test particles in the gas field without any back coupling. The motion of the dust is driven by the drag force resulting from the gas flow. We assume a quadratic drag force with a velocity and temperature-dependent drag coefficient. The gravitational force of a point nucleus on the dust is also taken into account which will e.g. determine the maximal liftable size of the dust. Surface cohesion is not included. 40 dust sizes in the range between 8 nm and 0.3 mm are considered. For every dust size the dust densities and velocities are calculated by tracking around one million simulation particles in the gas field. We assume the distribution of dust according to size follows a power law, specifically the number of particles n or a particular radius r is specified by n ~ r-β with usual values of 3 ≤ β ≤ 4 where β = 3 corresponds to the case of equal mass per size and β = 4 to a shift of the mass towards the small particles. For the comparison with images of the high resolution camera OSIRIS on board ESAs ROSETTA spacecraft the viewing geometry of the camera can be specified and a line of sight integration through the dust density is performed. By means of Mie scattering on the particles the dust brightness can be determined. A variety of dust size distributions, gas to dust mass ratios, wavelengths and optical properties can thus be studied and compared with the data.

  8. Prediction of Spiral Patterns on the Surface of Asteroid 101955 Bennu

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.

    2017-12-01

    Asteroid 101955 Bennu, the target of OSIRIS-REx space mission, is known to have a "walnut" shape: close to an axially symmetric oblate shape with a sharp equatorial ridge (Nolan M. C., et al., 2013, Icarus 226, 629-640, doi:10.1016/j.icarus.2013.05.028). Such a shape is usual among quickly spinning small asteroids; it is thought to be formed due to surficial transport of asteroid material toward equator under a combination of the gravitational and centrifugal forces, in other words, downhill with respect to the geopotential (e.g., Scheeres, D. J., et al., 2006, Science 314, 1280-1283, doi:10.1126/science.1133599). This is likely to occur, when a rubble-pile asteroid is spun up by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The Rossby number Ro associated with the frictionless downslope movement is scaled as (T/2π)(g sinθ/L)1/2, where T the spin period, g is a characteristic value of the effective gravity (the geopotential gradient), θ is the characteristic surface slope with respect to the geopotential, and L is the characteristic scale length of the slope. Typical values for Bennu, g 6×10-5 m s-2, θ 30° (Scheeres, D.J., et al., 2016, Icarus 276, 116-140, doi:10.1016/j.icarus.2016.04.013), and L 100 m, a part of Bennu radius, yields Ro 1.3, which means that the Coriolis force play a significant role in the downslope movement dynamics. On this basis, it is reasonable to predict that the traces left by material sliding toward equator on Bennu would form spiral patterns. Hopefully, OSIRIS-REx mission will check the prediction soon. I modeled trajectories of rolling boulders, bouncing boulders, and sliding masses assuming different friction models. For these calculations I used an idealized axially symmetric Bennu shape and semianalytical calculation of gravitational potential. I also repeated the calculation for a set of higher spin rates that may be relevant to the geologically recent past. Although the trajectory form itself is insufficient to deconvolve the roles of spin rate and friction, comparison of the observed mass movement traces against the modeled trajectories will still give valuable constraints on the mass movement process on Bennu.

  9. The Benchmark Ultracool Subdwarf HD 114762B: A Test of Low-metallicity Atmospheric and Evolutionary Models

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C.

    2009-12-01

    We present a near-infrared spectroscopic study of HD 114762B, the latest-type metal-poor companion discovered to date and the only ultracool subdwarf with a known metallicity, inferred from the primary star to be [Fe/H] = -0.7. We obtained a medium-resolution (R ~ 3800) Keck/OSIRIS 1.18-1.40 μm spectrum and a low-resolution (R ~ 150) Infrared Telescope Facility/SpeX 0.8-2.4 μm spectrum of HD 114762B to test atmospheric and evolutionary models for the first time in this mass-metallicity regime. HD 114762B exhibits spectral features common to both late-type dwarfs and subdwarfs, and we assign it a spectral type of d/sdM9 ± 1. We use a Monte Carlo technique to fit PHOENIX/GAIA synthetic spectra to the observations, accounting for the coarsely gridded nature of the models. Fits to the entire OSIRIS J-band and to the metal-sensitive J-band atomic absorption features (Fe I, K I, and Al I lines) yield model parameters that are most consistent with the metallicity of the primary star and the high surface gravity expected of old late-type objects. The effective temperatures and radii inferred from the model atmosphere fitting broadly agree with those predicted by the evolutionary models of Chabrier & Baraffe, and the model color-absolute magnitude relations accurately predict the metallicity of HD 114762B. We conclude that current low-mass, mildly metal-poor atmospheric and evolutionary models are mutually consistent for spectral fits to medium-resolution J-band spectra of HD 114762B, but are inconsistent for fits to low-resolution near-infrared spectra of mild subdwarfs. Finally, we develop a technique for estimating distances to ultracool subdwarfs based on a single near-infrared spectrum. We show that this "spectroscopic parallax" method enables distance estimates accurate to lsim10% of parallactic distances for ultracool subdwarfs near the hydrogen burning minimum mass. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Ground-Based Assessment of the Bias and Long-Term Stability of Fourteen Limb and Occultation Ozone Profile Data Records

    NASA Technical Reports Server (NTRS)

    Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.; hide

    2016-01-01

    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 kilometers the satellite ozone measurement biases are smaller than plus or minus 5 percent, the short-term variabilities are less than 5-12 percent and the drifts are at most plus or minus 5 percent per decade (or even plus or minus 3 percent per decade for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10 percent and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.

  11. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    NASA Astrophysics Data System (ADS)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal ozone distribution associated with natural processes, like the seasonal cycle and quasi-biennial oscillations. We found a small positive drift ˜ 0.5 % yr-1 in the LP ozone record against MLS and OSIRIS that is more pronounced at altitudes above 35 km. This pattern in the relative drift is consistent with a possible 100 m drift in the LP sensor pointing detected by one of our altitude-resolving methods.

  12. Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records

    PubMed Central

    Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.; Hoppel, K. W.; Kyrölä, E.; Leblanc, T.; Lichtenberg, G.; McElroy, C. T.; Murtagh, D.; Nakane, H.; Querel, R.; Russell, J. M.; Salvador, J.; Smit, H. G. J.; Stebel, K.; Steinbrecht, W.; Strawbridge, K. B.; Stübi, R.; Swart, D. P. J.; Taha, G.; Thompson, A. M.; Urban, J.; van Gijsel, J. A. E.; von der Gathen, P.; Walker, K. A.; Wolfram, E.; Zawodny, J. M.

    2018-01-01

    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20–40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5–12% and the drifts are at most ±5% decade−1 (or even ±3 % decade−1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses. PMID:29743958

  13. The dust environment of comet 67P/Churyumov-Gerasimenko: results from Monte Carlo dust tail modelling applied to a large ground-based observation data set

    NASA Astrophysics Data System (ADS)

    Moreno, Fernando; Muñoz, Olga; Gutiérrez, Pedro J.; Lara, Luisa M.; Snodgrass, Colin; Lin, Zhong Y.; Della Corte, Vincenzo; Rotundi, Alessandra; Yagi, Masafumi

    2017-07-01

    We present an extensive data set of ground-based observations and models of the dust environment of comet 67P/Churyumov-Gerasimenko covering a large portion of the orbital arc from about 4.5 au pre-perihelion through 3.0 au post-perihelion, acquired during the current orbit. In addition, we have also applied the model to a dust trail image acquired during this orbit, as well as to dust trail observations obtained during previous orbits, in both the visible and the infrared. The results of the Monte Carlo modelling of the dust tail and trail data are generally consistent with the in situ results reported so far by the Rosetta instruments Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and Grain Impact Analyser and Dust Accumulator (GIADA). We found the comet nucleus already active at 4.5 au pre-perihelion, with a dust production rate increasing up to ˜3000 kg s-1 some 20 d after perihelion passage. The dust size distribution at sizes smaller than r = 1 mm is linked to the nucleus seasons, being described by a power law of index -3.0 during the comet nucleus southern hemisphere winter but becoming considerably steeper, with values between -3.6 and -4.3, during the nucleus southern hemisphere summer, which includes perihelion passage (from about 1.7 au inbound to 2.4 au outbound). This agrees with the increase of the steepness of the dust size distribution found from GIADA measurements at perihelion showing a power index of -3.7. The size distribution at sizes larger than 1 mm for the current orbit is set to a power law of index -3.6, which is near the average value of insitu measurements by OSIRIS on large particles. However, in order to fit the trail data acquired during past orbits previous to the 2009 perihelion passage, a steeper power-law index of -4.1 has been set at those dates, in agreement with previous trail modelling. The particle sizes are set at a minimum of r = 10 μm, and a maximum size, which increases with decreasing heliocentric distance, in the 1-40 cm radius domain. The particle terminal velocities are found to be consistent with the in situ measurements as derived from the instrument GIADA on board Rosetta.

  14. The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.

    2016-10-01

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients.

    PubMed

    van Vugt, Jeroen L A; Levolger, Stef; Gharbharan, Arvind; Koek, Marcel; Niessen, Wiro J; Burger, Jacobus W A; Willemsen, Sten P; de Bruin, Ron W F; IJzermans, Jan N M

    2017-04-01

    The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such as survival, using single-slice computed tomography (CT)-based measurements has recently been studied in various patient groups. These studies have been conducted with different software programmes, each with their specific characteristics, of which the inter-observer, intra-observer, and inter-software correlation are unknown. Therefore, a comparative study was performed. Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two observers. Cross-sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were segmented by using standard Hounsfield unit ranges and computed for regions of interest. The inter-software, intra-observer, and inter-observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were calculated using intra-class correlation coefficients (ICCs) and Bland-Altman analyses. Cohen's κ was calculated for the agreement of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity and diversity of measurements. Bland-Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different software programmes were highly comparable (ICC 0.979-1.000, P < 0.001). All programmes adequately distinguished between the presence or absence of sarcopenia (κ = 0.88-0.96 for one observer and all κ = 1.00 for all comparisons of the other observer) and visceral obesity (all κ = 1.00). Furthermore, excellent intra-observer (ICC 0.999-1.000, P < 0.001) and inter-observer (ICC 0.998-0.999, P < 0.001) agreement for all software programmes were found. Accordingly, excellent Jaccard similarity coefficients were found for all comparisons (mean ≥ 0.964). FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements on abdominal CT scans. Furthermore, excellent inter-observer and intra-observer agreement were achieved. Therefore, results of studies using these different software programmes can reliably be compared. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. A comparative study of software programmes for cross‐sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients

    PubMed Central

    Levolger, Stef; Gharbharan, Arvind; Koek, Marcel; Niessen, Wiro J.; Burger, Jacobus W.A.; Willemsen, Sten P.; de Bruin, Ron W.F.

    2016-01-01

    Abstract Background The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such as survival, using single‐slice computed tomography (CT)‐based measurements has recently been studied in various patient groups. These studies have been conducted with different software programmes, each with their specific characteristics, of which the inter‐observer, intra‐observer, and inter‐software correlation are unknown. Therefore, a comparative study was performed. Methods Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two observers. Cross‐sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were segmented by using standard Hounsfield unit ranges and computed for regions of interest. The inter‐software, intra‐observer, and inter‐observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were calculated using intra‐class correlation coefficients (ICCs) and Bland–Altman analyses. Cohen's κ was calculated for the agreement of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity and diversity of measurements. Results Bland–Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different software programmes were highly comparable (ICC 0.979–1.000, P < 0.001). All programmes adequately distinguished between the presence or absence of sarcopenia (κ = 0.88–0.96 for one observer and all κ = 1.00 for all comparisons of the other observer) and visceral obesity (all κ = 1.00). Furthermore, excellent intra‐observer (ICC 0.999–1.000, P < 0.001) and inter‐observer (ICC 0.998–0.999, P < 0.001) agreement for all software programmes were found. Accordingly, excellent Jaccard similarity coefficients were found for all comparisons (mean ≥ 0.964). Conclusions FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements on abdominal CT scans. Furthermore, excellent inter‐observer and intra‐observer agreement were achieved. Therefore, results of studies using these different software programmes can reliably be compared. PMID:27897414

  17. Multi-color, rotationally resolved photometry of asteroid 21 Lutetia from OSIRIS/Rosetta observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Faury, G.; Jorda, L.; Kaasalainen, M.; Hviid, S. F.

    2010-10-01

    Context. Asteroid 21 Lutetia is the second target of the Rosetta space mission. Extensive pre-encounter, space-, and ground-based observations are being performed to prepare for the flyby in July 2010. Aims: The aim of this article is to accurately characterize the photometric properties of this asteroid over a broad spectral range from the ultraviolet to the near-infrared and to search for evidence of surface inhomogeneities. Methods: The asteroid was imaged on 2 and 3 January 2007 with the Narrow Angle Camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) during the cruise phase of the Rosetta spacecraft. The geometric conditions were such that the aspect angle was 44^circ (i.e., mid-northern latitudes) and the phase angle 22.4^circ. Lutetia was continuously monitored over 14.3 h, thus exceeding one rotational period and a half, with twelve filters whose spectral coverage extended from 271 to 986 nm. An accurate photometric calibration was obtained from the observations of a solar analog star, 16 Cyg B. Results: High-quality light curves in the U, B, V, R and I photometric bands were obtained. Once they were merged with previous light curves from over some 45 years, the sidereal period is accurately determined: Prot = 8.168271 ± 0.000002 h. Color variations with rotational phase are marginally detected with the ultraviolet filter centered at 368 nm but are absent in the other visible and near-infrared filters. The albedo is directly determined from the observed maximum cross-section obtained from an elaborated shape model that results from a combination of adaptive-optics imaging and light curve inversion. Using current solutions for the phase function, we find geometric albedos pV = 0.130 ± 0.014 when using the linear phase function and pV(H-G) = 0.180 ± 0.018 when using the (H-G) phase function, which incorporates the opposition effect. The spectral variation of the reflectance indicates a steady decrease with decreasing wavelength rather than a sharp fall-off. Photometric tables (Tables 4 to 8) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/521/A19

  18. Young star clusters in the circumnuclear region of NGC 2110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durré, Mark; Mould, Jeremy, E-mail: mdurre@swin.edu.au

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (Hemore » I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.« less

  19. High Resolution Studies Of Lensed z ∼ 2 Galaxies: Kinematics And Metal Gradients

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha

    2016-09-01

    We use the OSIRIS integral field unit (IFU) spectograph to secure spatially-resolved strong emission lines of 15 gravitationally-lensed star-forming galaxies at redshift z ∼ 2. With the aid of gravitational lensing and Keck laser-assisted adaptive optics, the spatial resolution of these sub-luminous galaxies is at a few hundred parsecs. First, we demonstrate that high spatial resolution is crucial in diagnosing the kinematic properties and dynamical maturity of z ∼ 2 galaxies. We observe a significantly lower fraction of rotationally-supported systems than what has been claimed in lower spatial resolution surveys. Second, we find a much larger fraction of z ∼ 2 galaxies with weak metallicity gradients, contrary to the simple picture suggested by earlier studies that well-ordered rotation develops concurrently with established steep metal gradients in all but merging systems. Comparing our observations with the predictions of hydronamical simulations, strong feedback is likely to play a key role in flattening metal gradients in early star-forming galaxies.

  20. The Nucifer Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cucoanes, A.S., E-mail: cucoanes@subatech.in2p3.fr

    In nuclear reactors, a large number of antineutrinos are generated in the decay chains of the fission products; thus a survey of the antineutrino flux could provide valuable information related to the uranium and plutonium content of the core. This application generated interest by the IAEA in using antineutrino detectors as a potential safeguard tool. Here we present the Nucifer experiment, developed in France, by CEA and CNRS/IN2P3. The design of this new antineutrino detector has focused on safety, size reduction, reliability and high detection efficiency with a good background rejection. The Nucifer detector is currently taking data at themore » OSIRIS research reactor, inside CEA-Saclay. Presently, the ongoing analyses are considering the main sources of background for the antineutrino detection; the first antineutrino result is expected in 2013. A possible contribution to the understanding of the so called “reactor antineutrino anomaly” is also discussed. Finally, we present a brief description of the proposed experiments at very short baselines (VSBL) from reactors in France.« less

  1. Evaluation of Drogue Parachute Damping Effects Utilizing the Apollo Legacy Parachute Model

    NASA Technical Reports Server (NTRS)

    Currin, Kelly M.; Gamble, Joe D.; Matz, Daniel A.; Bretz, David R.

    2011-01-01

    Drogue parachute damping is required to dampen the Orion Multi Purpose Crew Vehicle (MPCV) crew module (CM) oscillations prior to deployment of the main parachutes. During the Apollo program, drogue parachute damping was modeled on the premise that the drogue parachute force vector aligns with the resultant velocity of the parachute attach point on the CM. Equivalent Cm(sub q) and Cm(sub alpha) equations for drogue parachute damping resulting from the Apollo legacy parachute damping model premise have recently been developed. The MPCV computer simulations ANTARES and Osiris have implemented high fidelity two-body parachute damping models. However, high-fidelity model-based damping motion predictions do not match the damping observed during wind tunnel and full-scale free-flight oscillatory motion. This paper will present the methodology for comparing and contrasting the Apollo legacy parachute damping model with full-scale free-flight oscillatory motion. The analysis shows an agreement between the Apollo legacy parachute damping model and full-scale free-flight oscillatory motion.

  2. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  3. Encircling the dark, a simple method to decipher the cosmos

    NASA Astrophysics Data System (ADS)

    Quirico, Eric

    2017-09-01

    Asteroids are relics of Solar System formation and host insightful information on physical, chemical, chronological and dynamical conditions that operated, since the formation of the first solids until the Late Heavy Bombardment. Since 2000, our view on these small objects has been deeply transformed due to several space missions and advances in ground-based observations. Near, Dawn (NASA) and Hayabusa 1 (JAXA) have provided extensive characterizations of the surface and interior of asteroids 433Eros, Itokawa, Vesta and Ceres, and revealed a complex morphology driven by collisions and/or internal activity. The samples returned to Earth by Hayabusa 1 provided a firm evidence of the genetic link between S-type asteroids and ordinary chondrites, and valuable clues on the first stage of space weathering. Meanwhile, ground-based observations, dynamical theory and meteoritics have drawn a big picture pointing to a continuum between asteroids and comets. Hopefully, the forthcoming missions Hayabusa2 and Osiris ReX will explore for the first time two C-type asteroids in the next years.

  4. First Results from the Wide Angle Camera of the ROSETTA Mission .

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Fornasier, S.; Bertini, I.; Angrilli, F.; Bianchini, G. A.; Debei, S.; De Cecco, M.; Parzianello, G.; Zaccariotto, M.; Da Deppo, V.; Naletto, G.

    This paper gives a brief description of the Wide Angle Camera (WAC), built by the Center of Studies and Activities for Space (CISAS) of the University of Padova for the ESA ROSETTA Mission, of data we have obtained about the new mission targets, and of the first results achieved after the launch in March 2004. The WAC is part of the OSIRIS imaging system, built under the PI-ship of Dr. U. Keller (Max-Planck-Institute for Solar System Studies) which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front door mechanism for the NAC. The images show the excellent optical quality of the WAC, exceeding the specifications both in term of encircled energy (80% in one pixel over a FoV of 12×12 sq degree), limiting magnitude (fainter than the 13th in 30s exposure time through a wideband red filter) and amount of distortions.

  5. An integrated teaching method of gross anatomy and computed tomography radiology.

    PubMed

    Murakami, Tohru; Tajika, Yuki; Ueno, Hitoshi; Awata, Sachiko; Hirasawa, Satoshi; Sugimoto, Maki; Kominato, Yoshihiko; Tsushima, Yoshito; Endo, Keigo; Yorifuji, Hiroshi

    2014-01-01

    It is essential for medical students to learn and comprehend human anatomy in three dimensions (3D). With this in mind, a new system was designed in order to integrate anatomical dissections with diagnostic computed tomography (CT) radiology. Cadavers were scanned by CT scanners, and students then consulted the postmortem CT images during cadaver dissection to gain a better understanding of 3D human anatomy and diagnostic radiology. Students used handheld digital imaging and communications in medicine viewers at the bench-side (OsiriX on iPod touch or iPad), which enabled "pixel-to-tissue" direct comparisons of CT images and cadavers. Students had lectures and workshops on diagnostic radiology, and they completed study assignments where they discussed findings in the anatomy laboratory compared with CT radiology findings. This teaching method for gross and radiological anatomy was used beginning in 2009, and it yielded strongly positive student perspectives and significant improvements in radiology skills in later clinical courses. © 2014 American Association of Anatomists.

  6. Progress Report on PICA Activities in Support of New Frontiers Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret; Venkatapathy, Ethiraj; Violette, Steve

    2017-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a TPS material that has been used in a number of previous flight missions (Stardust, MSL) and is planned for a number of future missions (OSIRIS-Rex and Mars 2020) so it has substantial flight heritage, is applicable to a wide range of missions, and is often baselined as the TPS in future NASA proposal activities. As is common with a number of TPS materials, PICA faces a supply chain issue with the rayon precursor from which the carbon fibers used in the PICA preform are derived. PICA uses a non-woven form of the rayon, which once carbonized, is used in the low-density carbon FiberForm (carbon tile) preform utilized in PICA. Current PICA uses a NASA-qualified non-domestic rayon supplier (Sniace), however the qualified supplier is no longer manufacturing the rayon materials. This activity will address PICA sustainability, by initially carbonizing the remaining stockpile of Sniace rayon precursor. A additional FiberForm manufacturing task from alternate rayon sources is also in progress.

  7. Diffusion processes in tumors: A nuclear medicine approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Helman, E-mail: haamayae@unal.edu.co

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and {sup 18}F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer softwaremore » was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical {sup 18}F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.« less

  8. Bidirectional Reflectance Distribution Functions For the OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Clark, Beth E.; Lauretta, Dante S.; d'Aubigny, Christian Drouet; Hergenrother, Carl W.; Li, Jian-Yang; Binzel, Richard P.

    2014-11-01

    We used ground-based photometric phase curve data of asteroid (101955) Bennu and low phase-angle (proxy) data from asteroid (253) Mathilde to fit precise Modified Minnaert, Modified Lommel-Seeliger, and (RObotic Lunar Orbiter) ROLO photometric models that capture the light scattering properties of the surface and subsequently allow us to calculate the geometric albedo, phase integral, and spherical Bond albedo for this asteroid. Radiance Factor functions (RADFs) are used to model the disk-resolved brightness of Bennu. Our geometric albedo values of 0.047 ,0.047, and 0.048 for the Modified Minnaert, Modified Lommel-Seeliger, and ROLO models, respectively, are consistent with the geometric albedo of 0.030-0.045 computed by Hergenrother et al. (2013), using IAU H-G photometric system. Also, our spherical Bond albedo values of 0.016, 0.015, and 0.015 for the Minnaert model, Lommel-Seeliger, and ROLO models, respectively, are consistent with the value of 0.017 presented by Emery et al. (2014).

  9. The evolutionary saga of circumcision from a religious perspective.

    PubMed

    Raveenthiran, Venkatachalam

    2018-03-08

    Circumcision is the oldest surgical operation known to mankind. It probably originated as a less radical form of genital mutilation inflicted on prisoners of war. Over time it was adopted by the Egyptian priesthood and nobility, perhaps inspired by the mythology of Osiris. In turn, circumcision became part of the Jewish and Muslim religious cultures. In contrast, ancient Greeks valued an intact prepuce, as evident from the nude figures of Renaissance art. In the 19th century, circumcision was touted as a treatment for excessive masturbation, seizures, epilepsy, and paraplegia. Adoption of the procedure by medical science was almost akin to a religious belief. By the mid-20th century, it was widely performed on male infants on the pretext of phimosis when the prepuce was not retractable. In 1949, Gairdner documented that the tight prepuce of infants gradually becomes retractile as childhood progresses. Thus, childhood circumcision solely for non-retractile prepuce is unnecessary, which is the foundation for modern anti-circumcision movements. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Highly Accreting Quasars at High Redshift

    NASA Astrophysics Data System (ADS)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  11. 3D photoionization models of nova V723 Cas

    NASA Astrophysics Data System (ADS)

    Takeda, L.; Diaz, M.; Campbell, R.; Lyke, J.

    2018-01-01

    We present modelling and analysis of the ejecta of nova V723 Cas based on spatially resolved infrared spectroscopic data from Keck-OSIRIS, with LGSAO (adaptive optics module). The 3D photoionization models include the shell geometry taken from the observations and an anisotropic radiation field, composed by a spherical central source and an accretion disc. Our simulations indicate revised abundances log(NAl/NH) = -5.4, log(NCa/NH) = -6.4 and log(NSi/NH) = -4.7 in the shell. The total ejected mass was found as Mshell = 1.1 × 10-5 M⊙ and the central source temperature and luminosity are T = 280 000 K and L = 1038 erg s-1. The 3D models are compared to basic 1D simulations to demonstrate the importance of using more realistic treatments, stressing the differences in the shell mass, abundances and characterization of the central source. The possibility of V723 Cas being a neon nova and the puzzling central source features found are discussed.

  12. The versatility of limb scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Bourassa, A. E.; Degenstein, D. A.; Sioris, C.; Rieger, L. A.; Zawada, D.

    2017-12-01

    Vertically resolved measurements of limb scattered sunlight spectra in the UV-Vis-NIR spectral range have been made from several satellite instruments in low earth orbit for many years, and there has been much success in using these measurements for retrievals of trace gas and aerosol from the upper troposphere to the mesosphere. Due in a large part to improvements in radiative transfer modelling, the versatility of the limb scatter measurement has continued to grow over the last several years. Using OSIRIS and OMPS instruments as primary examples, this talk will review the current capability of limb scatter measurements, and highlight recent results on ozone variability and trends in the UTLS, the continuation of the aerosol extinction record, NO2 distributions in the upper troposphere, and a new tomographic retrieval of ozone from the OMPS measurements. The future of limb scatter observations will also be discussed, including the development of two new Canadian suborbital instrument concepts that are targeted at high spatial resolution UTLS water vapor and cloud/aerosol measurements.

  13. VizieR Online Data Catalog: Sulamitis and Clarissa asteroids spectra (Morate+, 2018)

    NASA Astrophysics Data System (ADS)

    Morate, D.; de, Leon J.; de Pra, M.; Licandro, J.; Cabrera-Lavers, A.; Campins, H.; Pinilla-Alonso, N.

    2017-11-01

    A total of 97 low-resolution visible spectra were obtained for the asteroids in the Sulamitis and Clarissa families (64 and 33 objects, respectively), using the Optical System for Imaging and Low Resolution Integrated Spectroscopy (OSIRIS) camera spectrograph at the 10.4m Gran Telescopio Canarias (GTC), located at the El Roque de los Muchachos Observatory (ORM) in La Palma, Canary Islands, Spain. In addition, we obtained three spectra of (752) Sulamitis using the Intermediate Dispersion Spectrograph (IDS) at the 2.5m Isaac Newton Telescope, also located at the ORM in La Palma, as part of program C97 (2015), on July 22, 2015. All the spectra files included here are named ast_ASTEROIDNUMBER.txt, except for the spectra of (752) taken with the INT (named ast752INT.txt). The first column is the wavelength, expressed in microns, and the second column is the reflectance value (which is normalized at 1 at 0.55 microns). (3 data files).

  14. Full-Scale Spacecraft Simulator Design for a 2D Zero Gravity Small Body Surface Sampling Validation

    NASA Astrophysics Data System (ADS)

    Mongelli, Marco

    NASA is developing several Touch-And-Go (TAG) classes of missions. These types of missions like the OSIRIS-REx asteroid sample return [1] or a comet sample return mission (CSSR)[2], consist usually in three phases: propulsive approach to the target, sampling and propulsion to move the spacecraft away from the target. The development of TAG mission, from concept to realization, is usually divided in two phases: Phase I discusses the major trades that could affect the mission architecture; Phase II focuses in detail on the design. This project of a spacecraft emulator fits into phase II and specifically on the way the spacecraft could react in absence of gravity while the Sample Acquisition System (SAS) is collecting the sample. A full-scale spacecraft on a 2D zero-friction environment has been designed. Also a propulsion system has been implemented to re-create the full dynamics of a spacecraft in space.

  15. Major Influence of Tropical Volcanic Eruptions on the Stratospheric Aerosol Layer During the Last Decade

    NASA Technical Reports Server (NTRS)

    Vernier, Jean-Paul; Thomason, Larry W.; Pommereau, J.-P.; Bourassa, Adam; Pelon, Jacques; Garnier, Anne; Hauchecorne, A.; Blanot, L.; Trepte, Charles R.; Degenstein, Doug; hide

    2011-01-01

    The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached background levels between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.

  16. Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region

    NASA Astrophysics Data System (ADS)

    Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.

    2016-03-01

    (21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. In addition, we compared the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) and Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy) parameters with laboratory samples and other small Solar System bodies visited by space missions.

  17. The 67P/Churyumov-Gerasimenko nucleus spectroscopic properties and their evolution over time

    NASA Astrophysics Data System (ADS)

    Fornasier, S.

    2016-11-01

    Comets are primitive small bodies witness of the Solar System formation. Our knowledge on cometary nuclei and on their evolution over time is very limited because they are dark, small, and thus faint objects, spatially unresolved by groundbased telescopes and masked by their atmosphere when they become brighter close to the Sun. Before the Rosetta mission, only 5 cometary nuclei have been directly imaged and investigated by space missions during relatively short fly-bys, catching thus a small fraction of the comet lifetime in its orbit. The Rosetta mission is orbiting around the 67P/Churyumov-Gerasimenko comet since August 2014, and provides the unique opportunity to continuously investigate the 67P nucleus during about 2 years, from large heliocentric distances (about 4 AU) to its perihelion passage (1.24 AU) and beyond. The OSIRIS cameras and VIRTIS spectrometer have shown that the 67P nucleus has a red spectral behavior with spectral properties similar to those of bare cometary nuclei, of primitive D-type asteroids like the Jupiter Trojans, and of the moderately red Transneptunians population (Sierks et al., 2015, Capaccioni et al., 2015). The surface is globally dominated by dehydrated and organic-rich refractory materials (Capaccioni et al., 2015), and shows some color heterogeneities. Three kind of terrains, from the spectrally bluer and water ice enriched terrains to the redder ones, associated mostly to dusty regions, have been identified by visible spectrophotometry from the first resolved images acquired in July-August 2014 (Fornasier et al., 2015), covering mostly the northern hemisphere of the nucleus. The southern hemisphere has become visible from Rosetta only since March 2015, and it shows a lack of spectrally red regions compared to the northern one, associated to the absence of wide spread smooth or dust covered terrains. Although water is the dominant volatile observed in the coma, exposed water ice has been detected only in small amounts in different regions of the comet (Pommerol et al., 2015; De Sanctis et al., 2015; Filacchione et al., 2016; Barucci et al. 2016). Thanks to the unprecedented spatial resolution, VIRTIS and OSIRIS instruments have detected the occurrence of water frost close to the morning shadows, putting in evidence the diurnal cycle of water. Seasonal color and spectral variations have also been observed when the comet approached perihelion, indicating that the increasing activity had progressively shed the surface dust, partially showing the underlying ice-rich layer. I will present an overview of the spectroscopic properties of the 67P nucleus and of their diurnal and seasonal variations over time and heliocentric distance.

  18. Teleradiology for remote consultation using iPad improves the use of health system human resources for paediatric fractures: prospective controlled study in a tertiary care hospital in Italy.

    PubMed

    Zennaro, Floriana; Grosso, Daniele; Fascetta, Riccardo; Marini, Marta; Odoni, Luca; Di Carlo, Valentina; Dibello, Daniela; Vittoria, Francesca; Lazzerini, Marzia

    2014-07-28

    The growing cost of health care and lack of specialised staff have set e-Health high on the European political agenda. In a prospective study we evaluated the effect of providing images for remote consultation through an iPad on the number of in-hospital orthopaedic consultations for children with bone fractures. Children from 0 to 18 years diagnosed with a bone fracture by the radiologist during the hours when an orthopaedic service is provided only on-call were eligible for enrollment. Cases were enrolled prospectively during September and October 2013. A standard approach (verbal information only, no X-Ray provided remotely) was compared to an experimental approach (standard approach plus the provision of X-ray for remote consultation through an iPad). The primary outcome was the number of orthopaedic in-hospital consultations that occurred. Other outcomes included: immediate activation of other services; time needed for decision-making; technical difficulties; quality of images and diagnostic confidence (on a likert scale of 1 to 10). Forty-two children were enrolled in the study. Number of in-hospital consultancies dropped from 32/42 (76.1%) when no X-ray was provided to 16/42 (38%) when the X-rays was provided (p < 0.001). With remote X-ray consultation in 14/42 (33.3%) cases services such as surgery and plaster room could be immediately activated, compared to no service activated without teleradiology (p < 0.001). Average time for decision making was 23.4 ± 21.8 minutes with remote X-ray consultation, compared to 56.2 ± 16.1 when the X-ray was not provided (p < 0.001). The comparison between images on the iPad and on the standard system for X- Ray visualisation resulted in a non statistically significant difference in the quality of images (average score 9.89 ± 0.37 vs 9.91 ± 0.30; p = 0.79), and in non statistically significant difference in diagnostic confidence (average score 9.91 ± 0.32 vs 9.92 ± 0.31; p = 0.88). Remote X-ray consultation through Aycan OsiriX PRO and iPad should be considered as a means for reducing the need of in-hospital orthopaedic consultation during on-call times, and potentially decrease the cost of care for the health system. In the future, alternative systems less expensive than Aycan OsiriX PRO should be further developed and tested.

  19. Geologic analysis of the Rosetta NavCam, Osiris and ROLIS images of the comet 67P/Churyumov-Gerasimenko nucleus

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Mall, U.; Keller, H. U.; Skorov, Yu. V.; Hviid, S. F.; Mottola, S.; Krasilnikov, S. S.; Dabrowski, B.

    2017-03-01

    This paper is based on geologic analysis of the surface morphology of nucleus of the Jupiter family comet 67P. This comet was visited by the ESA mission Rosetta, which escorted the comet since May 2014 till the end of September 2016 and studied it by 11 instruments of the mission orbiter and 10 instruments of the lander. The nucleus is 4 km in diameter, has a bilobate shape with the smaller (Head) and larger (Body) lobes, and the narrow neck between them. For the analysis, primarily images taken by the Rosetta Navigation camera (NavCam) were used and then complemented by selected images from the ROLIS and OSIRIS cameras. Two major types of the nucleus material are distinguished by us and other researchers: 1) the consolidated nucleus material and 2) the loose material, a kind of cometary regolith, covering the nucleus consolidated material. On the surface of the consolidated material rather long (up to hundreds meters) straight lineaments are distinguishable. They probably correspond to fractures and in some cases to strata. Their presence suggests that the consolidated material is rather compact and lacks voids larger than tens of meters across. Surfaces of consolidated nucleus material typically show knobby appearance at the scales from tens of meters and meters to centimeters and millimeters. This suggests that this material is grainy, consisting of more and less resistant (to surface weathering) ;particles; on the scale of the visible knobs. The geometric analysis of steep slopes based on the nucleus shape model allowed us to estimate a tensile, shear and compressive strength of the consolidated material. It was shown that the 67P consolidated nucleus material is very fragile, and taking into account the scale effect one can conclude that it is as fragile as fresh fallen snow and maybe even more fragile. In addition, estimates of the compressive strength of the surface material were considered at the sites of the first and the last contacts of the Philae lander with the surface. Observations also showed evidence of various downslope and lateral movements of rather large material masses (landslide? avalanche?) as well as boulders and ;fines;, which are driven primarily by gravity and then by the acquired inertia, but in some cases a material transport by dust-gas jets/outbursts could play a role. The latter could also be responsible for formation of the eolian-type ripples.

  20. SHARDS: An Optical Spectro-photometric Survey of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Alonso-Herrero, Almudena; Balcells, Marc; Cenarro, Javier; Cepa, Jordi; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Donley, Jennifer; Elbaz, David; Espino, Néstor; Gallego, Jesús; Gobat, R.; González-Martín, Omaira; Guzmán, Rafael; Hernán-Caballero, Antonio; Muñoz-Tuñón, Casiana; Renzini, Alvio; Rodríguez-Zaurín, Javier; Tresse, Laurence; Trujillo, Ignacio; Zamorano, Jaime

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ~ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z <~ 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well described by an exponentially decaying star formation history with scale τ = 100-200 Myr, age around 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V) ~ 0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This trend is, however, model dependent, i.e., it is significantly more evident in the results obtained with some stellar population synthesis libraries, and almost absent in others.

  1. Curating NASA's Past, Present, and Future Astromaterial Sample Collections

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC curation) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections in seven different clean-room suites: (1) Apollo Samples (ISO (International Standards Organization) class 6 + 7); (2) Antarctic Meteorites (ISO 6 + 7); (3) Cosmic Dust Particles (ISO 5); (4) Microparticle Impact Collection (ISO 7; formerly called Space-Exposed Hardware); (5) Genesis Solar Wind Atoms (ISO 4); (6) Stardust Comet Particles (ISO 5); (7) Stardust Interstellar Particles (ISO 5); (8) Hayabusa Asteroid Particles (ISO 5); (9) OSIRIS-REx Spacecraft Coupons and Witness Plates (ISO 7). Additional cleanrooms are currently being planned to house samples from two new collections, Hayabusa 2 (2021) and OSIRIS-REx (2023). In addition to the labs that house the samples, we maintain a wide variety of infra-structure facilities required to support the clean rooms: HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system, and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam sections. We routinely monitor the cleanliness of our clean rooms and infrastructure systems, including measurements of inorganic or organic contamination, weekly airborne particle counts, compositional and isotopic monitoring of liquid N2 deliveries, and daily UPW system monitoring. In addition to the physical maintenance of the samples, we track within our databases the current and ever changing characteristics (weight, location, etc.) of more than 250,000 individually numbered samples across our various collections, as well as more than 100,000 images, and countless "analog" records that record the sample processing records of each individual sample. JSC Curation is co-located with JSC's Astromaterials Research Office, which houses a world-class suite of analytical instrumentation and scientists. We leverage these labs and personnel to better curate the samples. Part of the cu-ration process is planning for the future, and we refer to these planning efforts as "advanced curation". Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envi-sioned by NASA exploration goals. We are (and have been) planning for future cu-ration, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, and curation of organically- and biologically-sensitive samples.

  2. Last Improvements of the CALMOS Calorimeter Dedicated to Thermal Neutron Flux and Nuclear Heating Measurements inside the OSIRIS Reactor

    NASA Astrophysics Data System (ADS)

    Carcreff, H.; Salmon, L.; Lepeltier, V.; Guyot, J. M.; Bouard, E.

    2018-01-01

    Nuclear heating inside an MTR reactor needs to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. To improve the nuclear heating knowledge, an innovative calorimetric system CALMOS has been studied, manufactured and tested for the 70MWth OSIRIS reactor operated by CEA. This device is based on a mobile calorimetric probe which can be inserted in any in-core experimental location and can be moved axially from the bottom of the core to 1000 mm above the core mid-plane. Obtained results and advantages brought by the first CALMOS-1 equipment have been already presented. However, some difficulties appeared with this first version. A thermal limitation in cells did not allow to monitor nuclear heating up to the 70 MW nominal power, and some significant discrepancies were observed at high heating rates between results deduced from the calibration and those obtained by the "zero method". Taking this feedback into account, the new CALMOS-2 calorimeter has been designed both for extending the heating range up to 13W.g-1 and for improving the "zero method" measurement thanks to the implementation of a 4-wires technique. In addition, the new calorimeter has been designed as a real operational measurement system, well suited to characterize and to follow the radiation field evolution throughout the reactor cycle. To meet this requirement, a programmable system associated with a specific software allows automatic complete cell mobility in the core, the data acquisition and the measurements processing. This paper presents the analysis of results collected during the 2015 comprehensive measurement campaign. The 4-wires technique was tested up to around a 4 W.g-1 heating level and allowed to quantify discrepancies between "zero" and calibration methods. Thermal neutron flux and nuclear heating measurements from CALMOS-1 and CALMOS-2 are compared. Thermal neutron flux distributions, obtained with the Self-Power Neutron Detector suited to the CALMOS-2 calorimetric probe, are compared with those obtained with current devices. This campaign allowed to highlight advantages brought by the human machine interface automation, which deeply refined the profiles definition. Finally, the decay of the reactor residual power after shutdown could be performed after shutdown, demonstrating the ability of such type of calorimeter to follow the heating level whatever the thermohydraulic conditions, forced or natural convection regimes.

  3. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Vincent, Jean-Baptiste; Güttler, Carsten; Lee, Jui-Chi; Bertini, Ivano; Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Giacomini, Lorenza; Lucchetti, Alice; Barbieri, Cesare; Cremonese, Gabriele; Naletto, Giampiero; Pommerol, Antoine; El-Maarry, Mohamed R.; Besse, Sébastien; Küppers, Michael; La Forgia, Fiorangela; Lazzarin, Monica; Thomas, Nicholas; Auger, Anne-Thérèse; Sierks, Holger; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst U.; Agarwal, Jessica; A'Hearn, Michael F.; Barucci, Maria A.; Bertaux, Jean-Loup; Da Deppo, Vania; Davidsson, Björn; De Cecco, Mariolino; Debei, Stefano; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Groussin, Olivier; Gutierrez, Pedro J.; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kramm, J.-Rainer; Kürt, Ekkehard; Lara, Luisa M.; Lin, Zhong-Yi; Lopez Moreno, Jose J.; Magrin, Sara; Marchi, Simone; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Oklay, Nilda; Preusker, Frank; Scholten, Frank; Tubiana, Cecilia

    2015-11-01

    Aims: We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44-2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results: We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.

  4. A global space-based stratospheric aerosol climatology: 1979-2016

    NASA Astrophysics Data System (ADS)

    Thomason, Larry W.; Ernest, Nicholas; Millán, Luis; Rieger, Landon; Bourassa, Adam; Vernier, Jean-Paul; Manney, Gloria; Luo, Beiping; Arfeuille, Florian; Peter, Thomas

    2018-03-01

    We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979-2014) and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991-1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low-level volcanic activity, it is possible that the enhancement in part reflects deficiencies in the data set. We also expended substantial effort to quality assess the data set and the product is by far the best we have produced. GloSSAC version 1.0 is available in netCDF format at the NASA Atmospheric Data Center at https://eosweb.larc.nasa.gov/. GloSSAC users should cite this paper and the data set DOI (https://doi.org/10.5067/GloSSAC-L3-V1.0).

  5. Numerical Simulations of Granular Physics in the Solar System

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald

    2017-08-01

    Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our numerical results to laboratory experiments and observations by spacecraft we can begin to understand which microscopic properties (i.e., grain properties) control the macroscopic properties of the system. For example, we can compare the mechanical response of a spacecraft to landing or Cassini observations of Saturn's ring to understand how the penetration depth of a spacecraft or the complex optical depth structure of a ring system depends on the size and surface properties of the grains in those systems.

  6. The GTC exoplanet transit spectroscopy survey. VIII. Flat transmission spectrum for the warm gas giant WASP-80b

    NASA Astrophysics Data System (ADS)

    Parviainen, H.; Pallé, E.; Chen, G.; Nortmann, L.; Murgas, F.; Nowak, G.; Aigrain, S.; Booth, A.; Abazorius, M.; Iro, N.

    2018-01-01

    Aims: We set out to study the atmosphere of WASP-80b, a warm inflated gas giant with an equilibrium temperature of 800 K, using ground-based transmission spectroscopy covering the spectral range from 520 to 910 nm. The observations allow us to probe the existence and abundance of K and Na in WASP-80b's atmosphere, existence of high-altitude clouds, and Rayleigh-scattering in the blue end of the spectrum. Methods: We observed two spectroscopic time series of WASP-80b transits with the OSIRIS spectrograph installed in the Gran Telescopio Canarias (GTC), and use the observations to estimate the planet's transmission spectrum between 520 nm and 910 nm in 20 nm-wide passbands, and around the K I and Na I resonance doublets in 6 nm-wide passbands. We jointly model three previously published broadband datasets consisting of 27 light curves, prior to a transmission spectroscopy analysis in order to obtain improved estimates of the planet's orbital parameters, average radius ratio, and stellar density. The parameter posteriors from the broadband analysis are used to set informative priors on the transmission spectroscopy analysis. The final transmission spectroscopy analyses are carried out jointly for the two nights using a divide-by-white approach to remove the common-mode systematics, and Gaussian processes to model the residual wavelength-dependent systematics. Results: We recover a flat transmission spectrum with no evidence of Rayleigh scattering or K I or Na I absorption, and obtain an improved system characterisation as a by-product of the broadband- and GTC-dataset modelling. The transmission spectra estimated separately from the two observing runs are consistent with each other, as are the transmission spectra estimated using either a parametric or nonparametric systematics model. The flat transmission spectrum favours an atmosphere model with high-altitude clouds over cloud-free models with stellar or sub-stellar metallicities. Conclusions: Our results disagree with the recently published discovery of strong K I absorption in WASP-80b's atmosphere based on ground-based transmission spectroscopy with FORS2 at VLT. The analysis code with the raw and processed data are publicly available through GitHub from http://https://github.com/hpparvi/Parviainen-2017-WASP-80b

  7. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to the delayed gamma rays. In this paper we describe experiments in each of the three reactors and how we estimate delayed gamma rays with MIC measurements. The results and perspectives are discussed. (authors)« less

  8. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Fonseca, R. A.; Vieira, J.; Fiuza, F.; Davidson, A.; Tsung, F. S.; Mori, W. B.; Silva, L. O.

    2013-12-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ˜106 cores and sustained performance over ˜2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios.

  9. Spectroscopy of Planetary Nebulae at the Bright End of the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Rilinger, Anneliese; Kwitter, Karen B.; Balick, Bruce; Corradi, R. L. M.; Galera Rosillo, Rebeca; Jacoby, George H.; Shaw, Richard A.

    2017-01-01

    We have obtained spectra of 8 luminous planetary nebulae (PNe) in M31 and 4 in the Large Magellanic Cloud with the goal of understanding their properties and those of their progenitor stars. These PNe are at or near the M* region (the most luminous PNe) in their respective galaxies. M31 PNe were observed at the Gran Telescopio Canarias using the OSIRIS spectrograph; LMC PNe were observed with the FORS2 spectrograph at the Very Large Telescope. Line intensities were measured in IRAF. Using our n-level atom program, ELSA (Johnson, et.al, 2006, Planetary Nebulae in our Galaxy and Beyond, 234, 439), we determined temperature, density, and elemental abundances for each nebula. We then modeled the nebulae and central stars with Cloudy (Ferland, et al. 1998, PASP, 110, 761). We plan to use these models of the central stars to estimate the masses and ages of the progenitor stars. We hope to discover whether the progenitor stars of M* PNe exhibit consistently different characteristics from those of other PNe progenitors.

  10. VizieR Online Data Catalog: KIC 8462852 GTC spectra (Deeg+, 2018)

    NASA Astrophysics Data System (ADS)

    Deeg, H. J.; Alonso, R.; Nespral, D.; Boyajian, T.

    2018-01-01

    Spectra obtained in the follow-up of KIC 8462852 (Boyajian's star) with OSIRIS at the GTC telescope. These spectra have been reduced as described in the paper and are contained in two directories, for target and comparison spectra: sp_target contains spectra of the target star (KIC 8462852) sp_compar contains spectra of the comparison star (KIC 8462763) At each pointing of the GTC, a sequence of 10-45 spectra was generated. The individual spectra are named: tpXXYY.dat for the target spectra and cpXXYY.dat for the comparison spectra, where XX is the pointing number, and YY is a sequence number. The format of each spectrum file is a two-column ascii file: Wavelength (Angstrom) | Flux (arbitrary units)) The files times_pXX.dat correspond to each of the pointings and contain the times of mid-exposure of each spectrum, in the HJD_UTC-2400000 framework. These times apply to both target and comparison spectra and are ordered by increasing sequence number. There are a total of 516 spectra of the target and 516 spectra of the comparison. (19 data files).

  11. Three-dimensional reconstruction of rat knee joint using episcopic fluorescence image capture.

    PubMed

    Takaishi, R; Aoyama, T; Zhang, X; Higuchi, S; Yamada, S; Takakuwa, T

    2014-10-01

    Development of the knee joint was morphologically investigated, and the process of cavitation was analyzed by using episcopic fluorescence image capture (EFIC) to create spatial and temporal three-dimensional (3D) reconstructions. Knee joints of Wister rat embryos between embryonic day (E)14 and E20 were investigated. Samples were sectioned and visualized using an EFIC. Then, two-dimensional image stacks were reconstructed using OsiriX software, and 3D reconstructions were generated using Amira software. Cavitations of the knee joint were constructed from five divided portions. Cavity formation initiated at multiple sites at E17; among them, the femoropatellar cavity (FPC) was the first. Cavitations of the medial side preceded those of the lateral side. Each cavity connected at E20 when cavitations around the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were completed. Cavity formation initiated from six portions. In each portion, development proceeded asymmetrically. These results concerning anatomical development of the knee joint using EFIC contribute to a better understanding of the structural feature of the knee joint. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Informatics in radiology (infoRAD): navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation.

    PubMed

    Rosset, Antoine; Spadola, Luca; Pysher, Lance; Ratib, Osman

    2006-01-01

    The display and interpretation of images obtained by combining three-dimensional data acquired with two different modalities (eg, positron emission tomography and computed tomography) in the same subject require complex software tools that allow the user to adjust the image parameters. With the current fast imaging systems, it is possible to acquire dynamic images of the beating heart, which add a fourth dimension of visual information-the temporal dimension. Moreover, images acquired at different points during the transit of a contrast agent or during different functional phases add a fifth dimension-functional data. To facilitate real-time image navigation in the resultant large multidimensional image data sets, the authors developed a Digital Imaging and Communications in Medicine-compliant software program. The open-source software, called OsiriX, allows the user to navigate through multidimensional image series while adjusting the blending of images from different modalities, image contrast and intensity, and the rate of cine display of dynamic images. The software is available for free download at http://homepage.mac.com/rossetantoine/osirix. (c) RSNA, 2006.

  13. Priority Science Targets for Future Sample Return Missions within the Solar System Out to the Year 2050

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Barnes, J. J.; Boyce, J. W.; Burton, A. S.; Draper, D. S.; Evans, C. A.; Fries, M. D.; Jones, J. H.; Keller, L. P.; hide

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections: (1) Apollo samples, (2) LUNA samples, (3) Antarctic meteorites, (4) Cosmic dust particles, (5) Microparticle Impact Collection [formerly called Space Exposed Hardware], (6) Genesis solar wind, (7) Star-dust comet Wild-2 particles, (8) Stardust interstellar particles, and (9) Hayabusa asteroid Itokawa particles. In addition, the next missions bringing carbonaceous asteroid samples to JSC are Hayabusa 2/ asteroid Ryugu and OSIRIS-Rex/ asteroid Bennu, in 2021 and 2023, respectively. The Hayabusa 2 samples are provided as part of an international agreement with JAXA. The NASA Curation Office plans for the requirements of future collections in an "Advanced Curation" program. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. Here we review the science value and sample curation needs of some potential targets for sample return missions over the next 35 years.

  14. We Detected Phenomena, Like Africa's Dogon, that Speak of Stellar Gravitational Neutrino Interactions

    NASA Astrophysics Data System (ADS)

    McLeod, David Matthew; McLeod, Roger David

    2009-05-01

    Stick figure equivalents of Kokopelli/Pele/Pamola/Thor/Orion/Osiris, Canis Major/Anubis/Wolf/Fox, Leo/Bird Tailed Jaguar/Beaver Tailed Mountain Lion, were detected by us. They figure heavily in the spiritual/scientific world view of many traditional societies, and their cultural respect for the information such figures convey. Scientific instruments from the past were our laboratories, and theirs. All string/stick figure equivalents may represent types of longitudinally aligned neutrino flux between certain stellar pairs. Neutrino beams from distant pulsars, quasars, or other neutrino sources, cannot penetrate these graviton-like strings. They do pass through sectors of Earth, projecting stick figures within instruments like the Watch House at America's Stonehenge, and perhaps the chamber beneath the Great Pyramid. Sirius B, as the heaviest object in ``our'' universe for the Dogon, means it shares a profound graviton-like neutrino highway to our sun, as Sirius B/A do within Canis Major. It is possibly projected by a source within the Canis Major dwarf galaxy at about 3,000 times as distant as Sirius B/A at 8.7 ly.

  15. Effects of radiation on lithium aluminate samples properties

    NASA Astrophysics Data System (ADS)

    Botter, F.; Lefevre, F.; Rasneur, B.; Trotabas, M.; Roth, E.

    1986-11-01

    The irradiation behaviour of lithium aluminate, a candidate material for a fusion reactor blanket, has been investigated. About 130 samples of 7.5% 6Li content γ-LiAlO 2 have been loaded in a 6 level device, and were irradiated for 25.7 FPD in the core of the Osiris reactor at Saclay at the end of 1984, within an experiment named ALICE 1. The properties of several textural groups have been examined before and after irradiation and the correlation of the results observed as a function of the irradiation conditions is given. No significant variation of the properties, as a whole, was shown at 400°C under fluences of 4.7 × 10 20 n cm -2 fast neutrons ( > 1 MeV) and 1.48 × 10 20 n cm -2 thermal neutrons. At 600°C, under the highest flux, weight losses less than 1%, and decreases of 2 to 8% of the sound velocity were measured. Generally, neither swelling nor breakage, except those due to combined mechanical and thermal shocks, were observed.

  16. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.

    PubMed

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit

    2014-08-01

    REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Lithofacies and biofacies characteristics and whales skeletons distribution in the Eocene rock units of Fayoum Area, Egypt

    NASA Astrophysics Data System (ADS)

    Gameil, M.; Al Anbaawy, M.; Abdel Fattah, M.; Abu El-Kheir, G.

    2016-04-01

    At Wadi Al Hitan area, rapid lateral and vertical variation is observed among the exposed middle and upper Eocene rock units. The tradionally known formations (Gehannam, Briket Qaroun, Qasr El-Sagha formations) interfinger laterally and not chronologically stacked above each other in most areas. Fine siltstones and claystones characterize the Gehannam Formation, sandstones and calcareous sandstones are characteristic for Briket Qaroun Formation, dark gray claystones are attributed to Garet El-Naqb Formation and interbedded claystones are attributed to Qasr El-Sagha Formation, irrespective of their stratigraphic position. Within these formations large numbers of marine vertebrate and invertebrate fossils exist at different stratigraphic levels. Whales are classified into four species belonging to four genera, these include Basilosaurus isis, Dorudon atrox, Saghacetus Osiris and Anclacetus simonsi. Basilosaurus isis and Dorudon atrox are the most common whale species exist in these formations. No major break in sedimentation has been described within the Eocene formations in Fayoum region. Only a well marked low sea stand is indicated at the top of the Gehannam Formation where it overlain by Birket Qaroun Formation.

  18. Doppler tomography of XTE J1118+480 revealing chromospheric emission from the secondary star

    NASA Astrophysics Data System (ADS)

    Zurita, C.; González Hernández, J. I.; Escorza, A.; Casares, J.

    2016-08-01

    Doppler tomography of emission lines in low-mass X-ray binaries allows us to investigate the structure and variability of the accretion discs as well as possible activity arising from the secondary stars. We present Doppler maps of the black hole binary XTE J1118+480 from spectra obtained using OSIRIS@GTC during quiescence on four different nights in 2011 and 2012. Doppler imaging of the Hα line shows, for the first time, a narrow component from the secondary star with observed equivalent widths varying in the range 1.2-2.9 Å but not correlated with the veiling of the accretion disc. The Hα flux of the secondary star is too large to be powered by X-ray irradiation, supporting chromospheric activity, possibly induced by rapid rotation, as the most likely origin of this feature in the black hole X-ray binary XTE J1118+480. In addition, we detect variations in the centroid of the Hα line on nightly basis. These are likely caused by a precessing accretion disc, although with a much lower amplitude (˜50 km s-1) than previously observed.

  19. Defensive repertoire of Drosophila larvae in response to toxic fungi.

    PubMed

    Trienens, Monika; Kraaijeveld, Ken; Wertheim, Bregje

    2017-10-01

    Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors. © 2017 John Wiley & Sons Ltd.

  20. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  1. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  2. Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer

    NASA Astrophysics Data System (ADS)

    Jégou, F.; Berthet, G.; Brogniez, C.; Renard, J.-B.; François, P.; Haywood, J. M.; Jones, A.; Bourgeois, Q.; Lurton, T.; Auriol, F.; Godin-Beekmann, S.; Guimbaud, C.; Krysztofiak, G.; Gaubicher, B.; Chartier, M.; Clarisse, L.; Clerbaux, C.; Balois, J. Y.; Verwaerde, C.

    2013-02-01

    Aerosols from the Sarychev volcano eruption (Kuril Islands, northeast of Japan) were observed in the Arctic lower stratosphere a few days after the strongest SO2 injection which occurred on 15 and 16 June 2009. From the observations provided by the Infrared Atmospheric Sounding Interferometer (IASI) an estimated 0.9 Tg of sulphur dioxide was injected into the Upper Troposphere and Lower Stratosphere (UTLS). The resultant stratospheric sulphate aerosols were detected by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instruments. By the first week of July the aerosol plume had spread out over the entire Arctic region. The Sarychev-induced stratospheric aerosol over the Kiruna region (north of Sweden) was measured by the Stratospheric and Tropospheric Aerosol Counter (STAC) during eight balloon flights planned in August and September 2009. During this balloon campaign the Micro RADIomètre BALlon (MicroRADIBAL) and the Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) remote-sensing instruments also observed these aerosols. Aerosol concentrations returned to near-background levels by spring 2010. The effective radius, the Surface Area Density (SAD), the aerosol extinction, and the total sulphur mass from STAC in situ measurements are enhanced with mean values in the range 0.15-0.21 μm, 5.5-14.7 μm2 cm-3, 5.5-29.5×10-4 km-1, and 4.9-12.6×10-10 kg [S] kg-1 [air], respectively, between 14 km and 18 km. The observed and modelled e-folding time of sulphate aerosols from the Sarychev eruption is around 70-80 days, a value much shorter than the 12-14 months calculated for aerosols from the 1991 eruption of Mt. Pinatubo. The OSIRIS stratospheric Aerosol Optical Depth (AOD) at 750 nm is enhanced by a factor of 6 with a value of 0.02 in late July compared to 0.0035 before the eruption. The HadGEM2 and MIMOSA model outputs indicate that aerosol layers in polar region up to 14-15 km are largely modulated by stratosphere-troposphere exchange processes. The spatial extension of the Sarychev plume is well represented in the HadGEM2 model with lower altitudes of the plume being controlled by upper tropospheric troughs which displace the plume downward and upper altitudes around 18-20 km in agreement with lidar observations. A good consistency is found between the HadGEM2 sulphur mass density and the value inferred from the STAC observations with a maximum located about 1 km above the tropopause ranging from 1 to 2×10-9 kg [S] kg-1 [air], which is one order of magnitude higher than the background level.

  3. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    NASA Technical Reports Server (NTRS)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone.

  4. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Andrey; Wright, Shelley A.; Do, Tuan

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host.more » We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if star formation is present in the host (1.4–20 kpc) it would have to occur diffusely with significant extinction and not in compact, clumpy regions.« less

  5. Physical and dynamical properties of the anomalous comet 249P/LINEAR

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Licandro, Javier; Moreno, Fernando; Sosa, Andrea; Cabrera-Lavers, Antonio; de León, Julia; Birtwhistle, Peter

    2017-10-01

    Images and low-resolution spectra of the near-Earth Jupiter family comet (JFC) 249P/LINEAR in the visible range obtained with the instrument OSIRIS in the 10.4 m Gran Telescopio Canarias (GTC) (La Palma, Spain) on January 3, 4, 6 and February 6, 2016 are presented, together with a series of images obtained with the 0.4m telescope of the Great Shefford Observatory obtained on Oct. 22 and 27, and Nov. 1 and 24, 2006. The reflectance spectrum of 249P is similar to that of a B-type asteroid. The comet has an absolute (visual) nuclear magnitude HV = 17.0 ± 0.4 , which corresponds to a radius of about 1-1.3 km for a geometric albedo ∼ 0.04 - 0.07 . From the analysis of GTC images using a Monte Carlo dust tail code we find that the time of maximum dust ejection rate was around 1.6 days before perihelion. The analysis of the dust tails during the 2006 and 2016 perihelion approaches reveals that, during both epochs, the comet repeated the same dust ejection pattern, with a similar short-lived activity period of about 20 days (FWHM) around perihelion and a dust loss rate peaking at 145 ± 50 kg/s. The total dust mass ejected during its last perihelion passage was (2.5 ± 0.9) × 108 kg, almost all this mass being emitted before the first observation of January 3, 2016. The activity onset, duration, and total ejected mass were very similar during the 2006 perihelion passage. This amount of dust mass is very low as compared with that from other active JFCs. The past orbital evolution of 249P and 100 clones were also followed over a time scale of ∼ 5 × 104 yr. The object and more than 60% of the clones remained bound to the near-Earth region for the whole computed period, keeping its perihelion distance within the range q ≃ 0.4 - 1.1 au. The combination of photometric and spectroscopic observations and dynamical studies show that the near-Earth comet 249P/LINEAR has several peculiar features that clearly differentiate it from typical JFCs. We may be in front of a new class of near-Earth JFC whose source region is not the distant trans-neptunian population, but much closer in the asteroid belt. Therefore, 249P/LINEAR may be a near-Earth counterpart of the so-called main-belt comets or active asteroids.

  6. Quasi-static modeling of beam-plasma and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun

    Plasma wave wakefields excited by either laser or particle beams can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerators. They are promising for accelerating particles in short distances for applications such as future high-energy colliders, and medical and industrial accelerators. In a Plasma Wakefield Accelerator (PWFA) or a Laser Wakefield Accelerator (LWFA), an intense particle or laser beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the driver. This wakefield can then be used to accelerate part of the drive beam or a separate trailing beam. The interaction between the plasma and the driver is highly nonlinear and therefore a particle description is required for computer modeling. A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell code called QuickPIC for simulating plasma and laser wakefield acceleration has been developed. The model is based on the quasi-static or frozen field approximation, which assumes that the drive beam and/or the laser does not evolve during the time it takes for it to pass a plasma particle. The electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the driver using very large time steps. This algorithm reduces the computational time by at least 2 to 3 orders of magnitude. Comparison between the new algorithm and a fully explicit model (OSIRIS) are presented. The agreement is excellent for problems of interest. Direction for future work is also discussed. QuickPIC has been used to study the "afterburner" concept. In this concept a fraction of an existing high-energy beam is separated out and used as a trailing beam with the goal that the trailing beam acquires at least twice the energy of the drive beam. Several critical issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in the plasma are investigated. We have simulated a 100 GeV and a 1 TeV plasma "afterburner" stages for electron beams and the results are presented. QuickPIC also has enabled us to develop a new theory for understanding the hosing instability of the drive and trailing beams. The new theory is based on a perturbation to the ion column boundary which includes relativistic effects, axial motion and the full electromagnetic character of the wake. The new theory is verified by comparing it to the simulation results. In the adiabatic long beam limit it recovers the result of previous work from fluid models.

  7. News and Views: The biggest 3D map of the sky - so far! Just how round is the Sun? Students have chance to name that asteroid; Simulations suggest significant close dark matter

    NASA Astrophysics Data System (ADS)

    2012-10-01

    The Sloan Digital Sky Survey III has made public its latest dataset which includes the locations and distances of more than 1 million galaxies, images of 200 million and spectra of 1.35 million galaxies. Over a total volume equivalent to a cube of side 4 billion light-years. Surprisingly round, is the answer determined by researchers using a SDO instrument to track the shape of the Sun over time. This is in conflict with theories that suggest the Sun's shape should change in line with its 11-year magnetic cycle. NASA's asteroid sample-return mission OSIRIS-REx should launch in 2016 and head for asteroid (101955) 1999 RQ36 with the aim of bringing a sample back to Earth. Students are invited to give this asteroid a better name! The Milky Way galaxy has more dark matter than thought, when measured using a new technique. The data, useful for understanding what exactly dark matter is, also hint that the distribution of dark matter in our galaxy may not be the simple halo previously thought.

  8. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  9. A SUBSTELLAR COMMON PROPER-MOTION COMPANION TO THE PLEIAD H II 1348

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geissler, Kerstin; Metchev, Stanimir A.; Pham, Alfonse

    2012-02-10

    We announce the identification of a proper-motion companion to the star H II 1348, a K5 V member of the Pleiades open cluster. The existence of a faint point source 1.''1 away from H II 1348 was previously known from adaptive optics imaging by Bouvier et al. However, because of a high likelihood of background star contamination and in the absence of follow-up astrometry, Bouvier et al. tentatively concluded that the candidate companion was not physically associated with H II 1348. We establish the proper-motion association of the pair from adaptive optics imaging with the Palomar 5 m telescope. Adaptivemore » optics spectroscopy with the integral field spectrograph OSIRIS on the Keck 10 m telescope reveals that the companion has a spectral type of M8 {+-} 1. According to substellar evolution models, the M8 spectral type resides within the substellar mass regime at the age of the Pleiades. The primary itself is a known double-lined spectroscopic binary, which makes the resolved companion, H II 1348B, the least massive and widest component of this hierarchical triple system and the first substellar companion to a stellar primary in the Pleiades.« less

  10. Effect of Surface Reflectivity Variations On Uv-visible Limb Scattering Measurements of The Atmosphere

    NASA Astrophysics Data System (ADS)

    Oikarinen, L.

    Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.

  11. Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.

    2007-04-01

    Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.

  12. Cutting-Edge Science from Arecibo Observatory: Introduction

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.

    2017-01-01

    The Arecibo Observatory is home to the largest radio telescope in the world operating above 2 GHz, where molecule emission pertaining to the origins of life proliferate. It also houses the most powerful radar system on the planet, providing crucial information for the assessment of impact hazards of near-Earth asteroids (NEA). It was built to study the ionosphere with a radar system that can also monitor the effects of Space Weather and climate change. Arecibo has a proven track record for doing excellent science, even after 50 years of operations. This talk will include brief summaries of several Arecibo astronomy topics including the (1) latest attempts to resolve the Pleiades distance controversy, which include VLBI and Gaia; (2) galactic and extragalactic molecules; and (3) Arecibo 3D orbit determinations of potentially hazardous asteroids, and the crucial observation required to select Bennu as the target for the recently launched NASA OSIRIS-REx mission. This introduction will set the stage for the invited talks in this session, which include such topics as Fast Radio Bursts, galactic and extragalactic HI results, the pulsar emission problem, and NANOGrav. This work is supported by NSF and NASA.

  13. Testing Ultracool Atmospheres with Mass Benchmarks

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, Michael C.

    2011-08-01

    After years of patient orbital monitoring, there is now a sample of ~10 very low-mass stars and brown dwarfs with precise (~5%) dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to obtain narrow-band imaging with Keck/OSIRIS LGS to measure resolved SEDs for this first sizable sample of ultracool binaries with well-determined dynamical masses. This multi- band photometry will enable us to precisely estimate spectral types and effective temperatures of individual binary components, providing the strongest constraints to date on widely used evolutionary and atmospheric models. Our proposed Keck observations are much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these data are equally vital for robust tests of theory. (Note: Our proposed time is intended to replace the 1 night awarded by NOAO to carry out this program in 2010B, which was completely lost due to weather.)

  14. Discovery of the Highest Redshift Protocluster: LAEs at z=6.5

    NASA Astrophysics Data System (ADS)

    Chanchaiworawit, Krittapas; Guzman, Rafael; ALBA

    2018-01-01

    We present the photometric candidates, spectroscopic confirmations, and clustering analysis from our search for one of the earliest protoclusters near the end of Cosmic Reionization Epoch. The observations are carried out using high-throughput optical-NIR imager and spectrograph OSIRIS at the 10.4m Gran Telescopio Canarias (GTC). The overdensity leading to the sign of protocluster is found around 2 massive Lyman Alpha Emitters (LAEs) at z=6.5 in SXDS-N field. The total GTC observing time in three medium band photometry (F883w35, F913w25 and F941w33) is over 34 hours covering 8x8 arcminute2 (~30,000 Mpc3 at z=6.5), resulting in identification of 45 fainter LAE candidates. The spectroscopic follow-up of 17 candidates are in the ongoing phase of observations (2016B and 2017B). However, the preliminary results show that at least 6 LAEs are confirmed by showing the signature of faint Lyman-α emission. The clustering analysis based on the overdense level derived from the photometric luminosity function also suggests that the protocluster will evolve to resemble the most massive galaxy clusters observable in the local Universe.

  15. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4 m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2016-02-01

    Two primitive near-Earth asteroids, (101955) Bennu and (162173) Ryugu, will be visited by a spacecraft with the aim of returning samples back to Earth. Since these objects are believed to originate in the inner main belt primitive collisional families (Erigone, Polana, Clarissa, and Sulamitis) or in the background of asteroids outside these families, the characterization of these primitive populations will enhance the scientific return of the missions. The main goal of this work is to shed light on the composition of the Erigone collisional family by means of visible spectroscopy. Asteroid (163) Erigone has been classified as a primitive object, and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. We found that 87% of the objects have typically primitive visible spectra consistent with that of (163) Erigone. In addition, we found that a significant fraction of these objects (~50%) present evidence of aqueous alteration.

  16. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    NASA Astrophysics Data System (ADS)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  17. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of ourmore » effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.« less

  18. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates.

    PubMed

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-05

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    NASA Astrophysics Data System (ADS)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  20. VizieR Online Data Catalog: Spectrophotometric distances of HII regions (Moises+, 2011)

    NASA Astrophysics Data System (ADS)

    Moises, A. P.; Damineli, A.; Figueredo, E.; Blum, R. D.; Conti, P. S.; Barbosa, C. L.

    2011-11-01

    The J-band (λ1.28um, δλ=0.3um), H-band (λ1.63um, δλ=0.3um) and Ks-band (λ2.19um, δλ=0.4um) images were obtained on the nights of 1999 May 1, 4 and 20, 2000 May 19 and 21 and 2001 July 10 and 12, at the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope, using the facility's infrared imager OSIRIS, which has a field of view (FOV) of 93x93arcsec2 and a pixel scale of 0.161arcsec/pixel. On the nights of 2005 Jult 3-6 and 11 and 2006 June 3-7, we obtained images using the facility's infrared imager ISPI (with a FOV of 10.25x10.25arcmin2 and a pixel scale of 0.3arcsec/pix), also at the 4-m Blanco telescope. Also, on the nights of 1998 August 28 and 29, we obtained images on the CTIO 4-m telescope using the facility's infrared imager CIRIM (with a FOV of 102x102arcsec2 and a pixel scale of 0.40arcsec/pix). (3 data files).

Top