Quantum steganography and quantum error-correction
NASA Astrophysics Data System (ADS)
Shaw, Bilal A.
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.
Bellomo, Guido; Bosyk, Gustavo M; Holik, Federico; Zozor, Steeve
2017-11-07
Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.
Superdense coding interleaved with forward error correction
Humble, Travis S.; Sadlier, Ronald J.
2016-05-12
Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, R.S.; Pearson, P.K.; Sengupta, S.K.
A password system comprises a set of codewords spaced apart from one another by a Hamming distance (HD) that exceeds twice the variability that can be projected for a series of biometric measurements for a particular individual and that is less than the HD that can be encountered between two individuals. To enroll an individual, a biometric measurement is taken and exclusive-ORed with a random codeword to produce a reference value. To verify the individual later, a biometric measurement is taken and exclusive-ORed with the reference value to reproduce the original random codeword or its approximation. If the reproduced valuemore » is not a codeword, the nearest codeword to it is found, and the bits that were corrected to produce the codeword to it is found, and the bits that were corrected to produce the codeword are also toggled in the biometric measurement taken and the codeword generated during enrollment. The correction scheme can be implemented by any conventional error correction code such as Reed-Muller code R(m,n). In the implementation using a hand geometry device an R(2,5) code has been used in this invention. Such codeword and biometric measurement can then be used to see if the individual is an authorized user. Conventional Diffie-Hellman public key encryption schemes and hashing procedures can then be used to secure the communications lines carrying the biometric information and to secure the database of authorized users.« less
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
Exploiting the cannibalistic traits of Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Collins, O.
1993-01-01
In Reed-Solomon codes and all other maximum distance separable codes, there is an intrinsic relationship between the size of the symbols in a codeword and the length of the codeword. Increasing the number of symbols in a codeword to improve the efficiency of the coding system thus requires using a larger set of symbols. However, long Reed-Solomon codes are difficult to implement and many communications or storage systems cannot easily accommodate an increased symbol size, e.g., M-ary frequency shift keying (FSK) and photon-counting pulse-position modulation demand a fixed symbol size. A technique for sharing redundancy among many different Reed-Solomon codewords to achieve the efficiency attainable in long Reed-Solomon codes without increasing the symbol size is described. Techniques both for calculating the performance of these new codes and for determining their encoder and decoder complexities is presented. These complexities are usually found to be substantially lower than conventional Reed-Solomon codes of similar performance.
Bit-wise arithmetic coding for data compression
NASA Technical Reports Server (NTRS)
Kiely, A. B.
1994-01-01
This article examines the problem of compressing a uniformly quantized independent and identically distributed (IID) source. We present a new compression technique, bit-wise arithmetic coding, that assigns fixed-length codewords to the quantizer output and uses arithmetic coding to compress the codewords, treating the codeword bits as independent. We examine the performance of this method and evaluate the overhead required when used block-adaptively. Simulation results are presented for Gaussian and Laplacian sources. This new technique could be used as the entropy coder in a transform or subband coding system.
Zipf's Law in Short-Time Timbral Codings of Speech, Music, and Environmental Sound Signals
Haro, Martín; Serrà, Joan; Herrera, Perfecto; Corral, Álvaro
2012-01-01
Timbre is a key perceptual feature that allows discrimination between different sounds. Timbral sensations are highly dependent on the temporal evolution of the power spectrum of an audio signal. In order to quantitatively characterize such sensations, the shape of the power spectrum has to be encoded in a way that preserves certain physical and perceptual properties. Therefore, it is common practice to encode short-time power spectra using psychoacoustical frequency scales. In this paper, we study and characterize the statistical properties of such encodings, here called timbral code-words. In particular, we report on rank-frequency distributions of timbral code-words extracted from 740 hours of audio coming from disparate sources such as speech, music, and environmental sounds. Analogously to text corpora, we find a heavy-tailed Zipfian distribution with exponent close to one. Importantly, this distribution is found independently of different encoding decisions and regardless of the audio source. Further analysis on the intrinsic characteristics of most and least frequent code-words reveals that the most frequent code-words tend to have a more homogeneous structure. We also find that speech and music databases have specific, distinctive code-words while, in the case of the environmental sounds, this database-specific code-words are not present. Finally, we find that a Yule-Simon process with memory provides a reasonable quantitative approximation for our data, suggesting the existence of a common simple generative mechanism for all considered sound sources. PMID:22479497
Strait, Robert S.; Pearson, Peter K.; Sengupta, Sailes K.
2000-01-01
A password system comprises a set of codewords spaced apart from one another by a Hamming distance (HD) that exceeds twice the variability that can be projected for a series of biometric measurements for a particular individual and that is less than the HD that can be encountered between two individuals. To enroll an individual, a biometric measurement is taken and exclusive-ORed with a random codeword to produce a "reference value." To verify the individual later, a biometric measurement is taken and exclusive-ORed with the reference value to reproduce the original random codeword or its approximation. If the reproduced value is not a codeword, the nearest codeword to it is found, and the bits that were corrected to produce the codeword to it is found, and the bits that were corrected to produce the codeword are also toggled in the biometric measurement taken and the codeword generated during enrollment. The correction scheme can be implemented by any conventional error correction code such as Reed-Muller code R(m,n). In the implementation using a hand geometry device an R(2,5) code has been used in this invention. Such codeword and biometric measurement can then be used to see if the individual is an authorized user. Conventional Diffie-Hellman public key encryption schemes and hashing procedures can then be used to secure the communications lines carrying the biometric information and to secure the database of authorized users.
NASA Astrophysics Data System (ADS)
Nasaruddin; Tsujioka, Tetsuo
An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
Is a Genome a Codeword of an Error-Correcting Code?
Kleinschmidt, João H.; Silva-Filho, Márcio C.; Bim, Edson; Herai, Roberto H.; Yamagishi, Michel E. B.; Palazzo, Reginaldo
2012-01-01
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction. PMID:22649495
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; STEPANOV, MIKHAIL
2007-01-10
The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less
NASA Astrophysics Data System (ADS)
Mense, Mario; Schindelhauer, Christian
We introduce the Read-Write-Coding-System (RWC) - a very flexible class of linear block codes that generate efficient and flexible erasure codes for storage networks. In particular, given a message x of k symbols and a codeword y of n symbols, an RW code defines additional parameters k ≤ r,w ≤ n that offer enhanced possibilities to adjust the fault-tolerance capability of the code. More precisely, an RWC provides linear left(n,k,dright)-codes that have (a) minimum distance d = n - r + 1 for any two codewords, and (b) for each codeword there exists a codeword for each other message with distance of at most w. Furthermore, depending on the values r,w and the code alphabet, different block codes such as parity codes (e.g. RAID 4/5) or Reed-Solomon (RS) codes (if r = k and thus, w = n) can be generated. In storage networks in which I/O accesses are very costly and redundancy is crucial, this flexibility has considerable advantages as r and w can optimally be adapted to read or write intensive applications; only w symbols must be updated if the message x changes completely, what is different from other codes which always need to rewrite y completely as x changes. In this paper, we first state a tight lower bound and basic conditions for all RW codes. Furthermore, we introduce special RW codes in which all mentioned parameters are adjustable even online, that is, those RW codes are adaptive to changing demands. At last, we point out some useful properties regarding safety and security of the stored data.
Confidence Intervals for Error Rates Observed in Coded Communications Systems
NASA Astrophysics Data System (ADS)
Hamkins, J.
2015-05-01
We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.
Insecurity of position-based quantum-cryptography protocols against entanglement attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Hoi-Kwan; Lo, Hoi-Kwong
2011-01-15
Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to underminemore » the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.« less
Minimized state complexity of quantum-encoded cryptic processes
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Clustering of neural code words revealed by a first-order phase transition
NASA Astrophysics Data System (ADS)
Huang, Haiping; Toyoizumi, Taro
2016-06-01
A network of neurons in the central nervous system collectively represents information by its spiking activity states. Typically observed states, i.e., code words, occupy only a limited portion of the state space due to constraints imposed by network interactions. Geometrical organization of code words in the state space, critical for neural information processing, is poorly understood due to its high dimensionality. Here, we explore the organization of neural code words using retinal data by computing the entropy of code words as a function of Hamming distance from a particular reference codeword. Specifically, we report that the retinal code words in the state space are divided into multiple distinct clusters separated by entropy-gaps, and that this structure is shared with well-known associative memory networks in a recallable phase. Our analysis also elucidates a special nature of the all-silent state. The all-silent state is surrounded by the densest cluster of code words and located within a reachable distance from most code words. This code-word space structure quantitatively predicts typical deviation of a state-trajectory from its initial state. Altogether, our findings reveal a non-trivial heterogeneous structure of the code-word space that shapes information representation in a biological network.
Trinker, Horst
2011-10-28
We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859-2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound.
Reversibility in Quantum Models of Stochastic Processes
NASA Astrophysics Data System (ADS)
Gier, David; Crutchfield, James; Mahoney, John; James, Ryan
Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.
Decoding Codewords: Statistical Analysis of a Newspaper Puzzle
ERIC Educational Resources Information Center
Meacock, Susan; Meacock, Geoff
2012-01-01
In recent years English newspapers have started featuring a number of puzzles other than the ubiquitous crossword. Many of the puzzles are of Japanese origin such as Sudoku, Kakuro or Hidato. However, one recent one is very English and is called variously Cross-code, Alphapuzzle or some other name. In this article, it will be known as Codeword.…
Achieving the Holevo bound via a bisection decoding protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosati, Matteo; Giovannetti, Vittorio
2016-06-15
We present a new decoding protocol to realize transmission of classical information through a quantum channel at asymptotically maximum capacity, achieving the Holevo bound and thus the optimal communication rate. At variance with previous proposals, our scheme recovers the message bit by bit, making use of a series of “yes-no” measurements, organized in bisection fashion, thus determining which codeword was sent in log{sub 2} N steps, N being the number of codewords.
Enhanced decoding for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Dolinar, S.; Belongie, M.
1993-01-01
A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile for depth-8 interleaving is currently being done.
NASA Technical Reports Server (NTRS)
Dolinar, S.; Belongie, M.
1995-01-01
The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.
NASA Astrophysics Data System (ADS)
Chung, Hye Won; Guha, Saikat; Zheng, Lizhong
2017-07-01
We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.
On the existence of binary simplex codes. [using combinatorial construction
NASA Technical Reports Server (NTRS)
Taylor, H.
1977-01-01
Using a simple combinatorial construction, the existence of a binary simplex code with m codewords for all m is greater than or equal to 1 is proved. The problem of the shortest possible length is left open.
An approach enabling adaptive FEC for OFDM in fiber-VLLC system
NASA Astrophysics Data System (ADS)
Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin
2017-12-01
In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.
Unitary reconstruction of secret for stabilizer-based quantum secret sharing
NASA Astrophysics Data System (ADS)
Matsumoto, Ryutaroh
2017-08-01
We propose a unitary procedure to reconstruct quantum secret for a quantum secret sharing scheme constructed from stabilizer quantum error-correcting codes. Erasure correcting procedures for stabilizer codes need to add missing shares for reconstruction of quantum secret, while unitary reconstruction procedures for certain class of quantum secret sharing are known to work without adding missing shares. The proposed procedure also works without adding missing shares.
Real-time transmission of digital video using variable-length coding
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1993-01-01
Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is represented with short codewords, while 'not-so-likely' data is assigned longer codewords. Compression is achieved when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this compression technique to digital video transmission; however, special care must be taken in order to implement a communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors, decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital video, the techniques discussed can easily be generalized for a variety of applications which require transmission of variable-length data.
Continuous quantum error correction for non-Markovian decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089
2007-08-15
We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less
VLA telemetry performance with concatenated coding for Voyager at Neptune
NASA Technical Reports Server (NTRS)
Dolinar, S. J., Jr.
1988-01-01
Current plans for supporting the Voyager encounter at Neptune include the arraying of the Deep Space Network (DSN) antennas at Goldstone, California, with the National Radio Astronomy Observatory's Very Large Array (VLA) in New Mexico. Not designed as a communications antenna, the VLA signal transmission facility suffers a disadvantage in that the received signal is subjected to a gap or blackout period of approximately 1.6 msec once every 5/96 sec control cycle. Previous analyses showed that the VLA data gaps could cause disastrous performance degradation in a VLA stand-alone system and modest degradation when the VLA is arrayed equally with Goldstone. New analysis indicates that the earlier predictions for concatenated code performance were overly pessimistic for most combinations of system parameters, including those of Voyager-VLA. The periodicity of the VLA gap cycle tends to guarantee that all Reed-Solomon codewords will receive an average share of erroneous symbols from the gaps. However, large deterministic fluctuations in the number of gapped symbols from codeword to codeword may occur for certain combinations of code parameters, gap cycle parameters, and data rates. Several mechanisms for causing these fluctuations are identified and analyzed. Even though graceful degradation is predicted for the Voyager-VLA parameters, catastrophic degradation greater than 2 dB can occur for a VLA stand-alone system at certain non-Voyager data rates inside the range of the actual Voyager rates. Thus, it is imperative that all of the Voyager-VLA parameters be very accurately known and precisely controlled.
High Order Modulation Protograph Codes
NASA Technical Reports Server (NTRS)
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods for designing protograph-based bit-interleaved code modulation that is general and applies to any modulation. The general coding framework can support not only multiple rates but also adaptive modulation. The method is a two stage lifting approach. In the first stage, an original protograph is lifted to a slightly larger intermediate protograph. The intermediate protograph is then lifted via a circulant matrix to the expected codeword length to form a protograph-based low-density parity-check code.
Quantum Stabilizer Codes Can Realize Access Structures Impossible by Classical Secret Sharing
NASA Astrophysics Data System (ADS)
Matsumoto, Ryutaroh
We show a simple example of a secret sharing scheme encoding classical secret to quantum shares that can realize an access structure impossible by classical information processing with limitation on the size of each share. The example is based on quantum stabilizer codes.
Information preserving coding for multispectral data
NASA Technical Reports Server (NTRS)
Duan, J. R.; Wintz, P. A.
1973-01-01
A general formulation of the data compression system is presented. A method of instantaneous expansion of quantization levels by reserving two codewords in the codebook to perform a folding over in quantization is implemented for error free coding of data with incomplete knowledge of the probability density function. Results for simple DPCM with folding and an adaptive transform coding technique followed by a DPCM technique are compared using ERTS-1 data.
Heralded creation of photonic qudits from parametric down-conversion using linear optics
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira
2018-05-01
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.
Towards self-correcting quantum memories
NASA Astrophysics Data System (ADS)
Michnicki, Kamil
This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real implementations of quantum memories. Numerical evidence also suggests that the cellular automaton could function as a decoder with a soft threshold.
Improved nearest codeword search scheme using a tighter kick-out condition
NASA Astrophysics Data System (ADS)
Hwang, Kuo-Feng; Chang, Chin-Chen
2001-09-01
Using a tighter kick-out condition as a faster approach to nearest codeword searches is proposed. The proposed scheme finds the nearest codeword that is identical to the one found using a full search. However, using our scheme, the search time is much shorter. Our scheme first establishes a tighter kick-out condition. Then, the temporal nearest codeword can be obtained from the codewords that survive the tighter condition. Finally, the temporal nearest codeword cooperatives with the query vector to constitute a better kick-out condition. In other words, more codewords can be excluded without actually computing the distances between the bypassed codewords and the query vector. Comparison to previous work are included to present the benefits of the proposed scheme in relation to search time.
Investigation of the Use of Erasures in a Concatenated Coding Scheme
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Marriott, Philip J.
1997-01-01
A new method for declaring erasures in a concatenated coding scheme is investigated. This method is used with the rate 1/2 K = 7 convolutional code and the (255, 223) Reed Solomon code. Errors and erasures Reed Solomon decoding is used. The erasure method proposed uses a soft output Viterbi algorithm and information provided by decoded Reed Solomon codewords in a deinterleaving frame. The results show that a gain of 0.3 dB is possible using a minimum amount of decoding trials.
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing
NASA Astrophysics Data System (ADS)
Quan, Dong-Xiao; Zhu, Li-Li; Pei, Chang-Xing; Sanders, Barry C.
2018-03-01
We design forward and backward fault-tolerant conversion circuits, which convert between the Steane code and the 15-qubit Reed-Muller quantum code so as to provide a universal transversal gate set. In our method, only seven out of a total 14 code stabilizers need to be measured, and we further enhance the circuit by simplifying some stabilizers; thus, we need only to measure eight weight-4 stabilizers for one round of forward conversion and seven weight-4 stabilizers for one round of backward conversion. For conversion, we treat random single-qubit errors and their influence on syndromes of gauge operators, and our novel single-step process enables more efficient fault-tolerant conversion between these two codes. We make our method quite general by showing how to convert between any two adjacent Reed-Muller quantum codes \\overline{\\textsf{RM}}(1,m) and \\overline{\\textsf{RM}}≤ft(1,m+1\\right) , for which we need only measure stabilizers whose number scales linearly with m rather than exponentially with m obtained in previous work. We provide the explicit mathematical expression for the necessary stabilizers and the concomitant resources required.
Image Coding Based on Address Vector Quantization.
NASA Astrophysics Data System (ADS)
Feng, Yushu
Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.
Feasibility of self-correcting quantum memory and thermal stability of topological order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Beni, E-mail: rouge@mit.edu
2011-10-15
Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that themore » model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: > We define a class of physically realizable quantum codes. > We determine their coding and physical properties completely. > We establish the connection between topological order and self-correcting memory. > We find they do not work as self-correcting quantum memory. > We find they do not have thermally stable topological order.« less
Subspace Arrangement Codes and Cryptosystems
2011-05-09
any other prov1sion of law, no person shall be subject to any penalty for failing to comply w1th a collection of information if it does not display a...NUMBER OF PAGES 49 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std...theory is finding codes that have a small number of digits (length) with a high number codewords (dimension), as well as good error-correction properties
The Reed-Solomon encoders: Conventional versus Berlekamp's architecture
NASA Technical Reports Server (NTRS)
Perlman, M.; Lee, J. J.
1982-01-01
Concatenated coding was adopted for interplanetary space missions. Concatenated coding was employed with a convolutional inner code and a Reed-Solomon (RS) outer code for spacecraft telemetry. Conventional RS encoders are compared with those that incorporate two architectural features which approximately halve the number of multiplications of a set of fixed arguments by any RS codeword symbol. The fixed arguments and the RS symbols are taken from a nonbinary finite field. Each set of multiplications is bit-serially performed and completed during one (bit-serial) symbol shift. All firmware employed by conventional RS encoders is eliminated.
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Cabral, Hermano A.; He, Jiali
1997-01-01
Bootstrap Hybrid Decoding (BHD) (Jelinek and Cocke, 1971) is a coding/decoding scheme that adds extra redundancy to a set of convolutionally encoded codewords and uses this redundancy to provide reliability information to a sequential decoder. Theoretical results indicate that bit error probability performance (BER) of BHD is close to that of Turbo-codes, without some of their drawbacks. In this report we study the use of the Multiple Stack Algorithm (MSA) (Chevillat and Costello, Jr., 1977) as the underlying sequential decoding algorithm in BHD, which makes possible an iterative version of BHD.
Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes.
Kuekes, Philip J; Robinett, Warren; Roth, Ron M; Seroussi, Gadiel; Snider, Gregory S; Stanley Williams, R
2006-02-28
The voltage margin of a resistor-logic demultiplexer can be improved significantly by basing its connection pattern on a constant-weight code. Each distinct code determines a unique demultiplexer, and therefore a large family of circuits is defined. We consider using these demultiplexers for building nanoscale crossbar memories, and determine the voltage margin of the memory system based on a particular code. We determine a purely code-theoretic criterion for selecting codes that will yield memories with large voltage margins, which is to minimize the ratio of the maximum to the minimum Hamming distance between distinct codewords. For the specific example of a 64 × 64 crossbar, we discuss what codes provide optimal performance for a memory.
NASA Astrophysics Data System (ADS)
Pryadko, Leonid P.; Dumer, Ilya; Kovalev, Alexey A.
2015-03-01
We construct a lower (existence) bound for the threshold of scalable quantum computation which is applicable to all stabilizer codes, including degenerate quantum codes with sublinear distance scaling. The threshold is based on enumerating irreducible operators in the normalizer of the code, i.e., those that cannot be decomposed into a product of two such operators with non-overlapping support. For quantum LDPC codes with logarithmic or power-law distances, we get threshold values which are parametrically better than the existing analytical bound based on percolation. The new bound also gives a finite threshold when applied to other families of degenerate quantum codes, e.g., the concatenated codes. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
NASA Astrophysics Data System (ADS)
Tanakamaru, Shuhei; Fukuda, Mayumi; Higuchi, Kazuhide; Esumi, Atsushi; Ito, Mitsuyoshi; Li, Kai; Takeuchi, Ken
2011-04-01
A dynamic codeword transition ECC scheme is proposed for highly reliable solid-state drives, SSDs. By monitoring the error number or the write/erase cycles, the ECC codeword dynamically increases from 512 Byte (+parity) to 1 KByte, 2 KByte, 4 KByte…32 KByte. The proposed ECC with a larger codeword decreases the failure rate after ECC. As a result, the acceptable raw bit error rate, BER, before ECC is enhanced. Assuming a NAND Flash memory which requires 8-bit correction in 512 Byte codeword ECC, a 17-times higher acceptable raw BER than the conventional fixed 512 Byte codeword ECC is realized for the mobile phone application without an interleaving. For the MP3 player, digital-still camera and high-speed memory card applications with a dual channel interleaving, 15-times higher acceptable raw BER is achieved. Finally, for the SSD application with 8 channel interleaving, 13-times higher acceptable raw BER is realized. Because the ratio of the user data to the parity bits is the same in each ECC codeword, no additional memory area is required. Note that the reliability of SSD is improved after the manufacturing without cost penalty. Compared with the conventional ECC with the fixed large 32 KByte codeword, the proposed scheme achieves a lower power consumption by introducing the "best-effort" type operation. In the proposed scheme, during the most of the lifetime of SSD, a weak ECC with a shorter codeword such as 512 Byte (+parity), 1 KByte and 2 KByte is used and 98% lower power consumption is realized. At the life-end of SSD, a strong ECC with a 32 KByte codeword is used and the highly reliable operation is achieved. The random read performance is also discussed. The random read performance is estimated by the latency. The latency is below 1.5 ms for ECC codeword up to 32 KByte. This latency is below the average latency of 15,000 rpm HDD, 2 ms.
Efficient preparation of large-block-code ancilla states for fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Zheng, Yi-Cong; Lai, Ching-Yi; Brun, Todd A.
2018-03-01
Fault-tolerant quantum computation (FTQC) schemes that use multiqubit large block codes can potentially reduce the resource overhead to a great extent. A major obstacle is the requirement for a large number of clean ancilla states of different types without correlated errors inside each block. These ancilla states are usually logical stabilizer states of the data-code blocks, which are generally difficult to prepare if the code size is large. Previously, we have proposed an ancilla distillation protocol for Calderbank-Shor-Steane (CSS) codes by classical error-correcting codes. It was assumed that the quantum gates in the distillation circuit were perfect; however, in reality, noisy quantum gates may introduce correlated errors that are not treatable by the protocol. In this paper, we show that additional postselection by another classical error-detecting code can be applied to remove almost all correlated errors. Consequently, the revised protocol is fully fault tolerant and capable of preparing a large set of stabilizer states sufficient for FTQC using large block codes. At the same time, the yield rate can be boosted from O (t-2) to O (1 ) in practice for an [[n ,k ,d =2 t +1
Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level
2009-04-27
analog locking circuit was shown to stabilize the beat signal between a 2.408 THz quantum cascade laser and a CH2DOH THz CO2 optically pumped...codes: (140.5965) Semiconductor lasers , quantum cascade; (140.3425) Laser stabilization; (300.3700) Linewidth; (040.2840) Heterodyne . References...Reno, “Frequency and phase - lock control of a 3 THz quantum cascade laser ,” Opt. Lett. 30, 1837-1839 (2005). 10. D. Rabanus, U. U. Graf, M. Philipp
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
Tailored Codes for Small Quantum Memories
NASA Astrophysics Data System (ADS)
Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.
2017-12-01
We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.
NASA Astrophysics Data System (ADS)
Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya
Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.
Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice
NASA Astrophysics Data System (ADS)
Kim, Isaac H.
2011-05-01
We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.
On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound
NASA Astrophysics Data System (ADS)
Li, Ruihu; Li, Xueliang; Guo, Luobin
2015-12-01
The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code {C}, we show that the parameters of the EAQECC that EA-stabilized by the dual of {C} can be determined by a zero radical quaternary code induced from {C}, and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our [[n,k,d_{ea};c
Neural network decoder for quantum error correcting codes
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
Majorana fermion surface code for universal quantum computation
Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang
2015-12-10
In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates
NASA Astrophysics Data System (ADS)
Jochym-O'Connor, Tomas; Kubica, Aleksander; Yoder, Theodore J.
2018-04-01
Stabilizer codes are among the most successful quantum error-correcting codes, yet they have important limitations on their ability to fault tolerantly compute. Here, we introduce a new quantity, the disjointness of the stabilizer code, which, roughly speaking, is the number of mostly nonoverlapping representations of any given nontrivial logical Pauli operator. The notion of disjointness proves useful in limiting transversal gates on any error-detecting stabilizer code to a finite level of the Clifford hierarchy. For code families, we can similarly restrict logical operators implemented by constant-depth circuits. For instance, we show that it is impossible, with a constant-depth but possibly geometrically nonlocal circuit, to implement a logical non-Clifford gate on the standard two-dimensional surface code.
Generalized graph states based on Hadamard matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1
2015-07-15
Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less
Topological order, entanglement, and quantum memory at finite temperature
NASA Astrophysics Data System (ADS)
Mazáč, Dalimil; Hamma, Alioscia
2012-09-01
We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement-deconfinement transitions in the corresponding Z2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed.
Quantum Kronecker sum-product low-density parity-check codes with finite rate
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Pryadko, Leonid P.
2013-07-01
We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.
Connection anonymity analysis in coded-WDM PONs
NASA Astrophysics Data System (ADS)
Sue, Chuan-Ching
2008-04-01
A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes
NASA Astrophysics Data System (ADS)
Marvian, Milad; Lidar, Daniel A.
2017-01-01
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.
Marvian, Milad; Lidar, Daniel A
2017-01-20
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Fault-tolerance in Two-dimensional Topological Systems
NASA Astrophysics Data System (ADS)
Anderson, Jonas T.
This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical
The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates
NASA Technical Reports Server (NTRS)
Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2008-01-01
We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.
Optimally combining dynamical decoupling and quantum error correction.
Paz-Silva, Gerardo A; Lidar, D A
2013-01-01
Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.
Optimally combining dynamical decoupling and quantum error correction
Paz-Silva, Gerardo A.; Lidar, D. A.
2013-01-01
Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization. PMID:23559088
Shao, Wei; Liu, Mingxia; Zhang, Daoqiang
2016-01-01
The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A proposal for self-correcting stabilizer quantum memories in 3 dimensions (or slightly less)
NASA Astrophysics Data System (ADS)
Brell, Courtney G.
2016-01-01
We propose a family of local CSS stabilizer codes as possible candidates for self-correcting quantum memories in 3D. The construction is inspired by the classical Ising model on a Sierpinski carpet fractal, which acts as a classical self-correcting memory. Our models are naturally defined on fractal subsets of a 4D hypercubic lattice with Hausdorff dimension less than 3. Though this does not imply that these models can be realized with local interactions in {{{R}}}3, we also discuss this possibility. The X and Z sectors of the code are dual to one another, and we show that there exists a finite temperature phase transition associated with each of these sectors, providing evidence that the system may robustly store quantum information at finite temperature.
Frame Synchronization Without Attached Sync Markers
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2011-01-01
We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).
Method for coding low entrophy data
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu (Inventor)
1995-01-01
A method of lossless data compression for efficient coding of an electronic signal of information sources of very low information rate is disclosed. In this method, S represents a non-negative source symbol set, (s(sub 0), s(sub 1), s(sub 2), ..., s(sub N-1)) of N symbols with s(sub i) = i. The difference between binary digital data is mapped into symbol set S. Consecutive symbols in symbol set S are then paired into a new symbol set Gamma which defines a non-negative symbol set containing the symbols (gamma(sub m)) obtained as the extension of the original symbol set S. These pairs are then mapped into a comma code which is defined as a coding scheme in which every codeword is terminated with the same comma pattern, such as a 1. This allows a direct coding and decoding of the n-bit positive integer digital data differences without the use of codebooks.
Local statistics adaptive entropy coding method for the improvement of H.26L VLC coding
NASA Astrophysics Data System (ADS)
Yoo, Kook-yeol; Kim, Jong D.; Choi, Byung-Sun; Lee, Yung Lyul
2000-05-01
In this paper, we propose an adaptive entropy coding method to improve the VLC coding efficiency of H.26L TML-1 codec. First of all, we will show that the VLC coding presented in TML-1 does not satisfy the sibling property of entropy coding. Then, we will modify the coding method into the local statistics adaptive one to satisfy the property. The proposed method based on the local symbol statistics dynamically changes the mapping relationship between symbol and bit pattern in the VLC table according to sibling property. Note that the codewords in the VLC table of TML-1 codec is not changed. Since this changed mapping relationship also derived in the decoder side by using the decoded symbols, the proposed VLC coding method does not require any overhead information. The simulation results show that the proposed method gives about 30% and 37% reduction in average bit rate for MB type and CBP information, respectively.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
Bandwidth efficient CCSDS coding standard proposals
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan
1992-01-01
The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.
Locality-preserving logical operators in topological stabilizer codes
NASA Astrophysics Data System (ADS)
Webster, Paul; Bartlett, Stephen D.
2018-01-01
Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.
On the performance of a code division multiple access scheme with transmit/receive conflicts
NASA Astrophysics Data System (ADS)
Silvester, J. A.
One of the benefits of spread spectrum is that by assigning each user a different orthogonal signal set, multiple transmissions can occur simultaneously. This possibility is utilized in new access schemes called Code Division Multiple Access (CDMA). The present investigation is concerned with a particular CDMA implementation in which the transmit times for each symbol are exactly determined in a distributed manner such that both sender and receiver know them. In connection with a decision whether to transmit or receive, the loss of a symbol in one of the channels results. The system employs thus a coding technique which permits correct decoding of a codeword even if some constituent symbols are missing or in error. The technique used is Reed Solomon coding. The performance of this system is analyzed, and attention is given to the optimum strategy which should be used in deciding whether to receive or transmit.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Fault-tolerant logical gates in quantum error-correcting codes
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Yoshida, Beni
2015-01-01
Recently, S. Bravyi and R. König [Phys. Rev. Lett. 110, 170503 (2013), 10.1103/PhysRevLett.110.170503] have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically local circuit and are thus fault tolerant by construction. In particular, they show that, for local stabilizer codes in D spatial dimensions, locality-preserving gates are restricted to a set of unitary gates known as the D th level of the Clifford hierarchy. In this paper, we explore this idea further by providing several extensions and applications of their characterization to qubit stabilizer and subsystem codes. First, we present a no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. This result implies that non-Clifford gates do not admit such implementations in Haah's cubic code and Michnicki's welded code. Second, we prove that the code distance of a D -dimensional local stabilizer code with a nontrivial locality-preserving m th -level Clifford logical gate is upper bounded by O (LD +1 -m) . For codes with non-Clifford gates (m >2 ), this improves the previous best bound by S. Bravyi and B. Terhal [New. J. Phys. 11, 043029 (2009), 10.1088/1367-2630/11/4/043029]. Topological color codes, introduced by H. Bombin and M. A. Martin-Delgado [Phys. Rev. Lett. 97, 180501 (2006), 10.1103/PhysRevLett.97.180501; Phys. Rev. Lett. 98, 160502 (2007), 10.1103/PhysRevLett.98.160502; Phys. Rev. B 75, 075103 (2007), 10.1103/PhysRevB.75.075103], saturate the bound for m =D . Third, we prove that the qubit erasure threshold for codes with a nontrivial transversal m th -level Clifford logical gate is upper bounded by 1 /m . This implies that no family of fault-tolerant codes with transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to arbitrary stabilizer and subsystem codes and is not restricted to geometrically local codes. Fourth, we extend the result of Bravyi and König to subsystem codes. Unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This problem is avoided by assuming the presence of an error threshold in a subsystem code, and a conclusion analogous to that of Bravyi and König is recovered.
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
Segev, Ronen; Schneidman, Elad
2013-01-01
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339
Iterative channel decoding of FEC-based multiple-description codes.
Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B
2012-03-01
Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.
Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.
We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less
Potts glass reflection of the decoding threshold for qudit quantum error correcting codes
NASA Astrophysics Data System (ADS)
Jiang, Yi; Kovalev, Alexey A.; Pryadko, Leonid P.
We map the maximum likelihood decoding threshold for qudit quantum error correcting codes to the multicritical point in generalized Potts gauge glass models, extending the map constructed previously for qubit codes. An n-qudit quantum LDPC code, where a qudit can be involved in up to m stabilizer generators, corresponds to a ℤd Potts model with n interaction terms which can couple up to m spins each. We analyze general properties of the phase diagram of the constructed model, give several bounds on the location of the transitions, bounds on the energy density of extended defects (non-local analogs of domain walls), and discuss the correlation functions which can be used to distinguish different phases in the original and the dual models. This research was supported in part by the Grants: NSF PHY-1415600 (AAK), NSF PHY-1416578 (LPP), and ARO W911NF-14-1-0272 (LPP).
Image coding using entropy-constrained residual vector quantization
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.
1993-01-01
The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.
Entangled cloning of stabilizer codes and free fermions
NASA Astrophysics Data System (ADS)
Hsieh, Timothy H.
2016-10-01
Though the no-cloning theorem [Wooters and Zurek, Nature (London) 299, 802 (1982), 10.1038/299802a0] prohibits exact replication of arbitrary quantum states, there are many instances in quantum information processing and entanglement measurement in which a weaker form of cloning may be useful. Here, I provide a construction for generating an "entangled clone" for a particular but rather expansive and rich class of states. Given a stabilizer code or free fermion Hamiltonian, this construction generates an exact entangled clone of the original ground state, in the sense that the entanglement between the original and the exact copy can be tuned to be arbitrarily small but finite, or large, and the relation between the original and the copy can also be modified to some extent. For example, this Rapid Communication focuses on generating time-reversed copies of stabilizer codes and particle-hole transformed ground states of free fermion systems, although untransformed clones can also be generated. The protocol leverages entanglement to simulate a transformed copy of the Hamiltonian without having to physically implement it and can potentially be realized in superconducting qubits or ultracold atomic systems.
A Degree Distribution Optimization Algorithm for Image Transmission
NASA Astrophysics Data System (ADS)
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
Towards fault tolerant adiabatic quantum computation.
Lidar, Daniel A
2008-04-25
I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and energy gaps. Corresponding error bounds are derived. As an example, I show how to perform decoherence-protected AQC against local noise using at most two-body interactions.
Quantum computing with Majorana fermion codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
State estimation for networked control systems using fixed data rates
NASA Astrophysics Data System (ADS)
Liu, Qing-Quan; Jin, Fang
2017-07-01
This paper investigates state estimation for linear time-invariant systems where sensors and controllers are geographically separated and connected via a bandwidth-limited and errorless communication channel with the fixed data rate. All plant states are quantised, coded and converted together into a codeword in our quantisation and coding scheme. We present necessary and sufficient conditions on the fixed data rate for observability of such systems, and further develop the data-rate theorem. It is shown in our results that there exists a quantisation and coding scheme to ensure observability of the system if the fixed data rate is larger than the lower bound given, which is less conservative than the one in the literature. Furthermore, we also examine the role that the disturbances have on the state estimation problem in the case with data-rate limitations. Illustrative examples are given to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
Multi-level bandwidth efficient block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1989-01-01
The multilevel technique is investigated for combining block coding and modulation. There are four parts. In the first part, a formulation is presented for signal sets on which modulation codes are to be constructed. Distance measures on a signal set are defined and their properties are developed. In the second part, a general formulation is presented for multilevel modulation codes in terms of component codes with appropriate Euclidean distances. The distance properties, Euclidean weight distribution and linear structure of multilevel modulation codes are investigated. In the third part, several specific methods for constructing multilevel block modulation codes with interdependency among component codes are proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C which has the same rate as C, a minimum squared Euclidean distance not less than that of code C, a trellis diagram with the same number of states as that of C and a smaller number of nearest neighbor codewords than that of C. In the last part, error performance of block modulation codes is analyzed for an AWGN channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated based on their Euclidean weight distributions and simulation results.
A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2013-02-01
Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
Surface code quantum communication.
Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L
2010-05-07
Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.
Towards Realistic Implementations of a Majorana Surface Code.
Landau, L A; Plugge, S; Sela, E; Altland, A; Albrecht, S M; Egger, R
2016-02-05
Surface codes have emerged as promising candidates for quantum information processing. Building on the previous idea to realize the physical qubits of such systems in terms of Majorana bound states supported by topological semiconductor nanowires, we show that the basic code operations, namely projective stabilizer measurements and qubit manipulations, can be implemented by conventional tunnel conductance probes and charge pumping via single-electron transistors, respectively. The simplicity of the access scheme suggests that a functional code might be in close experimental reach.
Sequential Decoding with Adaptive Reordering of Codeword Trees
1990-03-01
mother, and my brother Alexander. V ACKNOWLEDGEMENTS I would like to thank my two advisors, Professor Erdal Arikan and Pro- fessor Bruce Hajek, for their...invaluable assistance and guidance. In particu- lar, Professor Arikan provided conceptual insight and the original idea behind SDR algorithms, and...the codeword tree to result in the unbounded moments of compu- tation described above. Note that Arikan [1] has obtained an improved bound for the case
Nishio, Kengo; Miyazaki, Takehide
2017-01-01
Polyhedral tilings are often used to represent structures such as atoms in materials, grains in crystals, foams, galaxies in the universe, etc. In the previous paper, we have developed a theory to convert a way of how polyhedra are arranged to form a polyhedral tiling into a codeword (series of numbers) from which the original structure can be recovered. The previous theory is based on the idea of forming a polyhedral tiling by gluing together polyhedra face to face. In this paper, we show that the codeword contains redundant digits not needed for recovering the original structure, and develop a theory to reduce the redundancy. For this purpose, instead of polyhedra, we regard two-dimensional regions shared by faces of adjacent polyhedra as building blocks of a polyhedral tiling. Using the present method, the same information is represented by a shorter codeword whose length is reduced by up to the half of the original one. Shorter codewords are easier to handle for both humans and computers, and thus more useful to describe polyhedral tilings. By generalizing the idea of assembling two-dimensional components to higher dimensional polytopes, we develop a unified theory to represent polyhedral tilings and polytopes of different dimensions in the same light. PMID:28094254
Spectral analysis of variable-length coded digital signals
NASA Astrophysics Data System (ADS)
Cariolaro, G. L.; Pierobon, G. L.; Pupolin, S. G.
1982-05-01
A spectral analysis is conducted for a variable-length word sequence by an encoder driven by a stationary memoryless source. A finite-state sequential machine is considered as a model of the line encoder, and the spectral analysis of the encoded message is performed under the assumption that the sourceword sequence is composed of independent identically distributed words. Closed form expressions for both the continuous and discrete parts of the spectral density are derived in terms of the encoder law and sourceword statistics. The jump part exhibits jumps at multiple integers of per lambda(sub 0)T, where lambda(sub 0) is the greatest common divisor of the possible codeword lengths, and T is the symbol period. The derivation of the continuous part can be conveniently factorized, and the theory is applied to the spectral analysis of BnZS and HDBn codes.
Performance of Low-Density Parity-Check Coded Modulation
NASA Astrophysics Data System (ADS)
Hamkins, J.
2011-02-01
This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt
Construction of optimal resources for concatenated quantum protocols
NASA Astrophysics Data System (ADS)
Pirker, A.; Wallnöfer, J.; Briegel, H. J.; Dür, W.
2017-06-01
We consider the explicit construction of resource states for measurement-based quantum information processing. We concentrate on special-purpose resource states that are capable to perform a certain operation or task, where we consider unitary Clifford circuits as well as non-trace-preserving completely positive maps, more specifically probabilistic operations including Clifford operations and Pauli measurements. We concentrate on 1 →m and m →1 operations, i.e., operations that map one input qubit to m output qubits or vice versa. Examples of such operations include encoding and decoding in quantum error correction, entanglement purification, or entanglement swapping. We provide a general framework to construct optimal resource states for complex tasks that are combinations of these elementary building blocks. All resource states only contain input and output qubits, and are hence of minimal size. We obtain a stabilizer description of the resulting resource states, which we also translate into a circuit pattern to experimentally generate these states. In particular, we derive recurrence relations at the level of stabilizers as key analytical tool to generate explicit (graph) descriptions of families of resource states. This allows us to explicitly construct resource states for encoding, decoding, and syndrome readout for concatenated quantum error correction codes, code switchers, multiple rounds of entanglement purification, quantum repeaters, and combinations thereof (such as resource states for entanglement purification of encoded states).
A Low-Complexity Circuit for On-Sensor Concurrent A/D Conversion and Compression
NASA Technical Reports Server (NTRS)
Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.
2007-01-01
A low-complexity circuit for on-sensor compression is presented. The proposed circuit achieves complexity savings by combining a single-slope analog-to-digital converter with a Golomb-Rice entropy encoder and by implementing a low-complexity adaptation rule. The adaptation rule monitors the output codewords and minimizes their length by incrementing or decrementing the value of the Golomb-Rice coding parameter k. Its hardware implementation is one order of magnitude lower than existing adaptive algorithms. The compression circuit has been fabricated using a 0.35 micrometers CMOS technology and occupies an area of 0.0918 mm2. Test measurements confirm the validity of the design
NASA Technical Reports Server (NTRS)
Divsalar, D.; Pollara, F.
1995-01-01
In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
Codebook-based electrooculography data analysis towards cognitive activity recognition.
Lagodzinski, P; Shirahama, K; Grzegorzek, M
2018-04-01
With the advancement in mobile/wearable technology, people started to use a variety of sensing devices to track their daily activities as well as health and fitness conditions in order to improve the quality of life. This work addresses an idea of eye movement analysis, which due to the strong correlation with cognitive tasks can be successfully utilized in activity recognition. Eye movements are recorded using an electrooculographic (EOG) system built into the frames of glasses, which can be worn more unobtrusively and comfortably than other devices. Since the obtained information is low-level sensor data expressed as a sequence representing values in constant intervals (100 Hz), the cognitive activity recognition problem is formulated as sequence classification. However, it is unclear what kind of features are useful for accurate cognitive activity recognition. Thus, a machine learning algorithm like a codebook approach is applied, which instead of focusing on feature engineering is using a distribution of characteristic subsequences (codewords) to describe sequences of recorded EOG data, where the codewords are obtained by clustering a large number of subsequences. Further, statistical analysis of the codeword distribution results in discovering features which are characteristic to a certain activity class. Experimental results demonstrate good accuracy of the codebook-based cognitive activity recognition reflecting the effective usage of the codewords. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of rare events in quantum error correction
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Vargo, Alexander
2013-12-01
We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Braiding by Majorana tracking and long-range CNOT gates with color codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2017-11-01
Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.
Research on Optimization of Encoding Algorithm of PDF417 Barcodes
NASA Astrophysics Data System (ADS)
Sun, Ming; Fu, Longsheng; Han, Shuqing
The purpose of this research is to develop software to optimize the data compression of a PDF417 barcode using VC++6.0. According to the different compression mode and the particularities of Chinese, the relevant approaches which optimize the encoding algorithm of data compression such as spillage and the Chinese characters encoding are proposed, a simple approach to compute complex polynomial is introduced. After the whole data compression is finished, the number of the codeword is reduced and then the encoding algorithm is optimized. The developed encoding system of PDF 417 barcodes will be applied in the logistics management of fruits, therefore also will promote the fast development of the two-dimensional bar codes.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong
2016-03-01
Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.
Long distance quantum communication with quantum Reed-Solomon codes
NASA Astrophysics Data System (ADS)
Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang; Jianggroup Team
We study the construction of quantum Reed Solomon codes from classical Reed Solomon codes and show that they achieve the capacity of quantum erasure channel for multi-level quantum systems. We extend the application of quantum Reed Solomon codes to long distance quantum communication, investigate the local resource overhead needed for the functioning of one-way quantum repeaters with these codes, and numerically identify the parameter regime where these codes perform better than the known quantum polynomial codes and quantum parity codes . Finally, we discuss the implementation of these codes into time-bin photonic states of qubits and qudits respectively, and optimize the performance for one-way quantum repeaters.
Density-matrix simulation of small surface codes under current and projected experimental noise
NASA Astrophysics Data System (ADS)
O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.
2017-09-01
We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.
Quantum error-correcting code for ternary logic
NASA Astrophysics Data System (ADS)
Majumdar, Ritajit; Basu, Saikat; Ghosh, Shibashis; Sur-Kolay, Susmita
2018-05-01
Ternary quantum systems are being studied because they provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 ×2 ) -dimensional and (3 ×3 ) -dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 ×2 ) -dimensional as well as (3 ×3 ) -dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a special type of error called a quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine-qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization.
One-way quantum repeaters with quantum Reed-Solomon codes
NASA Astrophysics Data System (ADS)
Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang
2018-05-01
We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.
Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb
NASA Astrophysics Data System (ADS)
Brown, Natalie C.; Brown, Kenneth R.
2018-05-01
Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .
Degenerate quantum codes and the quantum Hamming bound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarvepalli, Pradeep; Klappenecker, Andreas
2010-03-15
The parameters of a nondegenerate quantum code must obey the Hamming bound. An important open problem in quantum coding theory is whether the parameters of a degenerate quantum code can violate this bound for nondegenerate quantum codes. In this article we show that Calderbank-Shor-Steane (CSS) codes, over a prime power alphabet q{>=}5, cannot beat the quantum Hamming bound. We prove a quantum version of the Griesmer bound for the CSS codes, which allows us to strengthen the Rains' bound that an [[n,k,d
Structural stability and electronic structure of transition metal compound: HfN
NASA Astrophysics Data System (ADS)
Sarwan, Madhu; Shukoor, V. Abdul; Singh, Sadhna
2018-05-01
The structural stability of transition metal nitride (HfN) has been investigated using density functional theory (DFT) with the help of Quantum-espresso codes. Our calculations confirm that the hafnium nitride (HfN) is stable in zinc-blende (B3) and rock-salt (B1) type structure. We have also reported the structural and electronic properties of HfN compound. These structural properties have been compared with experimental and theoretical data available on this compound.
The solvability of quantum k-pair network in a measurement-based way.
Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian
2017-12-01
Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.
On complexity of trellis structure of linear block codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1990-01-01
The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm.
Dynamic quality of service differentiation using fixed code weight in optical CDMA networks
NASA Astrophysics Data System (ADS)
Kakaee, Majid H.; Essa, Shawnim I.; Abd, Thanaa H.; Seyedzadeh, Saleh
2015-11-01
The emergence of network-driven applications, such as internet, video conferencing, and online gaming, brings in the need for a network the environments with capability of providing diverse Quality of Services (QoS). In this paper, a new code family of novel spreading sequences, called a Multi-Service (MS) code, has been constructed to support multiple services in Optical- Code Division Multiple Access (CDMA) system. The proposed method uses fixed weight for all services, however reducing the interfering codewords for the users requiring higher QoS. The performance of the proposed code is demonstrated using mathematical analysis. It shown that the total number of served users with satisfactory BER of 10-9 using NB=2 is 82, while they are only 36 and 10 when NB=3 and 4 respectively. The developed MS code is compared with variable-weight codes such as Variable Weight-Khazani Syed (VW-KS) and Multi-Weight-Random Diagonal (MW-RD). Different numbers of basic users (NB) are used to support triple-play services (audio, data and video) with different QoS requirements. Furthermore, reference to the BER of 10-12, 10-9, and 10-3 for video, data and audio, respectively, the system can support up to 45 total users. Hence, results show that the technique can clearly provide a relative QoS differentiation with lower value of basic users can support larger number of subscribers as well as better performance in terms of acceptable BER of 10-9 at fixed code weight.
Cryptographic robustness of a quantum cryptography system using phase-time coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-01-15
A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less
Entanglement-assisted quantum convolutional coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, Mark M.; Brun, Todd A.
2010-04-15
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun
2004-05-01
Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decodingmore » in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques.« less
Correcting quantum errors with entanglement.
Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu
2006-10-20
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.
Game-theoretic approach to joint transmitter adaptation and power control in wireless systems.
Popescu, Dimitrie C; Rawat, Danda B; Popescu, Otilia; Saquib, Mohamad
2010-06-01
Game theory has emerged as a new mathematical tool in the analysis and design of wireless communication systems, being particularly useful in studying the interactions among adaptive transmitters that attempt to achieve specific objectives without cooperation. In this paper, we present a game-theoretic approach to the problem of joint transmitter adaptation and power control in wireless systems, where users' transmissions are subject to quality-of-service requirements specified in terms of target signal-to-interference-plus-noise ratios (SINRs) and nonideal vector channels between transmitters and receivers are explicitly considered. Our approach is based on application of separable games, which are a specific class of noncooperative games where the players' cost is a separable function of their strategic choices. We formally state a joint codeword and power adaptation game, which is separable, and we study its properties in terms of its subgames, namely, the codeword adaptation subgame and the power adaptation subgame. We investigate the necessary conditions for an optimal Nash equilibrium and show that this corresponds to an ensemble of user codewords and powers, which maximizes the sum capacity of the corresponding multiaccess vector channel model, and for which the specified target SINRs are achieved with minimum transmitted power.
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
NASA Astrophysics Data System (ADS)
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.
Error suppression for Hamiltonian quantum computing in Markovian environments
NASA Astrophysics Data System (ADS)
Marvian, Milad; Lidar, Daniel A.
2017-03-01
Hamiltonian quantum computing, such as the adiabatic and holonomic models, can be protected against decoherence using an encoding into stabilizer subspace codes for error detection and the addition of energy penalty terms. This method has been widely studied since it was first introduced by Jordan, Farhi, and Shor (JFS) in the context of adiabatic quantum computing. Here, we extend the original result to general Markovian environments, not necessarily in Lindblad form. We show that the main conclusion of the original JFS study holds under these general circumstances: Assuming a physically reasonable bath model, it is possible to suppress the initial decay out of the encoded ground state with an energy penalty strength that grows only logarithmically in the system size, at a fixed temperature.
A scalable, self-analyzing digital locking system for use on quantum optics experiments.
Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T
2011-07-01
Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Brun, Todd A.
2013-09-01
Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.
Encoding the local connectivity patterns of fMRI for cognitive task and state classification.
Onal Ertugrul, Itir; Ozay, Mete; Yarman Vural, Fatos T
2018-06-15
In this work, we propose a novel framework to encode the local connectivity patterns of brain, using Fisher vectors (FV), vector of locally aggregated descriptors (VLAD) and bag-of-words (BoW) methods. We first obtain local descriptors, called mesh arc descriptors (MADs) from fMRI data, by forming local meshes around anatomical regions, and estimating their relationship within a neighborhood. Then, we extract a dictionary of relationships, called brain connectivity dictionary by fitting a generative Gaussian mixture model (GMM) to a set of MADs, and selecting codewords at the mean of each component of the mixture. Codewords represent connectivity patterns among anatomical regions. We also encode MADs by VLAD and BoW methods using k-Means clustering. We classify cognitive tasks using the Human Connectome Project (HCP) task fMRI dataset and cognitive states using the Emotional Memory Retrieval (EMR). We train support vector machines (SVMs) using the encoded MADs. Results demonstrate that, FV encoding of MADs can be successfully employed for classification of cognitive tasks, and outperform VLAD and BoW representations. Moreover, we identify the significant Gaussians in mixture models by computing energy of their corresponding FV parts, and analyze their effect on classification accuracy. Finally, we suggest a new method to visualize the codewords of the learned brain connectivity dictionary.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state
NASA Astrophysics Data System (ADS)
Zhou, Lan; Sheng, Yu-Bo
2017-10-01
Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.
Relating quantum discord with the quantum dense coding capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song
2015-01-15
We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.
Topological entanglement entropy of fracton stabilizer codes
NASA Astrophysics Data System (ADS)
Ma, Han; Schmitz, A. T.; Parameswaran, S. A.; Hermele, Michael; Nandkishore, Rahul M.
2018-03-01
Entanglement entropy provides a powerful characterization of two-dimensional gapped topological phases of quantum matter, intimately tied to their description by topological quantum field theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered states of matter that lack a TQFT description. We show that three-dimensional fracton phases are nevertheless characterized, at least partially, by universal structure in the entanglement entropy of their ground-state wave functions. We explicitly compute the entanglement entropy for two archetypal fracton models, the "X-cube model" and "Haah's code," and demonstrate the existence of a nonlocal contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transformations that this piece of the entanglement entropy of fracton models is robust against arbitrary local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to characterize localization-protected fracton topological order in excited states of disordered fracton models.
New quantum codes derived from a family of antiprimitive BCH codes
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Ruihu; Lü, Liangdong; Guo, Luobin
The Bose-Chaudhuri-Hocquenghem (BCH) codes have been studied for more than 57 years and have found wide application in classical communication system and quantum information theory. In this paper, we study the construction of quantum codes from a family of q2-ary BCH codes with length n=q2m+1 (also called antiprimitive BCH codes in the literature), where q≥4 is a power of 2 and m≥2. By a detailed analysis of some useful properties about q2-ary cyclotomic cosets modulo n, Hermitian dual-containing conditions for a family of non-narrow-sense antiprimitive BCH codes are presented, which are similar to those of q2-ary primitive BCH codes. Consequently, via Hermitian Construction, a family of new quantum codes can be derived from these dual-containing BCH codes. Some of these new antiprimitive quantum BCH codes are comparable with those derived from primitive BCH codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz, Juan Pablo; Roncaglia, Augusto Jose; Theoretical Division, LANL, MSB213, Los Alamos, New Mexico 87545
2005-07-15
We analyze and further develop a method to represent the quantum state of a system of n qubits in a phase-space grid of NxN points (where N=2{sup n}). The method, which was recently proposed by Wootters and co-workers (Gibbons et al., Phys. Rev. A 70, 062101 (2004).), is based on the use of the elements of the finite field GF(2{sup n}) to label the phase-space axes. We present a self-contained overview of the method, we give insights into some of its features, and we apply it to investigate problems which are of interest for quantum-information theory: We analyze the phase-spacemore » representation of stabilizer states and quantum error-correction codes and present a phase-space solution to the so-called mean king problem.« less
Transforming graph states using single-qubit operations.
Dahlberg, Axel; Wehner, Stephanie
2018-07-13
Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Reliable quantum communication over a quantum relay channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Quantum-capacity-approaching codes for the detected-jump channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassl, Markus; Wei Zhaohui; Ji Zhengfeng
2010-12-15
The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less
Adaptive software-defined coded modulation for ultra-high-speed optical transport
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Zhang, Yequn
2013-10-01
In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.
NASA Technical Reports Server (NTRS)
Ni, Jianjun David
2011-01-01
This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.
NP-hardness of decoding quantum error-correction codes
NASA Astrophysics Data System (ADS)
Hsieh, Min-Hsiu; Le Gall, François
2011-05-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
Enhanced fault-tolerant quantum computing in d-level systems.
Campbell, Earl T
2014-12-05
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.
Topological quantum distillation.
Bombin, H; Martin-Delgado, M A
2006-11-03
We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding, and computation with magic states.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence
Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos
2016-01-01
When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10−3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered. PMID:27924865
Opportunistic quantum network coding based on quantum teleportation
NASA Astrophysics Data System (ADS)
Shang, Tao; Du, Gang; Liu, Jian-wei
2016-04-01
It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.
New quantum codes constructed from quaternary BCH codes
NASA Astrophysics Data System (ADS)
Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena
2016-10-01
In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.
Protecting quantum memories using coherent parity check codes
NASA Astrophysics Data System (ADS)
Roffe, Joschka; Headley, David; Chancellor, Nicholas; Horsman, Dominic; Kendon, Viv
2018-07-01
Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the code distance. In this paper, we provide a detailed introduction to CPC codes using conventional quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by designing a [[4, 2, 2
Holonomic surface codes for fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco
2018-02-01
Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.
Universal fault-tolerant quantum computation with only transversal gates and error correction.
Paetznick, Adam; Reichardt, Ben W
2013-08-30
Transversal implementations of encoded unitary gates are highly desirable for fault-tolerant quantum computation. Though transversal gates alone cannot be computationally universal, they can be combined with specially distilled resource states in order to achieve universality. We show that "triorthogonal" stabilizer codes, introduced for state distillation by Bravyi and Haah [Phys. Rev. A 86, 052329 (2012)], admit transversal implementation of the controlled-controlled-Z gate. We then construct a universal set of fault-tolerant gates without state distillation by using only transversal controlled-controlled-Z, transversal Hadamard, and fault-tolerant error correction. We also adapt the distillation procedure of Bravyi and Haah to Toffoli gates, improving on existing Toffoli distillation schemes.
Topics in quantum cryptography, quantum error correction, and channel simulation
NASA Astrophysics Data System (ADS)
Luo, Zhicheng
In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel simulation with quantum side information at the receiver. Our main theorem has two important corollaries: rate-distortion theory with quantum side information and common randomness distillation. Simple proofs of achievability of classical multi-terminal source coding problems can be made via a unified approach using the channel simulation theorem as building blocks. The fully quantum generalization of the problem is also conjectured with outer and inner bounds on the achievable rate pairs.
Adiabatic topological quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
Adiabatic topological quantum computing
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...
2015-07-31
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
New class of photonic quantum error correction codes
NASA Astrophysics Data System (ADS)
Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.
We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.
Application of Quantum Gauss-Jordan Elimination Code to Quantum Secret Sharing Code
NASA Astrophysics Data System (ADS)
Diep, Do Ngoc; Giang, Do Hoang; Phu, Phan Huy
2017-12-01
The QSS codes associated with a MSP code are based on finding an invertible matrix V, solving the system vATMB (s a) = s. We propose a quantum Gauss-Jordan Elimination Procedure to produce such a pivotal matrix V by using the Grover search code. The complexity of solving is of square-root order of the cardinal number of the unauthorized set √ {2^{|B|}}.
Application of Quantum Gauss-Jordan Elimination Code to Quantum Secret Sharing Code
NASA Astrophysics Data System (ADS)
Diep, Do Ngoc; Giang, Do Hoang; Phu, Phan Huy
2018-03-01
The QSS codes associated with a MSP code are based on finding an invertible matrix V, solving the system vATMB (s a)=s. We propose a quantum Gauss-Jordan Elimination Procedure to produce such a pivotal matrix V by using the Grover search code. The complexity of solving is of square-root order of the cardinal number of the unauthorized set √ {2^{|B|}}.
Orthogonal Array Testing for Transmit Precoding based Codebooks in Space Shift Keying Systems
NASA Astrophysics Data System (ADS)
Al-Ansi, Mohammed; Alwee Aljunid, Syed; Sourour, Essam; Mat Safar, Anuar; Rashidi, C. B. M.
2018-03-01
In Space Shift Keying (SSK) systems, transmit precoding based codebook approaches have been proposed to improve the performance in limited feedback channels. The receiver performs an exhaustive search in a predefined Full-Combination (FC) codebook to select the optimal codeword that maximizes the Minimum Euclidean Distance (MED) between the received constellations. This research aims to reduce the codebook size with the purpose of minimizing the selection time and the number of feedback bits. Therefore, we propose to construct the codebooks based on Orthogonal Array Testing (OAT) methods due to their powerful inherent properties. These methods allow to acquire a short codebook where the codewords are sufficient to cover almost all the possible effects included in the FC codebook. Numerical results show the effectiveness of the proposed OAT codebooks in terms of the system performance and complexity.
Finite-block-length analysis in classical and quantum information theory.
Hayashi, Masahito
2017-01-01
Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.
Finite-block-length analysis in classical and quantum information theory
HAYASHI, Masahito
2017-01-01
Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects. PMID:28302962
Moderate Deviation Analysis for Classical Communication over Quantum Channels
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco
2017-11-01
We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.
Continuous-variable quantum network coding for coherent states
NASA Astrophysics Data System (ADS)
Shang, Tao; Li, Ke; Liu, Jian-wei
2017-04-01
As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.
Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.
Yin, Xia; Zhang, Licheng
2016-07-01
Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system.
General phase spaces: from discrete variables to rotor and continuum limits
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Pascazio, Saverio; Devoret, Michel H.
2017-12-01
We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.
Application of JAERI quantum molecular dynamics model for collisions of heavy nuclei
NASA Astrophysics Data System (ADS)
Ogawa, Tatsuhiko; Hashimoto, Shintaro; Sato, Tatsuhiko; Niita, Koji
2016-06-01
The quantum molecular dynamics (QMD) model incorporated into the general-purpose radiation transport code PHITS was revised for accurate prediction of fragment yields in peripheral collisions. For more accurate simulation of peripheral collisions, stability of the nuclei at their ground state was improved and the algorithm to reject invalid events was modified. In-medium correction on nucleon-nucleon cross sections was also considered. To clarify the effect of this improvement on fragmentation of heavy nuclei, the new QMD model coupled with a statistical decay model was used to calculate fragment production cross sections of Ag and Au targets and compared with the data of earlier measurement. It is shown that the revised version can predict cross section more accurately.
Entanglement-assisted quantum quasicyclic low-density parity-check codes
NASA Astrophysics Data System (ADS)
Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor
2009-03-01
We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.
Towards Holography via Quantum Source-Channel Codes.
Pastawski, Fernando; Eisert, Jens; Wilming, Henrik
2017-07-14
While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.
Towards Holography via Quantum Source-Channel Codes
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Eisert, Jens; Wilming, Henrik
2017-07-01
While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.
Experimental realization of the analogy of quantum dense coding in classical optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhenwei; Sun, Yifan; Li, Pengyun
2016-06-15
We report on the experimental realization of the analogy of quantum dense coding in classical optical communication using classical optical correlations. Compared to quantum dense coding that uses pairs of photons entangled in polarization, we find that the proposed design exhibits many advantages. Considering that it is convenient to realize in optical communication, the attainable channel capacity in the experiment for dense coding can reach 2 bits, which is higher than that of the usual quantum coding capacity (1.585 bits). This increased channel capacity has been proven experimentally by transmitting ASCII characters in 12 quaternary digitals instead of the usualmore » 24 bits.« less
Using concatenated quantum codes for universal fault-tolerant quantum gates.
Jochym-O'Connor, Tomas; Laflamme, Raymond
2014-01-10
We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.
Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il
2014-08-15
Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.
Spatial versus sequential correlations for random access coding
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed
2016-03-01
Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.
Correlated Errors in the Surface Code
NASA Astrophysics Data System (ADS)
Lopez, Daniel; Mucciolo, E. R.; Novais, E.
2012-02-01
A milestone step into the development of quantum information technology would be the ability to design and operate a reliable quantum memory. The greatest obstacle to create such a device has been decoherence due to the unavoidable interaction between the quantum system and its environment. Quantum Error Correction is therefore an essential ingredient to any quantum computing information device. A great deal of attention has been given to surface codes, since it has very good scaling properties. In this seminar, we discuss the time evolution of a qubit encoded in the logical basis of a surface code. The system is interacting with a bosonic environment at zero temperature. Our results show how much spatial and time correlations can be detrimental to the efficiency of the code.
Hyperbolic and semi-hyperbolic surface codes for quantum storage
NASA Astrophysics Data System (ADS)
Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.
2017-09-01
We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.
Experimental implementation of the Bacon-Shor code with 10 entangled photons
NASA Astrophysics Data System (ADS)
Gimeno-Segovia, Mercedes; Sanders, Barry C.
The number of qubits that can be effectively controlled in quantum experiments is growing, reaching a regime where small quantum error-correcting codes can be tested. The Bacon-Shor code is a simple quantum code that protects against the effect of an arbitrary single-qubit error. In this work, we propose an experimental implementation of said code in a post-selected linear optical setup, similar to the recently reported 10-photon GHZ generation experiment. In the procedure we propose, an arbitrary state is encoded into the protected Shor code subspace, and after undergoing a controlled single-qubit error, is successfully decoded. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center(NSF Grant PHY-1125565) with support of the Moore Foundation(GBMF-2644).
Quantum error-correcting codes from algebraic geometry codes of Castle type
NASA Astrophysics Data System (ADS)
Munuera, Carlos; Tenório, Wanderson; Torres, Fernando
2016-10-01
We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.
Automated error correction in IBM quantum computer and explicit generalization
NASA Astrophysics Data System (ADS)
Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.
2018-06-01
Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.
NASA Astrophysics Data System (ADS)
Yang, YuGuang; Zhang, YuChen; Xu, Gang; Chen, XiuBo; Zhou, Yi-Hua; Shi, WeiMin
2018-03-01
Li et al. first proposed a quantum hash function (QHF) in a quantum-walk architecture. In their scheme, two two-particle interactions, i.e., I interaction and π-phase interaction are introduced and the choice of I or π-phase interactions at each iteration depends on a message bit. In this paper, we propose an efficient QHF by dense coding of coin operators in discrete-time quantum walk. Compared with existing QHFs, our protocol has the following advantages: the efficiency of the QHF can be doubled and even more; only one particle is enough and two-particle interactions are unnecessary so that quantum resources are saved. It is a clue to apply the dense coding technique to quantum cryptographic protocols, especially to the applications with restricted quantum resources.
Towers of generalized divisible quantum codes
NASA Astrophysics Data System (ADS)
Haah, Jeongwan
2018-04-01
A divisible binary classical code is one in which every code word has weight divisible by a fixed integer. If the divisor is 2ν for a positive integer ν , then one can construct a Calderbank-Shor-Steane (CSS) code, where X -stabilizer space is the divisible classical code, that admits a transversal gate in the ν th level of Clifford hierarchy. We consider a generalization of the divisibility by allowing a coefficient vector of odd integers with which every code word has zero dot product modulo the divisor. In this generalized sense, we construct a CSS code with divisor 2ν +1 and code distance d from any CSS code of code distance d and divisor 2ν where the transversal X is a nontrivial logical operator. The encoding rate of the new code is approximately d times smaller than that of the old code. In particular, for large d and ν ≥2 , our construction yields a CSS code of parameters [[O (dν -1) ,Ω (d ) ,d ] ] admitting a transversal gate at the ν th level of Clifford hierarchy. For our construction we introduce a conversion from magic state distillation protocols based on Clifford measurements to those based on codes with transversal T gates. Our tower contains, as a subclass, generalized triply even CSS codes that have appeared in so-called gauge fixing or code switching methods.
New optimal asymmetric quantum codes constructed from constacyclic codes
NASA Astrophysics Data System (ADS)
Xu, Gen; Li, Ruihu; Guo, Luobin; Lü, Liangdong
2017-02-01
In this paper, we propose the construction of asymmetric quantum codes from two families of constacyclic codes over finite field 𝔽q2 of code length n, where for the first family, q is an odd prime power with the form 4t + 1 (t ≥ 1 is integer) or 4t - 1 (t ≥ 2 is integer) and n1 = q2+1 2; for the second family, q is an odd prime power with the form 10t + 3 or 10t + 7 (t ≥ 0 is integer) and n2 = q2+1 5. As a result, families of new asymmetric quantum codes [[n,k,dz/dx
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houshmand, Monireh; Hosseini-Khayat, Saied
2011-02-15
Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation andmore » practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.« less
MAI-free performance of PMU-OFDM transceiver in time-variant environment
NASA Astrophysics Data System (ADS)
Tadjpour, Layla; Tsai, Shang-Ho; Kuo, C.-C. J.
2005-06-01
An approximately multi-user OFDM transceiver was introduced to reduce the multi-access interference (MAI ) due to the carrier frequency offset (CFO) to a negligible amount via precoding by Tsai, Lin and Kuo. In this work, we investigate the performance of this precoded multi-user (PMU) OFDM system in a time-variant channel environment. We analyze and compare the MAI effect caused by time-variant channels in the PMU-OFDM and the OFDMA systems. Generally speaking, the MAI effect consists of two parts. The first part is due to the loss of orthogonality among subchannels for all users while the second part is due to the CFO effect caused by the Doppler shift. Simulation results show that, although OFDMA outperforms the PMU-OFDM transceiver in a fast time-variant environment without CFO, PMU-OFDM outperforms OFDMA in a slow time-variant channel via the use of M/2 symmetric or anti-symmetric codewords of M Hadamard-Walsh codes.
Spacetime Replication of Quantum Information Using (2 , 3) Quantum Secret Sharing and Teleportation
NASA Astrophysics Data System (ADS)
Wu, Yadong; Khalid, Abdullah; Davijani, Masoud; Sanders, Barry
The aim of this work is to construct a protocol to replicate quantum information in any valid configuration of causal diamonds and assess resources required to physically realize spacetime replication. We present a set of codes to replicate quantum information along with a scheme to realize these codes using continuous-variable quantum optics. We use our proposed experimental realizations to determine upper bounds on the quantum and classical resources required to simulate spacetime replication. For four causal diamonds, our implementation scheme is more efficient than the one proposed previously. Our codes are designed using a decomposition algorithm for complete directed graphs, (2 , 3) quantum secret sharing, quantum teleportation and entanglement swapping. These results show the simulation of spacetime replication of quantum information is feasible with existing experimental methods. Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-2644).
Single-shot secure quantum network coding on butterfly network with free public communication
NASA Astrophysics Data System (ADS)
Owari, Masaki; Kato, Go; Hayashi, Masahito
2018-01-01
Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.
Polar codes for achieving the classical capacity of a quantum channel
NASA Astrophysics Data System (ADS)
Guha, Saikat; Wilde, Mark
2012-02-01
We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.
Superconducting quantum circuits at the surface code threshold for fault tolerance.
Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M
2014-04-24
A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.
Ultrahigh Error Threshold for Surface Codes with Biased Noise
NASA Astrophysics Data System (ADS)
Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.
2018-02-01
We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.
Error threshold for color codes and random three-body Ising models.
Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A
2009-08-28
We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.
Error suppression via complementary gauge choices in Reed-Muller codes
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Jochym-O'Connor, Tomas
2017-09-01
Concatenation of two quantum error-correcting codes with complementary sets of transversal gates can provide a means toward universal fault-tolerant quantum computation. We first show that it is generally preferable to choose the inner code with the higher pseudo-threshold to achieve lower logical failure rates. We then explore the threshold properties of a wide range of concatenation schemes. Notably, we demonstrate that the concatenation of complementary sets of Reed-Muller codes can increase the code capacity threshold under depolarizing noise when compared to extensions of previously proposed concatenation models. We also analyze the properties of logical errors under circuit-level noise, showing that smaller codes perform better for all sampled physical error rates. Our work provides new insights into the performance of universal concatenated quantum codes for both code capacity and circuit-level noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Amini, Hadis, E-mail: nhamini@stanford.edu
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, whichmore » extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.« less
NASA Astrophysics Data System (ADS)
Gao, Jian; Wang, Yongkang
2018-01-01
Structural properties of u-constacyclic codes over the ring F_p+u{F}_p are given, where p is an odd prime and u^2=1. Under a special Gray map from F_p+u{F}_p to F_p^2, some new non-binary quantum codes are obtained by this class of constacyclic codes.
The small stellated dodecahedron code and friends.
Conrad, J; Chamberland, C; Breuckmann, N P; Terhal, B M
2018-07-13
We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges respectively vertices of a small stellated dodecahedron, making this code suitable for three-dimensional connectivity. This code encodes eight logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) in contrast with one logical qubit into nine physical qubits (plus eight ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Ma, Fanghui; Gao, Jian; Fu, Fang-Wei
2018-06-01
Let R={F}_q+v{F}_q+v2{F}_q be a finite non-chain ring, where q is an odd prime power and v^3=v. In this paper, we propose two methods of constructing quantum codes from (α +β v+γ v2)-constacyclic codes over R. The first one is obtained via the Gray map and the Calderbank-Shor-Steane construction from Euclidean dual-containing (α +β v+γ v2)-constacyclic codes over R. The second one is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing (α +β v+γ v2)-constacyclic codes over R. As an application, some new non-binary quantum codes are obtained.
Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-07-15
In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less
Belief propagation decoding of quantum channels by passing quantum messages
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2017-07-01
The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.
Local unitary representation of braids and N-qubit entanglements
NASA Astrophysics Data System (ADS)
Yu, Li-Wei
2018-03-01
In this paper, by utilizing the idea of stabilizer codes, we give some relationships between one local unitary representation of braid group in N-qubit tensor space and the corresponding entanglement properties of the N-qubit pure state |Ψ >, where the N-qubit state |Ψ > is obtained by applying the braiding operation on the natural basis. Specifically, we show that the separability of |Ψ > =B|0> ^{⊗ N} is closely related to the diagrammatic version of the braid operator B. This may provide us more insights about the topological entanglement and quantum entanglement.
NASA Astrophysics Data System (ADS)
Moussa, Jonathan; Ryan-Anderson, Ciaran
The canonical modern plan for universal quantum computation is a Clifford+T gate set implemented in a topological error-correcting code. This plan has the basic disparity that logical Clifford gates are natural for codes in two spatial dimensions while logical T gates are natural in three. Recent progress has reduced this disparity by proposing logical T gates in two dimensions with doubled, stacked, or gauge color codes, but these proposals lack an error threshold. An alternative universal gate set is Clifford+F, where a fusion (F) gate converts two logical qubits into a logical qudit. We show that logical F gates can be constructed by identifying compatible pairs of qubit and qudit codes that stabilize the same logical subspace, much like the original Bravyi-Kitaev construction of magic state distillation. The simplest example of high-distance compatible codes results in a proposal that is very similar to the stacked color code with the key improvement of retaining an error threshold. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Decoy state method for quantum cryptography based on phase coding into faint laser pulses
NASA Astrophysics Data System (ADS)
Kulik, S. P.; Molotkov, S. N.
2017-12-01
We discuss the photon number splitting attack (PNS) in systems of quantum cryptography with phase coding. It is shown that this attack, as well as the structural equations for the PNS attack for phase encoding, differs physically from the analogous attack applied to the polarization coding. As far as we know, in practice, in all works to date processing of experimental data has been done for phase coding, but using formulas for polarization coding. This can lead to inadequate results for the length of the secret key. These calculations are important for the correct interpretation of the results, especially if it concerns the criterion of secrecy in quantum cryptography.
Discrimination of correlated and entangling quantum channels with selective process tomography
Dumitrescu, Eugene; Humble, Travis S.
2016-10-10
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less
Nonuniform code concatenation for universal fault-tolerant quantum computing
NASA Astrophysics Data System (ADS)
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M
2009-09-30
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Scalable randomized benchmarking of non-Clifford gates
NASA Astrophysics Data System (ADS)
Cross, Andrew; Magesan, Easwar; Bishop, Lev; Smolin, John; Gambetta, Jay
Randomized benchmarking is a widely used experimental technique to characterize the average error of quantum operations. Benchmarking procedures that scale to enable characterization of n-qubit circuits rely on efficient procedures for manipulating those circuits and, as such, have been limited to subgroups of the Clifford group. However, universal quantum computers require additional, non-Clifford gates to approximate arbitrary unitary transformations. We define a scalable randomized benchmarking procedure over n-qubit unitary matrices that correspond to protected non-Clifford gates for a class of stabilizer codes. We present efficient methods for representing and composing group elements, sampling them uniformly, and synthesizing corresponding poly (n) -sized circuits. The procedure provides experimental access to two independent parameters that together characterize the average gate fidelity of a group element. We acknowledge support from ARO under Contract W911NF-14-1-0124.
Quantum corrected Schwarzschild thin-shell wormhole
NASA Astrophysics Data System (ADS)
Jusufi, Kimet
2016-11-01
Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole.
New q-ary quantum MDS codes with distances bigger than q/2
NASA Astrophysics Data System (ADS)
He, Xianmang; Xu, Liqing; Chen, Hao
2016-07-01
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474-1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS [[n,n-2d+2,d
Quantum internet using code division multiple access
Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco
2013-01-01
A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488
Quantum resource theory of non-stabilizer states in the one-shot regime
NASA Astrophysics Data System (ADS)
Ahmadi, Mehdi; Dang, Hoan; Gour, Gilad; Sanders, Barry
Universal quantum computing is known to be impossible using only stabilizer states and stabilizer operations. However, addition of non-stabilizer states (also known as magic states) to quantum circuits enables us to achieve universality. The resource theory of non-stablizer states aims at quantifying the usefulness of non-stabilizer states. Here, we focus on a fundamental question in this resource theory in the so called single-shot regime: Given two resource states, is there a free quantum channel that will (approximately or exactly) convert one to the other?. To provide an answer, we phrase the question as a semidefinite program with constraints on the Choi matrix of the corresponding channel. Then, we use the semidefinite version of the Farkas lemma to derive the necessary and sufficient conditions for the conversion between two arbitrary resource states via a free quantum channel. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter.
2013-02-28
the size of the entangled states. Publications for 2011-12: S . T. Flammia , A. W. Harrow and J. Shi. “Local Embeddings of Quantum Codes” in...Publications (published) during reporting period: S . T. Flammia , A. W. Harrow and J. Shi. "Local Embeddings of Quantum Codes," in preparation, 2013. A. W...Publications: S . T. Flammia , A. W. Harrow and J. Shi. "Local Embeddings of Quantum Codes," in preparation, 2013. A. W. Harrow. "Testing Entanglement
NASA Astrophysics Data System (ADS)
Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.
Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.
Measurement-free implementations of small-scale surface codes for quantum-dot qubits
NASA Astrophysics Data System (ADS)
Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.
2018-01-01
The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.
Nexus: A modular workflow management system for quantum simulation codes
NASA Astrophysics Data System (ADS)
Krogel, Jaron T.
2016-01-01
The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene; Humble, Travis S.
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less
High-efficiency reconciliation for continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, Zengliang; Yang, Shenshen; Li, Yongmin
2017-04-01
Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, A.; Hashimoto, T.; Horibe, M.
The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.
Topological order and memory time in marginally-self-correcting quantum memory
NASA Astrophysics Data System (ADS)
Siva, Karthik; Yoshida, Beni
2017-03-01
We examine two proposals for marginally-self-correcting quantum memory: the cubic code by Haah and the welded code by Michnicki. In particular, we prove explicitly that they are absent of topological order above zero temperature, as their Gibbs ensembles can be prepared via a short-depth quantum circuit from classical ensembles. Our proof technique naturally gives rise to the notion of free energy associated with excitations. Further, we develop a framework for an ergodic decomposition of Davies generators in CSS codes which enables formal reduction to simpler classical memory problems. We then show that memory time in the welded code is doubly exponential in inverse temperature via the Peierls argument. These results introduce further connections between thermal topological order and self-correction from the viewpoint of free energy and quantum circuit depth.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-07-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
NASA Astrophysics Data System (ADS)
Wootton, James R.; Loss, Daniel
2018-05-01
The repetition code is an important primitive for the techniques of quantum error correction. Here we implement repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance, as is expected and required for the development of fault-tolerant quantum computers. The results also give insight into the nature of noise in the device.
Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.
Djordjevic, Ivan B
2010-05-01
I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.
A Code Division Design Strategy for Multiplexing Fiber Bragg Grating Sensing Networks
Varón, Margarita
2017-01-01
In this paper, an encoding strategy is used to design specialized fiber Bragg grating (FBG) sensors. The encoding of each sensor requires two binary codewords to define the amplitude and phase patterns of each sensor. The combined pattern (amplitude and phase) makes each sensor unique and therefore two or more sensors can be identified under spectral overlapping. In this way, we add another dimension to the multiplexing of FBG sensors, obtaining an increase factor ‘n’ to enhance the number of sensors that the system can handle. A proof-of-concept scenario with three sensors was performed, including the manufacturing of the encoded sensors. Furthermore, an interrogation setup to detect the sensors central wavelength was proposed and its working principle was theoretically developed. Results show that total identification of the central wavelength is performed under spectral overlapping between the manufactured sensors, achieving a three-time improvement of the system capacity. Finally, the error due to overlapping between the sensors was assessed obtaining approximately 3 pm, which makes the approach suitable for use in real measurement systems. PMID:29104231
Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming
2017-07-24
In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Implementing controlled-unitary operations over the butterfly network
NASA Astrophysics Data System (ADS)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio
2014-12-01
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
Implementing controlled-unitary operations over the butterfly network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.
2014-12-04
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
Li, Ying
2016-09-16
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang
2018-01-08
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
Stability of continuous-time quantum filters with measurement imperfections
NASA Astrophysics Data System (ADS)
Amini, H.; Pellegrini, C.; Rouchon, P.
2014-07-01
The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.
Fast decoder for local quantum codes using Groebner basis
NASA Astrophysics Data System (ADS)
Haah, Jeongwan
2013-03-01
Based on arXiv:1204.1063. A local translation-invariant quantum code has a description in terms of Laurent polynomials. As an application of this observation, we present a fast decoding algorithm for translation-invariant local quantum codes in any spatial dimensions using the straightforward division algorithm for multivariate polynomials. The running time is O (n log n) on average, or O (n2 log n) on worst cases, where n is the number of physical qubits. The algorithm improves a subroutine of the renormalization-group decoder by Bravyi and Haah (arXiv:1112.3252) in the translation-invariant case. This work is supported in part by the Insitute for Quantum Information and Matter, an NSF Physics Frontier Center, and the Korea Foundation for Advanced Studies.
Quantum error correction in crossbar architectures
NASA Astrophysics Data System (ADS)
Helsen, Jonas; Steudtner, Mark; Veldhorst, Menno; Wehner, Stephanie
2018-07-01
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
Relativistic quantum cryptography
NASA Astrophysics Data System (ADS)
Molotkov, S. N.; Nazin, S. S.
2003-07-01
The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).
Continuous generation and stabilization of Schrödinger cat states in a quantum circuit
NASA Astrophysics Data System (ADS)
Roy, A.; Leghtas, Z.; Stone, A. D.; Devoret, M. H.; Mirrahimi, M.
2015-03-01
While dissipation is widely considered as being harmful for quantum coherence, it can, when properly engineered, lead to the stabilization of non-trivial pure quantum states. Deterministic generation of non-classical states like Schrödinger cat states is one of the key ingredients in performing universal quantum computation. We theoretically propose a scheme, adapted to superconducting quantum circuits, for continuous generation and stabilization of these states in a cavity using dissipation engineering. We first generate these states inside a high-Q cavity by engineering its dissipation with a bath that only exchanges photons in pairs. We then stabilize these transient states against single-photon decay using a second engineered bath. The single-photon stabilization is autonomous, and exploits the photon-number-dependent frequency-splitting due to Kerr interactions in the strongly dispersive regime of circuit QED. We present analytical and numerical results demonstrating the robustness of the scheme and its amenability to immediate experimental implementation. Work supported by ARO.
Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.
Han, M; Gao, X; Su, J Z; Nie, S
2001-07-01
Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.
Code Properties from Holographic Geometries
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Preskill, John
2017-04-01
Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.
Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms
NASA Astrophysics Data System (ADS)
Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.
2018-04-01
Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.
Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin
2011-01-01
Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633
Quantum subsystems: Exploring the complementarity of quantum privacy and error correction
NASA Astrophysics Data System (ADS)
Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Plosker, Sarah
2014-09-01
This paper addresses and expands on the contents of the recent Letter [Phys. Rev. Lett. 111, 030502 (2013), 10.1103/PhysRevLett.111.030502] discussing private quantum subsystems. Here we prove several previously presented results, including a condition for a given random unitary channel to not have a private subspace (although this does not mean that private communication cannot occur, as was previously demonstrated via private subsystems) and algebraic conditions that characterize when a general quantum subsystem or subspace code is private for a quantum channel. These conditions can be regarded as the private analog of the Knill-Laflamme conditions for quantum error correction, and we explore how the conditions simplify in some special cases. The bridge between quantum cryptography and quantum error correction provided by complementary quantum channels motivates the study of a new, more general definition of quantum error-correcting code, and we initiate this study here. We also consider the concept of complementarity for the general notion of a private quantum subsystem.
Synthesis of Arbitrary Quantum Circuits to Topological Assembly: Systematic, Online and Compact.
Paler, Alexandru; Fowler, Austin G; Wille, Robert
2017-09-05
It is challenging to transform an arbitrary quantum circuit into a form protected by surface code quantum error correcting codes (a variant of topological quantum error correction), especially if the goal is to minimise overhead. One of the issues is the efficient placement of magic state distillation sub circuits, so-called distillation boxes, in the space-time volume that abstracts the computation's required resources. This work presents a general, systematic, online method for the synthesis of such circuits. Distillation box placement is controlled by so-called schedulers. The work introduces a greedy scheduler generating compact box placements. The implemented software, whose source code is available at www.github.com/alexandrupaler/tqec, is used to illustrate and discuss synthesis examples. Synthesis and optimisation improvements are proposed.
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
A novel quantum LSB-based steganography method using the Gray code for colored quantum images
NASA Astrophysics Data System (ADS)
Heidari, Shahrokh; Farzadnia, Ehsan
2017-10-01
As one of the prevalent data-hiding techniques, steganography is defined as the act of concealing secret information in a cover multimedia encompassing text, image, video and audio, imperceptibly, in order to perform interaction between the sender and the receiver in which nobody except the receiver can figure out the secret data. In this approach a quantum LSB-based steganography method utilizing the Gray code for quantum RGB images is investigated. This method uses the Gray code to accommodate two secret qubits in 3 LSBs of each pixel simultaneously according to reference tables. Experimental consequences which are analyzed in MATLAB environment, exhibit that the present schema shows good performance and also it is more secure and applicable than the previous one currently found in the literature.
Code-division multiple-access multiuser demodulator by using quantum fluctuations.
Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato
2014-07-01
We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.
Code-division multiple-access multiuser demodulator by using quantum fluctuations
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Inoue, Jun-ichi; Nagata, Kenji; Okada, Masato
2014-07-01
We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.
NASA Astrophysics Data System (ADS)
Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.
2018-05-01
One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.
Efficient Polar Coding of Quantum Information
NASA Astrophysics Data System (ADS)
Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato
2012-08-01
Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.
NASA Astrophysics Data System (ADS)
Roy, Ananda; Leghtas, Zaki; Stone, A. Douglas; Devoret, Michel; Mirrahimi, Mazyar
2015-01-01
While dissipation is widely considered to be harmful for quantum coherence, it can, when properly engineered, lead to the stabilization of nontrivial pure quantum states. We propose a scheme for continuous generation and stabilization of Schrödinger cat states in a cavity using dissipation engineering. We first generate nonclassical photon states with definite parity by means of a two-photon drive and dissipation, and then stabilize these transient states against single-photon decay. The single-photon stabilization is autonomous, and is implemented through a second engineered bath, which exploits the photon-number-dependent frequency splitting due to Kerr interactions in the strongly dispersive regime of circuit QED. Starting with the Hamiltonian of the baths plus cavity, we derive an effective model of only the cavity photon states along with analytic expressions for relevant physical quantities, such as the stabilization rate. The deterministic generation of such cat states is one of the key ingredients in performing universal quantum computation.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding.
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A
2016-08-12
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications. PMID:27515908
Connection between the two branches of the quantum two-stream instability across the k space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Haas, F.
2010-05-15
The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.
NASA Technical Reports Server (NTRS)
Xiong, Fugin
2003-01-01
One half of Professor Xiong's effort will investigate robust timing synchronization schemes for dynamically varying characteristics of aviation communication channels. The other half of his time will focus on efficient modulation and coding study for the emerging quantum communications.
Any Ontological Model of the Single Qubit Stabilizer Formalism must be Contextual
NASA Astrophysics Data System (ADS)
Lillystone, Piers; Wallman, Joel J.
Quantum computers allow us to easily solve some problems classical computers find hard. Non-classical improvements in computational power should be due to some non-classical property of quantum theory. Contextuality, a more general notion of non-locality, is a necessary, but not sufficient, resource for quantum speed-up. Proofs of contextuality can be constructed for the classically simulable stabilizer formalism. Previous proofs of stabilizer contextuality are known for 2 or more qubits, for example the Mermin-Peres magic square. In the work presented we extend these results and prove that any ontological model of the single qubit stabilizer theory must be contextual, as defined by R. Spekkens, and give a relation between our result and the Mermin-Peres square. By demonstrating that contextuality is present in the qubit stabilizer formalism we provide further insight into the contextuality present in quantum theory. Understanding the contextuality of classical sub-theories will allow us to better identify the physical properties of quantum theory required for computational speed up. This research was supported by CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.
NASA Astrophysics Data System (ADS)
Srivastava, Anurag; SanthiBhushan, Boddepalli
2018-03-01
Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.
Quantum image pseudocolor coding based on the density-stratified method
NASA Astrophysics Data System (ADS)
Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na
2015-05-01
Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.
Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.
2012-01-01
The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.
NASA Astrophysics Data System (ADS)
Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix
2017-07-01
We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.
Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket
NASA Astrophysics Data System (ADS)
Béjanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Earnest, C. T.; McRae, C. R. H.; Shiri, D.; Bateman, J. D.; Rohanizadegan, Y.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.; Mariantoni, M.
2016-10-01
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires—the three-dimensional wires—that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Ω , an impedance mismatch of approximately 10 Ω , and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a quantum processor with a (10 ×10 )-qubit lattice, which would allow for the realization of a simple quantum memory.
Nexus: a modular workflow management system for quantum simulation codes
Krogel, Jaron T.
2015-08-24
The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less
An Introduction to Quantum Theory
NASA Astrophysics Data System (ADS)
Greensite, Jeff
2017-02-01
Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information
Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits.
Takita, Maika; Cross, Andrew W; Córcoles, A D; Chow, Jerry M; Gambetta, Jay M
2017-11-03
Robust quantum computation requires encoding delicate quantum information into degrees of freedom that are hard for the environment to change. Quantum encodings have been demonstrated in many physical systems by observing and correcting storage errors, but applications require not just storing information; we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation. We characterize the resulting code words through quantum process tomography and study the free evolution of the logical observables. Our results are consistent with fault-tolerant state preparation in a protected qubit subspace.
Transversal Clifford gates on folded surface codes
Moussa, Jonathan E.
2016-10-12
Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
Compact and highly stable quantum dots through optimized aqueous phase transfer
NASA Astrophysics Data System (ADS)
Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter
2011-03-01
A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.
Accurate quantum Z rotations with less magic
NASA Astrophysics Data System (ADS)
Landahl, Andrew; Cesare, Chris
2013-03-01
We present quantum protocols for executing arbitrarily accurate π /2k rotations of a qubit about its Z axis. Unlike reduced instruction set computing (RISC) protocols which use a two-step process of synthesizing high-fidelity ``magic'' states from which T = Z (π / 4) gates can be teleported and then compiling a sequence of adaptive stabilizer operations and T gates to approximate Z (π /2k) , our complex instruction set computing (CISC) protocol distills magic states for the Z (π /2k) gates directly. Replacing this two-step process with a single step results in substantial reductions in the number of gates needed. The key to our construction is a family of shortened quantum Reed-Muller codes of length 2 k + 2 - 1 , whose distillation threshold shrinks with k but is greater than 0.85% for k <= 6 . AJL and CC were supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
Programmable multi-node quantum network design and simulation
NASA Astrophysics Data System (ADS)
Dasari, Venkat R.; Sadlier, Ronald J.; Prout, Ryan; Williams, Brian P.; Humble, Travis S.
2016-05-01
Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements
NASA Astrophysics Data System (ADS)
Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.
2017-02-01
Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.
NASA Astrophysics Data System (ADS)
Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua
2017-02-01
Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.
Unconditional security of a three state quantum key distribution protocol.
Boileau, J-C; Tamaki, K; Batuwantudawe, J; Laflamme, R; Renes, J M
2005-02-04
Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the Bennett-Brassard 1984 and Bennett 1992 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three-state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has been shown only for the trivial intercept-resend eavesdropping strategy. In this Letter, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.
Complementarity between entanglement-assisted and quantum distributed random access code
NASA Astrophysics Data System (ADS)
Hameedi, Alley; Saha, Debashis; Mironowicz, Piotr; Pawłowski, Marcin; Bourennane, Mohamed
2017-05-01
Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific cases where one outperforms the other. In this article, we study a family of 3 →1 distributed RACs [J. Bowles, N. Brunner, and M. Pawłowski, Phys. Rev. A 92, 022351 (2015), 10.1103/PhysRevA.92.022351] and present its general construction of both the QRAC and the EARAC. We demonstrate that, depending on the function of inputs that is sought, if QRAC achieves the maximal success probability then EARAC fails to do so and vice versa. Moreover, a tripartite Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited by our protocol. We conclude with an experimental realization of the 3 →1 distributed QRAC that achieves higher success probabilities than the maximum possible with EARACs for a number of tasks.
An extensible circuit QED architecture for quantum computation
NASA Astrophysics Data System (ADS)
Dicarlo, Leo
Realizing a logical qubit robust to single errors in its constituent physical elements is an immediate challenge for quantum information processing platforms. A longer-term challenge will be achieving quantum fault tolerance, i.e., improving logical qubit resilience by increasing redundancy in the underlying quantum error correction code (QEC). In QuTech, we target these challenges in collaboration with industrial and academic partners. I will present the circuit QED quantum hardware, room-temperature control electronics, and software components of the complete architecture. I will show the extensibility of each component to the Surface-17 and -49 circuits needed to reach the objectives with surface-code QEC, and provide an overview of latest developments. Research funded by IARPA and Intel Corporation.
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
EDITORIAL: Focus on Quantum Information and Many-Body Theory
NASA Astrophysics Data System (ADS)
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovič Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using the ferromagnetic spin-J XXZ chain with kink boundary conditions Tom Michoel, Jaideep Mulherkar and Bruno Nachtergaele Long-distance entanglement in many-body atomic and optical systems Salvatore M Giampaolo and Fabrizio Illuminati QUANTUM MEMORIES AND TOPOLOGICAL ORDER Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes Stefano Chesi, Daniel Loss, Sergey Bravyi and Barbara M Terhal Topological color codes and two-body quantum lattice Hamiltonians M Kargarian, H Bombin and M A Martin-Delgado RENORMALIZATION Local renormalization method for random systems O Gittsovich, R Hübener, E Rico and H J Briegel
Quantum Steganography and Quantum Error-Correction
ERIC Educational Resources Information Center
Shaw, Bilal A.
2010-01-01
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
NASA Astrophysics Data System (ADS)
Bermudez, A.; Xu, X.; Nigmatullin, R.; O'Gorman, J.; Negnevitsky, V.; Schindler, P.; Monz, T.; Poschinger, U. G.; Hempel, C.; Home, J.; Schmidt-Kaler, F.; Biercuk, M.; Blatt, R.; Benjamin, S.; Müller, M.
2017-10-01
A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that will be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements described here, this platform is a very promising candidate for fault-tolerant quantum computation.
Error rates and resource overheads of encoded three-qubit gates
NASA Astrophysics Data System (ADS)
Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.
2017-10-01
A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.
NASA Astrophysics Data System (ADS)
Leibfried, D.; Wineland, D. J.
2018-03-01
Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.
New nonbinary quantum codes with larger distance constructed from BCH codes over 𝔽q2
NASA Astrophysics Data System (ADS)
Xu, Gen; Li, Ruihu; Fu, Qiang; Ma, Yuena; Guo, Luobin
2017-03-01
This paper concentrates on construction of new nonbinary quantum error-correcting codes (QECCs) from three classes of narrow-sense imprimitive BCH codes over finite field 𝔽q2 (q ≥ 3 is an odd prime power). By a careful analysis on properties of cyclotomic cosets in defining set T of these BCH codes, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing BCH codes is determined to be much larger than the result given according to Aly et al. [S. A. Aly, A. Klappenecker and P. K. Sarvepalli, IEEE Trans. Inf. Theory 53, 1183 (2007)] for each different code length. Thus families of new nonbinary QECCs are constructed, and the newly obtained QECCs have larger distance than those in previous literature.
Roads towards fault-tolerant universal quantum computation
NASA Astrophysics Data System (ADS)
Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe
2017-09-01
A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.
Roads towards fault-tolerant universal quantum computation.
Campbell, Earl T; Terhal, Barbara M; Vuillot, Christophe
2017-09-13
A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing that the scheme is robust to qubit loss on-chip, a significant benefit when considering an implemented system.
Coherent-state constellations and polar codes for thermal Gaussian channels
NASA Astrophysics Data System (ADS)
Lacerda, Felipe; Renes, Joseph M.; Scholz, Volkher B.
2017-06-01
Optical communication channels are ultimately quantum mechanical in nature, and we must therefore look beyond classical information theory to determine their communication capacity as well as to find efficient encoding and decoding schemes of the highest rates. Thermal channels, which arise from linear coupling of the field to a thermal environment, are of particular practical relevance; their classical capacity has been recently established, but their quantum capacity remains unknown. While the capacity sets the ultimate limit on reliable communication rates, it does not promise that such rates are achievable by practical means. Here we construct efficiently encodable codes for thermal channels which achieve the classical capacity and the so-called Gaussian coherent information for transmission of classical and quantum information, respectively. Our codes are based on combining polar codes with a discretization of the channel input into a finite "constellation" of coherent states. Encoding of classical information can be done using linear optics.
Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
New Algorithms and Lower Bounds for Sequential-Access Data Compression
NASA Astrophysics Data System (ADS)
Gagie, Travis
2009-02-01
This thesis concerns sequential-access data compression, i.e., by algorithms that read the input one or more times from beginning to end. In one chapter we consider adaptive prefix coding, for which we must read the input character by character, outputting each character's self-delimiting codeword before reading the next one. We show how to encode and decode each character in constant worst-case time while producing an encoding whose length is worst-case optimal. In another chapter we consider one-pass compression with memory bounded in terms of the alphabet size and context length, and prove a nearly tight tradeoff between the amount of memory we can use and the quality of the compression we can achieve. In a third chapter we consider compression in the read/write streams model, which allows us passes and memory both polylogarithmic in the size of the input. We first show how to achieve universal compression using only one pass over one stream. We then show that one stream is not sufficient for achieving good grammar-based compression. Finally, we show that two streams are necessary and sufficient for achieving entropy-only bounds.
Analysis of quantum error correction with symmetric hypergraph states
NASA Astrophysics Data System (ADS)
Wagner, T.; Kampermann, H.; Bruß, D.
2018-03-01
Graph states have been used to construct quantum error correction codes for independent errors. Hypergraph states generalize graph states, and symmetric hypergraph states have been shown to allow for the correction of correlated errors. In this paper, it is shown that symmetric hypergraph states are not useful for the correction of independent errors, at least for up to 30 qubits. Furthermore, error correction for error models with protected qubits is explored. A class of known graph codes for this scenario is generalized to hypergraph codes.
Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.
2007-01-01
We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472
First principles study of edge carboxylated graphene quantum dots
NASA Astrophysics Data System (ADS)
Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.
2018-05-01
The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.
High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction
NASA Astrophysics Data System (ADS)
Fukui, Kosuke; Tomita, Akihisa; Okamoto, Atsushi; Fujii, Keisuke
2018-04-01
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.
Quantum error correction assisted by two-way noisy communication
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.
2014-01-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum error correction assisted by two-way noisy communication.
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H
2014-11-26
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
Quantum coding with finite resources.
Tomamichel, Marco; Berta, Mario; Renes, Joseph M
2016-05-09
The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances.
Quantum coding with finite resources
Tomamichel, Marco; Berta, Mario; Renes, Joseph M.
2016-01-01
The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995
Topological quantum error correction in the Kitaev honeycomb model
NASA Astrophysics Data System (ADS)
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Zhang, Yingjie; Aziz, Hany
2017-01-11
We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.
Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements
Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.
2017-02-01
Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.
Entanglement renormalization, quantum error correction, and bulk causality
NASA Astrophysics Data System (ADS)
Kim, Isaac H.; Kastoryano, Michael J.
2017-04-01
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progres-sively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
Simple proof of security of the BB84 quantum key distribution protocol
Shor; Preskill
2000-07-10
We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.
Non-commuting two-local Hamiltonians for quantum error suppression
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Rieffel, Eleanor G.
2017-04-01
Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon-Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.
Emergent "Quantum" Theory in Complex Adaptive Systems.
Minic, Djordje; Pajevic, Sinisa
2016-04-30
Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.
On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, K. S.; Radchenko, I. V.; Korol'kov, A. V.
2013-05-15
The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.
NASA Technical Reports Server (NTRS)
Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward
2007-01-01
A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.
Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation
NASA Astrophysics Data System (ADS)
Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
2018-04-01
Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.
Discrete interference modeling via boolean algebra.
Beckhoff, Gerhard
2011-01-01
Two types of boolean functions are considered, the locus function of n variables, and the interval function of ν = n - 1 variables. A 1-1 mapping is given that takes elements (cells) of the interval function to antidual pairs of elements in the locus function, and vice versa. A set of ν binary codewords representing the intervals are defined and used to generate the codewords of all genomic regions. Next a diallelic three-point system is reviewed in the light of boolean functions, which leads to redefining complete interference by a logic function. Together with the upper bound of noninterference already defined by a boolean function, it confines the region of interference. Extensions of these two functions to any finite number of ν are straightforward, but have been also made in terms of variables taken from the inclusion-exclusion principle (expressing "at least" and "exactly equal to" a decimal integer). Two coefficients of coincidence for systems with more than three loci are defined and discussed, one using the average of several individual coefficients and the other taking as coefficient a real number between zero and one. Finally, by way of a malfunction of the mod-2 addition, it is shown that a four-point system may produce two different functions, one of which exhibiting loss of a class of odd recombinants.
Weakly supervised visual dictionary learning by harnessing image attributes.
Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang
2014-12-01
Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.
Step-by-step magic state encoding for efficient fault-tolerant quantum computation
Goto, Hayato
2014-01-01
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387
Step-by-step magic state encoding for efficient fault-tolerant quantum computation.
Goto, Hayato
2014-12-16
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy
Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
Implementing a strand of a scalable fault-tolerant quantum computing fabric.
Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M
2014-06-24
With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alexander J.
There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.
Error-correcting pairs for a public-key cryptosystem
NASA Astrophysics Data System (ADS)
Pellikaan, Ruud; Márquez-Corbella, Irene
2017-06-01
Code-based Cryptography (CBC) is a powerful and promising alternative for quantum resistant cryptography. Indeed, together with lattice-based cryptography, multivariate cryptography and hash-based cryptography are the principal available techniques for post-quantum cryptography. CBC was first introduced by McEliece where he designed one of the most efficient Public-Key encryption schemes with exceptionally strong security guarantees and other desirable properties that still resist to attacks based on Quantum Fourier Transform and Amplitude Amplification. The original proposal, which remains unbroken, was based on binary Goppa codes. Later, several families of codes have been proposed in order to reduce the key size. Some of these alternatives have already been broken. One of the main requirements of a code-based cryptosystem is having high performance t-bounded decoding algorithms which is achieved in the case the code has a t-error-correcting pair (ECP). Indeed, those McEliece schemes that use GRS codes, BCH, Goppa and algebraic geometry codes are in fact using an error-correcting pair as a secret key. That is, the security of these Public-Key Cryptosystems is not only based on the inherent intractability of bounded distance decoding but also on the assumption that it is difficult to retrieve efficiently an error-correcting pair. In this paper, the class of codes with a t-ECP is proposed for the McEliece cryptosystem. Moreover, we study the hardness of distinguishing arbitrary codes from those having a t-error correcting pair.
Trevors, J T; Masson, L
2011-01-01
During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life.
LSB-based Steganography Using Reflected Gray Code for Color Quantum Images
NASA Astrophysics Data System (ADS)
Li, Panchi; Lu, Aiping
2018-02-01
At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.
Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.
Menicucci, Nicolas C
2014-03-28
A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.
2018-02-01
The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.
NASA Astrophysics Data System (ADS)
Berube-Lauziere, Yves
The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.
Scalable digital hardware for a trapped ion quantum computer
NASA Astrophysics Data System (ADS)
Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang
2016-12-01
Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.
Fluorescent porous silicon biological probes with high quantum efficiency and stability.
Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y
2014-12-01
We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.
Quantum Spin Stabilized Magnetic Levitation
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
Quantum Spin Stabilized Magnetic Levitation.
Rusconi, C C; Pöchhacker, V; Kustura, K; Cirac, J I; Romero-Isart, O
2017-10-20
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
NASA Astrophysics Data System (ADS)
J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi
2017-10-01
Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.
Bilayer Protograph Codes for Half-Duplex Relay Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria
2013-01-01
Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.
NASA Astrophysics Data System (ADS)
Chen, Hao; Kong, Chao; Hai, Wenhua
2018-06-01
We investigate quantum dynamics of a two-level ion trapped in the Lamb-Dicke regime of a δ -kicked optical lattice, based on the exact generalized coherent states rotated by a π / 2 pulse of Ramsey type experiment. The spatiotemporal evolutions of the spin-motion entangled states in different parameter regions are illustrated, and the parameter regions of different degrees of quantum stability described by the quantum fidelity are found. Time evolutions of the probability for the ion being in different pseudospin states reveal that the ultrafast entanglement generation and population transfers of the system can be analytically controlled by managing the laser pulses. The probability in an initially disentangled state shows periodic collapses (entanglement) and revivals (de-entanglement). Reduction of the stability degree results in enlarging the period of de-entanglement, while the instability and potential chaos will cause the sustained entanglement. The results could be justified experimentally in the existing setups and may be useful in engineering quantum dynamics for quantum information processing.
Tekdaş, Duygu Aydın; Durmuş, Mahmut; Yanık, Hülya; Ahsen, Vefa
2012-07-01
Thiol stabilized CdTe quantum dot (QD) nanoparticles were synthesized in aqueous phase and were used as energy donors to tetra-triethyleneoxythia substituted aluminum, gallium and indium phthalocyanines through fluorescence resonance energy transfer (FRET). Energy transfer occurred from the QDs to phthalocyanines upon photoexcitation of the QDs. An enhancement in efficiency of energy transfer with the nature of the carboxylic thiol stabilizer on the QDs was observed. As a result of the nanoparticle and the phthalocyanine mixing, the photoluminescence efficiency of the phthalocyanine moieties in the mixtures does not strictly follow the quantum yields of the bare phthalocyanines. The photochemistry study of phthalocyanines in the presence of the QDs revealed high singlet oxygen quantum yield, hence the possibility of using QDs in combination with phthalocyanines as photosensitizers in photodynamic therapy of cancer. The fluorescence of the CdTe quantum dots-phthalocyanine conjugates (QDs-Pc) were effectively quenched by addition of 1,4-benzoquinone. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradler, Kamil; Hayden, Patrick; Touchette, Dave
Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable formore » the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.« less
Quantum error-correction failure distributions: Comparison of coherent and stochastic error models
NASA Astrophysics Data System (ADS)
Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.
2017-06-01
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
NASA Astrophysics Data System (ADS)
Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.
2017-05-01
Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
Spectral stability of unitary network models
NASA Astrophysics Data System (ADS)
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Topological entanglement entropy with a twist.
Brown, Benjamin J; Bartlett, Stephen D; Doherty, Andrew C; Barrett, Sean D
2013-11-27
Defects in topologically ordered models have interesting properties that are reminiscent of the anyonic excitations of the models themselves. For example, dislocations in the toric code model are known as twists and possess properties that are analogous to Ising anyons. We strengthen this analogy by using the topological entanglement entropy as a diagnostic tool to identify properties of both defects and excitations in the toric code. Specifically, we show, through explicit calculation, that the toric code model including twists and dyon excitations has the same quantum dimensions, the same total quantum dimension, and the same fusion rules as an Ising anyon model.
Quantum dense key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.
2004-03-01
This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Quantum Turbulence ---Another da Vinci Code---
NASA Astrophysics Data System (ADS)
Tsubota, M.
Quantum turbulence comprises a tangle of quantized vorticeswhich are stable topological defects created by Bose-Einstein condensation, being realized in superfluid helium and atomic Bose-Einstein condensates. In recent years there has been a growing interest in quantum turbulence. One of the important motivations is to understand the relation between quantum and classical turbulence. Quantum turbulence is expected to be much simpler than usual classical turbulence and give a prototype of turbulence. This article reviews shortly the recent research developments on quantum turbulence.
Stability of the mode-locking regime in tapered quantum-dot lasers
NASA Astrophysics Data System (ADS)
Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.
2018-02-01
We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.
Controlling qubit drift by recycling error correction syndromes
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin
2015-03-01
Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE
Advanced capabilities for materials modelling with Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.
2017-11-01
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S
2017-10-24
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano
2017-09-27
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Sadlier, Ronald J
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less
Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S
2017-08-22
Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.
Tunability and Stability of Lead Sulfide Quantum Dots in Ferritin
NASA Astrophysics Data System (ADS)
Peterson, J. Ryan; Hansen, Kameron
Quantum dot solar cells have become one of the fastest growing solar cell technologies to date, and lead sulfide has proven to be an efficient absorber. However, one of the primary concerns in dye-sensitized quantum dot solar cell development is core degradation. We have synthesized lead sulfide quantum dots inside of the spherical protein ferritin in order to protect them from photocorrosion. We have studied the band gaps of these quantum dots and found them to be widely tunable inside ferritin just as they are outside the protein shell. In addition, we have examined their stability by measuring changes in photoluminescence as they are exposed to light over minutes and hours and found that the ferritin-enclosed PbS quantum dots have significantly better resistance to photocorrosion. Brigham Young University, National Science Foundation.
McDaniel, Hunter
2017-10-17
Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.
Dynamical generation of noiseless quantum subsystems
Viola; Knill; Lloyd
2000-10-16
We combine dynamical decoupling and universal control methods for open quantum systems with coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of quantum states result in obtaining universal control over dynamically generated noise-protected subsystems with limited control resources. In particular, we provide a constructive scheme based on two-body Hamiltonians for performing universal quantum computation over large noiseless spaces which can be engineered in the presence of arbitrary linear quantum noise.
Secure Communication via Key Generation with Quantum Measurement Advantage in the Telecom Band
2013-10-30
II: Summary of Project In this basic research program we proposed to investigate the use of keyed communication in quantum noise as a key generation...implement quantum limited detection in our running-code OCDMA experiment to demonstrate (a) quantum measurement advantage creation between two users, (b...neither is adequate against known-plaintext attacks. This is a serious security problem facing the whole field of quantum cryptography in regard to both
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai -Zhuang
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
Stabilizing effect of driving and dissipation on quantum metastable states
NASA Astrophysics Data System (ADS)
Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo
2018-04-01
We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment, the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon is observed in the investigated system.
Liu, Xiaojie; Wang, Cai -Zhuang
2017-04-03
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
Direct characterization of quantum dynamics with noisy ancilla
Dumitrescu, Eugene F.; Humble, Travis S.
2015-11-23
We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Furthermore our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimentalmore » capabilities.« less
QMMMW: A wrapper for QM/MM simulations with QUANTUM ESPRESSO and LAMMPS
NASA Astrophysics Data System (ADS)
Ma, Changru; Martin-Samos, Layla; Fabris, Stefano; Laio, Alessandro; Piccinin, Simone
2015-10-01
We present QMMMW, a new program aimed at performing Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics. The package operates as a wrapper that patches PWscf code included in the QUANTUM ESPRESSO distribution and LAMMPS Molecular Dynamics Simulator. It is designed with a paradigm based on three guidelines: (i) minimal amount of modifications on the parent codes, (ii) flexibility and computational efficiency of the communication layer and (iii) accuracy of the Hamiltonian describing the interaction between the QM and MM subsystems. These three features are seldom present simultaneously in other implementations of QMMM. The QMMMW project is hosted by qe-forge at
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit
2018-04-01
Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.
Communication, Correlation and Complementarity
NASA Astrophysics Data System (ADS)
Schumacher, Benjamin Wade
1990-01-01
In quantum communication, a sender prepares a quantum system in a state corresponding to his message and conveys it to a receiver, who performs a measurement on it. The receiver acquires information about the message based on the outcome of his measurement. Since the state of a single quantum system is not always completely determinable from measurement, quantum mechanics limits the information capacity of such channels. According to a theorem of Kholevo, the amount of information conveyed by the channel can be no greater than the entropy of the ensemble of possible physical signals. The connection between information and entropy allows general theorems to be proved regarding the energy requirements of communication. For example, it can be shown that one particular quantum coding scheme, called thermal coding, uses energy with maximum efficiency. A close analogy between communication and quantum correlation can be made using Everett's notion of relative states. Kholevo's theorem can be used to prove that the mutual information of a pair of observables on different systems is bounded by the entropy of the state of each system. This confirms and extends an old conjecture of Everett. The complementarity of quantum observables can be described by information-theoretic uncertainty relations, several of which have been previously derived. These relations imply limits on the degree to which different messages can be coded in complementary observables of a single channel. Complementarity also restricts the amount of information that can be recovered from a given channel using a given decoding observable. Information inequalities can be derived which are analogous to the well-known Bell inequalities for correlated quantum systems. These inequalities are satisfied for local hidden variable theories but are violated by quantum systems, even where the correlation is weak. These information inequalities are metric inequalities for an "information distance", and their structure can be made exactly analogous to that of the familiar covariance Bell inequalities by introducing a "covariance distance". Similar inequalities derived for successive measurements on a single system are also violated in quantum mechanics.
Deterministic quantum dense coding networks
NASA Astrophysics Data System (ADS)
Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal
2018-07-01
We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.
Tartarus: A relativistic Green's function quantum average atom code
Gill, Nathanael Matthew; Starrett, Charles Edward
2017-06-28
A relativistic Green’s Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green’s Function average atom model described by Starrett [1]. The Green’s Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparisonmore » to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. Finally, we also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.« less
Tartarus: A relativistic Green's function quantum average atom code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Nathanael Matthew; Starrett, Charles Edward
A relativistic Green’s Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green’s Function average atom model described by Starrett [1]. The Green’s Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparisonmore » to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. Finally, we also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.« less
Fault-tolerance thresholds for the surface code with fabrication errors
NASA Astrophysics Data System (ADS)
Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.
2017-10-01
The construction of topological error correction codes requires the ability to fabricate a lattice of physical qubits embedded on a manifold with a nontrivial topology such that the quantum information is encoded in the global degrees of freedom (i.e., the topology) of the manifold. However, the manufacturing of large-scale topological devices will undoubtedly suffer from fabrication errors—permanent faulty components such as missing physical qubits or failed entangling gates—introducing permanent defects into the topology of the lattice and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this work we investigate how fabrication errors affect the performance of topological codes, using the surface code as the test bed. A known approach to mitigate defective lattices involves the use of primitive swap gates in a long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge stabilizer generators without any additional computational overhead or use of swap gates. We report numerical fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based noise model and the minimum-weight perfect-matching decoder. Our numerical analysis is most applicable to two-dimensional chip-based technologies, but the techniques presented here can be readily extended to other topological architectures. We find that in the presence of 8 % qubit fabrication errors, the surface code can still tolerate a computational error rate of up to 0.1 % .
Quantum computation with realistic magic-state factories
NASA Astrophysics Data System (ADS)
O'Gorman, Joe; Campbell, Earl T.
2017-03-01
Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.
Lu, Bangrong; He, Qinghua; He, Yonghong; Chen, Xuejing; Feng, Guangxia; Liu, Siyu; Ji, Yanhong
2018-09-18
To achieve the dual-channel (analog and digital) encoding, microbeads assembled with quantum dots (QDs) and element coding nanoparticles (ECNPs) have been prepared. Dual-spectra, including fluorescence generated from quantum dots (QDs) and laser induced breakdown spectrum obtained from the plasma of ECNPs, including AgO, MgO and ZnO nanoparticles, has been adopted to provide more encoding amounts and more accurate dual recognition for encoded microbeads in multiplexed utilization. The experimental results demonstrate that the single microbead can be decoded in two optical channels. Multiplexed analysis and contrast adsorption experiment of anti-IgG verified the availability and specificity of dual-channel-coded microbeads in bioanalysis. In gradient detection of anti-IgG, we obtained the linear concentration response to target biomolecules from 3.125 × 10 -10 M to 1 × 10 -8 M, and the limit of detection was calculated to be 2.91 × 10 -11 M. Copyright © 2018 Elsevier B.V. All rights reserved.
1992-10-01
Su22ort Technologv SN Conge ~t ------------------ ------------------------------ 1. Compliance with TRADOC policy 1.1 Job aid that lays out SOP. 1.2 Tutorial...Inverse area . .Mark area after matched I-Custom cursor w rong respons,,e ¶Try again (Change Response TUpe jane) Erase feedback: SOK" Edit dlsplag OK...MANAGER for GROUP rou Choose an option: U - USER NAMES *2* A - ACTIVITIES *2* F - FILE MANAGEMENr C - CODEWORD E - ERROP REPORT *PRESENT* S - SPECIAL
Arabic word recognizer for mobile applications
NASA Astrophysics Data System (ADS)
Khanna, Nitin; Abdollahian, Golnaz; Brame, Ben; Boutin, Mireille; Delp, Edward J.
2011-03-01
When traveling in a region where the local language is not written using a "Roman alphabet," translating written text (e.g., documents, road signs, or placards) is a particularly difficult problem since the text cannot be easily entered into a translation device or searched using a dictionary. To address this problem, we are developing the "Rosetta Phone," a handheld device (e.g., PDA or mobile telephone) capable of acquiring an image of the text, locating the region (word) of interest within the image, and producing both an audio and a visual English interpretation of the text. This paper presents a system targeted for interpreting words written in Arabic script. The goal of this work is to develop an autonomous, segmentation-free Arabic phrase recognizer, with computational complexity low enough to deploy on a mobile device. A prototype of the proposed system has been deployed on an iPhone with a suitable user interface. The system was tested on a number of noisy images, in addition to the images acquired from the iPhone's camera. It identifies Arabic words or phrases by extracting appropriate features and assigning "codewords" to each word or phrase. On a dictionary of 5,000 words, the system uniquely mapped (word-image to codeword) 99.9% of the words. The system has a 82% recognition accuracy on images of words captured using the iPhone's built-in camera.
A Note on a Sampling Theorem for Functions over GF(q)n Domain
NASA Astrophysics Data System (ADS)
Ukita, Yoshifumi; Saito, Tomohiko; Matsushima, Toshiyasu; Hirasawa, Shigeichi
In digital signal processing, the sampling theorem states that any real valued function ƒ can be reconstructed from a sequence of values of ƒ that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of ƒ. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of ƒ can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(q)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q)n, the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.
Effect of rotation on Jeans instability of magnetized radiative quantum plasma
NASA Astrophysics Data System (ADS)
Joshi, H.; Pensia, R. K.
2017-03-01
The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.
Theory-based model for the pedestal, edge stability and ELMs in tokamaks
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.
2006-04-01
An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.
Entanglement negativity and sudden death in the toric code at finite temperature
NASA Astrophysics Data System (ADS)
Hart, O.; Castelnovo, C.
2018-04-01
We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.
Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza
2015-11-01
In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
Towards an emergent model of solitonic particles from non-trivial vacuum structure
NASA Astrophysics Data System (ADS)
Gillard, Adam B.; Gresnigt, Niels G.
2017-12-01
We motivate and introduce what we refer to as the principles of Lie-stability and Hopf-stability and see what the physical theories must look like. Lie-stability is needed on the classical side and Hopf-stability is needed on the quantum side. We implement these two principles together with Lie-deformations consistent with basic constraints on the classical kinematical variables to arrive at the form of a theory that identifies standard model fermions with quantum solitonic trefoil knotted flux tubes which emerge from a flux tube vacuum network. Moreover, twisted unknot fluxtubes form natural dark matter candidates
QuantumOptics.jl: A Julia framework for simulating open quantum systems
NASA Astrophysics Data System (ADS)
Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut
2018-06-01
We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.
NASA Astrophysics Data System (ADS)
Yan, Xing-Yu; Gong, Li-Hua; Chen, Hua-Ying; Zhou, Nan-Run
2018-05-01
A theoretical quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states is devised. In this scheme, EPR pairs and tripartite GHZ states are exploited to set up random hybrid quantum channel. Only one photon in each entangled state is necessary to run forth and back in the channel. The security of the quantum key distribution scheme is guaranteed by more than one round of eavesdropping check procedures. It is of high capacity since one particle could carry more than two bits of information via quantum dense coding.
Coherent communication with continuous quantum variables
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-01
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Anonymous broadcasting of classical information with a continuous-variable topological quantum code
NASA Astrophysics Data System (ADS)
Menicucci, Nicolas C.; Baragiola, Ben Q.; Demarie, Tommaso F.; Brennen, Gavin K.
2018-03-01
Broadcasting information anonymously becomes more difficult as surveillance technology improves, but remarkably, quantum protocols exist that enable provably traceless broadcasting. The difficulty is making scalable entangled resource states that are robust to errors. We propose an anonymous broadcasting protocol that uses a continuous-variable surface-code state that can be produced using current technology. High squeezing enables large transmission bandwidth and strong anonymity, and the topological nature of the state enables local error mitigation.
Computer Code for Nanostructure Simulation
NASA Technical Reports Server (NTRS)
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Ultralow Noise Monolithic Quantum Dot Photonic Oscillators
2013-10-28
HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance
Error suppression and correction for quantum annealing
NASA Astrophysics Data System (ADS)
Lidar, Daniel
While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.
Remote state preparation through hyperentangled atomic states
NASA Astrophysics Data System (ADS)
Nawaz, Mehwish; ul-Islam, Rameez-; Ikram, Manzoor
2018-04-01
Hyperentangled states have enhanced channel capacity in quantum processing and have yielded` evident increased communication speed in quantum informatics as a consequence of excessively high information content coded over each quantum entity. In the present article, we intend to demonstrate this fact by utilizing atomic states simultaneously entangled both in internal as well as external degrees of freedom, i.e. the de Broglie motion for remote state preparation (RSP). The results clearly demonstrate that we can efficiently communicate two bit information while manipulating only a single quantum subsystem. The states are prepared and manipulated using atomic Bragg diffraction as well as Ramsey interferometry, both of which are now considered as standard, state of the art tools based on cavity quantum electrodynamics. Since atomic Bragg diffraction is a large interaction time regime and produces spatially well separated, decoherence resistant outputs, the schematics presented here for the RSP offer important perspectives on efficient detection as well as unambiguous information coding and readout. The article summarizes the experimental feasibility of the proposal, culminating with a brief discussion.
Quantum nonlinear optics without photons
NASA Astrophysics Data System (ADS)
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.
Threshold quantum cryptography
NASA Astrophysics Data System (ADS)
Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki
2005-01-01
We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.
NASA Astrophysics Data System (ADS)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Position-based coding and convex splitting for private communication over quantum channels
NASA Astrophysics Data System (ADS)
Wilde, Mark M.
2017-10-01
The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ɛ -one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ɛ \\in (0,1). The present paper provides a lower bound on the ɛ -one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the "alternate" smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.
Simulating the performance of a distance-3 surface code in a linear ion trap
NASA Astrophysics Data System (ADS)
Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.
2018-04-01
We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.
On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels
2014-03-01
ASM fields; (bottom) the relationship between the indexes of the received samples r(n), the signal samples s(n), the preamble samples p (n) and the short...frequency offset estimators for SOQPSK-TG equipped with the iNET preamble and operating in ISI channels. Four of the five estimators exam - ined here are...sync marker ( ASM ), and data bits (an LDPC codeword). The availability of a preamble introduces the possibility of data-aided synchro- nization in
A software simulation study of a (255,223) Reed-Solomon encoder-decoder
NASA Technical Reports Server (NTRS)
Pollara, F.
1985-01-01
A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT. Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
Fast Model Generalized Pseudopotential Theory Interatomic Potential Routine
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-03-18
MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.
Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications
NASA Astrophysics Data System (ADS)
Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang
2013-02-01
Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model
NASA Astrophysics Data System (ADS)
Xu, Hui-Yun; Yang, Guo-Hui
2017-09-01
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.
Hansen, Michael G; Ernsting, Ingo; Vasilyev, Sergey V; Grisard, Arnaud; Lallier, Eric; Gérard, Bruno; Schiller, Stephan
2013-11-04
We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.2 µm by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 µm fiber laser. Both the 1.2 µm and the 1.5 µm waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.
Quantum anomalous Hall Majorana platform
NASA Astrophysics Data System (ADS)
Zeng, Yongxin; Lei, Chao; Chaudhary, Gaurav; MacDonald, Allan H.
2018-02-01
We show that quasi-one-dimensional quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall state, MTI/superconductor quantum wires have especially broad stability regions for both topological and nontopological states, facilitating creation and manipulation of Majorana particles on the MTI surface.
Open quantum systems and error correction
NASA Astrophysics Data System (ADS)
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.
A noise immunity controlled quantum teleportation protocol
NASA Astrophysics Data System (ADS)
Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi
2016-11-01
With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.
Perfect quantum multiple-unicast network coding protocol
NASA Astrophysics Data System (ADS)
Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan
2018-01-01
In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
Zeng, Minxiang; Shah, Smit A; Huang, Dali; Parviz, Dorsa; Yu, Yi-Hsien; Wang, Xuezhen; Green, Micah J; Cheng, Zhengdong
2017-09-13
We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work.
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control
Chemical application of diffusion quantum Monte Carlo
NASA Technical Reports Server (NTRS)
Reynolds, P. J.; Lester, W. A., Jr.
1984-01-01
The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.
Active stabilization of ion trap radiofrequency potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.
2016-05-15
We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.
Feedback stabilization of quantum cascade laser beams for stand-off applications
NASA Astrophysics Data System (ADS)
Müller, Reik; Kendziora, Christopher A.; Furstenberg, Robert
2017-05-01
Techniques which apply tunable quantum cascade lasers (QCLs) for target illumination suffer from fluctuations of the laser beam direction. This manuscript describes a method to stabilize the beam direction by using an active feedback loop. This approach corrects and stabilizes the laser pointing direction using the signal from a 4-element photo sensor as input to control an active 2 dimensional Galvo mirror system. Results are presented for measurements using known perturbations as well as actual mode hops intrinsic to external cavity QCL during wavelength tuning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Xiaotong; Van den Nest, Maarten; Buerschaper, Oliver
We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group 〈αI, X, S〉, where α = e{sup iπ/4} and S = diag(1, i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians, etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examplesmore » of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.« less
High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits
NASA Astrophysics Data System (ADS)
Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan
2016-11-01
Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.
NASA Astrophysics Data System (ADS)
Devetak, Igor; Harrow, Aram W.; Winter, Andreas
2004-12-01
We introduce three new quantum protocols involving noisy quantum channels and entangled states, and relate them operationally and conceptually with four well-known old protocols. Two of the new protocols (the mother and father) can generate the other five “child” protocols by direct application of teleportation and superdense coding, and can be derived in turn by making the old protocols “coherent.” This gives very simple proofs for two famous old protocols (the hashing inequality and quantum channel capacity) and provides the basis for optimal trade-off curves in several quantum information processing tasks.
Classifying the Quantum Phases of Matter
2015-01-01
Kim related entanglement entropy to topological storage of quantum information [8]. Michalakis et al. showed that a particle-like excitation spectrum...Perturbative analysis of topological entanglement entropy from conditional independence, Phys. Rev. B 86, 254116 (2012), arXiv:1210.2360. [3] I. Kim...symmetries or long-range entanglement ), (2) elucidating the properties of three-dimensional quantum codes (in particular those which admit no string-like
Braid group representation on quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com; Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao
2014-10-17
Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV-vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg(2+) on the basis of the interactions between Hg(2+) and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg(2+) in a linear range of 1.0×10(-7) mol L(-1)×10(-3) mol L(-1), with a detection limit of 2.4×10(-8) mol L(-1) at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Fault-tolerant, high-level quantum circuits: form, compilation and description
NASA Astrophysics Data System (ADS)
Paler, Alexandru; Polian, Ilia; Nemoto, Kae; Devitt, Simon J.
2017-06-01
Fault-tolerant quantum error correction is a necessity for any quantum architecture destined to tackle interesting, large-scale problems. Its theoretical formalism has been well founded for nearly two decades. However, we still do not have an appropriate compiler to produce a fault-tolerant, error-corrected description from a higher-level quantum circuit for state-of the-art hardware models. There are many technical hurdles, including dynamic circuit constructions that occur when constructing fault-tolerant circuits with commonly used error correcting codes. We introduce a package that converts high-level quantum circuits consisting of commonly used gates into a form employing all decompositions and ancillary protocols needed for fault-tolerant error correction. We call this form the (I)initialisation, (C)NOT, (M)measurement form (ICM) and consists of an initialisation layer of qubits into one of four distinct states, a massive, deterministic array of CNOT operations and a series of time-ordered X- or Z-basis measurements. The form allows a more flexible approach towards circuit optimisation. At the same time, the package outputs a standard circuit or a canonical geometric description which is a necessity for operating current state-of-the-art hardware architectures using topological quantum codes.
Fermion-to-qubit mappings with varying resource requirements for quantum simulation
NASA Astrophysics Data System (ADS)
Steudtner, Mark; Wehner, Stephanie
2018-06-01
The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site.
Wang, Lu; Fried, Stephen D; Boxer, Steven G; Markland, Thomas E
2014-12-30
Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site
Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.
2014-01-01
Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367
NASA Astrophysics Data System (ADS)
Bagrov, Andrey A.; Principi, Alessandro; Katsnelson, Mikhail I.
2017-03-01
We address the question of the stability of the fractional quantum Hall effect in the presence of pseudomagnetic disorder generated by mechanical deformations of a graphene sheet. Neglecting the potential disorder and taking into account only strain-induced random pseudomagnetic fields, it is possible to write down a Laughlin-like trial ground-state wave function explicitly. Exploiting the Laughlin plasma analogy, we demonstrate that in the case of fluctuating pseudomagnetic fluxes of a relatively small amplitude, the fractional quantum Hall effect is always stable upon the deformations. By contrast, in the case of bubble-induced pseudomagnetic fields in graphene on a substrate (a small number of large fluxes) the disorder can be strong enough to cause a glass transition in the corresponding classical Coulomb plasma, resulting in the destruction of the fractional quantum Hall regime and in a quantum phase transition to a nonergodic state of the lowest Landau level.
Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations
NASA Astrophysics Data System (ADS)
Schulte, J.
1993-03-01
The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-01-01
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080
Bagarello, F; Haven, E; Khrennikov, A
2017-11-13
We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
A model of adaptive decision-making from representation of information environment by quantum fields
NASA Astrophysics Data System (ADS)
Bagarello, F.; Haven, E.; Khrennikov, A.
2017-10-01
We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-07-28
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.
A Nanowire-Based Plasmonic Quantum Dot Laser.
Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko
2016-04-13
Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.
Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.
Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W
2015-01-01
Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.
Adams, Bernhard W.; Kim, Kwang -Je
2016-08-09
Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.
NASA Astrophysics Data System (ADS)
Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub
2018-05-01
We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.
A Novel Quantum Blind Signature Scheme with Four-Particle Cluster States
NASA Astrophysics Data System (ADS)
Fan, Ling
2016-03-01
In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by measuring four-particle cluster states and coding. By using the special relationship of four-particle cluster states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.
Djordjevic, Ivan B
2010-04-12
The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.
Performance analysis of quantum access network using code division multiple access model
NASA Astrophysics Data System (ADS)
Hu, Linxi; Yang, Can; He, Guangqiang
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61475099 and 61102053), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201405), the Open Fund of IPOC (BUPT) (Grant No. IPOC2015B004), and the Program of State Key Laboratory of Information Security (Grant No. 2016-MS-05).
Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Liu, Zhao; Bhatt, R. N.
2015-09-01
Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.
Bakalova, Rumiana; Zhelev, Zhivko; Kokuryo, Daisuke; Spasov, Lubomir; Aoki, Ichio; Saga, Tsuneo
2011-01-01
Background: One of the most attractive properties of quantum dots is their potential to extend the opportunities for fluorescent and multimodal imaging in vivo. The aim of the present study was to clarify whether the composition and structure of organic coating of nanoparticles are crucial for their application in vivo. Methods: We compared quantum dots coated with non-crosslinked amino-functionalized polyamidoamine (PAMAM) dendrimers, quantum dots encapsulated in crosslinked carboxyl-functionalized PAMAM dendrimers, and silica-shelled amino-functionalized quantum dots. A multimodal fluorescent and paramagnetic quantum dot probe was also developed and analyzed. The probes were applied intravenously in anesthetized animals for visualization of brain vasculature using two-photon excited fluorescent microscopy and visualization of tumors using fluorescent IVIS® imaging (Caliper Life Sciences, Hopkinton, MA) and magnetic resonance imaging. Results: Quantum dots coated with non-crosslinked dendrimers were cytotoxic. They induced side effects in vivo, including vasodilatation with a decrease in mean arterial blood pressure and heart rate. The quantum dots penetrated the vessels, which caused the quality of fluorescent imaging to deteriorate. Quantum dots encapsulated in crosslinked dendrimers had low cytotoxicity and were biocompatible. In concentrations <0.3 nmol quantum dots/kg bodyweight, these nanoparticles did not affect blood pressure and heart rate, and did not induce vasodilatation or vasoconstriction. PEGylation (PEG [polyethylene glycol]) was an indispensable step in development of a quantum dot probe for in vivo imaging, based on silica-shelled quantum dots. The non-PEGylated silica-shelled quantum dots possessed low colloidal stability in high-salt physiological fluids, accompanied by rapid aggregation in vivo. The conjugation of silica-shelled quantum dots with PEG1100 increased their stability and half-life in the circulation without significant enhancement of their size. In concentrations <2.5 nmol/kg bodyweight, these quantum dots did not affect the main physiological variables. It was possible to visualize capillaries, which makes this quantum dot probe appropriate for investigation of mediators of vasoconstriction, vasodilatation, and brain circulation in intact animals in vivo. The multimodal silica-shelled quantum dots allowed visualization of tumor tissue in an early stage of its development, using magnetic resonance imaging. Conclusion: The present study shows that the type and structure of organic/bioorganic shells of quantum dots determine their biocompatibility and are crucial for their application in imaging in vivo, due to the effects of the shell on the following properties: colloidal stability, solubility in physiological fluids, influence of the basic physiological parameters, and cytotoxicity. PMID:21980235
User's manual for the FLORA equilibrium and stability code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freis, R.P.; Cohen, B.I.
1985-04-01
This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability.
An integrity measure to benchmark quantum error correcting memories
NASA Astrophysics Data System (ADS)
Xu, Xiaosi; de Beaudrap, Niel; O'Gorman, Joe; Benjamin, Simon C.
2018-02-01
Rapidly developing experiments across multiple platforms now aim to realise small quantum codes, and so demonstrate a memory within which a logical qubit can be protected from noise. There is a need to benchmark the achievements in these diverse systems, and to compare the inherent power of the codes they rely upon. We describe a recently introduced performance measure called integrity, which relates to the probability that an ideal agent will successfully ‘guess’ the state of a logical qubit after a period of storage in the memory. Integrity is straightforward to evaluate experimentally without state tomography and it can be related to various established metrics such as the logical fidelity and the pseudo-threshold. We offer a set of experimental milestones that are steps towards demonstrating unconditionally superior encoded memories. Using intensive numerical simulations we compare memories based on the five-qubit code, the seven-qubit Steane code, and a nine-qubit code which is the smallest instance of a surface code; we assess both the simple and fault-tolerant implementations of each. While the ‘best’ code upon which to base a memory does vary according to the nature and severity of the noise, nevertheless certain trends emerge.
Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits.
Kimchi-Schwartz, M E; Martin, L; Flurin, E; Aron, C; Kulkarni, M; Tureci, H E; Siddiqi, I
2016-06-17
Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.
Quantum Communication without Alignment using Multiple-Qubit Single-Photon States
NASA Astrophysics Data System (ADS)
Aolita, L.; Walborn, S. P.
2007-03-01
We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and quantum teleportation.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Quantum chaos in nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu
A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.
Surface Stabilized InP/GaP/ZnS Quantum Dots with Mg Ions for WLED Application.
Park, Joong Pill; Kim, Sang-Wook
2016-05-01
One of the most highlighted cadmium-free quantum dots (QDs), InP-based QDs, have improved their optical properties. However, InP-based QDs have some practical drawbacks, for example, stability, compared with CdSe-based QDs. Poor stability of InP-based QDs yields critical problems, such as agglomeration and photoluminescence quenching in light emitting diode (LED). It has to be solved for applications and most research has focused on thick outer shells as an effective solution. We introduced magnesium cations for improving stability of InP-based QDs. We applied very small amounts of Mg cations as surface stabilizers, as a result, stability of QDs is clearly improved. Then, QD based LED chips also yield improved values including RA of 84.4, CCT of 3799 K, and luminous efficiency of 129.57 Im/W, which are highly improved data compared with our previous results.
Applying Quantum Monte Carlo to the Electronic Structure Problem
NASA Astrophysics Data System (ADS)
Powell, Andrew D.; Dawes, Richard
2016-06-01
Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).
Robust quantum data locking from phase modulation
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Wilde, Mark M.; Lloyd, Seth
2014-08-01
Quantum data locking is a uniquely quantum phenomenon that allows a relatively short key of constant size to (un)lock an arbitrarily long message encoded in a quantum state, in such a way that an eavesdropper who measures the state but does not know the key has essentially no information about the message. The application of quantum data locking in cryptography would allow one to overcome the limitations of the one-time pad encryption, which requires the key to have the same length as the message. However, it is known that the strength of quantum data locking is also its Achilles heel, as the leakage of a few bits of the key or the message may in principle allow the eavesdropper to unlock a disproportionate amount of information. In this paper we show that there exist quantum data locking schemes that can be made robust against information leakage by increasing the length of the key by a proportionate amount. This implies that a constant size key can still lock an arbitrarily long message as long as a fraction of it remains secret to the eavesdropper. Moreover, we greatly simplify the structure of the protocol by proving that phase modulation suffices to generate strong locking schemes, paving the way to optical experimental realizations. Also, we show that successful data locking protocols can be constructed using random code words, which very well could be helpful in discovering random codes for data locking over noisy quantum channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mejri, Youssef, E-mail: josef-bizert@hotmail.fr; Dép. des Mathématiques, Faculté des Sciences de Bizerte, 7021 Jarzouna; Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l’Ingénieur, ENIT BP 37, Le Belvedere, 1002 Tunis
In this article, we study the boundary inverse problem of determining the aligned magnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindrical waveguide, by knowledge of the Dirichlet-to-Neumann map. We prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by means of the geometrical optics solutions of the magnetic Schrödinger equation.
High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.
Cao, Yulian; Ji, Haiming; Xu, Pengfei; Gu, Yongxian; Ma, Wenquan; Yang, Tao
2012-10-01
We demonstrate high-brightness 1.3 μm tapered lasers with high temperature stability by using p-doped InAs/GaAs quantum dots (QDs) as the active region. It is found that the beam quality factor M(2) for the devices is almost unchanged as the light power and temperature increase. The almost constant M(2) results from the p-doped QD active region.
Thermal stability of charged rotating quantum black holes
NASA Astrophysics Data System (ADS)
Sinha, Aloke Kumar; Majumdar, Parthasarathi
2017-12-01
Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Quantum phases of dipolar soft-core bosons
NASA Astrophysics Data System (ADS)
Grimmer, D.; Safavi-Naini, A.; Capogrosso-Sansone, B.; Söyler, Ş. G.
2014-10-01
We study the phase diagram of a system of soft-core dipolar bosons confined to a two-dimensional optical lattice layer. We assume that dipoles are aligned perpendicular to the layer such that the dipolar interactions are purely repulsive and isotropic. We consider the full dipolar interaction and perform path-integral quantum Monte Carlo simulations using the worm algorithm. Besides a superfluid phase, we find various solid and supersolid phases. We show that, unlike what was found previously for the case of nearest-neighbor interaction, supersolid phases are stabilized by doping the solids not only with particles but with holes as well. We further study the stability of these quantum phases against thermal fluctuations. Finally, we discuss pair formation and the stability of the pair checkerboard phase formed in a bilayer geometry, and we suggest experimental conditions under which the pair checkerboard phase can be observed.
Hardware Acceleration Of Multi-Deme Genetic Algorithm for DNA Codeword Searching
2008-01-01
C and G are complementary to each other. A Watson - Crick complement of a DNA sequence is another DNA sequence which replaces all the A with T or vise...versa and replaces all the T with A or vise versa, and also switches the 5’ and 3’ ends. A DNA sequence binds most stably with its Watson - Crick ...bind with 5 Watson - Crick pairs. The length of the longest complementary sequence between two flexible DNA strands, A and B, is the same as the
Optimal superdense coding over memory channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadman, Z.; Kampermann, H.; Bruss, D.
2011-10-15
We study the superdense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement in the superdense coding capacity.
Quantum-classical correspondence in the vicinity of periodic orbits
NASA Astrophysics Data System (ADS)
Kumari, Meenu; Ghose, Shohini
2018-05-01
Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.
Efficient quantum dialogue without information leakage
NASA Astrophysics Data System (ADS)
Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong
2015-02-01
A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.
Information trade-offs for optical quantum communication.
Wilde, Mark M; Hayden, Patrick; Guha, Saikat
2012-04-06
Recent work has precisely characterized the achievable trade-offs between three key information processing tasks-classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels. © 2012 American Physical Society
In situ electron-beam polymerization stabilized quantum dot micelles.
Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric
2011-04-19
A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society
Goswami, Prasenjit N; Mandal, Debranjan; Rath, Arup K
2018-01-18
Surface chemistry plays a crucial role in determining the electronic properties of quantum dot solids and may well be the key to mitigate loss processes involved in quantum dot solar cells. Surface ligands help to maintain the shape and size of the individual dots in solid films, to preserve the clean energy band gap of the individual particles and to control charge carrier conduction across solid films, in turn regulating their performance in photovoltaic applications. In this report, we show that the changes in size, shape and functional groups of small chain organic ligands enable us to modulate mobility, dielectric constant and carrier doping density of lead sulfide quantum dot solids. Furthermore, we correlate these results with performance, stability and recombination processes in the respective photovoltaic devices. Our results highlight the critical role of surface chemistry in the electronic properties of quantum dots. The role of the size, functionality and the surface coverage of the ligands in determining charge transport properties and the stability of quantum dot solids have been discussed. Our findings, when applied in designing new ligands with higher mobility and improved passivation of quantum dot solids, can have important implications for the development of high-performance quantum dot solar cells.
NASA Astrophysics Data System (ADS)
Jacak, Monika; Melniczuk, Damian; Jacak, Janusz; Jóźwiak, Ireneusz; Gruber, Jacek; Jóźwiak, Piotr
2015-02-01
In order to assess the susceptibility of the quantum key distribution (QKD) systems to the hacking attack including simultaneous and frequent system self-decalibrations, we analyze the stability of the QKD transmission organized in two commercially available systems. The first one employs non-entangled photons as flying qubits in the dark quantum channel for communication whereas the second one utilizes the entangled photon pairs to secretly share the cryptographic key. Applying standard methods of the statistical data analysis to the characteristic indicators of the quality of the QKD communication (the raw key exchange rate [RKER] and the quantum bit error rate [QBER]), we have estimated the pace of the self-decalibration of both systems and the repeatability rate in the case of controlled worsening of the dark channel quality.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
NASA Technical Reports Server (NTRS)
Doane, George B., III; Armstrong, W. C.
1990-01-01
Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines.
Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states
NASA Astrophysics Data System (ADS)
Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping
2016-08-01
We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.
Performance analysis of simultaneous dense coding protocol under decoherence
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Zhang, Cai; Situ, Haozhen
2017-09-01
The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.
One Step Quantum Key Distribution Based on EPR Entanglement.
Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao
2016-06-30
A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.
Some conservative estimates in quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2006-08-15
Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q{sub c} {approx} 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q{sub c})=C-bar({rho})/2, where {rho} is the density matrix of the input ensemble, C-bar({rho}) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R.F.; Fowler, T.K.; Bulmer, R.
2005-01-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.« less
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R F; Fowler, T K; Bulmer, R
2004-07-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M« less
An improved control mode for the ping-pong protocol operation in imperfect quantum channels
NASA Astrophysics Data System (ADS)
Zawadzki, Piotr
2015-07-01
Quantum direct communication (QDC) can bring confidentiality of sensitive information without any encryption. A ping-pong protocol, a well-known example of entanglement-based QDC, offers asymptotic security in a perfect quantum channel. However, it has been shown (Wójcik in Phys Rev Lett 90(15):157901, 2003. doi:10.1103/PhysRevLett.90.157901) that it is not secure in the presence of losses. Moreover, legitimate parities cannot rely on dense information coding due to possible undetectable eavesdropping even in the perfect setting (Pavičić in Phys Rev A 87(4):042326, 2013. doi:10.1103/PhysRevA.87.042326). We have identified the source of the above-mentioned weaknesses in the incomplete check of the EPR pair coherence. We propose an improved version of the control mode, and we discuss its relation to the already-known attacks that undermine the QDC security. It follows that the new control mode detects these attacks with high probability and independently on a quantum channel type. As a result, an asymptotic security of the QDC communication can be maintained for imperfect quantum channels, also in the regime of dense information coding.
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state
NASA Astrophysics Data System (ADS)
Mizuno, Jun; Wakui, Kentaro; Furusawa, Akira; Sasaki, Masahide
2005-01-01
We have experimentally realized the scheme initially proposed as quantum dense coding with continuous variables [
Self-dual random-plaquette gauge model and the quantum toric code
NASA Astrophysics Data System (ADS)
Takeda, Koujin; Nishimori, Hidetoshi
2004-05-01
We study the four-dimensional Z2 random-plaquette lattice gauge theory as a model of topological quantum memory, the toric code in particular. In this model, the procedure of quantum error correction works properly in the ordered (Higgs) phase, and phase boundary between the ordered (Higgs) and disordered (confinement) phases gives the accuracy threshold of error correction. Using self-duality of the model in conjunction with the replica method, we show that this model has exactly the same mathematical structure as that of the two-dimensional random-bond Ising model, which has been studied very extensively. This observation enables us to derive a conjecture on the exact location of the multicritical point (accuracy threshold) of the model, pc=0.889972…, and leads to several nontrivial results including bounds on the accuracy threshold in three dimensions.
High performance reconciliation for continuous-variable quantum key distribution with LDPC code
NASA Astrophysics Data System (ADS)
Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua
2015-03-01
Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.
On-chip continuous-variable quantum entanglement
NASA Astrophysics Data System (ADS)
Masada, Genta; Furusawa, Akira
2016-09-01
Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.
Tearing Mode Stability of Evolving Toroidal Equilibria
NASA Astrophysics Data System (ADS)
Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.
2000-10-01
There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.
Stable spin domains in a nondegenerate ultracold gas
NASA Astrophysics Data System (ADS)
Graham, S. D.; Niroomand, D.; Ragan, R. J.; McGuirk, J. M.
2018-05-01
We study the stability of two-domain spin structures in an ultracold gas of magnetically trapped 87Rb atoms above quantum degeneracy. Adding a small effective magnetic field gradient stabilizes the domains via coherent collective spin rotation effects, despite negligibly perturbing the potential energy relative to the thermal energy. We demonstrate that domain stabilization is accomplished through decoupling the dynamics of longitudinal magnetization, which remains in time-independent domains, from transverse magnetization, which undergoes a purely transverse spin wave trapped within the domain wall. We explore the effect of temperature and density on the steady-state domains, and compare our results to a hydrodynamic solution to a quantum Boltzmann equation.
Connections Underlying Translation and mRNA Stability.
Radhakrishnan, Aditya; Green, Rachel
2016-09-11
Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms. Copyright © 2016. Published by Elsevier Ltd.
Secret Sharing of a Quantum State.
Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei
2016-07-15
Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.
Coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.
Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.
2017-10-01
KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Yi, Dong Kee
2008-09-01
A reverse microemulsion technique has been used to synthesize quantum dot nanocomposites within a SiO2 surface coating. With this approach, the unique optical properties of the CdSe/ZnS quantum dots were preserved. CdSe/ZnS/SiO2 nanoparticles were homogeneously distributed in a tetramethyl orthosilicate ethanol solution and gelation process was initiated within a 10 min, and was left over night at room temperature and dried fully to achieve a solid SiO, monolith. The resulting monolith was transparent and fluorescent under ultraviolet (UV) lamp. Moreover the monolith produced was crack-free. Further studies on the photo stability of the monolith were performed using a high power UV LED device. Remarkably, quantum dots in the SiO, monolith showed better photo stability compared with those dispersed in a polymer matrix.
NASA Astrophysics Data System (ADS)
Chomaz, L.; Baier, S.; Petter, D.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.
2016-10-01
In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s -wave scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 ×104 atoms . Based on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite scattering length.
Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan
2016-02-05
Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.
Stabilizing oscillating universes against quantum decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mithani, Audrey T.; Vilenkin, Alexander, E-mail: audrey.todhunter@tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu
2015-07-01
We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.
Stabilizing oscillating universes against quantum decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mithani, Audrey T.; Vilenkin, Alexander
We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.
Jeans stability in collisional quantum dusty magnetoplasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamil, M.; Asif, M.; Mir, Zahid
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.
Distillation with Sublogarithmic Overhead.
Hastings, Matthew B; Haah, Jeongwan
2018-02-02
It has been conjectured that, for any distillation protocol for magic states for the T gate, the number of noisy input magic states required per output magic state at output error rate ε is Ω[log(1/ε)]. We show that this conjecture is false. We find a family of quantum error correcting codes of parameters ⟦∑[under i=w+1][over m](m/i),∑[under i=0][over w](m/i),∑[under i=w+1][over r+1](r+1/i)⟧ for any integers m>2r, r>w≥0, by puncturing quantum Reed-Muller codes. When m>νr, our code admits a transversal logical gate at the νth level of Clifford hierarchy. In a distillation protocol for magic states at the level ν=3 (T gate), the ratio of input to output magic states is O(log^{γ}(1/ε)), where γ=log(n/k)/log(d)<0.678 for some m, r, w. The smallest code in our family for which γ<1 is on ≈2^{58} qubits.
Hierarchical surface code for network quantum computing with modules of arbitrary size
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2016-10-01
The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.
Computing quantum discord is NP-complete
NASA Astrophysics Data System (ADS)
Huang, Yichen
2014-03-01
We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.
NASA Astrophysics Data System (ADS)
Rotta, Davide; Sebastiano, Fabio; Charbon, Edoardo; Prati, Enrico
2017-06-01
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore's law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal-oxide-semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency range of a silicon complementary metal-oxide-semiconductor quantum processor to be within 1 and 100 GHz. Such constraint limits the feasibility of fault-tolerant quantum information processing with complementary metal-oxide-semiconductor technology only to the most advanced nodes. The compatibility with classical complementary metal-oxide-semiconductor control circuitry is discussed, focusing on the cryogenic complementary metal-oxide-semiconductor operation required to bring the classical controller as close as possible to the quantum processor and to enable interfacing thousands of qubits on the same chip via time-division, frequency-division, and space-division multiplexing. The operation time range prospected for cryogenic control electronics is found to be compatible with the operation time expected for qubits. By combining the forecast of the development of scaled technology nodes with operation time and classical circuitry constraints, we derive a maximum quantum information density for logical qubits of 2.8 and 4 Mqb/cm2 for the 10 and 7-nm technology nodes, respectively, for the Steane code. The density is one and two orders of magnitude less for surface codes and for concatenated codes, respectively. Such values provide a benchmark for the development of fault-tolerant quantum algorithms by circuital quantum information based on silicon platforms and a guideline for other technologies in general.
Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping
NASA Astrophysics Data System (ADS)
Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.
2018-05-01
Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.
Electrostatic streaming instability modes in complex viscoelastic quantum plasmas
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2016-11-01
A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.
Private algebras in quantum information and infinite-dimensional complementarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca
We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.
Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.
Terahertz Sideband-tuned Quantum Cascade Laser Radiation
2008-03-31
resolution of 2 MHz in CW regime was observed. ©2008 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers , quantum cascade...diode,” Opt. Lett. 29, 1632 (2004). 6. A. Baryshev, et.al., “ Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser ,” Appl... optically pumped gas laser . With further improvements in power and spatial mode quality, it should be possible to lock a TQCL to the harmonic of an ultra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Sadlier, Ronald J
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
The Photon Shell Game and the Quantum von Neumann Architecture with Superconducting Circuits
NASA Astrophysics Data System (ADS)
Mariantoni, Matteo
2012-02-01
Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon | 1 > can be prepared in one resonator and coherently transferred between the three resonators. I will also show how more exotic states such as double photon states | 2 > and superposition states | 0 >+ | 1 > can be shuffled among the resonators as well [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer. I will also present a proof-of-concept demonstration of a code that involves all seven quantum elements: (1), Preparing an entangled state in the quCPU, (2), writing it to the quRAM, (3), preparing a second state in the quCPU, (4), zeroing it, and, (5), reading out the first state stored in the quRAM [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date. [4pt] [1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011.)[0pt] [2] M. Mariantoni et al., Science 334, 61-65 (2011).
Two Classes of New Optimal Asymmetric Quantum Codes
NASA Astrophysics Data System (ADS)
Chen, Xiaojing; Zhu, Shixin; Kai, Xiaoshan
2018-03-01
Let q be an even prime power and ω be a primitive element of F_{q2}. By analyzing the structure of cyclotomic cosets, we determine a sufficient condition for ω q- 1-constacyclic codes over F_{q2} to be Hermitian dual-containing codes. By the CSS construction, two classes of new optimal AQECCs are obtained according to the Singleton bound for AQECCs.
Thermalization of topological entropy after a quantum quench
NASA Astrophysics Data System (ADS)
Zeng, Yu; Hamma, Alioscia; Fan, Heng
2016-09-01
Topologically ordered quantum phases are robust in the sense that perturbations in the Hamiltonian of the system will not change the topological nature of the ground-state wave function. However, in order to exploit topological order for applications such as self-correcting quantum memories and information processing, these states need to be also robust both dynamically and at finite temperature in the presence of an environment. It is well known that systems like the toric code in two spatial dimensions are fragile in temperature. In this paper, we show a completely analytic treatment of the toric code away from equilibrium, after a quantum quench of the system Hamiltonian. We show that, despite being subject to unitary evolution (and at zero temperature), the long-time behavior of the topological entropy is thermal, therefore vanishing. If the quench preserves a local gauge structure, there is a residual long-lived topological entropy. This also is the thermal behavior in presence of such gauge constraints. The result is obtained by studying the time evolution of the topological 2-Rényi entropy in a fully analytical, exact way.
Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David
2018-06-11
Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.
From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions.
Gualandi, Andrea; Mengozzi, Luca; Manoni, Elisabetta; Giorgio Cozzi, Pier
2016-06-01
What do quantum cellular automata (QCA), "on water" reactions, and SN 1-type organocatalytic transformations have in common? The link between these distant arguments is the practical access to useful intermediates and key products through the use of stabilized carbenium ions. Over 10 years, starting with a carbenium ion bearing a ferrocenyl group, to the 1,3-benzodithiolylium carbenium ion, our group has exploited the use of these intermediates in useful and practical synthetic transformations. In particular, we have applied the use of carbenium ions to stereoselective organocatalytic alkylation reactions, showing a possible solution for the "holy grail of organocatalysis". Examples of the use of these quite stabilized intermediates are now also considered in organometallic chemistry. On the other hand, the stable carbenium ions are also applied to tailored molecules adapted to quantum cellular automata, a new possible paradigm for computation. Carbenium ions are not a problem, they can be a/the solution! © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys
NASA Astrophysics Data System (ADS)
Rizwan, M.; Afaq, A.; Aneeza, A.
2018-05-01
In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.
Frequency-comb-assisted precision laser spectroscopy of CHF{sub 3} around 8.6 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambetta, Alessio; Coluccelli, Nicola; Cassinerio, Marco
2015-12-21
We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 μm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ{sub 5} vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach andmore » survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10{sup −10}. Line intensity factors, pressure broadening, and shifting parameters are also provided.« less
Efficient n-type doping of zinc-blende III-V semiconductor nanowires
NASA Astrophysics Data System (ADS)
Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.
2014-03-01
We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.
NASA Astrophysics Data System (ADS)
Baharin, R.; Hobson, P. R.; Smith, D. R.
2010-09-01
We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.
Experimental quantum cryptography with qutrits
NASA Astrophysics Data System (ADS)
Gröblacher, Simon; Jennewein, Thomas; Vaziri, Alipasha; Weihs, Gregor; Zeilinger, Anton
2006-05-01
We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre Gaussian modes with azimuthal index l + 1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10%.
One Step Quantum Key Distribution Based on EPR Entanglement
Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao
2016-01-01
A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865
Optimal quantum error correcting codes from absolutely maximally entangled states
NASA Astrophysics Data System (ADS)
Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio
2018-02-01
Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \