Exploring the read-write genome: mobile DNA and mammalian adaptation.
Shapiro, James A
2017-02-01
The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins
Zhi, Hui; Li, Xin; Wang, Peng; Gao, Yue; Gao, Baoqing; Zhou, Dianshuang; Zhang, Yan; Guo, Maoni; Yue, Ming; Shen, Weitao
2018-01-01
Abstract Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases. PMID:29069510
Zhi, Hui; Li, Xin; Wang, Peng; Gao, Yue; Gao, Baoqing; Zhou, Dianshuang; Zhang, Yan; Guo, Maoni; Yue, Ming; Shen, Weitao; Ning, Shangwei; Jin, Lianhong; Li, Xia
2018-01-04
Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Junk DNA and the long non-coding RNA twist in cancer genetics
Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A
2015-01-01
The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.
Artificial Intelligence, DNA Mimicry, and Human Health.
Stefano, George B; Kream, Richard M
2017-08-14
The molecular evolution of genomic DNA across diverse plant and animal phyla involved dynamic registrations of sequence modifications to maintain existential homeostasis to increasingly complex patterns of environmental stressors. As an essential corollary, driver effects of positive evolutionary pressure are hypothesized to effect concerted modifications of genomic DNA sequences to meet expanded platforms of regulatory controls for successful implementation of advanced physiological requirements. It is also clearly apparent that preservation of updated registries of advantageous modifications of genomic DNA sequences requires coordinate expansion of convergent cellular proofreading/error correction mechanisms that are encoded by reciprocally modified genomic DNA. Computational expansion of operationally defined DNA memory extends to coordinate modification of coding and previously under-emphasized noncoding regions that now appear to represent essential reservoirs of untapped genetic information amenable to evolutionary driven recruitment into the realm of biologically active domains. Additionally, expansion of DNA memory potential via chemical modification and activation of noncoding sequences is targeted to vertical augmentation and integration of an expanded cadre of transcriptional and epigenetic regulatory factors affecting linear coding of protein amino acid sequences within open reading frames.
Disentangling the many layers of eukaryotic transcriptional regulation.
Lelli, Katherine M; Slattery, Matthew; Mann, Richard S
2012-01-01
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
Altruistic functions for selfish DNA.
Faulkner, Geoffrey J; Carninci, Piero
2009-09-15
Mammalian genomes are comprised of 30-50% transposed elements (TEs). The vast majority of these TEs are truncated and mutated fragments of retrotransposons that are no longer capable of transposition. Although initially regarded as important factors in the evolution of gene regulatory networks, TEs are now commonly perceived as neutrally evolving and non-functional genomic elements. In a major development, recent works have strongly contradicted this "selfish DNA" or "junk DNA" dogma by demonstrating that TEs use a host of novel promoters to generate RNA on a massive scale across most eukaryotic cells. This transcription frequently functions to control the expression of protein-coding genes via alternative promoters, cis regulatory non protein-coding RNAs and the formation of double stranded short RNAs. If considered in sum, these findings challenge the designation of TEs as selfish and neutrally evolving genomic elements. Here, we will expand upon these themes and discuss challenges in establishing novel TE functions in vivo.
O'Neill, F J; Gao, Y; Xu, X
1993-11-01
The DNAs of polyomaviruses ordinarily exist as a single circular molecule of approximately 5000 base pairs. Variants of SV40, BKV and JCV have been described which contain two complementing defective DNA molecules. These defectives, which form a bipartite genome structure, contain either the viral early region or the late region. The defectives have the unique property of being able to tolerate variable sized reiterations of regulatory and terminus region sequences, and portions of the coding region. They can also exchange coding region sequences with other polyomaviruses. It has been suggested that the bipartite genome structure might be a stage in the evolution of polyomaviruses which can uniquely sustain genome and sequence diversity. However, it is not known if the regulatory and terminus region sequences are highly mutable. Also, it is not known if the bipartite genome structure is reversible and what the conditions might be which would favor restoration of the monomolecular genome structure. We addressed the first question by sequencing the reiterated regulatory and terminus regions of E- and L-SV40 DNAs. This revealed a large number of mutations in the regulatory regions of the defective genomes, including deletions, insertions, rearrangements and base substitutions. We also detected insertions and base substitutions in the T-antigen gene. We addressed the second question by introducing into permissive simian cells, E- and L-SV40 genomes which had been engineered to contain only a single regulatory region. Analysis of viral DNA from transfected cells demonstrated recombined genomes containing a wild type monomolecular DNA structure. However, the complete defectives, containing reiterated regulatory regions, could often compete away the wild type genomes. The recombinant monomolecular genomes were isolated, cloned and found to be infectious. All of the DNA alterations identified in one of the regulatory regions of E-SV40 DNA were present in the recombinant monomolecular genomes. These and other findings indicate that the bipartite genome state can sustain many mutations which wtSV40 cannot directly sustain. However, the mutations can later be introduced into the wild type genomes when the E- and L-SV40 DNAs recombine to generate a new monomolecular genome structure.
Comprehensive identification and analysis of human accelerated regulatory DNA
Gittelman, Rachel M.; Hun, Enna; Ay, Ferhat; Madeoy, Jennifer; Pennacchio, Len; Noble, William S.; Hawkins, R. David; Akey, Joshua M.
2015-01-01
It has long been hypothesized that changes in gene regulation have played an important role in human evolution, but regulatory DNA has been much more difficult to study compared with protein-coding regions. Recent large-scale studies have created genome-scale catalogs of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To better define regulatory DNA that has been subject to human-specific adaptive evolution, we performed comprehensive evolutionary and population genetics analyses on over 18 million DHSs discovered in 130 cell types. We identified 524 DHSs that are conserved in nonhuman primates but accelerated in the human lineage (haDHS), and estimate that 70% of substitutions in haDHSs are attributable to positive selection. Through extensive computational and experimental analyses, we demonstrate that haDHSs are often active in brain or neuronal cell types; play an important role in regulating the expression of developmentally important genes, including many transcription factors such as SOX6, POU3F2, and HOX genes; and identify striking examples of adaptive regulatory evolution that may have contributed to human-specific phenotypes. More generally, our results reveal new insights into conserved and adaptive regulatory DNA in humans and refine the set of genomic substrates that distinguish humans from their closest living primate relatives. PMID:26104583
The agents of natural genome editing.
Witzany, Guenther
2011-06-01
The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.
Blochlinger, K; Diggelmann, H
1984-12-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.
Blochlinger, K; Diggelmann, H
1984-01-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829
Decoding the non-coding genome: elucidating genetic risk outside the coding genome.
Barr, C L; Misener, V L
2016-01-01
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Shoura, Massa J; Gabdank, Idan; Hansen, Loren; Merker, Jason; Gotlib, Jason; Levene, Stephen D; Fire, Andrew Z
2017-10-05
Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples. Copyright © 2017 Shoura et al.
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W
2018-05-31
In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.
Regulatory sequence analysis tools.
van Helden, Jacques
2003-07-01
The web resource Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat) offers a collection of software tools dedicated to the prediction of regulatory sites in non-coding DNA sequences. These tools include sequence retrieval, pattern discovery, pattern matching, genome-scale pattern matching, feature-map drawing, random sequence generation and other utilities. Alternative formats are supported for the representation of regulatory motifs (strings or position-specific scoring matrices) and several algorithms are proposed for pattern discovery. RSAT currently holds >100 fully sequenced genomes and these data are regularly updated from GenBank.
Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT
Cheung, Tom Hiu; Kwan, Yin Lam; Hamady, Micah; Liu, Xuedong
2006-01-01
Deciphering gene regulatory networks requires the systematic identification of functional cis-acting regulatory elements. We present a suite of web-based bioinformatics tools, called GeneACT , that can rapidly detect evolutionarily conserved transcription factor binding sites or microRNA target sites that are either unique or over-represented in differentially expressed genes from DNA microarray data. GeneACT provides graphic visualization and extraction of common regulatory sequence elements in the promoters and 3'-untranslated regions that are conserved across multiple mammalian species. PMID:17064417
Transposable elements and G-quadruplexes.
Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej
2015-09-01
A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.
Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse
Kortschak, R. Daniel
2018-01-01
The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or “churning” in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against. PMID:29677183
Prevalence of transcription promoters within archaeal operons and coding sequences
Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S
2009-01-01
Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of ∼64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements. PMID:19536208
Prevalence of transcription promoters within archaeal operons and coding sequences.
Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S
2009-01-01
Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.
BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
Yang, Bite; Liu, Feng; Ren, Chao; Ouyang, Zhangyi; Xie, Ziwei; Bo, Xiaochen; Shu, Wenjie
2017-07-01
Enhancer elements are noncoding stretches of DNA that play key roles in controlling gene expression programmes. Despite major efforts to develop accurate enhancer prediction methods, identifying enhancer sequences continues to be a challenge in the annotation of mammalian genomes. One of the major issues is the lack of large, sufficiently comprehensive and experimentally validated enhancers for humans or other species. Thus, the development of computational methods based on limited experimentally validated enhancers and deciphering the transcriptional regulatory code encoded in the enhancer sequences is urgent. We present a deep-learning-based hybrid architecture, BiRen, which predicts enhancers using the DNA sequence alone. Our results demonstrate that BiRen can learn common enhancer patterns directly from the DNA sequence and exhibits superior accuracy, robustness and generalizability in enhancer prediction relative to other state-of-the-art enhancer predictors based on sequence characteristics. Our BiRen will enable researchers to acquire a deeper understanding of the regulatory code of enhancer sequences. Our BiRen method can be freely accessed at https://github.com/wenjiegroup/BiRen . shuwj@bmi.ac.cn or boxc@bmi.ac.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Open chromatin reveals the functional maize genome
USDA-ARS?s Scientific Manuscript database
Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...
Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu
2017-01-04
The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš
2017-01-01
Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063
[The ENCODE project and functional genomics studies].
Ding, Nan; Qu, Hongzhu; Fang, Xiangdong
2014-03-01
Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.
50 years of DNA ‘Breathing’: Reflections on Old and New Approaches
von Hippel, Peter H.; Johnson, Neil P.; Marcus, Andrew H.
2015-01-01
Summary The coding sequences for genes, and much other regulatory information involved in genome expression, are located ‘inside’ the DNA duplex. Thus the ‘macromolecular machines’ that read-out this information from the base sequence of the DNA must somehow access the DNA ‘interior’. Double-stranded (ds) DNA is a highly structured and cooperatively stabilized system at physiological temperatures, but is also only marginally stable and undergoes a cooperative ‘melting phase transition’ at temperatures not far above physiological. Furthermore, due to its length and heterogeneous sequence, with AT-rich segments being less stable than GC-rich segments, the DNA genome ‘melts’ in a multistate fashion. Therefore the DNA genome must also manifest thermally driven structural (‘breathing’) fluctuations at physiological temperatures that should reflect the heterogeneity of the dsDNA stability near the melting temperature. Thus many of the breathing fluctuations of dsDNA are likely also to be sequence dependent, and could well contain information that should be ‘readable’ and useable by regulatory proteins and protein complexes in site-specific binding reactions involving dsDNA ‘opening’. Our laboratory has been involved in studying the breathing fluctuations of duplex DNA for about 50 years. In this ‘Reflections’ article we present a relatively chronological overview of these studies, starting with the use of simple chemical probes (such as hydrogen exchange, formaldehyde and simple DNA ‘melting’ proteins) to examine the local stability of the dsDNA structure, and culminating in sophisticated spectroscopic approaches that can be used to monitor the breathing-dependent interactions of regulatory complexes with their duplex DNA targets in ‘real time’. PMID:23840028
Resurrection of DNA Function In Vivo from an Extinct Genome
Pask, Andrew J.; Behringer, Richard R.; Renfree, Marilyn B.
2008-01-01
There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600
Many human accelerated regions are developmental enhancers
Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.
2013-01-01
The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637
The expanding regulatory universe of p53 in gastrointestinal cancer.
Fesler, Andrew; Zhang, Ning; Ju, Jingfang
2016-01-01
Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs. Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology. With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.
Chen, L; Zhang, W; Li, D Y; Wang, X; Tao, Y; Zhang, Y; Dong, C; Zhao, J; Zhang, L; Zhang, X; Guo, J; Zhang, X; Liao, Q
2018-06-01
Colorectal cancer (CRC), one of the common malignant cancers in the world, is caused by accumulated alterations of genetic and epigenetic factors over a long period of time. Along with that protein-coding genes being identified as oncogenes or tumor suppressors in CRC, a number of lncRNAs have also been found to be associated with CRC. Considering the important regulatory role of lncRNAs, the first goal of this study was to identify CRC-associated lncRNAs from a public database. One such lncRNA, LINC00472, was verified to be downregulated in CRC cell lines and cancer tissues compared with adjacent tissues. In addition, the down-regulation of LINC00472 seemed to be caused by DNA hypermethylation at its promoter region. Furthermore, the expression of LINC00472 and DNA methylation of promoter were significantly correlated with clinicopathological features. And DNA hypermethylation of LINC00472 may serve as a better diagnostic biomarker than its expression for CRC. Finally, we predicted the functions of LINC00472 and constructed a regulatory network and found LINC00472 may be involved in cell cycle and cell proliferation processes. Our results may provide a clue to further research into the function and regulatory mechanism of LINC00472 in CRC. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jiang, Jiming
2015-04-01
Sequencing of complete plant genomes has become increasingly more routine since the advent of the next-generation sequencing technology. Identification and annotation of large amounts of noncoding but functional DNA sequences, including cis-regulatory DNA elements (CREs), have become a new frontier in plant genome research. Genomic regions containing active CREs bound to regulatory proteins are hypersensitive to DNase I digestion and are called DNase I hypersensitive sites (DHSs). Several recent DHS studies in plants illustrate that DHS datasets produced by DNase I digestion followed by next-generation sequencing (DNase-seq) are highly valuable for the identification and characterization of CREs associated with plant development and responses to environmental cues. DHS-based genomic profiling has opened a door to identify and annotate the 'dark matter' in sequenced plant genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S
1987-07-01
Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.
Living Organisms Author Their Read-Write Genomes in Evolution.
Shapiro, James A
2017-12-06
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Understanding LiP Promoters from Phanerochaete chrysosporium: A Bioinformatic Analysis
Sergio Lobos; Rubén Polanco; Mario Tello; Dan Cullen; Daniela Seelenfreund; Rafael Vicuña
2011-01-01
DNA contains the coding information for the entire set of proteins produced by an organism. The specific combination of proteins synthesized varies with developmental, metabolic and environmental circumstances. This variation is generated by regulatory mechanisms that direct the production of messenger ribonucleic acid (mRNA) and subsequent translation of the...
Syed, Mustafa H; Karpinets, Tatiana V; Leuze, Michael R; Kora, Guruprasad H; Romine, Margaret R; Uberbacher, Edward C
2009-01-01
Shewanella oneidensis MR-1 is an important model organism for environmental research as it has an exceptional metabolic and respiratory versatility regulated by a complex regulatory network. We have developed a database to collect experimental and computational data relating to regulation of gene and protein expression, and, a visualization environment that enables integration of these data types. The regulatory information in the database includes predictions of DNA regulator binding sites, sigma factor binding sites, transcription units, operons, promoters, and RNA regulators including non-coding RNAs, riboswitches, and different types of terminators. Availability http://shewanella-knowledgebase.org:8080/Shewanella/gbrowserLanding.jsp PMID:20198195
Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M
2013-10-14
The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Regulatory variation: an emerging vantage point for cancer biology.
Li, Luolan; Lorzadeh, Alireza; Hirst, Martin
2014-01-01
Transcriptional regulation involves complex and interdependent interactions of noncoding and coding regions of the genome with proteins that interact and modify them. Genetic variation/mutation in coding and noncoding regions of the genome can drive aberrant transcription and disease. In spite of accounting for nearly 98% of the genome comparatively little is known about the contribution of noncoding DNA elements to disease. Genome-wide association studies of complex human diseases including cancer have revealed enrichment for variants in the noncoding genome. A striking finding of recent cancer genome re-sequencing efforts has been the previously underappreciated frequency of mutations in epigenetic modifiers across a wide range of cancer types. Taken together these results point to the importance of dysregulation in transcriptional regulatory control in genesis of cancer. Powered by recent technological advancements in functional genomic profiling, exploration of normal and transformed regulatory networks will provide novel insight into the initiation and progression of cancer and open new windows to future prognostic and diagnostic tools. © 2013 Wiley Periodicals, Inc.
Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia
2013-01-01
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as ‘Olfactores conserved non-coding elements’. PMID:23393190
Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.
Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K
2009-03-10
The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.
Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function
Osborne, Suzanne E.; Walthers, Don; Tomljenovic, Ana M.; Mulder, David T.; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J.; Wickham, Mark E.; Waller, Ross F.; Kenney, Linda J.; Coombes, Brian K.
2009-01-01
The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones. PMID:19234126
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.
Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James
2016-12-01
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).
Piecing together cis-regulatory networks: insights from epigenomics studies in plants.
Huang, Shao-Shan C; Ecker, Joseph R
2018-05-01
5-Methylcytosine, a chemical modification of DNA, is a covalent modification found in the genomes of both plants and animals. Epigenetic inheritance of phenotypes mediated by DNA methylation is well established in plants. Most of the known mechanisms of establishing, maintaining and modifying DNA methylation have been worked out in the reference plant Arabidopsis thaliana. Major functions of DNA methylation in plants include regulation of gene expression and silencing of transposable elements (TEs) and repetitive sequences, both of which have parallels in mammalian biology, involve interaction with the transcriptional machinery, and may have profound effects on the regulatory networks in the cell. Methylome and transcriptome dynamics have been investigated in development and environmental responses in Arabidopsis and agriculturally and ecologically important plants, revealing the interdependent relationship among genomic context, methylation patterns, and expression of TE and protein coding genes. Analyses of methylome variation among plant natural populations and species have begun to quantify the extent of genetic control of methylome variation vs. true epimutation, and model the evolutionary forces driving methylome evolution in both short and long time scales. The ability of DNA methylation to positively or negatively modulate binding affinity of transcription factors (TFs) provides a natural link from genome sequence and methylation changes to transcription. Technologies that allow systematic determination of methylation sensitivities of TFs, in native genomic and methylation context without confounding factors such as histone modifications, will provide baseline datasets for building cell-type- and individual-specific regulatory networks that underlie the establishment and inheritance of complex traits. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Biological Mechanisms > Regulatory Biology. © 2017 Wiley Periodicals, Inc.
On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions
NASA Astrophysics Data System (ADS)
Tarpine, Ryan; Istrail, Sorin
The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.
Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao
2018-01-01
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038
Vlahovicek, K; Munteanu, M G; Pongor, S
1999-01-01
Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).
Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P
1988-02-01
Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.
Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P
1988-01-01
Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators. Images PMID:3257578
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Dostie, Josée; Lemire, Edmond; Bouchard, Philippe; Field, Michael; Jones, Kristie; Lorenz, Birgit; Menten, Björn; Buysse, Karen; Pattyn, Filip; Friedli, Marc; Ucla, Catherine; Rossier, Colette; Wyss, Carine; Speleman, Frank; De Paepe, Anne; Dekker, Job; Antonarakis, Stylianos E.; De Baere, Elfride
2009-01-01
To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular. PMID:19543368
Conditional sterility in plants
Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung
2010-02-23
The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...
Chromatin accessibility prediction via a hybrid deep convolutional neural network.
Liu, Qiao; Xia, Fei; Yin, Qijin; Jiang, Rui
2018-03-01
A majority of known genetic variants associated with human-inherited diseases lie in non-coding regions that lack adequate interpretation, making it indispensable to systematically discover functional sites at the whole genome level and precisely decipher their implications in a comprehensive manner. Although computational approaches have been complementing high-throughput biological experiments towards the annotation of the human genome, it still remains a big challenge to accurately annotate regulatory elements in the context of a specific cell type via automatic learning of the DNA sequence code from large-scale sequencing data. Indeed, the development of an accurate and interpretable model to learn the DNA sequence signature and further enable the identification of causative genetic variants has become essential in both genomic and genetic studies. We proposed Deopen, a hybrid framework mainly based on a deep convolutional neural network, to automatically learn the regulatory code of DNA sequences and predict chromatin accessibility. In a series of comparison with existing methods, we show the superior performance of our model in not only the classification of accessible regions against background sequences sampled at random, but also the regression of DNase-seq signals. Besides, we further visualize the convolutional kernels and show the match of identified sequence signatures and known motifs. We finally demonstrate the sensitivity of our model in finding causative noncoding variants in the analysis of a breast cancer dataset. We expect to see wide applications of Deopen with either public or in-house chromatin accessibility data in the annotation of the human genome and the identification of non-coding variants associated with diseases. Deopen is freely available at https://github.com/kimmo1019/Deopen. ruijiang@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The identification of cis-regulatory elements: A review from a machine learning perspective.
Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W
2015-12-01
The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates
McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg
2009-01-01
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110
Epigenetic regulatory mechanisms in vertebrate eye development and disease
Cvekl, A; Mitton, KP
2014-01-01
Eukaryotic DNA is organized as a nucleoprotein polymer termed chromatin with nucleosomes serving as its repetitive architectural units. Cellular differentiation is a dynamic process driven by activation and repression of specific sets of genes, partitioning the genome into transcriptionally active and inactive chromatin domains. Chromatin architecture at individual genes/loci may remain stable through cell divisions, from a single mother cell to its progeny during mitosis, and represents an example of epigenetic phenomena. Epigenetics refers to heritable changes caused by mechanisms distinct from the primary DNA sequence. Recent studies have shown a number of links between chromatin structure, gene expression, extracellular signaling, and cellular differentiation during eye development. This review summarizes recent advances in this field, and the relationship between sequence-specific DNA-binding transcription factors and their roles in recruitment of chromatin remodeling enzymes. In addition, lens and retinal differentiation is accompanied by specific changes in the nucleolar organization, expression of non-coding RNAs, and DNA methylation. Epigenetic regulatory mechanisms in ocular tissues represent exciting areas of research that have opened new avenues for understanding normal eye development, inherited eye diseases and eye diseases related to aging and the environment. PMID:20179734
Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael
2013-01-01
Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343
Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).
Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar
2016-12-01
In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.
Yang, Jian-Hua; Li, Jun-Hao; Jiang, Shan; Zhou, Hui; Qu, Liang-Hu
2013-01-01
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.
Hall, L; Laird, J E; Craig, R K
1984-01-01
Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375
Shapiro, James A
2016-06-08
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Shapiro, James A.
2016-01-01
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490
Hay, Elizabeth A; Cowie, Philip; MacKenzie, Alasdair
2017-01-01
There can now be little doubt that the cis-regulatory genome represents the largest information source within the human genome essential for health. In addition to containing up to five times more information than the coding genome, the cis-regulatory genome also acts as a major reservoir of disease-associated polymorphic variation. The cis-regulatory genome, which is comprised of enhancers, silencers, promoters, and insulators, also acts as a major functional target for epigenetic modification including DNA methylation and chromatin modifications. These epigenetic modifications impact the ability of cis-regulatory sequences to maintain tissue-specific and inducible expression of genes that preserve health. There has been limited ability to identify and characterize the functional components of this huge and largely misunderstood part of the human genome that, for decades, was ignored as "Junk" DNA. In an attempt to address this deficit, the current chapter will first describe methods of identifying and characterizing functional elements of the cis-regulatory genome at a genome-wide level using databases such as ENCODE, the UCSC browser, and NCBI. We will then explore the databases on the UCSC genome browser, which provides access to DNA methylation and chromatin modification datasets. Finally, we will describe how we can superimpose the huge volume of study data contained in the NCBI archives onto that contained within the UCSC browser in order to glean relevant in vivo study data for any locus within the genome. An ability to access and utilize these information sources will become essential to informing the future design of experiments and subsequent determination of the role of epigenetics in health and disease and will form a critical step in our development of personalized medicine.
Cloutier, Sara C; Wang, Siwen; Ma, Wai Kit; Al Husini, Nadra; Dhoondia, Zuzer; Ansari, Athar; Pascuzzi, Pete E; Tran, Elizabeth J
2016-02-04
Long non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S. cerevisiae promote transcriptional induction in trans by formation of lncRNA-DNA hybrids or R-loops. The evolutionarily conserved RNA helicase Dbp2 regulates formation of these R-loops as genomic deletion or nuclear depletion results in accumulation of these structures across the GAL cluster gene promoters and coding regions. Enhanced transcriptional induction is manifested by lncRNA-dependent displacement of the Cyc8 co-repressor and subsequent gene looping, suggesting that these lncRNAs promote induction by altering chromatin architecture. Moreover, the GAL lncRNAs confer a competitive fitness advantage to yeast cells because expression of these non-coding molecules correlates with faster adaptation in response to an environmental switch. Copyright © 2016 Elsevier Inc. All rights reserved.
Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard
2008-01-10
Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched inmore » bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.« less
Gene and genon concept: coding versus regulation
2007-01-01
We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon. PMID:18087760
OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry
2014-01-01
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
Ikegami, Kohta; Ohgane, Jun; Tanaka, Satoshi; Yagi, Shintaro; Shiota, Kunio
2009-01-01
Genes constitute only a small proportion of the mammalian genome, the majority of which is composed of non-genic repetitive elements including interspersed repeats and satellites. A unique feature of the mammalian genome is that there are numerous tissue-dependent, differentially methylated regions (T-DMRs) in the non-repetitive sequences, which include genes and their regulatory elements. The epigenetic status of T-DMRs varies from that of repetitive elements and constitutes the DNA methylation profile genome-wide. Since the DNA methylation profile is specific to each cell and tissue type, much like a fingerprint, it can be used as a means of identification. The formation of DNA methylation profiles is the basis for cell differentiation and development in mammals. The epigenetic status of each T-DMR is regulated by the interplay between DNA methyltransferases, histone modification enzymes, histone subtypes, non-histone nuclear proteins and non-coding RNAs. In this review, we will discuss how these epigenetic factors cooperate to establish cell- and tissue-specific DNA methylation profiles.
Mutations Affecting Expression of the rosy Locus in Drosophila melanogaster
Lee, Chong Sung; Curtis, Daniel; McCarron, Margaret; Love, Carol; Gray, Mark; Bender, Welcome; Chovnick, Arthur
1987-01-01
The rosy locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Previous studies defined a "control element" near the 5' end of the gene, where variant sites affected the amount of rosy mRNA and protein produced. We have determined the DNA sequence of this region from both genomic and cDNA clones, and from the ry+10 underproducer strain. This variant strain had many sequence differences, so that the site of the regulatory change could not be fixed. A mutagenesis was also undertaken to isolate new regulatory mutations. We induced 376 new mutations with 1-ethyl-1-nitrosourea (ENU) and screened them to isolate those that reduced the amount of XDH protein produced, but did not change the properties of the enzyme. Genetic mapping was used to find mutations located near the 5' end of the gene. DNA from each of seven mutants was cloned and sequenced through the 5' region. Mutant base changes were identified in all seven; they appear to affect splicing and translation of the rosy mRNA. In a related study (T. P. Keith et al. 1987), the genomic and cDNA sequences are extended through the 3' end of the gene; the combined sequences define the processing pattern of the rosy transcript and predict the amino acid sequence of XDH. PMID:3036645
A deep learning method for lincRNA detection using auto-encoder algorithm.
Yu, Ning; Yu, Zeng; Pan, Yi
2017-12-06
RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.
Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K
2013-10-01
Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.
Noh, Hyun Ji; Tang, Ruqi; Flannick, Jason; O'Dushlaine, Colm; Swofford, Ross; Howrigan, Daniel; Genereux, Diane P; Johnson, Jeremy; van Grootheest, Gerard; Grünblatt, Edna; Andersson, Erik; Djurfeldt, Diana R; Patel, Paresh D; Koltookian, Michele; M Hultman, Christina; Pato, Michele T; Pato, Carlos N; Rasmussen, Steven A; Jenike, Michael A; Hanna, Gregory L; Stewart, S Evelyn; Knowles, James A; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Wagner, Michael; Rück, Christian; Mathews, Carol A; Walitza, Susanne; Cath, Daniëlle C; Feng, Guoping; Karlsson, Elinor K; Lindblad-Toh, Kerstin
2017-10-17
Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog, and mouse. Using a new method that prioritizes likely functional variants, we compared 592 cases to 560 controls and found four strongly associated genes, validated in a larger cohort. NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in neuroblastoma cells. NRXN1 achieves genome-wide significance (p = 6.37 × 10 -11 ) when we include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key component in compulsive behaviors, and show that targeted sequencing plus functional annotation can identify potentially causative variants, even when genomic data are limited.Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with symptoms including intrusive thoughts and time-consuming repetitive behaviors. Here Noh and colleagues identify genes enriched for functional variants associated with increased risk of OCD.
Decoding the complex genetic causes of heart diseases using systems biology.
Djordjevic, Djordje; Deshpande, Vinita; Szczesnik, Tomasz; Yang, Andrian; Humphreys, David T; Giannoulatou, Eleni; Ho, Joshua W K
2015-03-01
The pace of disease gene discovery is still much slower than expected, even with the use of cost-effective DNA sequencing and genotyping technologies. It is increasingly clear that many inherited heart diseases have a more complex polygenic aetiology than previously thought. Understanding the role of gene-gene interactions, epigenetics, and non-coding regulatory regions is becoming increasingly critical in predicting the functional consequences of genetic mutations identified by genome-wide association studies and whole-genome or exome sequencing. A systems biology approach is now being widely employed to systematically discover genes that are involved in heart diseases in humans or relevant animal models through bioinformatics. The overarching premise is that the integration of high-quality causal gene regulatory networks (GRNs), genomics, epigenomics, transcriptomics and other genome-wide data will greatly accelerate the discovery of the complex genetic causes of congenital and complex heart diseases. This review summarises state-of-the-art genomic and bioinformatics techniques that are used in accelerating the pace of disease gene discovery in heart diseases. Accompanying this review, we provide an interactive web-resource for systems biology analysis of mammalian heart development and diseases, CardiacCode ( http://CardiacCode.victorchang.edu.au/ ). CardiacCode features a dataset of over 700 pieces of manually curated genetic or molecular perturbation data, which enables the inference of a cardiac-specific GRN of 280 regulatory relationships between 33 regulator genes and 129 target genes. We believe this growing resource will fill an urgent unmet need to fully realise the true potential of predictive and personalised genomic medicine in tackling human heart disease.
Decoding the genome beyond sequencing: the new phase of genomic research.
Heng, Henry H Q; Liu, Guo; Stevens, Joshua B; Bremer, Steven W; Ye, Karen J; Abdallah, Batoul Y; Horne, Steven D; Ye, Christine J
2011-10-01
While our understanding of gene-based biology has greatly improved, it is clear that the function of the genome and most diseases cannot be fully explained by genes and other regulatory elements. Genes and the genome represent distinct levels of genetic organization with their own coding systems; Genes code parts like protein and RNA, but the genome codes the structure of genetic networks, which are defined by the whole set of genes, chromosomes and their topological interactions within a cell. Accordingly, the genetic code of DNA offers limited understanding of genome functions. In this perspective, we introduce the genome theory which calls for the departure of gene-centric genomic research. To make this transition for the next phase of genomic research, it is essential to acknowledge the importance of new genome-based biological concepts and to establish new technology platforms to decode the genome beyond sequencing. Copyright © 2011 Elsevier Inc. All rights reserved.
Chernicky, C L; Tan, H; Burfeind, P; Ilan, J; Ilan, J
1996-02-01
There are several cell types within the placenta that produce cytokines which can contribute to the regulatory mechanisms that ensure normal pregnancy. The immunological milieu at the maternofetal interface is considered to be crucial for survival of the fetus. Interleukin-2 (IL-2) is expressed by the syncytiotrophoblast, the cell layer between the mother and the fetus. IL-2 appears to be a key factor in maintenance of pregnancy. Therefore, it was important to determine the sequence of human placental interleukin-2. Direct sequencing of human placental IL-2 cDNA was determined for the coding region. Subclone sequencing was carried out for the 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). The 5'-UTR for human placental IL-2 cDNA is 294 bp, which is 247 nucleotides longer than that reported for cDNA IL-2 derived from T cells. The sequence of the coding region is identical to that reported for T cell IL-2, while sequence analysis of the polymerase chain reaction (PCR) product showed that the cDNA from the 3' end was the same as that reported for cDNA from T cells. Human placental IL-2 cDNA is 1,028 base pairs (excluding the poly A tail), which is 247 bp longer at the 5' end than that reported for IL-2 T cell cDNA. Therefore, the extended 5'-UTR of the placental IL-2 cDNA may be a consequence of alternative promoter utilization in the placenta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Poulabi; Bahlo, Melanie; Schwartz, Jody R.
2002-01-01
Genome wide disease association analysis using SNPs is being explored as a method for dissecting complex genetic traits and a vast number of SNPs have been generated for this purpose. As there are cost and throughput limitations of genotyping large numbers of SNPs and statistical issues regarding the large number of dependent tests on the same data set, to make association analysis practical it has been proposed that SNPs should be prioritized based on likely functional importance. The most easily identifiable functional SNPs are coding SNPs (cSNPs) and accordingly cSNPs have been screened in a number of studies. SNPs inmore » gene regulatory sequences embedded in noncoding DNA are another class of SNPs suggested for prioritization due to their predicted quantitative impact on gene expression. The main challenge in evaluating these SNPs, in contrast to cSNPs is a lack of robust algorithms and databases for recognizing regulatory sequences in noncoding DNA. Approaches that have been previously used to delineate noncoding sequences with gene regulatory activity include cross-species sequence comparisons and the search for sequences recognized by transcription factors. We combined these two methods to sift through mouse human genomic sequences to identify putative gene regulatory elements and subsequently localized SNPs within these sequences in a 1 Megabase (Mb) region of human chromosome 5q31, orthologous to mouse chromosome 11 containing the Interleukin cluster.« less
Roux-Rouquie, M; Marilley, M
2000-09-15
We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X. laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed.
Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human
Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba
2014-01-01
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777
Comprehensive reconstruction and visualization of non-coding regulatory networks in human.
Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba
2014-01-01
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.
MIRA: An R package for DNA methylation-based inference of regulatory activity.
Lawson, John T; Tomazou, Eleni M; Bock, Christoph; Sheffield, Nathan C
2018-03-01
DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for independent region sets with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for each region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of open chromatin and protein binding regions to be leveraged for novel insight into the regulatory state of DNA methylation datasets. R package available on Bioconductor: http://bioconductor.org/packages/release/bioc/html/MIRA.html. nsheffield@virginia.edu.
Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan
2016-01-01
DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761
Cipriano, Andrea; Ballarino, Monica
2018-01-01
The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years. PMID:29560353
PromoterCAD: data-driven design of plant regulatory DNA
Cox, Robert Sidney; Nishikata, Koro; Shimoyama, Sayoko; Yoshida, Yuko; Matsui, Minami; Makita, Yuko; Toyoda, Tetsuro
2013-01-01
Synthetic promoters can control the timing, location and amount of gene expression for any organism. PromoterCAD is a web application for designing synthetic promoters with altered transcriptional regulation. We use a data-first approach, using published high-throughput expression and motif data from for Arabidopsis thaliana to guide DNA design. We demonstrate data mining tools for finding motifs related to circadian oscillations and tissue-specific expression patterns. PromoterCAD is built on the LinkData open platform for data publication and rapid web application development, allowing new data to be easily added, and the source code modified to add new functionality. PromoterCAD URL: http://promotercad.org. LinkData URL: http://linkdata.org. PMID:23766287
DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation
Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob
2014-01-01
As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252
Cheatle Jarvela, Alys M.; Brubaker, Lisa; Vedenko, Anastasia; Gupta, Anisha; Armitage, Bruce A.; Bulyk, Martha L.; Hinman, Veronica F.
2014-01-01
Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites. PMID:25016582
Non-coding RNAs and plant male sterility: current knowledge and future prospects.
Mishra, Ankita; Bohra, Abhishek
2018-02-01
Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi
2009-05-15
BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less
Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Meisheng; Tran, V.T.; Fong, H.K.W.
1991-05-01
The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha}more » protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.« less
Glinsky, Gennadi V.
2015-01-01
Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions such as cancer, diseases of cardiovascular and reproductive systems, metabolic diseases, multiple neurological and psychological disorders. A proximity placement model is proposed explaining how a 33–47% excess of NANOG, CTCF, and POU5F1 proteins immobilized on a DNA scaffold may play a functional role at distal regulatory elements. PMID:25956794
Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.
Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir
2017-08-01
Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome
Ilyas, Bushra; Tsai, Caressa N.; Coombes, Brian K.
2017-01-01
Salmonella Typhimurium has a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to the various host environments it colonizes. The genome of Salmonella Typhimurium has undergone multiple gene acquisition events and has accrued changes in non-coding DNA that have undergone selection by regulatory evolution. Together, at least 17 horizontally acquired pathogenicity islands (SPIs), prophage-associated genes, and changes in core genome regulation contribute to the virulence program of Salmonella. Here, we review the latest understanding of these elements and their contributions to pathogenesis, emphasizing the regulatory circuitry that controls niche-specific gene expression. In addition to an overview of the importance of SPI-1 and SPI-2 to host invasion and colonization, we describe the recently characterized contributions of other SPIs, including the antibacterial activity of SPI-6 and adhesion and invasion mediated by SPI-4. We further discuss how these fitness traits have been integrated into the regulatory circuitry of the bacterial cell through cis-regulatory evolution and by a careful balance of silencing and counter-silencing by regulatory proteins. Detailed understanding of regulatory evolution within Salmonella is uncovering novel aspects of infection biology that relate to host-pathogen interactions and evasion of host immunity. PMID:29034217
Genome-wide colonization of gene regulatory elements by G4 DNA motifs
Du, Zhuo; Zhao, Yiqiang; Li, Ning
2009-01-01
G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure. PMID:19759215
Fedoreyeva, L I; Dilovarova, T A; Ashapkin, V V; Martirosyan, Yu Ts; Khavinson, V Kh; Kharchenko, P N; Vanyushin, B F
2017-04-01
Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10 -7 -10 -9 M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.
Roux-Rouquie, Magali; Marilley, Monique
2000-01-01
We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X.laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed. PMID:10982860
[Long non-coding RNAs in the pathophysiology of atherosclerosis].
Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav
2018-01-01
The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words: atherosclerosis - lincRNA - lncRNA - MALAT - MIAT.
α satellite DNA variation and function of the human centromere
Sullivan, Lori L.; Chew, Kimberline
2017-01-01
ABSTRACT Genomic variation is a source of functional diversity that is typically studied in genic and non-coding regulatory regions. However, the extent of variation within noncoding portions of the human genome, particularly highly repetitive regions, and the functional consequences are not well understood. Satellite DNA, including α satellite DNA found at human centromeres, comprises up to 10% of the genome, but is difficult to study because its repetitive nature hinders contiguous sequence assemblies. We recently described variation within α satellite DNA that affects centromere function. On human chromosome 17 (HSA17), we showed that size and sequence polymorphisms within primary array D17Z1 are associated with chromosome aneuploidy and defective centromere architecture. However, HSA17 can counteract this instability by assembling the centromere at a second, “backup” array lacking variation. Here, we discuss our findings in a broader context of human centromere assembly, and highlight areas of future study to uncover links between genomic and epigenetic features of human centromeres. PMID:28406740
The noncoding human genome and the future of personalised medicine.
Cowie, Philip; Hay, Elizabeth A; MacKenzie, Alasdair
2015-01-30
Non-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues. Cis-regulatory sequences also act as major functional targets of epigenetic modification thus representing an important conduit through which changes in DNA-methylation affects disease susceptibility. The objectives of the current review are (1) to describe what has been learned about identifying and characterising cis-regulatory sequences since the sequencing of the human genome; (2) to discuss their role in interpreting cell signalling pathways pathways; and (3) outline how this role may be altered by polymorphisms and epigenetic changes. We argue that the importance of the cis-regulatory genome for the interpretation of cellular communication pathways cannot be overstated and understanding its role in health and disease will be critical for the future development of personalised medicine.
Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes
Nagy, Corina; Turecki, Gustavo
2017-01-01
Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183
Decoding the non-coding RNAs in Alzheimer's disease.
Schonrock, Nicole; Götz, Jürgen
2012-11-01
Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.
GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing.
Sidorenko, Lyudmila V; Lee, Tzuu-Fen; Woosley, Aaron; Moskal, William A; Bevan, Scott A; Merlo, P Ann Owens; Walsh, Terence A; Wang, Xiujuan; Weaver, Staci; Glancy, Todd P; Wang, PoHao; Yang, Xiaozeng; Sriram, Shreedharan; Meyers, Blake C
2017-11-01
The molecular basis of transgene susceptibility to silencing is poorly characterized in plants; thus, we evaluated several transgene design parameters as means to reduce heritable transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposon-like silencing of canola-biased PUFA synthase transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in a remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three crystal (Cry) proteins from Bacillus thuringiensis (Bt) tested the impact of CDS recoding using different codon bias tables. Transgenes with higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing, providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.
Fernández, Cecilia S; Bruque, Carlos D; Taboas, Melisa; Buzzalino, Noemí D; Espeche, Lucia D; Pasqualini, Titania; Charreau, Eduardo H; Alba, Liliana G; Ghiringhelli, Pablo D; Dain, Liliana
2015-09-01
The aim of the current study was to search for the presence of genetic variants in the CYP21A2 Z promoter regulatory region in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Screening of the 10 most frequent pseudogene-derived mutations was followed by direct sequencing of the entire coding sequence, the proximal promoter, and a distal regulatory region in DNA samples from patients with at least one non-determined allele. We report three non-classical patients that presented a novel genetic variant-g.15626A>G-within the Z promoter regulatory region. In all the patients, the novel variant was found in cis with the mild, less frequent, p.P482S mutation located in the exon 10 of the CYP21A2 gene. The putative pathogenic implication of the novel variant was assessed by in silico analyses and in vitro assays. Topological analyses showed differences in the curvature and bendability of the DNA region bearing the novel variant. By performing functional studies, a significantly decreased activity of a reporter gene placed downstream from the regulatory region was found by the G transition. Our results may suggest that the activity of an allele bearing the p.P482S mutation may be influenced by the misregulated CYP21A2 transcriptional activity exerted by the Z promoter A>G variation.
Fauteux, François; Strömvik, Martina V
2009-01-01
Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs. The majority of discovered motifs match experimentally characterized cis-regulatory elements. These results provide a good starting point for further experimental analysis of plant seed-specific promoters and our methodology can be used to unravel more transcriptional regulatory mechanisms in plants and other eukaryotes. PMID:19843335
Specific DNA binding of the two chicken Deformed family homeodomain proteins, Chox-1.4 and Chox-a.
Sasaki, H; Yokoyama, E; Kuroiwa, A
1990-01-01
The cDNA clones encoding two chicken Deformed (Dfd) family homeobox containing genes Chox-1.4 and Chox-a were isolated. Comparison of their amino acid sequences with another chicken Dfd family homeodomain protein and with those of mouse homologues revealed that strong homologies are located in the amino terminal regions and around the homeodomains. Although homologies in other regions were relatively low, some short conserved sequences were also identified. E. coli-made full length proteins were purified and used for the production of specific antibodies and for DNA binding studies. The binding profiles of these proteins to the 5'-leader and 5'-upstream sequences of Chox-1.4 and Chox-a coding regions were analyzed by immunoprecipitation and DNase I footprint assays. These two Chox proteins bound to the same sites in the 5'-flanking sequences of their coding regions with various affinities and their binding affinities to each site were nearly the same. The consensus sequences of the high and low affinity binding sites were TAATGA(C/G) and CTAATTTT, respectively. A clustered binding site was identified in the 5'-upstream of the Chox-a gene, suggesting that this clustered binding site works as a cis-regulatory element for auto- and/or cross-regulation of Chox-a gene expression. Images PMID:1970866
CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening.
Köferle, Anna; Worf, Karolina; Breunig, Christopher; Baumann, Valentin; Herrero, Javier; Wiesbeck, Maximilian; Hutter, Lukas H; Götz, Magdalena; Fuchs, Christiane; Beck, Stephan; Stricker, Stefan H
2016-11-14
The bacterial CRISPR system is fast becoming the most popular genetic and epigenetic engineering tool due to its universal applicability and adaptability. The desire to deploy CRISPR-based methods in a large variety of species and contexts has created an urgent need for the development of easy, time- and cost-effective methods enabling large-scale screening approaches. Here we describe CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a method for the generation of comprehensive gRNA libraries for CRISPR-based screens. CORALINA gRNA libraries can be derived from any source of DNA without the need of complex oligonucleotide synthesis. We show the utility of CORALINA for human and mouse genomic DNA, its reproducibility in covering the most relevant genomic features including regulatory, coding and non-coding sequences and confirm the functionality of CORALINA generated gRNAs. The simplicity and cost-effectiveness make CORALINA suitable for any experimental system. The unprecedented sequence complexities obtainable with CORALINA libraries are a necessary pre-requisite for less biased large scale genomic and epigenomic screens.
Basu, Swaraj; Larsson, Erik
2018-05-31
Antisense transcripts and other long non-coding RNAs are pervasive in mammalian cells, and some of these molecules have been proposed to regulate proximal protein-coding genes in cis For example, non-coding transcription can contribute to inactivation of tumor suppressor genes in cancer, and antisense transcripts have been implicated in the epigenetic inactivation of imprinted genes. However, our knowledge is still limited and more such regulatory interactions likely await discovery. Here, we make use of available gene expression data from a large compendium of human tumors to generate hypotheses regarding non-coding-to-coding cis -regulatory relationships with emphasis on negative associations, as these are less likely to arise for reasons other than cis -regulation. We document a large number of possible regulatory interactions, including 193 coding/non-coding pairs that show expression patterns compatible with negative cis -regulation. Importantly, by this approach we capture several known cases, and many of the involved coding genes have known roles in cancer. Our study provides a large catalog of putative non-coding/coding cis -regulatory pairs that may serve as a basis for further experimental validation and characterization. Copyright © 2018 Basu and Larsson.
van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan
2016-01-01
RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.
Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves
2017-12-08
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
Deciphering the transcriptional cis-regulatory code.
Yáñez-Cuna, J Omar; Kvon, Evgeny Z; Stark, Alexander
2013-01-01
Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pulido Fontes, L; Quesada Jimenez, P; Mendioroz Iriarte, M
2015-03-01
Epigenetics is the study of heritable modifications in gene expression that do not change the DNA nucleotide sequence. Some of the most thoroughly studied epigenetic mechanisms at present are DNA methylation, post-transcriptional modifications of histones, and the effect of non-coding RNA molecules. Gene expression is regulated by means of these mechanisms and disruption of these molecular pathways may elicit development of diseases. We describe the main epigenetic regulatory mechanisms and review the most recent literature about epigenetic mechanisms and how those mechanisms are involved in different epileptic syndromes. Identifying the epigenetic mechanisms involved in epilepsy is a promising line of research that will deliver more in-depth knowledge of epilepsy pathophysiology and treatments. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo
2003-08-01
Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.
Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress
Feliciello, Isidoro; Akrap, Ivana; Ugarković, Đurđica
2015-01-01
Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes’ transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions. PMID:26275223
Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.
Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A
2014-11-21
To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.
DNA barcode goes two-dimensions: DNA QR code web server.
Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin
2012-01-01
The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.
78 FR 37848 - ASME Code Cases Not Approved for Use
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1233, ``ASME Code Cases not Approved for Use.'' This regulatory guide lists the American Society of Mechanical Engineers (ASME) Code Cases that the NRC has determined not to be acceptable for use on a generic basis.
The DNA Methylome of Human Peripheral Blood Mononuclear Cells
Ye, Mingzhi; Zheng, Hancheng; Yu, Jian; Wu, Honglong; Sun, Jihua; Zhang, Hongyu; Chen, Quan; Luo, Ruibang; Chen, Minfeng; He, Yinghua; Jin, Xin; Zhang, Qinghui; Yu, Chang; Zhou, Guangyu; Sun, Jinfeng; Huang, Yebo; Zheng, Huisong; Cao, Hongzhi; Zhou, Xiaoyu; Guo, Shicheng; Hu, Xueda; Li, Xin; Kristiansen, Karsten; Bolund, Lars; Xu, Jiujin; Wang, Wen; Yang, Huanming; Wang, Jian; Li, Ruiqiang; Beck, Stephan; Wang, Jun; Zhang, Xiuqing
2010-01-01
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies. PMID:21085693
DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information
ERIC Educational Resources Information Center
McCallister, Gary
2005-01-01
The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
Thibodeau, Asa; Márquez, Eladio J; Luo, Oscar; Ruan, Yijun; Menghi, Francesca; Shin, Dong-Guk; Stitzel, Michael L; Vera-Licona, Paola; Ucar, Duygu
2016-06-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.
Schofield, E C; Carver, T; Achuthan, P; Freire-Pritchett, P; Spivakov, M; Todd, J A; Burren, O S
2016-08-15
Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp ob219@cam.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved.
Genetic therapy for the nervous system.
Bowers, William J; Breakefield, Xandra O; Sena-Esteves, Miguel
2011-04-15
Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state.
DNA Barcode Goes Two-Dimensions: DNA QR Code Web Server
Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin
2012-01-01
The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, “DNA barcode” actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113
Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A
2015-01-01
It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.
Widespread Site-Dependent Buffering of Human Regulatory Polymorphism
Kutyavin, Tanya; Stamatoyannopoulos, John A.
2012-01-01
The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF–binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein–DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human–chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of “perfect” genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements. PMID:22457641
Network perturbation by recurrent regulatory variants in cancer
Cho, Ara; Lee, Insuk; Choi, Jung Kyoon
2017-01-01
Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
Bierhoff, H; Schmitz, K; Maass, F; Ye, J; Grummt, I
2010-01-01
Alternative transcription of the same gene in sense and antisense orientation regulates expression of protein-coding genes. Here we show that noncoding RNA (ncRNA) in sense and antisense orientation also controls transcription of rRNA genes (rDNA). rDNA exists in two types of chromatin--a euchromatic conformation that is permissive to transcription and a heterochromatic conformation that is transcriptionally silent. Silencing of rDNA is mediated by NoRC, a chromatin-remodeling complex that triggers heterochromatin formation. NoRC function requires RNA that is complementary to the rDNA promoter (pRNA). pRNA forms a DNA:RNA triplex with a regulatory element in the rDNA promoter, and this triplex structure is recognized by DNMT3b. The results imply that triplex-mediated targeting of DNMT3b to specific sequences may be a common pathway in epigenetic regulation. We also show that rDNA is transcribed in antisense orientation. The level of antisense RNA (asRNA) is down-regulated in cancer cells and up-regulated in senescent cells. Ectopic asRNA triggers trimethylation of histone H4 at lysine 20 (H4K20me3), suggesting that antisense transcripts guide the histone methyltransferase Suv4-20 to rDNA. The results reveal that noncoding RNAs in sense and antisense orientation are important determinants of the epigenetic state of rDNA.
Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.
Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi
2016-04-01
P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Signaling coupled epigenomic regulation of gene expression.
Kumar, R; Deivendran, S; Santhoshkumar, T R; Pillai, M R
2017-10-26
Inheritance of genomic information independent of the DNA sequence, the epigenetics, as well as gene transcription are profoundly shaped by serine/threonine and tyrosine signaling kinases and components of the chromatin remodeling complexes. To precisely respond to a changing external milieu, human cells efficiently translate upstream signals into post-translational modifications (PTMs) on histones and coregulators such as corepressors, coactivators, DNA-binding factors and PTM modifying enzymes. Because a protein with multiple residues for putative PTMs is expected to undergo more than one PTM in cells stimulated with growth factors, the outcome of combinational PTM codes on histones and coregulators is profoundly shaped by regulatory interplays between PTMs. The genomic functions of signaling kinases in cancer cells are manifested by the downstream effectors of cytoplasmic signaling cascades as well as translocation of the cytoplasmic signaling kinases to the nucleus. Signaling-mediated phosphorylation of histones serves as a regulatory switch for other PTMs, and connects chromatin remodeling complexes into gene transcription and gene activity. Here, we will discuss the recent advances in signaling-dependent epigenomic regulation of gene transcription using a few representative cancer-relevant serine/threonine and tyrosine kinases and their interplay with chromatin remodeling factors in cancer cells.
2011-01-01
Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060
Kaplan, Oktay I; Berber, Burak; Hekim, Nezih; Doluca, Osman
2016-11-02
Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing
2008-01-01
complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING
A novel method for in silico identification of regulatory SNPs in human genome.
Li, Rong; Zhong, Dexing; Liu, Ruiling; Lv, Hongqiang; Zhang, Xinman; Liu, Jun; Han, Jiuqiang
2017-02-21
Regulatory single nucleotide polymorphisms (rSNPs), kind of functional noncoding genetic variants, can affect gene expression in a regulatory way, and they are thought to be associated with increased susceptibilities to complex diseases. Here a novel computational approach to identify potential rSNPs is presented. Different from most other rSNPs finding methods which based on hypothesis that SNPs causing large allele-specific changes in transcription factor binding affinities are more likely to play regulatory functions, we use a set of documented experimentally verified rSNPs and nonfunctional background SNPs to train classifiers, so the discriminating features are found. To characterize variants, an extensive range of characteristics, such as sequence context, DNA structure and evolutionary conservation etc. are analyzed. Support vector machine is adopted to build the classifier model together with an ensemble method to deal with unbalanced data. 10-fold cross-validation result shows that our method can achieve accuracy with sensitivity of ~78% and specificity of ~82%. Furthermore, our method performances better than some other algorithms based on aforementioned hypothesis in handling false positives. The original data and the source matlab codes involved are available at https://sourceforge.net/projects/rsnppredict/. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis
Murray, Heath; Koh, Alan
2014-01-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815
Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.
Murray, Heath; Koh, Alan
2014-10-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.
Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.
2012-01-01
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590
Sun, Jiajie; Gao, Yuan; Liu, Dong; Ma, Wei; Xue, Jing; Zhang, Chunlei; Lan, Xianyong; Lei, Chuzhao; Chen, Hong
2012-06-01
The insulin-induced gene 1 (INSIG1) gene encodes a protein that blocks proteolytic activation of sterol regulatory element binding proteins, which are transcription factors that activate genes that regulate cholesterol, fatty acid, and glucose metabolism. However, similar research for the bovine INSIG1 gene is lacking. Therefore, in this study, polymorphisms of the bovine INSIG1 gene were detected in 643 individuals from four cattle breeds by DNA pooling, forced PCR-RFLP, PCR-SSCP, and DNA sequencing methods. Only 10 novel SNPs were identified, which included four mutations in the coding region and the others in the introns. In Nanyang individuals, seven common haplotypes were identified based on four coding region SNPs. The haplotype GACT, with a frequency of 75.4%, was the most prevalent haplotypes and SNPs formed two linkage disequilibrium blocks with strong multi-allelic D' (D' = 1). Additionally, association analysis between mutations of the bovine INSIG1 gene and growth traits in Nanyang cattle at 6, 12, 18, and 24 months old was performed, and the results indicated that the polymorphisms were not significantly associated with body mass.
Germline transformation of the butterfly Bicyclus anynana.
Marcus, Jeffrey M; Ramos, Diane M; Monteiro, Antónia
2004-08-07
Ecological and evolutionary theory has frequently been inspired by the diversity of colour patterns on the wings of butterflies. More recently, these varied patterns have also become model systems for studying the evolution of developmental mechanisms. A technique that will facilitate our understanding of butterfly colour-pattern development is germline transformation. Germline transformation permits functional tests of candidate gene products and of cis-regulatory regions, and provides a means of generating new colour-pattern mutants by insertional mutagenesis. We report the successful transformation of the African satyrid butterfly Bicyclus anynana with two different transposable element vectors, Hermes and piggyBac, each carrying EGFP coding sequences driven by the 3XP3 synthetic enhancer that drives gene expression in the eyes. Candidate lines identified by screening for EGFP in adult eyes were later confirmed by PCR amplification of a fragment of the EGFP coding sequence from genomic DNA. Flanking DNA surrounding the insertions was amplified by inverse PCR and sequenced. Transformation rates were 5% for piggyBac and 10.2% for Hermes. Ultimately, the new data generated by these techniques may permit an integrated understanding of the developmental genetics of colour-pattern formation and of the ecological and evolutionary processes in which these patterns play a role.
A Comparative Encyclopedia of DNA Elements in the Mouse Genome
Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing
2014-01-01
Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824
A comparative encyclopedia of DNA elements in the mouse genome.
Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing
2014-11-20
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan
2016-10-11
Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This 'healthy' gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues.
Genetic therapy for the nervous system
Bowers, William J.; Breakefield, Xandra O.; Sena-Esteves, Miguel
2011-01-01
Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state. PMID:21429918
MicroRNAs in Palatogenesis and Cleft Palate
Schoen, Christian; Aschrafi, Armaz; Thonissen, Michelle; Poelmans, Geert; Von den Hoff, Johannes W.; Carels, Carine E. L.
2017-01-01
Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate. PMID:28420997
Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P. M.; Zhu, Xin-Guang
2016-01-01
Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5′UTR, 3′UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5′UTR, 3′UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. PMID:27436282
Statistical properties of DNA sequences
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.
1995-01-01
We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.
Ancient DNA sequence revealed by error-correcting codes.
Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo
2015-07-10
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.
Ancient DNA sequence revealed by error-correcting codes
Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo
2015-01-01
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228
Qiu, Guo-Hua
2016-01-01
In this review, the protective function of the abundant non-coding DNA in the eukaryotic genome is discussed from the perspective of genome defense against exogenous nucleic acids. Peripheral non-coding DNA has been proposed to act as a bodyguard that protects the genome and the central protein-coding sequences from ionizing radiation-induced DNA damage. In the proposed mechanism of protection, the radicals generated by water radiolysis in the cytosol and IR energy are absorbed, blocked and/or reduced by peripheral heterochromatin; then, the DNA damage sites in the heterochromatin are removed and expelled from the nucleus to the cytoplasm through nuclear pore complexes, most likely through the formation of extrachromosomal circular DNA. To strengthen this hypothesis, this review summarizes the experimental evidence supporting the protective function of non-coding DNA against exogenous nucleic acids. Based on these data, I hypothesize herein about the presence of an additional line of defense formed by small RNAs in the cytosol in addition to their bodyguard protection mechanism in the nucleus. Therefore, exogenous nucleic acids may be initially inactivated in the cytosol by small RNAs generated from non-coding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. Exogenous nucleic acids may enter the nucleus, where some are absorbed and/or blocked by heterochromatin and others integrate into chromosomes. The integrated fragments and the sites of DNA damage are removed by repetitive non-coding DNA elements in the heterochromatin and excluded from the nucleus. Therefore, the normal eukaryotic genome and the central protein-coding sequences are triply protected by non-coding DNA against invasion by exogenous nucleic acids. This review provides evidence supporting the protective role of non-coding DNA in genome defense. Copyright © 2016 Elsevier B.V. All rights reserved.
Whole-exome/genome sequencing and genomics.
Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne
2013-12-01
As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.
Hutchins, Andrew Paul; Pei, Duanqing
Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.
Boldogköi, Zsolt
2004-09-01
Population genetics, the mathematical theory of modern evolutionary biology, defines evolution as the alteration of the frequency of distinct gene variants (alleles) differing in fitness over the time. The major problem with this view is that in gene and protein sequences we can find little evidence concerning the molecular basis of phenotypic variance, especially those that would confer adaptive benefit to the bearers. Some novel data, however, suggest that a large amount of genetic variation exists in the regulatory region of genes within populations. In addition, comparison of homologous DNA sequences of various species shows that evolution appears to depend more strongly on gene expression than on the genes themselves. Furthermore, it has been demonstrated in several systems that genes form functional networks, whose products exhibit interrelated expression profiles. Finally, it has been found that regulatory circuits of development behave as evolutionary units. These data demonstrate that our view of evolution calls for a new synthesis. In this article I propose a novel concept, termed the selfish gene network hypothesis, which is based on an overall consideration of the above findings. The major statements of this hypothesis are as follows. (1) Instead of individual genes, gene networks (GNs) are responsible for the determination of traits and behaviors. (2) The primary source of microevolution is the intraspecific polymorphism in GNs and not the allelic variation in either the coding or the regulatory sequences of individual genes. (3) GN polymorphism is generated by the variation in the regulatory regions of the component genes and not by the variance in their coding sequences. (4) Evolution proceeds through continuous restructuring of the composition of GNs rather than fixing of specific alleles or GN variants.
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks
Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu
2016-01-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171
Identification of functional elements and regulatory circuits by Drosophila modENCODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.
2010-12-22
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- andmore » tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions of {approx}40% of the protein and nonprotein-coding genes [FlyBase 5.12 (4)] have been determined from cDNA collections (5, 6), manual curation of gene models (7), gene mutations and comprehensive genome-wide RNA interference screens (8-10), and comparative genomic analyses (11, 12). The Drosophila modENCODE project has generated more than 700 data sets that profile transcripts, histone modifications and physical nucleosome properties, general and specific transcription factors (TFs), and replication programs in cell lines, isolated tissues, and whole organisms across several developmental stages (Fig. 1). Here, we computationally integrate these data sets and report (i) improved and additional genome annotations, including full-length proteincoding genes and peptides as short as 21 amino acids; (ii) noncoding transcripts, including 132 candidate structural RNAs and 1608 nonstructural transcripts; (iii) additional Argonaute (Ago)-associated small RNA genes and pathways, including new microRNAs (miRNAs) encoded within protein-coding exons and endogenous small interfering RNAs (siRNAs) from 3-inch untranslated regions; (iv) chromatin 'states' defined by combinatorial patterns of 18 chromatin marks that are associated with distinct functions and properties; (v) regions of high TF occupancy and replication activity with likely epigenetic regulation; (vi)mixed TF and miRNA regulatory networks with hierarchical structure and enriched feed-forward loops; (vii) coexpression- and co-regulation-based functional annotations for nearly 3000 genes; (viii) stage- and tissue-specific regulators; and (ix) predictive models of gene expression levels and regulator function.« less
Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.
Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang
2014-10-01
MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.
A Pol V–Mediated Silencing, Independent of RNA–Directed DNA Methylation, Applies to 5S rDNA
Douet, Julien; Tutois, Sylvie; Tourmente, Sylvette
2009-01-01
The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA–directed DNA methylation (RdDM), which also requires activities from RDR2 (RNA–Dependent RNA Polymerase 2), DCL3 (Dicer-Like 3), AGO4 (Argonaute), and DRM2 (Domains Rearranged Methyltransferase 2). RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA–encoding DNA (rDNA) arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V–loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM–independent and comes specifically at chromosome 4, in addition to the RdDM pathway. PMID:19834541
Chappell, James; Jensen, Kirsten; Freemont, Paul S.
2013-01-01
A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2008-0554] RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases; Corrections AGENCY: Nuclear Regulatory... the American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016, phone (800) 843...
Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.
2007-01-01
DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217
ANN modeling of DNA sequences: new strategies using DNA shape code.
Parbhane, R V; Tambe, S S; Kulkarni, B D
2000-09-01
Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
An Integrated Encyclopedia of DNA Elements in the Human Genome
2012-01-01
Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research. PMID:22955616
An efficient transgenic system by TA cloning vectors and RNAi for C. elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gengyo-Ando, Keiko; CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012; Yoshina, Sawako
2006-11-03
In the nematode, transgenic analyses have been performed by microinjection of DNA from various sources into the syncytium gonad. To expedite these transgenic analyses, we solved two potential problems in this work. First, we constructed an efficient TA-cloning vector system which is useful for any promoter. By amplifying the genomic DNA fragments which contain regulatory sequences with or without the coding region, we could easily construct plasmids expressing fluorescent protein fusion without considering restriction sites. We could dissect motor neurons with three colors in a single animal. Second, we used feeding RNAi to isolate transgenic strains which express lag-2::venus fusionmore » gene. We found that the fusion protein is toxic when ectopically expressed in embryos but is functional to rescue a loss of function mutant in the lag-2 gene. Thus, the transgenic system described here should be useful to examine the protein function in the nematode.« less
G = MAT: linking transcription factor expression and DNA binding data.
Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak
2011-01-31
Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.
G = MAT: Linking Transcription Factor Expression and DNA Binding Data
Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak
2011-01-01
Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945
Stable chromosome condensation revealed by chromosome conformation capture
Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.
2015-01-01
SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940
Lin, Runmao; He, Liye; He, Jiayu; Qin, Peigang; Wang, Yanran; Deng, Qiming; Yang, Xiaoting; Li, Shuangcheng; Wang, Shiquan; Wang, Wenming; Liu, Huainian; Li, Ping; Zheng, Aiping
2016-07-03
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Basak, Jolly; Nithin, Chandran
2015-01-01
Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.
Pérez, Astrid; Gómez, Manuel J.; Gayoso, Carmen; Vallejo, Juan A.; Ohneck, Emily J.; Valle, Jaione; Actis, Luis A.; Beceiro, Alejandro; Bou, Germán
2017-01-01
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978. PMID:28763494
DNA rearrangements directed by non-coding RNAs in ciliates
Mochizuki, Kazufumi
2013-01-01
Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937
Living Organisms Author Their Read-Write Genomes in Evolution
2017-01-01
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with “non-coding” DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called “non-coding” RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations. PMID:29211049
Camara, Johanna Eltz; Skarstad, Kirsten; Crooke, Elliott
2003-05-01
Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.
Cancer Chemoprevention by Dietary Polyphenols: Promising Role for Epigenetics
Link, Alexander; Balaguer, Francesc; Goel, Ajay
2010-01-01
Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans. PMID:20599773
Giresi, Paul G.; Lieb, Jason D.
2009-01-01
The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047
Dover, Nir; Barash, Jason R.; Burke, Julianne N.; ...
2014-05-22
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ 70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less
When gene medication is also genetic modification--regulating DNA treatment.
Foss, Grethe S; Rogne, Sissel
2007-07-26
The molecular methods used in DNA vaccination and gene therapy resemble in many ways the methods applied in genetic modification of organisms. In some regulatory regimes, this creates an overlap between 'gene medication' and genetic modification. In Norway, an animal injected with plasmid DNA, in the form of DNA vaccine or gene therapy, currently is viewed as being genetically modified for as long as the added DNA is present in the animal. However, regulating a DNA-vaccinated animal as genetically modified creates both regulatory and practical challenges. It is also counter-intuitive to many biologists. Since immune responses can be elicited also to alter traits, the borderline between vaccination and the modification of properties is no longer distinct. In this paper, we discuss the background for the Norwegian interpretation and ways in which the regulatory challenge can be handled.
Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease
Kleinjan, Dirk A.; van Heyningen, Veronica
2005-01-01
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674
A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter.
Clos, J; Buttgereit, D; Grummt, I
1986-01-01
A transcription factor that is specific for mouse rDNA has been partially purified from Ehrlich ascites cells. This factor [designated transcription initiation factor (TIF)-IB] is required for accurate in vitro synthesis of mouse rRNA in addition to RNA polymerase I and another regulatory factor, TIF-IA. TIF-IB activity is present in extracts both from growing and nongrowing cells in comparable amounts. Prebinding competition experiments with wild-type and mutant templates suggest that TIF-IB interacts with the core control element of the rDNA promoter, which is located immediately upstream of the initiation site. The specific binding of TIF-IB to the RNA polymerase I promoter is demonstrated by exonuclease III protection experiments. The 3' border of the sequences protected by TIF-IB is shown to be on the coding strand at position -21 and on the noncoding strand at position -7. The results suggest that direct binding of TIF-IB to sequences in the core promoter element is the mechanism by which this factor imparts promoter selectivity to RNA polymerase I. Images PMID:3456157
Transcription factor trapping by RNA in gene regulatory elements.
Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A
2015-11-20
Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.
Searching for statistically significant regulatory modules.
Bailey, Timothy L; Noble, William Stafford
2003-10-01
The regulatory machinery controlling gene expression is complex, frequently requiring multiple, simultaneous DNA-protein interactions. The rate at which a gene is transcribed may depend upon the presence or absence of a collection of transcription factors bound to the DNA near the gene. Locating transcription factor binding sites in genomic DNA is difficult because the individual sites are small and tend to occur frequently by chance. True binding sites may be identified by their tendency to occur in clusters, sometimes known as regulatory modules. We describe an algorithm for detecting occurrences of regulatory modules in genomic DNA. The algorithm, called mcast, takes as input a DNA database and a collection of binding site motifs that are known to operate in concert. mcast uses a motif-based hidden Markov model with several novel features. The model incorporates motif-specific p-values, thereby allowing scores from motifs of different widths and specificities to be compared directly. The p-value scoring also allows mcast to only accept motif occurrences with significance below a user-specified threshold, while still assigning better scores to motif occurrences with lower p-values. mcast can search long DNA sequences, modeling length distributions between motifs within a regulatory module, but ignoring length distributions between modules. The algorithm produces a list of predicted regulatory modules, ranked by E-value. We validate the algorithm using simulated data as well as real data sets from fruitfly and human. http://meme.sdsc.edu/MCAST/paper
Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription
NASA Astrophysics Data System (ADS)
Schmidt, Moritz; Summerer, Daniel
2014-02-01
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.
Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.
Tani, Hidenori
2017-03-22
Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.
Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P M; Zhu, Xin-Guang
2016-09-01
Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5'UTR, 3'UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5'UTR, 3'UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Introduction to the Natural Anticipator and the Artificial Anticipator
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
2010-11-01
This short communication deals with the introduction of the concept of anticipator, which is one who anticipates, in the framework of computing anticipatory systems. The definition of anticipation deals with the concept of program. Indeed, the word program, comes from "pro-gram" meaning "to write before" by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes or behavioural responses, that is part of an organism. Any natural or artificial programs are thus related to anticipatory rewriting systems, as shown in this paper. All the cells in the body, and the neurons in the brain, are programmed by the anticipatory genetic code, DNA, in a low-level language with four signs. The programs in computers are also computing anticipatory systems. It will be shown, at one hand, that the genetic code DNA is a natural anticipator. As demonstrated by Nobel laureate McClintock [8], genomes are programmed. The fundamental program deals with the DNA genetic code. The properties of the DNA consist in self-replication and self-modification. The self-replicating process leads to reproduction of the species, while the self-modifying process leads to new species or evolution and adaptation in existing ones. The genetic code DNA keeps its instructions in memory in the DNA coding molecule. The genetic code DNA is a rewriting system, from DNA coding to DNA template molecule. The DNA template molecule is a rewriting system to the Messenger RNA molecule. The information is not destroyed during the execution of the rewriting program. On the other hand, it will be demonstrated that Turing machine is an artificial anticipator. The Turing machine is a rewriting system. The head reads and writes, modifying the content of the tape. The information is destroyed during the execution of the program. This is an irreversible process. The input data are lost.
[Agricultural biotechnology safety assessment].
McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue
2015-01-01
Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe.
Nutt, S L; Morrison, A M; Dörfler, P; Rolink, A; Busslinger, M
1998-01-01
The Pax-5 gene codes for the transcription factor BSAP which is essential for the progression of adult B lymphopoiesis beyond an early progenitor (pre-BI) cell stage. Although several genes have been proposed to be regulated by BSAP, CD19 is to date the only target gene which has been genetically confirmed to depend on this transcription factor for its expression. We have now taken advantage of cultured pre-BI cells of wild-type and Pax-5 mutant bone marrow to screen a large panel of B lymphoid genes for additional BSAP target genes. Four differentially expressed genes were shown to be under the direct control of BSAP, as their expression was rapidly regulated in Pax-5-deficient pre-BI cells by a hormone-inducible BSAP-estrogen receptor fusion protein. The genes coding for the B-cell receptor component Ig-alpha (mb-1) and the transcription factors N-myc and LEF-1 are positively regulated by BSAP, while the gene coding for the cell surface protein PD-1 is efficiently repressed. Distinct regulatory mechanisms of BSAP were revealed by reconstituting Pax-5-deficient pre-BI cells with full-length BSAP or a truncated form containing only the paired domain. IL-7 signalling was able to efficiently induce the N-myc gene only in the presence of full-length BSAP, while complete restoration of CD19 synthesis was critically dependent on the BSAP protein concentration. In contrast, the expression of the mb-1 and LEF-1 genes was already reconstituted by the paired domain polypeptide lacking any transactivation function, suggesting that the DNA-binding domain of BSAP is sufficient to recruit other transcription factors to the regulatory regions of these two genes. In conclusion, these loss- and gain-of-function experiments demonstrate that BSAP regulates four newly identified target genes as a transcriptional activator, repressor or docking protein depending on the specific regulatory sequence context. PMID:9545244
Franc, M A; Cohen, N; Warner, A W; Shaw, P M; Groenen, P; Snapir, A
2011-04-01
DNA samples collected in clinical trials and stored for future research are valuable to pharmaceutical drug development. Given the perceived higher risk associated with genetic research, industry has implemented complex coding methods for DNA. Following years of experience with these methods and with addressing questions from institutional review boards (IRBs), ethics committees (ECs) and health authorities, the industry has started reexamining the extent of the added value offered by these methods. With the goal of harmonization, the Industry Pharmacogenomics Working Group (I-PWG) conducted a survey to gain an understanding of company practices for DNA coding and to solicit opinions on their effectiveness at protecting privacy. The results of the survey and the limitations of the coding methods are described. The I-PWG recommends dialogue with key stakeholders regarding coding practices such that equal standards are applied to DNA and non-DNA samples. The I-PWG believes that industry standards for privacy protection should provide adequate safeguards for DNA and non-DNA samples/data and suggests a need for more universal standards for samples stored for future research.
Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge
2013-01-01
This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach. PMID:23984392
Hundreds of conserved non-coding genomic regions are independently lost in mammals
Hiller, Michael; Schaar, Bruce T.; Bejerano, Gill
2012-01-01
Conserved non-protein-coding DNA elements (CNEs) often encode cis-regulatory elements and are rarely lost during evolution. However, CNE losses that do occur can be associated with phenotypic changes, exemplified by pelvic spine loss in sticklebacks. Using a computational strategy to detect complete loss of CNEs in mammalian genomes while strictly controlling for artifacts, we find >600 CNEs that are independently lost in at least two mammalian lineages, including a spinal cord enhancer near GDF11. We observed several genomic regions where multiple independent CNE loss events happened; the most extreme is the DIAPH2 locus. We show that CNE losses often involve deletions and that CNE loss frequencies are non-uniform. Similar to less pleiotropic enhancers, we find that independently lost CNEs are shorter, slightly less constrained and evolutionarily younger than CNEs without detected losses. This suggests that independently lost CNEs are less pleiotropic and that pleiotropic constraints contribute to non-uniform CNE loss frequencies. We also detected 35 CNEs that are independently lost in the human lineage and in other mammals. Our study uncovers an interesting aspect of the evolution of functional DNA in mammalian genomes. Experiments are necessary to test if these independently lost CNEs are associated with parallel phenotype changes in mammals. PMID:23042682
Li, Meng Amy; Amaral, Paulo P; Cheung, Priscilla; Bergmann, Jan H; Kinoshita, Masaki; Kalkan, Tüzer; Ralser, Meryem; Robson, Sam; von Meyenn, Ferdinand; Paramor, Maike; Yang, Fengtang; Chen, Caifu; Nichols, Jennifer; Spector, David L; Kouzarides, Tony; He, Lin; Smith, Austin
2017-01-01
Execution of pluripotency requires progression from the naïve status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the dynamics of exit from naïve pluripotency. Eprn deletion delays the extinction of ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition, correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a. The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of naïve pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network modulations. DOI: http://dx.doi.org/10.7554/eLife.23468.001 PMID:28820723
DNA context represents transcription regulation of the gene in mouse embryonic stem cells
NASA Astrophysics Data System (ADS)
Ha, Misook; Hong, Soondo
2016-04-01
Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.
DNA context represents transcription regulation of the gene in mouse embryonic stem cells.
Ha, Misook; Hong, Soondo
2016-04-14
Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.
Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A
2015-07-01
Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks
Tse, Margaret J.; Chu, Brian K.; Roy, Mahua; Read, Elizabeth L.
2015-01-01
Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. PMID:26488666
Decoding DNA labels by melting curve analysis using real-time PCR.
Balog, József A; Fehér, Liliána Z; Puskás, László G
2017-12-01
Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.
Comparative genomics of 9 novel Paenibacillus larvae bacteriophages
Stamereilers, Casey; LeBlanc, Lucy; Yost, Diane; Amy, Penny S.; Tsourkas, Philippos K.
2016-01-01
ABSTRACT American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 3′ overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area. PMID:27738559
Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode.
Cai, Yong; Li, Peng; Li, Xi-Wen; Zhao, Jing; Chen, Hai; Yang, Qing; Hu, Hao
2017-07-01
In this study, we investigated how to convert the Panax ginseng DNA sequence code and chemical fingerprints into a two-dimensional code. In order to improve the compression efficiency, GATC2Bytes and digital merger compression algorithms are proposed. HPLC chemical fingerprint data of 10 groups of P. ginseng from Northeast China and the internal transcribed spacer 2 (ITS2) sequence code as the DNA sequence code were ready for conversion. In order to convert such data into a two-dimensional code, the following six steps were performed: First, the chemical fingerprint characteristic data sets were obtained through the inflection filtering algorithm. Second, precompression processing of such data sets is undertaken. Third, precompression processing was undertaken with the P. ginseng DNA (ITS2) sequence codes. Fourth, the precompressed chemical fingerprint data and the DNA (ITS2) sequence code were combined in accordance with the set data format. Such combined data can be compressed by Zlib, an open source data compression algorithm. Finally, the compressed data generated a two-dimensional code called a quick response code (QR code). Through the abovementioned converting process, it can be found that the number of bytes needed for storing P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can be greatly reduced. After GTCA2Bytes algorithm processing, the ITS2 compression rate reaches 75% and the chemical fingerprint compression rate exceeds 99.65% via filtration and digital merger compression algorithm processing. Therefore, the overall compression ratio even exceeds 99.36%. The capacity of the formed QR code is around 0.5k, which can easily and successfully be read and identified by any smartphone. P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can form a QR code after data processing, and therefore the QR code can be a perfect carrier of the authenticity and quality of P. ginseng information. This study provides a theoretical basis for the development of a quality traceability system of traditional Chinese medicine based on a two-dimensional code.
Integrating non-coding RNAs in JAK-STAT regulatory networks
Witte, Steven; Muljo, Stefan A
2014-01-01
Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925
iFORM: Incorporating Find Occurrence of Regulatory Motifs.
Ren, Chao; Chen, Hebing; Yang, Bite; Liu, Feng; Ouyang, Zhangyi; Bo, Xiaochen; Shu, Wenjie
2016-01-01
Accurately identifying the binding sites of transcription factors (TFs) is crucial to understanding the mechanisms of transcriptional regulation and human disease. We present incorporating Find Occurrence of Regulatory Motifs (iFORM), an easy-to-use and efficient tool for scanning DNA sequences with TF motifs described as position weight matrices (PWMs). Both performance assessment with a receiver operating characteristic (ROC) curve and a correlation-based approach demonstrated that iFORM achieves higher accuracy and sensitivity by integrating five classical motif discovery programs using Fisher's combined probability test. We have used iFORM to provide accurate results on a variety of data in the ENCODE Project and the NIH Roadmap Epigenomics Project, and the tool has demonstrated its utility in further elucidating individual roles of functional elements. Both the source and binary codes for iFORM can be freely accessed at https://github.com/wenjiegroup/iFORM. The identified TF binding sites across human cell and tissue types using iFORM have been deposited in the Gene Expression Omnibus under the accession ID GSE53962.
Glinsky, Gennadi V.
2016-01-01
Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290
What Information is Stored in DNA: Does it Contain Digital Error Correcting Codes?
NASA Astrophysics Data System (ADS)
Liebovitch, Larry
1998-03-01
The longest term correlations in living systems are the information stored in DNA which reflects the evolutionary history of an organism. The 4 bases (A,T,G,C) encode sequences of amino acids as well as locations of binding sites for proteins that regulate DNA. The fidelity of this important information is maintained by ANALOG error check mechanisms. When a single strand of DNA is replicated the complementary base is inserted in the new strand. Sometimes the wrong base is inserted that sticks out disrupting the phosphate backbone. The new base is not yet methylated, so repair enzymes, that slide along the DNA, can tear out the wrong base and replace it with the right one. The bases in DNA form a sequence of 4 different symbols and so the information is encoded in a DIGITAL form. All the digital codes in our society (ISBN book numbers, UPC product codes, bank account numbers, airline ticket numbers) use error checking code, where some digits are functions of other digits to maintain the fidelity of transmitted informaiton. Does DNA also utitlize a DIGITAL error chekcing code to maintain the fidelity of its information and increase the accuracy of replication? That is, are some bases in DNA functions of other bases upstream or downstream? This raises the interesting mathematical problem: How does one determine whether some symbols in a sequence of symbols are a function of other symbols. It also bears on the issue of determining algorithmic complexity: What is the function that generates the shortest algorithm for reproducing the symbol sequence. The error checking codes most used in our technology are linear block codes. We developed an efficient method to test for the presence of such codes in DNA. We coded the 4 bases as (0,1,2,3) and used Gaussian elimination, modified for modulus 4, to test if some bases are linear combinations of other bases. We used this method to analyze the base sequence in the genes from the lac operon and cytochrome C. We did not find evidence for such error correcting codes in these genes. However, we analyzed only a small amount of DNA and if digitial error correcting schemes are present in DNA, they may be more subtle than such simple linear block codes. The basic issue we raise here, is how information is stored in DNA and an appreciation that digital symbol sequences, such as DNA, admit of interesting schemes to store and protect the fidelity of their information content. Liebovitch, Tao, Todorov, Levine. 1996. Biophys. J. 71:1539-1544. Supported by NIH grant EY6234.
Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi
2016-06-15
Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Mikhailov, Alexander T; Torrado, Mario
2018-05-12
There is growing evidence that putative gene regulatory networks including cardio-enriched transcription factors, such as PITX2, TBX5, ZFHX3, and SHOX2, and their effector/target genes along with downstream non-coding RNAs can play a potentially important role in the process of adaptive and maladaptive atrial rhythm remodeling. In turn, expression of atrial fibrillation-associated transcription factors is under the control of upstream regulatory non-coding RNAs. This review broadly explores gene regulatory mechanisms associated with susceptibility to atrial fibrillation-with key examples from both animal models and patients-within the context of both cardiac transcription factors and non-coding RNAs. These two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective control of atrial rhythm effector gene expression. Perturbations of a dynamic expression balance between transcription factors and corresponding non-coding RNAs can provoke the development or promote the progression of atrial fibrillation. We also outline deficiencies in current models and discuss ongoing studies to clarify remaining mechanistic questions. An understanding of the function of transcription factors and non-coding RNAs in gene regulatory networks associated with atrial fibrillation risk will enable the development of innovative therapeutic strategies.
Goetz, Frederick W; Norberg, Birgitta; McCauley, Linda A R; Iliev, Dimitar B
2004-03-01
The full-length cDNA for the cod (Gadus morhua) StAR was cloned by RT-PCR and library screening using ovarian RNA. From the library screening, 2 size classes of cDNA were obtained; a 1577 bp cDNA (cStAR1) and a 2851 bp cDNA (cStAR2). The cStAR1 cDNA presumably encodes a protein of 286 amino acids. The cStAR2 cDNA was composed of 6 separated sequences that contained all of the coding regions of cStAR1 when added together, but also contained 5 noncoding regions not observed in cStAR1. Polymerase chain reactions of cod genomic DNA produced products slightly larger than cStAR2. The sequence of these products were the same as cStAR2 but revealed one additional noncoding region (intron). Thus, the fish StAR gene contains the same number of exons (7) and introns (6) as observed in mammals, but is approximately half the size of the mammalian gene. Using Northern analysis and RT-PCR, cStAR1 expression was observed only in testes, ovaries and head kidneys. Polymerase chain reaction products were also observed using cDNA from steroidogenic tissues and primers designed to regions specific for cStAR2, indicating that cStAR2 is expressed in tissues and may account for the presence of larger transcripts observed on Northern blots.
Genetic spell-checking: gene editing using single-stranded DNA oligonucleotides.
Rivera-Torres, Natalia; Kmiec, Eric B
2016-02-01
Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Systematic analysis and evolution of 5S ribosomal DNA in metazoans.
Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M
2013-11-01
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.
Systematic analysis and evolution of 5S ribosomal DNA in metazoans
Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M
2013-01-01
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades. PMID:23838690
Long non-coding RNAs and mRNAs profiling during spleen development in pig.
Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou
2018-01-01
Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.
Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.
Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten
2011-01-01
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).
Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai
2014-12-01
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.
Kawano, Tomonori
2013-03-01
There have been a wide variety of approaches for handling the pieces of DNA as the "unplugged" tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given "passwords" and/or secret numbers using DNA sequences. The "passwords" of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original "passwords." The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed.
Informational structure of genetic sequences and nature of gene splicing
NASA Astrophysics Data System (ADS)
Trifonov, E. N.
1991-10-01
Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.
An algebraic hypothesis about the primeval genetic code architecture.
Sánchez, Robersy; Grau, Ricardo
2009-09-01
A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D,A,C,G,U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G identical with C and A=U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B(3))(N) of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.
Epigenetic regulation of hematopoietic stem cell aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu; Department of Pediatrics, Harvard Medical School, Boston, MA 02115; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116
2014-12-10
Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and playmore » a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.« less
Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.
Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P
2015-04-23
With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.
Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.
García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús
2017-08-10
Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Xu; Wang, Fengshan; Sheng, Juzheng
2016-06-16
Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sato, T; Oeller, P W; Theologis, A
1991-02-25
The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.
kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets
Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S.; Beer, Michael A.
2013-01-01
Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167–80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org. PMID:23771147
Fukami, Maki; Naiki, Yasuhiro; Muroya, Koji; Hamajima, Takashi; Soneda, Shun; Horikawa, Reiko; Jinno, Tomoko; Katsumi, Momori; Nakamura, Akie; Asakura, Yumi; Adachi, Masanori; Ogata, Tsutomu; Kanzaki, Susumu
2015-09-01
Pseudoautosomal region 1 (PAR1) contains SHOX, in addition to seven highly conserved non-coding DNA elements (CNEs) with cis-regulatory activity. Microdeletions involving SHOX exons 1-6a and/or the CNEs result in idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). Here, we report six rare copy-number variations (CNVs) in PAR1 identified through copy-number analyzes of 245 ISS/LWD patients and 15 unaffected individuals. The six CNVs consisted of three microduplications encompassing SHOX and some of the CNEs, two microduplications in the SHOX 3'-region affecting one or four of the downstream CNEs, and a microdeletion involving SHOX exon 6b and its neighboring CNE. The amplified DNA fragments of two SHOX-containing duplications were detected at chromosomal regions adjacent to the original positions. The breakpoints of a SHOX-containing duplication resided within Alu repeats. A microduplication encompassing four downstream CNEs was identified in an unaffected father-daughter pair, whereas the other five CNVs were detected in ISS patients. These results suggest that microduplications involving SHOX cause ISS by disrupting the cis-regulatory machinery of this gene and that at least some of microduplications in PAR1 arise from Alu-mediated non-allelic homologous recombination. The pathogenicity of other rare PAR1-linked CNVs, such as CNE-containing microduplications and exon 6b-flanking microdeletions, merits further investigation.
kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets.
Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S; Beer, Michael A
2013-07-01
Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167-80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsugu, H.; Horowitz, R.; Gibson, N.
1994-12-01
Sera from approximately 30% of patients with systemic lupus erythematosus (SLE) contain high titers of autoantibodies that bind to the 52-kDa Ro/SSA protein. We previously detected polymorphisms in the 52-kDa Ro/SSA gene (SSA1) with restriction enzymes, one of which is strongly associated with the presence of SLE (P < 0.0005) in African Americans. A higher disease frequency and more severe forms of the disease are commonly noted among these female patients. To determine the location and nature of this polymorphism, we obtained two clones that span 8.5 kb of the 52-kDa Ro/SSA locus including its upstream regulatory region. Six exonsmore » were identified, and their nucleotide sequences plus adjacent noncoding regions were determined. No differences were found between these exons and the coding region of one of the reported cDNAs. The disease-associated polymorphic site suggested by a restriction enzyme map and confirmed by DNA amplification and nucleotide sequencing was present upstream of exon 1. This polymorphism may be a genetic marker for a disease-related variation in the coding region for the protein or in the upstream regulatory region of this gene. Although this RFLP is present in Japanese, it is not associated with lupus in this race. 41 refs., 4 figs., 2 tabs.« less
Alzan, Heba F; Knowles, Donald P; Suarez, Carlos E
2016-11-01
Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i) identify and map genes encoding for these transcription factors among three parasites' genomes; (ii) identify a previously unreported HMG gene in B. microti; (iii) define a repertoire of eight conserved Myb genes; and (iv) identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.
Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-01-01
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30–60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. PMID:27006398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yon-Sik; Hong, Jung-Man; Lim, Sunny
2006-06-09
Mitochondrial dysfunction may cause diabetes or insulin resistance. Peroxisome proliferation-activated receptor-{gamma} (PPAR-{gamma}) coactivator-1 {alpha} (PGC-1{alpha}) increases mitochondrial transcription factor A (Tfam) resulting in mitochondrial DNA content increase. An association between a single nucleotide polymorphism (SNP), G1444A(Gly482Ser), of PGC-1{alpha} coding region and insulin resistance has been reported in some ethnic groups. In this study, we investigated whether a change of glycine to serine at codon 482 of PGC-1{alpha} affected the Tfam promoter activity. The cDNA of PGC-1{alpha} variant bearing either glycine or serine at 482 codon was transfected into Chang human hepatocyte cells. The PGC-1{alpha} protein bearing glycine had impaired coactivatormore » activity on Tfam promoter-mediated luciferase. We analyzed the PGC-1{alpha} genotype G1444A and mitochondrial DNA (mtDNA) copy number from 229 Korean leukocyte genomic DNAs. Subjects with Gly/Gly had a 20% lower amount of peripheral blood mtDNA than did subjects with Gly/Ser and Ser/Ser (p < 0.05). No correlation was observed between diabetic parameters and PGC-1{alpha} genotypes in Koreans. These results suggest that PGC-1{alpha} variants with Gly/Gly at 482nd amino acid may impair the Tfam transcription, a regulatory function of mitochondrial biogenesis, resulting in dysfunctional mtDNA replication.« less
Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin
2017-10-01
Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.
Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential
Sargent, R. Geoffrey; Kim, Soya
2011-01-01
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933
Dong, Chen; Hu, Huigang; Xie, Jianghui
2016-12-01
DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.
Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli.
Ramisetty, Bhaskar Chandra Mohan; Santhosh, Ramachandran Sarojini
2016-02-01
Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rogers, Julia M; Bulyk, Martha L
2018-04-25
Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology. © 2018 Wiley Periodicals, Inc.
CRITICA: coding region identification tool invoking comparative analysis
NASA Technical Reports Server (NTRS)
Badger, J. H.; Olsen, G. J.; Woese, C. R. (Principal Investigator)
1999-01-01
Gene recognition is essential to understanding existing and future DNA sequence data. CRITICA (Coding Region Identification Tool Invoking Comparative Analysis) is a suite of programs for identifying likely protein-coding sequences in DNA by combining comparative analysis of DNA sequences with more common noncomparative methods. In the comparative component of the analysis, regions of DNA are aligned with related sequences from the DNA databases; if the translation of the aligned sequences has greater amino acid identity than expected for the observed percentage nucleotide identity, this is interpreted as evidence for coding. CRITICA also incorporates noncomparative information derived from the relative frequencies of hexanucleotides in coding frames versus other contexts (i.e., dicodon bias). The dicodon usage information is derived by iterative analysis of the data, such that CRITICA is not dependent on the existence or accuracy of coding sequence annotations in the databases. This independence makes the method particularly well suited for the analysis of novel genomes. CRITICA was tested by analyzing the available Salmonella typhimurium DNA sequences. Its predictions were compared with the DNA sequence annotations and with the predictions of GenMark. CRITICA proved to be more accurate than GenMark, and moreover, many of its predictions that would seem to be errors instead reflect problems in the sequence databases. The source code of CRITICA is freely available by anonymous FTP (rdp.life.uiuc.edu in/pub/critica) and on the World Wide Web (http:/(/)rdpwww.life.uiuc.edu).
Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures
Stark, Alexander; Lin, Michael F.; Kheradpour, Pouya; Pedersen, Jakob S.; Parts, Leopold; Carlson, Joseph W.; Crosby, Madeline A.; Rasmussen, Matthew D.; Roy, Sushmita; Deoras, Ameya N.; Ruby, J. Graham; Brennecke, Julius; Hodges, Emily; Hinrichs, Angie S.; Caspi, Anat; Paten, Benedict; Park, Seung-Won; Han, Mira V.; Maeder, Morgan L.; Polansky, Benjamin J.; Robson, Bryanne E.; Aerts, Stein; van Helden, Jacques; Hassan, Bassem; Gilbert, Donald G.; Eastman, Deborah A.; Rice, Michael; Weir, Michael; Hahn, Matthew W.; Park, Yongkyu; Dewey, Colin N.; Pachter, Lior; Kent, W. James; Haussler, David; Lai, Eric C.; Bartel, David P.; Hannon, Gregory J.; Kaufman, Thomas C.; Eisen, Michael B.; Clark, Andrew G.; Smith, Douglas; Celniker, Susan E.; Gelbart, William M.; Kellis, Manolis
2008-01-01
Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or ‘evolutionary signatures’, dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies. PMID:17994088
Reversible RNA adenosine methylation in biological regulation
Jia, Guifang; Fu, Ye; He, Chuan
2012-01-01
N6-methyladenosine (m6A) is a ubiquitous modification in messenger RNA (mRNA) and other RNAs across most eukaryotes. For many years, however, the exact functions of m6A were not clearly understood. The discovery that the fat mass and obesity associated protein (FTO) is an m6A demethylase indicates that this modification is reversible and dynamically regulated, suggesting it has regulatory roles. In addition, it has been shown that m6A affects cell fate decisions in yeast and plant development. Recent affinity-based m6A profiling in mouse and human cells further showed that this modification is a widespread mark in coding and non-coding RNA transcripts and is likely dynamically regulated throughout developmental processes. Therefore, reversible RNA methylation, analogous to reversible DNA and histone modifications, may affect gene expression and cell fate decisions by modulating multiple RNA-related cellular pathways, which potentially provides rapid responses to various cellular and environmental signals, including energy and nutrient availability in mammals. PMID:23218460
Functional interrogation of non-coding DNA through CRISPR genome editing
Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.
2017-01-01
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828
Reformation of Regulatory Technical Standards for Nuclear Power Generation Equipments in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikio Kurihara; Masahiro Aoki; Yu Maruyama
2006-07-01
Comprehensive reformation of the regulatory system has been introduced in Japan in order to apply recent technical progress in a timely manner. 'The Technical Standards for Nuclear Power Generation Equipments', known as the Ordinance No.622) of the Ministry of International Trade and Industry, which is used for detailed design, construction and operating stage of Nuclear Power Plants, was being modified to performance specifications with the consensus codes and standards being used as prescriptive specifications, in order to facilitate prompt review of the Ordinance with response to technological innovation. The activities on modification were performed by the Nuclear and Industrial Safetymore » Agency (NISA), the regulatory body in Japan, with support of the Japan Nuclear Energy Safety Organization (JNES), a technical support organization. The revised Ordinance No.62 was issued on July 1, 2005 and is enforced from January 1 2006. During the period from the issuance to the enforcement, JNES carried out to prepare enforceable regulatory guide which complies with each provisions of the Ordinance No.62, and also made technical assessment to endorse the applicability of consensus codes and standards, in response to NISA's request. Some consensus codes and standards were re-assessed since they were already used in regulatory review of the construction plan submitted by licensee. Other consensus codes and standards were newly assessed for endorsement. In case that proper consensus code or standards were not prepared, details of regulatory requirements were described in the regulatory guide as immediate measures. At the same time, appropriate standards developing bodies were requested to prepare those consensus code or standards. Supplementary note which provides background information on the modification, applicable examples etc. was prepared for convenience to the users of the Ordinance No. 62. This paper shows the activities on modification and the results, following the NISA's presentation at ICONE-13 that introduced the framework of the performance specifications and the modification process of the Ordinance NO. 62. (authors)« less
2012-01-01
Background Detecting the borders between coding and non-coding regions is an essential step in the genome annotation. And information entropy measures are useful for describing the signals in genome sequence. However, the accuracies of previous methods of finding borders based on entropy segmentation method still need to be improved. Methods In this study, we first applied a new recursive entropic segmentation method on DNA sequences to get preliminary significant cuts. A 22-symbol alphabet is used to capture the differential composition of nucleotide doublets and stop codon patterns along three phases in both DNA strands. This process requires no prior training datasets. Results Comparing with the previous segmentation methods, the experimental results on three bacteria genomes, Rickettsia prowazekii, Borrelia burgdorferi and E.coli, show that our approach improves the accuracy for finding the borders between coding and non-coding regions in DNA sequences. Conclusions This paper presents a new segmentation method in prokaryotes based on Jensen-Rényi divergence with a 22-symbol alphabet. For three bacteria genomes, comparing to A12_JR method, our method raised the accuracy of finding the borders between protein coding and non-coding regions in DNA sequences. PMID:23282225
Kawano, Tomonori
2013-01-01
There have been a wide variety of approaches for handling the pieces of DNA as the “unplugged” tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given “passwords” and/or secret numbers using DNA sequences. The “passwords” of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original “passwords.” The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed. PMID:23750303
Phylogenetic Network for European mtDNA
Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari
2001-01-01
The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-06-03
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Guobao; Zhao, Tingting; Wang, Leyu; Hu, Bianxiang; Darabi, Ali; Lin, Jiansheng; Xing, Malcolm M Q; Qiu, Xiaozhong
2015-11-25
Single-walled carbon nanotubes (SWCNTs) have been used to deliver single-stranded (ssDNA). ssDNA in oligonucleotide can act as an inhibitor of microRNA to regulate cellular functions. However, these ssDNA are difficult to bind carbon nanotubes with low transferring efficiency to cells. To this end, we designed ssDNA with regulatory and functional units to form ssDNA-SWCNT hybrids to study their binding effects and transferring efficiency. The functional unit on ssDNA mimics the inhibitor (MI) of miRNA-382, which plays a crucial role in the progress of many diseases such as renal interstitial fibrosis. After verification of overexpression of miRNA-382 in a coculture system, we designed oligonucleotide sequences (GCG)5-MI, (TAT)5-MI, and N23-MI as regulatory units added to the 5'-terminal end of the functional DNA fragment, respectively. These regulatory units lead to different secondary structures and thus exhibit different affinity ability to SWCNTs, and finally decide their deliver efficacy to cells. Autophagy, apoptosis and necrosis were observed in renal mesangial cells.
New t-gap insertion-deletion-like metrics for DNA hybridization thermodynamic modeling.
D'yachkov, Arkadii G; Macula, Anthony J; Pogozelski, Wendy K; Renz, Thomas E; Rykov, Vyacheslav V; Torney, David C
2006-05-01
We discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. Thermodynamic distance functions are important components in the construction of DNA codes, and DNA codes are important components in biomolecular computing, nanotechnology, and other biotechnical applications that employ DNA hybridization assays. We show how our new distances can be calculated by using a dynamic programming method, and we derive a Varshamov-Gilbert-like lower bound on the size of some of codes using these distance functions as constraints. We also discuss software implementation of our DNA code design methods.
The origins and evolutionary history of human non-coding RNA regulatory networks.
Sherafatian, Masih; Mowla, Seyed Javad
2017-04-01
The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svintradze, David V.; Virginia Commonwealth University, Richmond, VA 23219-1540; Peterson, Darrell L.
Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces,more » which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.« less
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome
Larson, Erica L.; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A. J.; Smith, Andrew D.; Dean, Matthew D.; Good, Jeffrey M.
2016-01-01
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution—divergence in protein sequence, gene expression, and DNA methylation—across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation. PMID:27317678
NASA Technical Reports Server (NTRS)
Lednicky, John A.; Halvorson, Steven J.; Butel, Janet S.
2002-01-01
A lymphotropic papovavirus (LPV) archetypal regulatory region was amplified from DNA from the blood of an immunocompromised rhesus monkey. We believe this is the first nonserological evidence of LPV infection in rhesus monkeys.
Glinsky, Gennadi V
2016-09-19
Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Multifaceted regulation of V(D)J recombination
NASA Astrophysics Data System (ADS)
Wang, Guannan
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg 2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon
2015-01-01
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yutao; Das, Suchita; Olszewski, Robert Edward
Near naked hairless (HrN) is a semi-dominant mutation that arose spontaneously and was suggested by allelism testing to be an allele of mouse Hairless (Hr). HrN mice differ from other Hr mutants in that hair loss appears as the postnatal coat begins to emerge, as opposed to failure to initiate the first postnatal hair cycle, and that the mutation displays semi-dominant inheritance. We sequenced the Hr cDNA in HrN/HrN mice and characterized the pathological and molecular phenotypes to identify the basis for hair loss in this model. HrN/HrN mice exhibit dystrophic hairs that are unable to consistently emerge from themore » hair follicle, while HrN/+ mice display a sparse coat of hair and a milder degree of follicular dystrophy than their homozygous littermates. DNA microarray analysis of cutaneous gene expression demonstrates that numerous genes are downregulated in HrN/HrN mice, primarily genes important for hair structure. By contrast, Hr expression is significantly increased. Sequencing the Hr coding region, intron-exon boundaries, 5'- and 3'- UTR and immediate upstream region did not reveal the underlying mutation. Therefore HrN does not appear to be an allele of Hr but may result from a mutation in a closely linked gene or from a regulatory mutation in Hr.« less
Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.
Slattery, Matthew; Ma, Lijia; Spokony, Rebecca F; Arthur, Robert K; Kheradpour, Pouya; Kundaje, Anshul; Nègre, Nicolas; Crofts, Alex; Ptashkin, Ryan; Zieba, Jennifer; Ostapenko, Alexander; Suchy, Sarah; Victorsen, Alec; Jameel, Nader; Grundstad, A Jason; Gao, Wenxuan; Moran, Jennifer R; Rehm, E Jay; Grossman, Robert L; Kellis, Manolis; White, Kevin P
2014-07-01
Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development. © 2014 Slattery et al.; Published by Cold Spring Harbor Laboratory Press.
Functional interrogation of non-coding DNA through CRISPR genome editing.
Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H
2017-05-15
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
Transformable Rhodobacter strains, method for producing transformable Rhodobacter strains
Laible, Philip D.; Hanson, Deborah K.
2018-05-08
The invention provides an organism for expressing foreign DNA, the organism engineered to accept standard DNA carriers. The genome of the organism codes for intracytoplasmic membranes and features an interruption in at least one of the genes coding for restriction enzymes. Further provided is a system for producing biological materials comprising: selecting a vehicle to carry DNA which codes for the biological materials; determining sites on the vehicle's DNA sequence susceptible to restriction enzyme cleavage; choosing an organism to accept the vehicle based on that organism not acting upon at least one of said vehicle's sites; engineering said vehicle to contain said DNA; thereby creating a synthetic vector; and causing the synthetic vector to enter the organism so as cause expression of said DNA.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... To Amend the Hearing Location Rules of the Codes of Arbitration Procedure for Customer and Industry... expand the criteria for selecting a hearing location for an arbitration proceeding. The proposed rule..., 2010. II. Description of the Proposed Rule Change Hearing Location Selection Under the Customer Code...
40 CFR 80.171 - Product transfer documents (PTDs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... being transferred is exempt base gasoline to be used for research, development, or test purposes only, the following warning must also be stated on the PTD: “For use in research, development, and test... codes and other non-regulatory language. (1) Product codes and other non-regulatory language may not be...
NASA Astrophysics Data System (ADS)
Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.
2017-07-01
DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.
Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo
2011-01-01
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry
Correlation approach to identify coding regions in DNA sequences
NASA Technical Reports Server (NTRS)
Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1994-01-01
Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.
Huang, Lei; Li, Lingqian; Lemos, Henrique; Chandler, Phillip R.; Pacholczyk, Gabriela; Baban, Babak; Barber, Glen N.; Hayakawa, Yoshihiro; McGaha, Tracy L.; Ravishankar, Buvana; Munn, David H.; Mellor, Andrew L.
2013-01-01
Cytosolic DNA sensing via the STING adaptor incites autoimmunity by inducing type I IFN (IFNαβ). Here we show that DNA is also sensed via STING to suppress immunity by inducing indoleamine 2,3 dioxygenase (IDO). STING gene ablation abolished IFNαβ and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs and myeloid cells ingested DNPs but CD11b+ DCs were the only cells to express IFNβ, while CD11b+ non-DCs were major IL-1β producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells (Tregs), and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate (c-diGMP) treatment to activate STING induced selective IFNβ expression by CD11b+ DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity amongst physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA. PMID:23986532
Bergman, C M; Kreitman, M
2001-08-01
Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.
Nguyen, Thao T; Brenu, Ekua W; Staines, Don R; Marshall-Gradisnik, Sonya M
2014-01-01
MicroRNAs (miRNA) are small (~22 nucleotide] non-coding RNA molecules originally characterised as nonsense or junk DNA. Emerging research suggests that these molecules have diverse regulatory roles in an array of molecular, cellular and physiological processes. MiRNAs are versatile and highly stable molecules, therefore, they are able to exist as intracellular or extracellular miRNAs. The purpose of this paper is to review the function and role of miRNAs in the intracellular space with specific focus on the interactions between miRNAs and organelles such as the mitochondria and the rough endoplasmic reticulum. Understanding the role of miRNAs in the intracellular space may be vital in understanding the mechanism of certain diseases.
I-motif DNA structures are formed in the nuclei of human cells
NASA Astrophysics Data System (ADS)
Zeraati, Mahdi; Langley, David B.; Schofield, Peter; Moye, Aaron L.; Rouet, Romain; Hughes, William E.; Bryan, Tracy M.; Dinger, Marcel E.; Christ, Daniel
2018-06-01
Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of Proposed Rule Change To Amend the Codes of Arbitration Procedure To Provide for Attorney Representation of Non-Party... Financial Industry Regulatory Authority, Inc. (``FINRA'') (f/k/a National Association of Securities Dealers...
Yu, Weishi; McIntosh, Carl; Lister, Ryan; Zhu, Iris; Han, Yixing; Ren, Jianke; Landsman, David; Lee, Eunice; Briones, Victorino; Terashima, Minoru; Leighty, Robert; Ecker, Joseph R.
2014-01-01
Cytosine methylation is critical in mammalian development and plays a role in diverse biologic processes such as genomic imprinting, X chromosome inactivation, and silencing of repeat elements. Several factors regulate DNA methylation in early embryogenesis, but their precise role in the establishment of DNA methylation at a given site remains unclear. We have generated a comprehensive methylation map in fibroblasts derived from the murine DNA methylation mutant Hells−/− (helicase, lymphoid specific, also known as LSH). It has been previously shown that HELLS can influence de novo methylation of retroviral sequences and endogenous genes. Here, we describe that HELLS controls cytosine methylation in a nuclear compartment that is in part defined by lamin B1 attachment regions. Despite widespread loss of cytosine methylation at regulatory sequences, including promoter regions of protein-coding genes and noncoding RNA genes, overall relative transcript abundance levels in the absence of HELLS are similar to those in wild-type cells. A subset of promoter regions shows increases of the histone modification H3K27me3, suggesting redundancy of epigenetic silencing mechanisms. Furthermore, HELLS modulates CG methylation at all classes of repeat elements and is critical for repression of a subset of repeat elements. Overall, we provide a detailed analysis of gene expression changes in relation to DNA methylation alterations, which contributes to our understanding of the biological role of cytosine methylation. PMID:25170028
Genomics dataset of unidentified disclosed isolates.
Rekadwad, Bhagwan N
2016-09-01
Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis.
40 CFR 80.158 - Product transfer documents (PTDs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... exempt base gasoline to be used for research, development, or test purposes only, the following warning must also be stated on the PTD: “For use in research, development, and test programs only.” (6) The...) Use of product codes and other non-regulatory language. (1) Product codes and other non-regulatory...
Integration of multi-omics data for integrative gene regulatory network inference.
Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon
2017-01-01
Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.
Integration of multi-omics data for integrative gene regulatory network inference
Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun
2017-01-01
Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189
Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J
2014-12-19
The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.
Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays
Boerner, Susan; McGinnis, Karen M.
2012-01-01
Background Computational analysis of cDNA sequences from multiple organisms suggests that a large portion of transcribed DNA does not code for a functional protein. In mammals, noncoding transcription is abundant, and often results in functional RNA molecules that do not appear to encode proteins. Many long noncoding RNAs (lncRNAs) appear to have epigenetic regulatory function in humans, including HOTAIR and XIST. While epigenetic gene regulation is clearly an essential mechanism in plants, relatively little is known about the presence or function of lncRNAs in plants. Methodology/Principal Findings To explore the connection between lncRNA and epigenetic regulation of gene expression in plants, a computational pipeline using the programming language Python has been developed and applied to maize full length cDNA sequences to identify, classify, and localize potential lncRNAs. The pipeline was used in parallel with an SVM tool for identifying ncRNAs to identify the maximal number of ncRNAs in the dataset. Although the available library of sequences was small and potentially biased toward protein coding transcripts, 15% of the sequences were predicted to be noncoding. Approximately 60% of these sequences appear to act as precursors for small RNA molecules and may function to regulate gene expression via a small RNA dependent mechanism. ncRNAs were predicted to originate from both genic and intergenic loci. Of the lncRNAs that originated from genic loci, ∼20% were antisense to the host gene loci. Conclusions/Significance Consistent with similar studies in other organisms, noncoding transcription appears to be widespread in the maize genome. Computational predictions indicate that maize lncRNAs may function to regulate expression of other genes through multiple RNA mediated mechanisms. PMID:22916204
Busslinger, M; Portmann, R; Irminger, J C; Birnstiel, M L
1980-01-01
The DNA sequences of the entire structural H4, H3, H2A and H2B genes and of their 5' flanking regions have been determined in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. In clone h19 the polarity of transcription and the relative arrangement of the histone genes is identical to that in clone h22 of the same species. The histone proteins encoded by h19 DNA differ in their primary structure from those encoded by clone h22 and have been compared to histone protein sequences of other sea urchin species as well as other eukaryotes. A comparative analysis of the 5' flanking DNA sequences of the structural histone genes in both clones revealed four ubiquitous sequence motifs; a pentameric element GATCC, followed at short distance by the Hogness box GTATAAATAG, a conserved sequence PyCATTCPu, in or near which the 5' ends of the mRNAs map in h22 DNA and lastly a sequence A, containing the initiation codon. These sequences are also found, sometimes in modified version, in front of other eukaryotic genes transcribed by polymerase II. When prelude sequences of isocoding histone genes in clone h19 and h22 are compared areas of homology are seen to extend beyond the ubiquitous sequence motifs towards the divergent AT-rich spacer and terminate between approximately 140 and 240 nucleotides away from the structural gene. These prelude regions contain quite large conservative sequence blocks which are specific for each type of histone genes. Images PMID:7443547
Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D
2015-11-20
Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain
2008-01-01
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development. PMID:18305101
77 FR 59768 - Shipping and Transportation; Technical, Organizational, and Conforming Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
.... Abbreviations II. Regulatory History III. Basis and Purpose IV. Background V. Regulatory Analyses A. Regulatory....S.C. United States Code II. Regulatory History We did not publish a notice of proposed rulemaking... its place, the text ``(CG-ENG)''. [[Page 59778
Is a Genome a Codeword of an Error-Correcting Code?
Kleinschmidt, João H.; Silva-Filho, Márcio C.; Bim, Edson; Herai, Roberto H.; Yamagishi, Michel E. B.; Palazzo, Reginaldo
2012-01-01
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction. PMID:22649495
Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel
2018-01-01
Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.
Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel
2018-01-01
Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility. PMID:29535683
Loke, Y J; Galati, J C; Saffery, R; Craig, J M
2015-04-01
In vitro fertilization (IVF) and its subset intracytoplasmic sperm injection (ICSI), are widely used medical treatments for conception. There has been controversy over whether IVF is associated with adverse short- and long-term health outcomes of offspring. As with other prenatal factors, epigenetic change is thought to be a molecular mediator of any in utero programming effects. Most studies focused on DNA methylation at gene-specific and genomic level, with only a few on associations between DNA methylation and IVF. Using buccal epithelium from 208 twin pairs from the Peri/Postnatal Epigenetic Twin Study (PETS), we investigated associations between IVF and DNA methylation on a global level, using the proxies of Alu and LINE-1 interspersed repeats in addition to two locus-specific regulatory regions within IGF2/H19, controlling for 13 potentially confounding factors. Using multiple correction testing, we found strong evidence that IVF-conceived twins have lower DNA methylation in Alu, and weak evidence of lower methylation in one of the two IGF2/H19 regulatory regions and LINE-1, compared with naturally conceived twins. Weak evidence of a relationship between ICSI and DNA methylation within IGF2/H19 regulatory region was found, suggesting that one or more of the processes associated with IVF/ICSI may contribute to these methylation differences. Lower within- and between-pair DNA methylation variation was also found in IVF-conceived twins for LINE-1, Alu and one IGF2/H19 regulatory region. Although larger sample sizes are needed, our results provide additional insight to the possible influence of IVF and ICSI on DNA methylation. To our knowledge, this is the largest study to date investigating the association of IVF and DNA methylation.
Characterization of noncoding regulatory DNA in the human genome.
Elkon, Ran; Agami, Reuven
2017-08-08
Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.
Mapping Cancer Cells’ Starting Lines | Center for Cancer Research
Many of the defective regulatory pathways that lead to aberrant proliferation in cancer converge on DNA replication. So replication regulatory pathways could be targeted to more specifically kill cancer cells. Unfortunately such targeting would require knowing where and when DNA replication starts in the cancer genome. In yeast, the locations of replication initiation sites
Chen, Hong-Qiang; Zhao, Ji; Li, Yan; He, Li-Xiong; Huang, Yu-Jing; Shu, Wei-Qun; Cao, Jia; Liu, Wen-Bin; Liu, Jin-Yi
2018-06-01
Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were regulated by DNA methylation and miRNAs, and these genes affected the cell cycle and cell division. Our study suggested that characteristic gene alterations regulated by DNA methylation and miRNA could play an important role in environmental MC-LR induced hepatic carcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Parallel evolution of chordate cis-regulatory code for development.
Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg
2013-11-01
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.
Yokoyama, Katsushi; Nogami, Hideki; Kabasawa, Mamiko; Ebihara, Sonomi; Shimowasa, Ai; Hashimoto, Keiko; Kawashima, Tsuyoshi; Ishijima, Sanae A.; Suzuki, Masashi
2009-01-01
The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship. PMID:19468044
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... Change FINRA is proposing to amend FINRA Rule 14107 of the Code of Mediation Procedure (``Mediation Code'') to provide the Director of Mediation (``Mediation Director'') with discretion to determine whether parties to a FINRA mediation may select a mediator who is not on FINRA's mediator roster. The text of the...
Context influences on TALE–DNA binding revealed by quantitative profiling
Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.
2015-01-01
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805
Context influences on TALE-DNA binding revealed by quantitative profiling.
Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L
2015-06-11
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.
On fuzzy semantic similarity measure for DNA coding.
Ahmad, Muneer; Jung, Low Tang; Bhuiyan, Md Al-Amin
2016-02-01
A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
7 CFR 4274.337 - Other regulatory requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with the seismic provisions of one of the following model building codes or the latest edition of that...) Uniform Building Code; (ii) 1993 Building Officials and Code Administrators International, Inc. (BOCA) National Building Code; or (iii) 1992 Amendments to the Southern Building Code Congress International...
7 CFR 4274.337 - Other regulatory requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with the seismic provisions of one of the following model building codes or the latest edition of that...) Uniform Building Code; (ii) 1993 Building Officials and Code Administrators International, Inc. (BOCA) National Building Code; or (iii) 1992 Amendments to the Southern Building Code Congress International...
7 CFR 4274.337 - Other regulatory requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... with the seismic provisions of one of the following model building codes or the latest edition of that...) Uniform Building Code; (ii) 1993 Building Officials and Code Administrators International, Inc. (BOCA) National Building Code; or (iii) 1992 Amendments to the Southern Building Code Congress International...
DNA-based watermarks using the DNA-Crypt algorithm.
Heider, Dominik; Barnekow, Angelika
2007-05-29
The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
Site-specific DNA Inversion by Serine Recombinases
2015-01-01
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275
EMSA Analysis of DNA Binding By Rgg Proteins
LaSarre, Breah; Federle, Michael J.
2016-01-01
In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004
EMSA Analysis of DNA Binding By Rgg Proteins.
LaSarre, Breah; Federle, Michael J
2013-08-20
In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).
Evidence of reduced recombination rate in human regulatory domains.
Liu, Yaping; Sarkar, Abhishek; Kheradpour, Pouya; Ernst, Jason; Kellis, Manolis
2017-10-20
Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.
Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.
Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han
2017-01-01
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... proposed rule change, FINRA would no longer require a customer to elect one of the two existing panel...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving Proposed Rule Change...,\\2\\ a proposed rule change amending the Code of Arbitration Procedure for Customer Disputes...
Analysis of the regulatory region of the protease III (ptr) gene of Escherichia coli K-12.
Claverie-Martin, F; Diaz-Torres, M R; Kushner, S R
1987-01-01
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.
Applications of statistical physics and information theory to the analysis of DNA sequences
NASA Astrophysics Data System (ADS)
Grosse, Ivo
2000-10-01
DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.
Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.
2013-01-01
Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Regulatory Review B. Paperwork Reduction Act C. Regulatory Flexibility Act D. Unfunded Mandates Reform Act E... preamble. APA Administrative Procedure Act CAA Clean Air Act CFR Code of Federal Regulations D.C. District... Authority Rule U.S. United States U.S.C. United States Code VCS Voluntary Consensus Standards VOC Volatile...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... (also known as origin code) refers to the participant types listed in Rule 1080.08(b) and Rule 1000(b..., and, therefore, is referring to the participant origin codes in Rule 1080.08(b) only. The proposed...-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing of Proposed Rule Change Relating to Which...
Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila
Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.
2014-01-01
Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175
Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C
1986-01-01
The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730
Kress, W John; Erickson, David L
2007-06-06
A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.
Booy, Evan P.; McRae, Ewan K. S.; Howard, Ryan; Deo, Soumya R.; Ariyo, Emmanuel O.; Dzananovic, Edis; Meier, Markus; Stetefeld, Jörg; McKenna, Sean A.
2016-01-01
RNA helicase associated with AU-rich element (RHAU) is an ATP-dependent RNA helicase that demonstrates high affinity for quadruplex structures in DNA and RNA. To elucidate the significance of these quadruplex-RHAU interactions, we have performed RNA co-immunoprecipitation screens to identify novel RNAs bound to RHAU and characterize their function. In the course of this study, we have identified the non-coding RNA BC200 (BCYRN1) as specifically enriched upon RHAU immunoprecipitation. Although BC200 does not adopt a quadruplex structure and does not bind the quadruplex-interacting motif of RHAU, it has direct affinity for RHAU in vitro. Specifically designed BC200 truncations and RNase footprinting assays demonstrate that RHAU binds to an adenosine-rich region near the 3′-end of the RNA. RHAU truncations support binding that is dependent upon a region within the C terminus and is specific to RHAU isoform 1. Tests performed to assess whether BC200 interferes with RHAU helicase activity have demonstrated the ability of BC200 to act as an acceptor of unwound quadruplexes via a cytosine-rich region near the 3′-end of the RNA. Furthermore, an interaction between BC200 and the quadruplex-containing telomerase RNA was confirmed by pull-down assays of the endogenous RNAs. This leads to the possibility that RHAU may direct BC200 to bind and exert regulatory functions at quadruplex-containing RNA or DNA sequences. PMID:26740632
René, P; Lenne, F; Ventura, M A; Bertagna, X; de Keyzer, Y
2000-01-04
In the pituitary, vasopressin triggers ACTH release through a specific receptor subtype, termed V3 or V1b. We cloned the V3 cDNA and showed that its expression was almost exclusive to pituitary corticotrophs and some corticotroph tumors. To study the determinants of this tissue specificity, we have now cloned the gene for the human (h) V3 receptor and characterized its structure. It is composed of two exons, spanning 10kb, with the coding region interrupted between transmembrane domains 6 and 7. We established that the transcription initiation site is located 498 nucleotides upstream of the initiator codon and showed that two polyadenylation sites may be used, while the most frequent is the most downstream. Sequence analysis of the promoter region showed no TATA box but identified consensus binding motifs for Sp1, CREB, and half sites of the estrogen receptor binding site. However comparison with another corticotroph-specific gene, proopiomelanocortin, did not identify common regulatory elements in the two promoters except for a short GC-rich region. Unexpectedly, hV3 gene analysis revealed that a formerly cloned 'artifactual' hV3 cDNA indeed corresponded to a spliced antisense transcript, overlapping the 5' part of the coding sequence in exon 1 and the promoter region. This transcript, hV3rev, was detected in normal pituitary and in many corticotroph tumors expressing hV3 sense mRNA and may therefore play a role in hV3 gene expression.
Intrinsic limits to gene regulation by global crosstalk
NASA Astrophysics Data System (ADS)
Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper
Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).
LncRNA Structural Characteristics in Epigenetic Regulation
Wang, Chenguang; Wang, Lianzong; Ding, Yu; Lu, Xiaoyan; Zhang, Guosi; Yang, Jiaxin; Zheng, Hewei; Wang, Hong; Jiang, Yongshuai; Xu, Liangde
2017-01-01
The rapid development of new generation sequencing technology has deepened the understanding of genomes and functional products. RNA-sequencing studies in mammals show that approximately 85% of the DNA sequences have RNA products, for which the length greater than 200 nucleotides (nt) is called long non-coding RNAs (lncRNA). LncRNAs now have been shown to play important epigenetic regulatory roles in key molecular processes, such as gene expression, genetic imprinting, histone modification, chromatin dynamics, and other activities by forming specific structures and interacting with all kinds of molecules. This paper mainly discusses the correlation between the structure and function of lncRNAs with the recent progress in epigenetic regulation, which is important to the understanding of the mechanism of lncRNAs in physiological and pathological processes. PMID:29292750
cncRNAs: Bi-functional RNAs with protein coding and non-coding functions
Kumari, Pooja; Sampath, Karuna
2015-01-01
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036
Vendrame, Alan; Silva, Rebeca; Xuan, Ziming; Sparks, Robert; Noel, Jonathan; Pinsky, Ilana
2015-09-01
We assessed the impact of the 2010 revisions to Brazil's self-regulatory alcohol marketing code using expert and adolescent raters. Five popular TV beer ads were selected. Ads were rated based on the 2010 Brazilian self-regulatory marketing code. The expert group (N = 31) represented health-related professions; the adolescent group (N = 110) were public high school students. At least 1 ad violated 11 of 17 guidelines included in the study. Ratings by experts and adolescents were similar. Both found violations in all sections of the self-regulatory code, but significant group differences were seen in applying the section that prohibits the promotion of excessive alcohol consumption, with experts identifying more violations than adolescents. Beer ads in the sample systematically violated the self-regulatory standards for alcohol advertising in Brazil according to both experts and youth. Public policies for more effective restrictions and prohibitions in alcohol ads should be considered. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site.
Sun, Xingmin; Mierke, Dale F; Biswas, Tapan; Lee, Sang Yeol; Landy, Arthur; Radman-Livaja, Marta
2006-11-17
The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.
ERIC Educational Resources Information Center
Felsenfeld, Gary
1985-01-01
Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)
Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M
2008-05-12
Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes-a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a approximately 20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22-336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol.
Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M
2008-01-01
Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Conclusion Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol. PMID:18474103
Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks
Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.
2012-01-01
While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213
Genomics dataset on unclassified published organism (patent US 7547531).
Khan Shawan, Mohammad Mahfuz Ali; Hasan, Md Ashraful; Hossain, Md Mozammel; Hasan, Md Mahmudul; Parvin, Afroza; Akter, Salina; Uddin, Kazi Rasel; Banik, Subrata; Morshed, Mahbubul; Rahman, Md Nazibur; Rahman, S M Badier
2016-12-01
Nucleotide (DNA) sequence analysis provides important clues regarding the characteristics and taxonomic position of an organism. With the intention that, DNA sequence analysis is very crucial to learn about hierarchical classification of that particular organism. This dataset (patent US 7547531) is chosen to simplify all the complex raw data buried in undisclosed DNA sequences which help to open doors for new collaborations. In this data, a total of 48 unidentified DNA sequences from patent US 7547531 were selected and their complete sequences were retrieved from NCBI BioSample database. Quick response (QR) code of those DNA sequences was constructed by DNA BarID tool. QR code is useful for the identification and comparison of isolates with other organisms. AT/GC content of the DNA sequences was determined using ENDMEMO GC Content Calculator, which indicates their stability at different temperature. The highest GC content was observed in GP445188 (62.5%) which was followed by GP445198 (61.8%) and GP445189 (59.44%), while lowest was in GP445178 (24.39%). In addition, New England BioLabs (NEB) database was used to identify cleavage code indicating the 5, 3 and blunt end and enzyme code indicating the methylation site of the DNA sequences was also shown. These data will be helpful for the construction of the organisms' hierarchical classification, determination of their phylogenetic and taxonomic position and revelation of their molecular characteristics.
A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast
Fritsch, Emilie S.; Chabbert, Christophe D.; Klaus, Bernd; Steinmetz, Lars M.
2014-01-01
In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance. PMID:25081569
A genome-wide map of mitochondrial DNA recombination in yeast.
Fritsch, Emilie S; Chabbert, Christophe D; Klaus, Bernd; Steinmetz, Lars M
2014-10-01
In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance. Copyright © 2014 by the Genetics Society of America.
Zackay, Arie; Steinhoff, Christine
2010-12-15
Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.
2010-01-01
Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving Proposed Rule Change... ``Act'') \\1\\ and Rule 19b-4 thereunder,\\2\\ a proposed rule change to amend FINRA's Customer and Industry... arbitrator'' in the Codes. Specifically, the proposed rule change would (a) exclude persons associated with a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
..., ``Recombinant Vaccinia Virus Containing a Chimeric Gene Having Foreign DNA Flanked by Vaccinia Regulatory DNA..., ``Compositions Containing Recombinant Poxviruses Having Foreign DNA Expressed under the Control of Poxvirus... entitled, ``Methods of Immunization Using Recombinant Poxviruses Having Foreign DNA Expressed under the...
Ohbayashi, Ryudo; Yamamoto, Jun-Ya; Watanabe, Satoru; Kanesaki, Yu; Chibazakura, Taku; Miyagishima, Shin-Ya; Yoshikawa, Hirofumi
2017-02-01
Cyanobacteria exhibit light-dependent cell growth since most of their cellular energy is obtained by photosynthesis. In Synechococcus elongatus PCC 7942, one of the model cyanobacteria, DNA replication depends on photosynthetic electron transport. However, the critical signal for the regulatory mechanism of DNA replication has not been identified. In addition, conservation of this regulatory mechanism has not been investigated among cyanobacteria. To understand this regulatory signal and its dependence on light, we examined the regulation of DNA replication under both light and dark conditions among three model cyanobacteria, S. elongatus PCC 7942, Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120. Interestingly, DNA replication activity in Synechocystis and Anabaena was retained when cells were transferred to the dark, although it was drastically decreased in S. elongatus. Glycogen metabolism and respiration were higher in Synechocystis and Anabaena than in S. elongatus in the dark. Moreover, DNA replication activity in Synechocystis and Anabaena was reduced to the same level as that in S. elongatus by inhibition of respiratory electron transport after transfer to the dark. These results demonstrate that there is disparity in DNA replication occurring in the dark among cyanobacteria, which is caused by the difference in activity of respiratory electron transport. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chappell, James; Freemont, Paul
2013-01-01
The characterization of DNA regulatory elements such as ribosome binding sites and transcriptional promoters is a fundamental aim of synthetic biology. Characterization of such DNA regulatory elements by monitoring the synthesis of fluorescent proteins is a commonly used technique to resolve the relative or absolute strengths. These measurements can be used in combination with mathematical models and computer simulation to rapidly assess performance of DNA regulatory elements both in isolation and in combination, to assist predictable and efficient engineering of complex novel biological devices and systems. Here we describe the construction and relative characterization of Escherichia coli (E. coli) σ(70) transcriptional promoters by monitoring the synthesis of green fluorescent protein (GFP) both in vivo in E. coli and in vitro in a E. coli cell-free transcription and translation reaction.
Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.
Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun
2016-06-01
Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kress, W. John; Erickson, David L.
2007-01-01
Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588
Regulatory Information By Sector
Find environmental regulatory, compliance, & enforcement information for various business, industry and government sectors, listed by NAICS code. Sectors include agriculture, automotive, petroleum manufacturing, oil & gas extraction & other manufacturing
Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado
2013-01-01
LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells. PMID:24345856
Regulatory activities of transposable elements: from conflicts to benefits
Chuong, Edward B.; Elde, Nels C.; Feschotte, Cédric
2017-01-01
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor binding sites and non-coding RNAs. A wealth of recent studies reinvigorates the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalyzed the evolution of gene regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic impact of regulatory activities encoded by TEs in health and disease. PMID:27867194
BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations
Wang, Junbai; Batmanov, Kirill
2015-01-01
Sequence variations in regulatory DNA regions are known to cause functionally important consequences for gene expression. DNA sequence variations may have an essential role in determining phenotypes and may be linked to disease; however, their identification through analysis of massive genome-wide sequencing data is a great challenge. In this work, a new computational pipeline, a Bayesian method for protein–DNA interaction with binding affinity ranking (BayesPI-BAR), is proposed for quantifying the effect of sequence variations on protein binding. BayesPI-BAR uses biophysical modeling of protein–DNA interactions to predict single nucleotide polymorphisms (SNPs) that cause significant changes in the binding affinity of a regulatory region for transcription factors (TFs). The method includes two new parameters (TF chemical potentials or protein concentrations and direct TF binding targets) that are neglected by previous methods. The new method is verified on 67 known human regulatory SNPs, of which 47 (70%) have predicted true TFs ranked in the top 10. Importantly, the performance of BayesPI-BAR, which uses principal component analysis to integrate multiple predictions from various TF chemical potentials, is found to be better than that of existing programs, such as sTRAP and is-rSNP, when evaluated on the same SNPs. BayesPI-BAR is a publicly available tool and is able to carry out parallelized computation, which helps to investigate a large number of TFs or SNPs and to detect disease-associated regulatory sequence variations in the sea of genome-wide noncoding regions. PMID:26202972
Su, Zhipeng; Zhu, Jiawen; Xu, Zhuofei; Xiao, Ran; Zhou, Rui; Li, Lu; Chen, Huanchun
2016-01-01
Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumoniae, a highly contagious respiratory disease of swine. Although the genome of A. pleuropneumoniae was sequenced several years ago, limited information is available on the genome-wide transcriptional analysis to accurately annotate the gene structures and regulatory elements. High-throughput RNA sequencing (RNA-seq) has been applied to study the transcriptional landscape of bacteria, which can efficiently and accurately identify gene expression regions and unknown transcriptional units, especially small non-coding RNAs (sRNAs), UTRs and regulatory regions. The aim of this study is to comprehensively analyze the transcriptome of A. pleuropneumoniae by RNA-seq in order to improve the existing genome annotation and promote our understanding of A. pleuropneumoniae gene structures and RNA-based regulation. In this study, we utilized RNA-seq to construct a single nucleotide resolution transcriptome map of A. pleuropneumoniae. More than 3.8 million high-quality reads (average length ~90 bp) from a cDNA library were generated and aligned to the reference genome. We identified 32 open reading frames encoding novel proteins that were mis-annotated in the previous genome annotations. The start sites for 35 genes based on the current genome annotation were corrected. Furthermore, 51 sRNAs in the A. pleuropneumoniae genome were discovered, of which 40 sRNAs were never reported in previous studies. The transcriptome map also enabled visualization of 5'- and 3'-UTR regions, in which contained 11 sRNAs. In addition, 351 operons covering 1230 genes throughout the whole genome were identified. The RNA-Seq based transcriptome map validated annotated genes and corrected annotations of open reading frames in the genome, and led to the identification of many functional elements (e.g. regions encoding novel proteins, non-coding sRNAs and operon structures). The transcriptional units described in this study provide a foundation for future studies concerning the gene functions and the transcriptional regulatory architectures of this pathogen. PMID:27018591
Organisation of the plant genome in chromosomes.
Heslop-Harrison, J S Pat; Schwarzacher, Trude
2011-04-01
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Brain cDNA clone for human cholinesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTiernan, C.; Adkins, S.; Chatonnet, A.
1987-10-01
A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less
GUI to Facilitate Research on Biological Damage from Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, Frances A.; Ponomarev, Artem Lvovich
2010-01-01
A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.
DNA: Polymer and molecular code
NASA Astrophysics Data System (ADS)
Shivashankar, G. V.
1999-10-01
The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes gene expression a prime example of a biological code. We developed a novel method of making DNA micro- arrays, the so-called DNA chip. Using the optical tweezer concept, we were able to pattern biomolecules on a solid substrate, developing a new type of sub-micron laser lithography. A laser beam is focused onto a thin gold film on a glass substrate. Laser ablation of gold results in local aggregation of nanometer scale beads conjugated with small DNA oligonucleotides, with sub-micron resolution. This leads to specific detection of cDNA and RNA molecules. We built a simple micro-array fabrication and detection in the laboratory, based on this method, to probe addressable pools (genes, proteins or antibodies). We have lately used molecular beacons (single stranded DNA with a stem-loop structure containing a fluorophore and quencher), for the direct detection of unlabelled mRNA. As a first step towards a study of the dynamics of the biological code, we have begun to examine the patterns of gene expression during virus (T7 phage) infection of E-coli bacteria.
Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.
2013-01-01
Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175
Majoros, William H; Ohler, Uwe
2010-12-16
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.
Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A
2015-01-01
A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Intrinsic limits to gene regulation by global crosstalk
Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper
2016-01-01
Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144
Genome-wide identification of Hami melon miRNAs with putative roles during fruit development
Wang, Guangzhi; Ma, Xinli; Li, Meihua; Wu, Haibo; Fu, Qiushi; Zhang, Yi; Yi, Hongping
2017-01-01
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, “transcription, DNA-dependent”, “rRNA processing”, “oxidation reduction”, “signal transduction”, “regulation of transcription, DNA-dependent”, and “metabolic process” were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5’ RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices. PMID:28742088
Rankinen, Tuomo; Sarzynski, Mark A.; Ghosh, Sujoy; Bouchard, Claude
2015-01-01
Clustering of obesity, coronary artery disease, and cardiovascular disease risk factors is observed in epidemiological studies and clinical settings. Twin and family studies have provided some supporting evidence for the clustering hypothesis. Loci nearest a lead single nucleotide polymorphism (SNP) showing genome-wide significant associations with coronary artery disease, body mass index, C-reactive protein, blood pressure, lipids, and type 2 diabetes mellitus were selected for pathway and network analyses. Eighty-seven autosomal regions (181 SNPs), mapping to 56 genes, were found to be pleiotropic. Most pleiotropic regions contained genes associated with coronary artery disease and plasma lipids, whereas some exhibited coaggregation between obesity and cardiovascular disease risk factors. We observed enrichment for liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor/RXR nuclear receptor signaling among pleiotropic genes and for signatures of coronary artery disease and hepatic steatosis. In the search for functionally interacting networks, we found that 43 pleiotropic genes were interacting in a network with an additional 24 linker genes. ENCODE (Encyclopedia of DNA Elements) data were queried for distribution of pleiotropic SNPs among regulatory elements and coding sequence variations. Of the 181 SNPs, 136 were annotated to ≥1 regulatory feature. An enrichment analysis found over-representation of enhancers and DNAse hypersensitive regions when compared against all SNPs of the 1000 Genomes pilot project. In summary, there are genomic regions exerting pleiotropic effects on cardiovascular disease risk factors, although only a few included obesity. Further studies are needed to resolve the clustering in terms of DNA variants, genes, pathways, and actionable targets. PMID:25722444
Henrich, Oliver; Gutiérrez Fosado, Yair Augusto; Curk, Tine; Ouldridge, Thomas E
2018-05-10
During the last decade coarse-grained nucleotide models have emerged that allow us to study DNA and RNA on unprecedented time and length scales. Among them is oxDNA, a coarse-grained, sequence-specific model that captures the hybridisation transition of DNA and many structural properties of single- and double-stranded DNA. oxDNA was previously only available as standalone software, but has now been implemented into the popular LAMMPS molecular dynamics code. This article describes the new implementation and analyses its parallel performance. Practical applications are presented that focus on single-stranded DNA, an area of research which has been so far under-investigated. The LAMMPS implementation of oxDNA lowers the entry barrier for using the oxDNA model significantly, facilitates future code development and interfacing with existing LAMMPS functionality as well as other coarse-grained and atomistic DNA models.
The non-coding RNA landscape of human hematopoiesis and leukemia.
Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning
2017-08-09
Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R
2008-05-15
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.
Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA
NASA Astrophysics Data System (ADS)
Bordes, Julien; Incerti, Sébastien; Lampe, Nathanael; Bardiès, Manuel; Bordage, Marie-Claude
2017-05-01
When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (;option 2; and its improved version, ;option 4;). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as ;Geant4-DNA-CPA100;. In this study, ;Geant4-DNA-CPA100; was used to calculate low-energy electron dose-point kernels (DPKs) between 1 keV and 200 keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (;option 2; and ;option 4;), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with ;Geant4-DNA-CPA100; - the first set using Geant4‧s default settings, and the second using CPA100‧s original code default settings. A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1 keV and 10 keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA's existing models were always broader than those generated with ;Geant4-DNA-CPA100;. The discrepancies observed between the DPKs generated using Geant4-DNA's existing models and ;Geant4-DNA-CPA100; were caused solely by their different cross sections. The different scoring and interpolation methods used in CPA100 and Geant4 to calculate DPKs showed differences close to 3.0% near the source.
Assuring the quality, safety, and efficacy of DNA vaccines.
Robertson, J S; Griffiths, E
2001-02-01
Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes as the development of a novel vaccine could be problematic owing to the starting material often being developed in a research laboratory under ill-defined conditions. This paper examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations that must be addressed during preclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinees chromosomes, and the potential for the formation of anti-DNA antibodies.
Assuring the quality, safety, and efficacy of DNA vaccines.
Robertson, James S; Griffiths, Elwyn
2006-01-01
Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes, as the development of a novel vaccine could be problematic as a result of the starting material often being developed in a research laboratory under ill-defined conditions. This chapter examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations which must be addressed during nonclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinee's chromosomes and the potential for the formation of anti-DNA antibodies.
Timofeeva, Maria N.; Kinnersley, Ben; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F A; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Försti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P M; Dunlop, Malcolm G.; Houlston, Richard S.
2015-01-01
Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC. PMID:26553438
Toren, Dmitri; Barzilay, Thomer; Tacutu, Robi; Lehmann, Gilad; Muradian, Khachik K; Fraifeld, Vadim E
2016-01-04
Mitochondria are the only organelles in the animal cells that have their own genome. Due to a key role in energy production, generation of damaging factors (ROS, heat), and apoptosis, mitochondria and mtDNA in particular have long been considered one of the major players in the mechanisms of aging, longevity and age-related diseases. The rapidly increasing number of species with fully sequenced mtDNA, together with accumulated data on longevity records, provides a new fascinating basis for comparative analysis of the links between mtDNA features and animal longevity. To facilitate such analyses and to support the scientific community in carrying these out, we developed the MitoAge database containing calculated mtDNA compositional features of the entire mitochondrial genome, mtDNA coding (tRNA, rRNA, protein-coding genes) and non-coding (D-loop) regions, and codon usage/amino acids frequency for each protein-coding gene. MitoAge includes 922 species with fully sequenced mtDNA and maximum lifespan records. The database is available through the MitoAge website (www.mitoage.org or www.mitoage.info), which provides the necessary tools for searching, browsing, comparing and downloading the data sets of interest for selected taxonomic groups across the Kingdom Animalia. The MitoAge website assists in statistical analysis of different features of the mtDNA and their correlative links to longevity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M
2017-03-27
Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.
Novel variants of the 5S rRNA genes in Eruca sativa.
Singh, K; Bhatia, S; Lakshmikumaran, M
1994-02-01
The 5S ribosomal RNA (rRNA) genes of Eruca sativa were cloned and characterized. They are organized into clusters of tandemly repeated units. Each repeat unit consists of a 119-bp coding region followed by a noncoding spacer region that separates it from the coding region of the next repeat unit. Our study reports novel gene variants of the 5S rRNA genes in plants. Two families of the 5S rDNA, the 0.5-kb size family and the 1-kb size family, coexist in the E. sativa genome. The 0.5-kb size family consists of the 5S rRNA genes (S4) that have coding regions similar to those of other reported plant 5S rDNA sequences, whereas the 1-kb size family consists of the 5S rRNA gene variants (S1) that exist as 1-kb BamHI tandem repeats. S1 is made up of two variant units (V1 and V2) of 5S rDNA where the BamHI site between the two units is mutated. Sequence heterogeneity among S4, V1, and V2 units exists throughout the sequence and is not limited to the noncoding spacer region only. The coding regions of V1 and V2 show approximately 20% dissimilarity to the coding regions of S4 and other reported plant 5S rDNA sequences. Such a large variation in the coding regions of the 5S rDNA units within the same plant species has been observed for the first time. Restriction site variation is observed between the two size classes of 5S rDNA in E. sativa.(ABSTRACT TRUNCATED AT 250 WORDS)
Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE.
Huang, Xin; Li, Hao-ming
2009-08-05
Lovastatin is an effective drug for treatment of hyperlipidemia. This study aimed to clone lovastatin biosynthesis regulatory gene lovE and analyze the structure and function of its encoding protein. According to the lovastatin synthase gene sequence from genebank, primers were designed to amplify and clone the lovastatin biosynthesis regulatory gene lovE from Aspergillus terrus genomic DNA. Bioinformatic analysis of lovE and its encoding animo acid sequence was performed through internet resources and software like DNAMAN. Target fragment lovE, almost 1500 bp in length, was amplified from Aspergillus terrus genomic DNA and the secondary and three-dimensional structures of LovE protein were predicted. In the lovastatin biosynthesis process lovE is a regulatory gene and LovE protein is a GAL4-like transcriptional factor.
A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yuen; Wang, Yuan; Feng, Jinyan
2015-04-03
The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within itsmore » 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.« less
Gong, Liang; Zhong, Guo-Hua; Hu, Mei-Ying; Luo, Qian; Ren, Zhen-Zhen
2010-01-01
Chemosensory proteins play an important role in transporting chemical compounds to their receptors on dendrite membranes. In this study, two full-length cDNA codings for chemosensory proteins of Plutella xylostella (Lepidoptera: Plutellidae) were obtained by RACE-PCR. PxylCSP3 and Pxyl-CSP4, with GenBank accession numbers ABM92663 and ABM92664, respectively, were cloned and sequenced. The gene sequences both consisted of three exons and two introns. RT-PCR analysis showed that Pxyl-CSP3 and Pxyl-CSP4 had different expression patterns in the examined developmental stages, but were expressed in all larval stages. Phylogenetic analysis indicated that lepidopteran insects consist of three branches, and Pxyl-CSP3 and Pxyl-CSP4 belong to different branches. The 5′regulatory regions of Pxyl-CSP3 and Pxyl-CSP4 were isolated and analyzed, and the results consist of not only the core promoter sequences (TATA-box), but also several transcriptional elements (BR-C Z4, Hb, Dfd, CF2-II, etc.). This study provides clues to better understanding the various physiological functions of CSPs in P. xylostella and other insects. PMID:21073345
Gavin, W; Blash, S; Buzzell, N; Pollock, D; Chen, L; Hawkins, N; Howe, J; Miner, K; Pollock, J; Porter, C; Schofield, M; Echelard, Y; Meade, H
2018-02-01
Production of transgenic founder goats involves introducing and stably integrating an engineered piece of DNA into the genome of the animal. At LFB USA, the ultimate use of these transgenic goats is for the production of recombinant human protein therapeutics in the milk of these dairy animals. The transgene or construct typically links a milk protein specific promoter sequence, the coding sequence for the gene of interest, and the necessary downstream regulatory sequences thereby directing expression of the recombinant protein in the milk during the lactation period. Over the time period indicated (1995-2012), pronuclear microinjection was used in a number of programs to insert transgenes into 18,120, 1- or 2- cell stage fertilized embryos. These embryos were transferred into 4180 synchronized recipient females with 1934 (47%) recipients becoming pregnant, 2594 offspring generated, and a 109 (4.2%) of those offspring determined to be transgenic. Even with new and improving genome editing tools now available, pronuclear microinjection is still the predominant and proven technology used in this commercial setting supporting regulatory filings and market authorizations when producing founder transgenic animals with large transgenes (> 10 kb) such as those necessary for directing monoclonal antibody production in milk.
Itoh, S; Yanagimoto, T; Tagawa, S; Hashimoto, H; Kitamura, R; Nakajima, Y; Okochi, T; Fujimoto, S; Uchino, J; Kamataki, T
1992-03-24
P-450IIIA7 is a form of cytochrome P-450 which was isolated from human fetal livers and termed P-450HFLa. This form has been clarified to be expressed during fetal life specifically (Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. and Kamataki, T. (1990) Biochemistry 29, 4430-4433). In the present study, we isolated five independent clones which probably corresponded to the human P-450IIIA7 gene. These clones were completely sequenced, all exons, exon-intron junctions and the 5' flanking region from the cap site to-869. Although the sequences in the coding region were completely identical to P-450IIIA7, it is possible that genomic fragments sequenced in this study encode portions of other P-450IIIA7-related genes since we could not obtain a complete overlapping set of genomic clones. Within its 5' flanking sequence, the putative binding sites of several transcriptional regulatory factors existed. Among them, it was shown that a basic transcription element binding factor (BTEB) actually interacted with the 5' flanking region of this gene.
Baumann, G; Geisse, S; Sullivan, M
1991-03-01
The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.
Eguchi, Asuka; Lee, Garrett O.; Wan, Fang; Erwin, Graham S.; Ansari, Aseem Z.
2014-01-01
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate. PMID:25145439
Long Noncoding RNAs: a New Regulatory Code in Metabolic Control
Zhao, Xu-Yun; Lin, Jiandie D.
2015-01-01
Long noncoding RNAs (lncRNAs) are emerging as an integral part of the regulatory information encoded in the genome. LncRNAs possess the unique capability to interact with nucleic acids and proteins and exert discrete effects on numerous biological processes. Recent studies have delineated multiple lncRNA pathways that control metabolic tissue development and function. The expansion of the regulatory code that links nutrient and hormonal signals to tissue metabolism gives new insights into the genetic and pathogenic mechanisms underlying metabolic disease. This review discusses lncRNA biology with a focus on its role in the development, signaling, and function of key metabolic tissues. PMID:26410599
Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.
Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P
1987-01-01
Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.
St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp
2012-01-01
Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933
The Regulatory Interactions of p21 and PCNA in Human Breast Cancer
2002-07-01
Proliferating cell nuclear antigen (PCNA) is a multifunctional enzyme involved in multiple cellular processes including DNA replication and repair...During DNA replication , PCNA function as an accessory factor- for the DNA polymerases E arid and are part of a multiprotein DNA replication complex...a cyclin-dependent kinase inhibitor, p21WAF1 ability to inhibit DNA replication in response to DNA damage has been wall characterized. Interestingly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, J.
The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A.
The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less
Impacts-BRC (below regulatory concern): The microcomputer version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.E.; O'Neal, B.L.
1989-01-01
The IMPACTS-BRC computer code was designed for use by the Nuclear Regulatory Commission and industry to evaluate petitions to classify specific waste streams as below regulatory concern (BRC). The code provides a capability for calculating radiation doses to a maximal individual, critical group, and the general population as a result of transportation, treatment, disposal, and post-disposal activities involving low level radioactive waste. Since IMPACTS-BRC is expected to be widely used, the code has been adapted for use on a microcomputer. The microcomputer version of the code provides several features that simplify its use and broaden its applicability. These features includemore » (1) a menu-driven environment, (2) an input editor to simplify creation and editing of input files, (3) default input values and help screens to guide the user in analyzing a particular problem, (4) the ability to perform both parametric studies and Monte Carlo analysis to examine uncertainties, and (5) interactive graphics and statistics output. This paper describes the microcomputer version of IMPACTS-BRC and illustrates its use through an example application. 5 refs., 5 figs., 3 tabs.« less
Hiding message into DNA sequence through DNA coding and chaotic maps.
Liu, Guoyan; Liu, Hongjun; Kadir, Abdurahman
2014-09-01
The paper proposes an improved reversible substitution method to hide data into deoxyribonucleic acid (DNA) sequence, and four measures have been taken to enhance the robustness and enlarge the hiding capacity, such as encode the secret message by DNA coding, encrypt it by pseudo-random sequence, generate the relative hiding locations by piecewise linear chaotic map, and embed the encoded and encrypted message into a randomly selected DNA sequence using the complementary rule. The key space and the hiding capacity are analyzed. Experimental results indicate that the proposed method has a better performance compared with the competing methods with respect to robustness and capacity.
Ali, S; Azfer, M A; Bashamboo, A; Mathur, P K; Malik, P K; Mathur, V B; Raha, A K; Ansari, S
1999-03-04
We have cloned and sequenced a 906bp EcoRI repeat DNA fraction from Rhinoceros unicornis genome. The contig pSS(R)2 is AT rich with 340 A (37.53%), 187 C (20.64%), 173 G (19.09%) and 206 T (22.74%). The sequence contains MALT box, NF-E1, Poly-A signal, lariat consensus sequences, TATA box, translational initiation sequences and several stop codons. Translation of the contig showed seven different types of protein motifs, among which, EGF-like domain cysteine pattern signatures and Bowman-Birk serine protease inhibitor family signatures were prominent. The presence of eukaryotic transcriptional elements, protein signatures and analysis of subset sequences in the 5' region from 1 to 165nt indicating coding potential (test code value=0.97) suggest possible regulatory and/or functional role(s) of these sequences in the rhino genome. Translation of the complementary strand from 906 to 706nt and 190 to 2nt showed proteins of more than 7kDa rich in non-polar residues. This suggests that pSS(R)2 is either a part of, or adjacent to, a functional gene. The contig contains mostly non-consecutive simple repeat units from 2 to 17nt with varying frequencies, of which four base motifs were found to be predominant. Zoo-blot hybridization revealed that pSS(R)2 sequences are unique to R. unicornis genome because they do not cross-hybridize, even with the genomic DNA of South African black rhino Diceros bicornis. Southern blot analysis of R. unicornis genomic DNA with pSS(R)2 and other synthetic oligo probes revealed a high level of genetic homogeneity, which was also substantiated by microsatellite associated sequence amplification (MASA). Owing to its uniqueness, the pSS(R)2 probe has a potential application in the area of conservation biology for unequivocal identification of horn or other body tissues of R. unicornis. The evolutionary aspect of this repeat fraction in the context of comparative genome analysis is discussed.
Liberek, K; Osipiuk, J; Zylicz, M; Ang, D; Skorko, J; Georgopoulos, C
1990-02-25
The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.
Scaling features of noncoding DNA
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.
1999-01-01
We review evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene, and utilize this fact to build a Coding Sequence Finder Algorithm, which uses statistical ideas to locate the coding regions of an unknown DNA sequence. Finally, we describe briefly some recent work adapting to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function, and reporting that noncoding regions in eukaryotes display a larger redundancy than coding regions. Specifically, we consider the possibility that this result is solely a consequence of nucleotide concentration differences as first noted by Bonhoeffer and his collaborators. We find that cytosine-guanine (CG) concentration does have a strong "background" effect on redundancy. However, we find that for the purine-pyrimidine binary mapping rule, which is not affected by the difference in CG concentration, the Shannon redundancy for the set of analyzed sequences is larger for noncoding regions compared to coding regions.
Walworth, Nathan G.; Pfreundt, Ulrike; Nelson, William C.; ...
2015-04-07
Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance due to its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and non-pathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus both in culture and in situ. Transcriptome analysis indicates that 86% of the non-coding spacemore » is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and two fold higher than that found in the gene dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium ncRNA secondary structures were predicted between most culture and metagenomic sequences lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high fidelity replication allowed the unusual ‘inflation’ of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.« less
Moszczynska, Anna; Burghardt, Kyle J.; Yu, Dongyue
2017-01-01
Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis. PMID:28272323
Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan
2013-01-01
A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.
Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan
2013-01-01
A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926
Privacy rules for DNA databanks. Protecting coded 'future diaries'.
Annas, G J
1993-11-17
In privacy terms, genetic information is like medical information. But the information contained in the DNA molecule itself is more sensitive because it contains an individual's probabilistic "future diary," is written in a code that has only partially been broken, and contains information about an individual's parents, siblings, and children. Current rules for protecting the privacy of medical information cannot protect either genetic information or identifiable DNA samples stored in DNA databanks. A review of the legal and public policy rationales for protecting genetic privacy suggests that specific enforceable privacy rules for DNA databanks are needed. Four preliminary rules are proposed to govern the creation of DNA databanks, the collection of DNA samples for storage, limits on the use of information derived from the samples, and continuing obligations to those whose DNA samples are in the databanks.
Mapping Cancer Cells’ Starting Lines | Center for Cancer Research
Many of the defective regulatory pathways that lead to aberrant proliferation in cancer converge on DNA replication. So replication regulatory pathways could be targeted to more specifically kill cancer cells. Unfortunately such targeting would require knowing where and when DNA replication starts in the cancer genome. In yeast, the locations of replication initiation sites on chromatin have been extensively mapped, but in human cancer cells only a handful of these sites have been identified.
Shitan, Nobukazu; Kamimoto, Yoshihisa; Minami, Shota; Kubo, Mizuki; Ito, Kozue; Moriyasu, Masataka; Yazaki, Kazufumi
2011-01-01
Yeast functional screening with a Sophora flavescens cDNA library was performed to identify the genes involved in the tolerant mechanism to the self-producing prenylated flavonoid sophoraflavanone G (SFG). One cDNA, which conferred SFG tolerance, encoded a regulatory particle triple-A ATPase 2 (SfRPT2), a member of the 26S proteasome subunit. The yeast transformant of SfRPT2 showed reduced SFG accumulation in the cells.
Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand
Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled bymore » several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.« less
Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN
Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand; ...
2016-10-27
Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled bymore » several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.« less
The Mediator complex and transcription regulation
Poss, Zachary C.; Ebmeier, Christopher C.
2013-01-01
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064
Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward
2016-10-26
Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.
Molecular Toxicology of Chromatin
1992-01-01
towards the DNA analogs used as coenzymes suggests that the maximal activation by spermine , that depends on coDNA, may involve DNA structures which...evidence for the participation of spermine in an ADPRT-mediated regulatory system that can modify DNA structures , it seems plausible to assume tnat ADPRT may...DNA-dependent manner. The binding properties of spermine -, polylysine- and p olyarginine-Sepharose 4B affinity matrices were also determined. The
Fractal landscape analysis of DNA walks
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.
1992-01-01
By mapping nucleotide sequences onto a "DNA walk", we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that imply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.
Harper, B; McClain, S; Ganko, E W
2012-08-01
Global regulatory agencies require bioinformatic sequence analysis as part of their safety evaluation for transgenic crops. Analysis typically focuses on encoded proteins and adjacent endogenous flanking sequences. Recently, regulatory expectations have expanded to include all reading frames of the inserted DNA. The intent is to provide biologically relevant results that can be used in the overall assessment of safety. This paper evaluates the relevance of assessing the allergenic potential of all DNA reading frames found in common food genes using methods considered for the analysis of T-DNA sequences used in transgenic crops. FASTA and BLASTX algorithms were used to compare genes from maize, rice, soybean, cucumber, melon, watermelon, and tomato using international regulatory guidance. Results show that BLASTX for maize yielded 7254 alignments that exceeded allergen similarity thresholds and 210,772 alignments that matched eight or more consecutive amino acids with an allergen; other crops produced similar results. This analysis suggests that each nontransgenic crop has a much greater potential for allergenic risk than what has been observed clinically. We demonstrate that a meaningful safety assessment is unlikely to be provided by using methods with inherently high frequencies of false positive alignments when broadly applied to all reading frames of DNA sequence. Copyright © 2012 Elsevier Inc. All rights reserved.
Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics
NASA Technical Reports Server (NTRS)
Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.
Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)
Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn
2009-01-01
Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roa, B.B.; Warner, L.E.; Lupski, J.R.
1994-09-01
The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry themore » most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.« less
The Regulatory Interactions of p21 and PCNA in Human Breast Cancer
2000-07-01
To better understand the role of DNA replication in breast cancer, it is essential to examine the machinery that carries out the DNA synthetic...origin specific DNA replication in vitro, which we have termed the DNA synthesome. Analysis of the constituent proteins of the DNA synthesome of...and effectively competes away polymerase 8 leading to the efficient inhibition of DNA replication . This inhibition impedes the replication of damaged
McNamee, J P; Bellier, P V
2015-07-01
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), our laboratory examined ampicillin trihydrate (AMP), 1,2-dimethylhydrazine dihydrochloride (DMH), and N-nitrosodimethylamine (NDA) using a standard comet assay validation protocol (v14.2) developed by the JaCVAM validation management team (VMT). Coded samples were received by our laboratory along with basic MSDS information. Solubility analysis and range-finding experiments of the coded test compounds were conducted for dose selection. Animal dosing schedules, the comet assay processing and analysis, and statistical analysis were conducted in accordance with the standard protocol. Based upon our blinded evaluation, AMP was not found to exhibit evidence of genotoxicity in either the rat liver or stomach. However, both NDA and DMH were observed to cause a significant increase in % tail DNA in the rat liver at all dose levels tested. While acute hepatoxicity was observed for these compounds in the high dose group, in the investigators opinion there were a sufficient number of consistently damaged/measurable cells at the medium and low dose groups to judge these compounds as genotoxic. There was no evidence of genotoxicity from either NDA or DMH in the rat stomach. In conclusion, our laboratory observed increased DNA damage from two blinded test compounds in rat liver (later identified as genotoxic carcinogens), while no evidence of genotoxicity was observed for the third blinded test compound (later identified as a non-genotoxic, non-carcinogen). This data supports the use of a standardized protocol of the in vivo comet assay as a cost-effective alternative genotoxicity assay for regulatory testing purposes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Identification of G-quadruplex forming sequences in three manatee papillomaviruses
Zahin, Maryam; Dean, William L.; Ghim, Shin-je; Joh, Joongho; Gray, Robert D.; Khanal, Sujita; Bossart, Gregory D.; Mignucci-Giannoni, Antonio A.; Rouchka, Eric C.; Jenson, Alfred B.; Trent, John O.; Chaires, Jonathan B.
2018-01-01
The Florida manatee (Trichechus manatus latirotris) is a threatened aquatic mammal in United States coastal waters. Over the past decade, the appearance of papillomavirus-induced lesions and viral papillomatosis in manatees has been a concern for those involved in the management and rehabilitation of this species. To date, three manatee papillomaviruses (TmPVs) have been identified in Florida manatees, one forming cutaneous lesions (TmPV1) and two forming genital lesions (TmPV3 and TmPV4). We identified DNA sequences with the potential to form G-quadruplex structures (G4) across the three genomes. G4 were located on both DNA strands and across coding and non-coding regions on all TmPVs, offering multiple targets for viral control. Although G4 have been identified in several viral genomes, including human PVs, most research has focused on canonical structures comprised of three G-tetrads. In contrast, the vast majority of sequences we identified would allow the formation of non-canonical structures with only two G-tetrads. Our biophysical analysis confirmed the formation of G4 with parallel topology in three such sequences from the E2 region. Two of the structures appear comprised of multiple stacked two G-tetrad structures, perhaps serving to increase structural stability. Computational analysis demonstrated enrichment of G4 sequences on all TmPVs on the reverse strand in the E2/E4 region and on both strands in the L2 region. Several G4 sequences occurred at similar regional locations on all PVs, most notably on the reverse strand in the E2 region. In other cases, G4 were identified at similar regional locations only on PVs forming genital lesions. On all TmPVs, G4 sequences were located in the non-coding region near putative E2 binding sites. Together, these findings suggest that G4 are possible regulatory elements in TmPVs. PMID:29630682
NASA Astrophysics Data System (ADS)
Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.
2015-03-01
DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.
Self-regulation of motor vehicle advertising: is it working in Australia?
Donovan, Robert J; Fielder, Lynda J; Ouschan, Robyn; Ewing, Michael
2011-05-01
There is growing concern that certain content within motor vehicle advertising may have a negative influence on driving attitudes and behaviours of viewers, particularly young people, and hence a negative impact on road safety. In response, many developed countries have adopted a self-regulatory approach to motor vehicle advertising. However, it appears that many motor vehicle advertisements in Australia and elsewhere are not compliant with self-regulatory codes. Using standard commercial advertising methods, we exposed three motor vehicle ads that had been the subject of complaints to the Australian Advertising Standards Board (ASB) to, N = 463, 14-55 year olds to assess the extent to which their perceptions of the content of the ads communicated themes that were contrary to the Australian self-regulatory code. All three ads were found to communicate messages contrary to the code (such as the vehicle's speed and acceleration capabilities). However, the ASB had upheld complaints about only one of the ads. Where motor vehicle advertising regulatory frameworks exist to guide motor vehicle advertisers as to what is and what is not acceptable in their advertising, greater efforts are needed to ensure compliance with these codes. One way may be to make it mandatory for advertisers to report consumer pre-testing of their advertising to ensure that undesirable messages are not being communicated to viewers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.
Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.
RPS8—a New Informative DNA Marker for Phylogeny of Babesia and Theileria Parasites in China
Tian, Zhan-Cheng; Liu, Guang-Yuan; Yin, Hong; Luo, Jian-Xun; Guan, Gui-Quan; Luo, Jin; Xie, Jun-Ren; Shen, Hui; Tian, Mei-Yuan; Zheng, Jin-feng; Yuan, Xiao-song; Wang, Fang-fang
2013-01-01
Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida are complex and remain unclear. We compared the intron–exon structure and DNA sequences of the RPS8 gene from Babesia and Theileria spp. isolates in China. Similar to 18S rDNA, the 40S ribosomal protein S8 gene, RPS8, including both coding and non-coding regions is a useful and novel genetic marker for defining species boundaries and for inferring phylogenies because it tends to have little intra-specific variation but considerable inter-specific difference. However, more samples are needed to verify the usefulness of the RPS8 (coding and non-coding regions) gene as a marker for the phylogenetic position and detection of most Babesia and Theileria species, particularly for some closely related species. PMID:24244571
Transcription and DNA Damage: Holding Hands or Crossing Swords?
D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio
2017-10-27
Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new age in functional genomics using CRISPR/Cas9 in arrayed library screening.
Agrotis, Alexander; Ketteler, Robin
2015-01-01
CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.
Epigenetics of sex determination and gonadogenesis.
Piferrer, Francesc
2013-04-01
Epigenetics is commonly defined as the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. The three major epigenetic mechanisms for gene expression regulation include DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms provide organisms with the ability to integrate genomic and environmental information to modify the activity of their genes for generating a particular phenotype. During development, cells differentiate, acquire, and maintain identity through changes in gene expression. This is crucial for sex determination and differentiation, which are among the most important developmental processes for the proper functioning and perpetuation of species. This review summarizes studies showing how epigenetic regulatory mechanisms contribute to sex determination and reproductive organ formation in plants, invertebrates, and vertebrates. Further progress will be made by integrating several approaches, including genomics and Next Generation Sequencing to create epigenetic maps related to different aspects of sex determination and gonadogenesis. Epigenetics will also contribute to understand the etiology of several disorders of sexual development. It also might play a significant role in the control of reproduction in animal farm production and will aid in recognizing the environmental versus genetic influences on sex determination of sensitive species in a global change scenario. Copyright © 2013 Wiley Periodicals, Inc.
Penna, Ilaria; Vassallo, Irene; Nizzari, Mario; Russo, Debora; Costa, Delfina; Menichini, Paola; Poggi, Alessandro; Russo, Claudio; Dieci, Giorgio; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2013-06-01
FE65 proteins constitute a family of adaptors which modulates the processing of amyloid precursor protein and the consequent amyloid β production. Thus, they have been involved in the complex and partially unknown cascade of reactions at the base of Alzheimer's disease etiology. However, FE65 and FE65-like proteins may be linked to neurodegeneration through the regulation of cell cycle in post-mitotic neurons. In this work we disclose novel molecular mechanisms by which APBB2 can modulate APP processing. We show that APBB2 mRNA splicing, driven by the over-expression of a novel non-coding RNA named 45A, allow the generation of alternative protein forms endowed with differential effects on Aβ production, cell cycle control, and DNA damage response. 45A overexpression also favors cell transformation and tumorigenesis leading to a marked increase of malignancy of neuroblastoma cells. Therefore, our results highlight a novel regulatory pathway of considerable interest linking APP processing with cell cycle regulation and DNA-surveillance systems, that may represent a molecular mechanism to induce neurodegeneration in post-mitotic neurons. Copyright © 2013 Elsevier B.V. All rights reserved.
Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M
2004-05-12
Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.
It’s Time for An Epigenomics Roadmap of Heart Failure
Papait, Roberto; Corrado, Nadia; Rusconi, Francesca; Serio, Simone; V.G. Latronico, Michael
2015-01-01
The post-genomic era has completed its first decade. During this time, we have seen an attempt to understand life not just through the study of individual isolated processes, but through the appreciation of the amalgam of complex networks, within which each process can influence others. Greatly benefiting this view has been the study of the epigenome, the set of DNA and histone protein modifications that regulate gene expression and the function of regulatory non-coding RNAs without altering the DNA sequence itself. Indeed, the availability of reference genome assemblies of many species has led to the development of methodologies such as ChIP-Seq and RNA-Seq that have allowed us to define with high resolution the genomic distribution of several epigenetic elements and to better comprehend how they are interconnected for the regulation of gene expression. In the last few years, the use of these methodologies in the cardiovascular field has contributed to our understanding of the importance of epigenetics in heart diseases, giving new input to this area of research. Here, we review recently acquired knowledge on the role of the epigenome in heart failure, and discuss the need of an epigenomics roadmap for cardiovascular disease. PMID:27006627
An audit of alcohol brand websites.
Gordon, Ross
2011-11-01
The study investigated the nature and content of alcohol brand websites in the UK. The research involved an audit of the websites of the 10 leading alcohol brands by sales in the UK across four categories: lager, spirits, Flavoured Alcoholic Beverages and cider/perry. Each site was visited twice over a 1-month period with site features and content recorded using a pro-forma. The content of websites was then reviewed against the regulatory codes governing broadcast advertising of alcohol. It was found that 27 of 40 leading alcohol brands had a dedicated website. Sites featured sophisticated content, including sports and music sections, games, downloads and competitions. Case studies of two brand websites demonstrate the range of content features on such sites. A review of the application of regulatory codes covering traditional advertising found some content may breach the codes. Study findings illustrate the sophisticated range of content accessible on alcohol brand websites. When applying regulatory codes covering traditional alcohol marketing channels it is apparent that some content on alcohol brand websites would breach the codes. This suggests the regulation of alcohol brand websites may be an issue requiring attention from policymakers. Further research in this area would help inform this process. © 2010 Australasian Professional Society on Alcohol and other Drugs.
de Souza, C R; Aragão, F J; Moreira, E C O; Costa, C N M; Nascimento, S B; Carvalho, L J
2009-03-24
Cassava is one of the most important tropical food crops for more than 600 million people worldwide. Transgenic technologies can be useful for increasing its nutritional value and its resistance to viral diseases and insect pests. However, tissue-specific promoters that guarantee correct expression of transgenes would be necessary. We used inverse polymerase chain reaction to isolate a promoter sequence of the Mec1 gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in cassava storage roots. In silico analysis revealed putative cis-acting regulatory elements within this promoter sequence, including root-specific elements that may be required for its expression in vascular tissues. Transient expression experiments showed that the Mec1 promoter is functional, since this sequence was able to drive GUS expression in bean embryonic axes. Results from our computational analysis can serve as a guide for functional experiments to identify regions with tissue-specific Mec1 promoter activity. The DNA sequence that we identified is a new promoter that could be a candidate for genetic engineering of cassava roots.
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
Jones, Siân; Zhang, Xiaosong; Parsons, D Williams; Lin, Jimmy Cheng-Ho; Leary, Rebecca J; Angenendt, Philipp; Mankoo, Parminder; Carter, Hannah; Kamiyama, Hirohiko; Jimeno, Antonio; Hong, Seung-Mo; Fu, Baojin; Lin, Ming-Tseh; Calhoun, Eric S; Kamiyama, Mihoko; Walter, Kimberly; Nikolskaya, Tatiana; Nikolsky, Yuri; Hartigan, James; Smith, Douglas R; Hidalgo, Manuel; Leach, Steven D; Klein, Alison P; Jaffee, Elizabeth M; Goggins, Michael; Maitra, Anirban; Iacobuzio-Donahue, Christine; Eshleman, James R; Kern, Scott E; Hruban, Ralph H; Karchin, Rachel; Papadopoulos, Nickolas; Parmigiani, Giovanni; Vogelstein, Bert; Velculescu, Victor E; Kinzler, Kenneth W
2008-09-26
There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.
ERIC Educational Resources Information Center
Gordon, Wanda; Sork, Thomas J.
2001-01-01
Replicating an Indiana study, 261 responses from British Columbia adult educators revealed a high degree of support for codes of ethics and identified ethical dilemmas in practice. Half currently operated under a code. Responses to whether codes should have a regulatory function were mixed. (Contains 44 references.) (SK)
Transcriptional mapping of the ribosomal RNA region of mouse L-cell mitochondrial DNA.
Nagley, P; Clayton, D A
1980-01-01
The map positions in mouse mitochondrial DNA of the two ribosomal RNA genes and adjacent genes coding several small transcripts have been determined precisely by application of a procedure in which DNA-RNA hybrids have been subjected to digestion by S1 nuclease under conditions of varying severity. Digestion of the DNA-RNA hybrids with S1 nuclease yielded a series of species which were shown to contain ribosomal RNA molecules together with adjacent transcripts hybridized conjointly to a continuous segment of mitochondrial DNA. There is one small transcript about 60 bases long whose gene adjoins the sequences coding the 5'-end of the small ribosomal RNA (950 bases) and which lies approximately 200 nucleotides from the D-loop origin of heavy strand mitochondrial DNA synthesis. An 80-base transcript lies between the small and large ribosomal RNA genes, and genes for two further short transcript (each about 80 bases in length) abut the sequences coding the 3'-end of the large ribosomal RNA (approximately 1500 bases). The ability to isolate a discrete DNA-RNA hybrid species approximately 2700 base pairs in length containing all these transcripts suggests that there can be few nucleotides in this region of mouse mitochondrial DNA which are not represented as stable RNA species. Images PMID:6253898
Statistical and linguistic features of DNA sequences
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
De novo mutations in regulatory elements in neurodevelopmental disorders
Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.
2018-01-01
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236
Tramontano, A; Macchiato, M F
1986-01-01
An algorithm to determine the probability that a reading frame codifies for a protein is presented. It is based on the results of our previous studies on the thermodynamic characteristics of a translated reading frame. We also develop a prediction procedure to distinguish between coding and non-coding reading frames. The procedure is based on the characteristics of the putative product of the DNA sequence and not on periodicity characteristics of the sequence, so the prediction is not biased by the presence of overlapping translated reading frames or by the presence of translated reading frames on the complementary DNA strand. PMID:3753761
Puzzles in modern biology. V. Why are genomes overwired?
Frank, Steven A
2017-01-01
Many factors affect eukaryotic gene expression. Transcription factors, histone codes, DNA folding, and noncoding RNA modulate expression. Those factors interact in large, broadly connected regulatory control networks. An engineer following classical principles of control theory would design a simpler regulatory network. Why are genomes overwired? Neutrality or enhanced robustness may lead to the accumulation of additional factors that complicate network architecture. Dynamics progresses like a ratchet. New factors get added. Genomes adapt to the additional complexity. The newly added factors can no longer be removed without significant loss of fitness. Alternatively, highly wired genomes may be more malleable. In large networks, most genomic variants tend to have a relatively small effect on gene expression and trait values. Many small effects lead to a smooth gradient, in which traits may change steadily with respect to underlying regulatory changes. A smooth gradient may provide a continuous path from a starting point up to the highest peak of performance. A potential path of increasing performance promotes adaptability and learning. Genomes gain by the inductive process of natural selection, a trial and error learning algorithm that discovers general solutions for adapting to environmental challenge. Similarly, deeply and densely connected computational networks gain by various inductive trial and error learning procedures, in which the networks learn to reduce the errors in sequential trials. Overwiring alters the geometry of induction by smoothing the gradient along the inductive pathways of improving performance. Those overwiring benefits for induction apply to both natural biological networks and artificial deep learning networks.
Schoor, Michael; Mortlock, Doug P.; Reddi, A. Hari; Kingsley, David M.
2016-01-01
Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations. PMID:27902701
48 CFR 2001.104-1 - Publication and code arrangement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Publication and code arrangement. 2001.104-1 Section 2001.104-1 Federal Acquisition Regulations System NUCLEAR REGULATORY... 2001.104-1 Publication and code arrangement. (a) The NRCAR and its subsequent changes are: (1...
The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals
Duffié, Rachel; Ajjan, Sophie; Greenberg, Maxim V.; Zamudio, Natasha; Escamilla del Arenal, Martin; Iranzo, Julian; Okamoto, Ikuhiro; Barbaux, Sandrine; Fauque, Patricia; Bourc'his, Déborah
2014-01-01
Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus. PMID:24589776
Oelze, I; Rittner, K; Sczakiel, G
1994-01-01
Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition. Images PMID:8289357
2011-01-01
Background The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2 was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no mutation in BRCA1 or BRCA2 had been identified. Methods We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an analysis tool for DAE assessment. Results We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs. Conclusions Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms. PMID:21569354
78 FR 60137 - Shipping and Transportation; Technical, Organizational, and Conforming Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... INFORMATION: Table of Contents for Preamble I. Abbreviations II. Regulatory History III. Background and... States Code VCDOA Vice Commandant Decision on Appeal II. Regulatory History We did not publish a notice...
Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.
2011-01-01
The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106
Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis
2016-06-21
The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...
2014-10-02
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less
Lin, Ying-Chung; Li, Wei; Sun, Ying-Hsuan; Kumari, Sapna; Wei, Hairong; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Sederoff, Ronald R.; Chiang, Vincent L.
2013-01-01
Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)–directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1–DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling–based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1–directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable. PMID:24280390
Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.
2012-01-01
Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141
Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M
2012-01-01
Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.
Lactase non-persistence is directed by DNA variation-dependent epigenetic aging
Labrie, Viviane; Buske, Orion J; Oh, Edward; Jeremian, Richie; Ptak, Carolyn; Gasiūnas, Giedrius; Maleckas, Almantas; Petereit, Rūta; Žvirbliene, Aida; Adamonis, Kęstutis; Kriukienė, Edita; Koncevičius, Karolis; Gordevičius, Juozas; Nair, Akhil; Zhang, Aiping; Ebrahimi, Sasha; Oh, Gabriel; Šikšnys, Virginijus; Kupčinskas, Limas; Brudno, Michael; Petronis, Arturas
2016-01-01
Inability to digest lactose due to lactase non-persistence is a common trait in adult mammals, with the exception of certain human populations that exhibit lactase persistence. It is not clear how the lactase gene can be dramatically downregulated with age in most individuals, but remains active in some. We performed a comprehensive epigenetic study of the human and mouse intestine using chromosome-wide DNA modification profiling and targeted bisulfite sequencing. Epigenetically-controlled regulatory elements were found to account for the differences in lactase mRNA levels between individuals, intestinal cell types and species. The importance of these regulatory elements in modulating lactase mRNA levels was confirmed by CRISPR-Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, as lactase persistence- and non-persistence-DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors facilitate a gradual accumulation of epigenetic changes with age to affect phenotypic outcome. PMID:27159559
HCPCS Coding: An Integral Part of Your Reimbursement Strategy.
Nusgart, Marcia
2013-12-01
The first step to a successful reimbursement strategy is to ensure that your wound care product has the most appropriate Healthcare Common Procedure Coding System (HCPCS) code (or billing) for your product. The correct HCPCS code plays an essential role in patient access to new and existing technologies. When devising a strategy to obtain a HCPCS code for its product, companies must consider a number of factors as follows: (1) Has the product gone through the Food and Drug Administration (FDA) regulatory process or does it need to do so? Will the FDA code designation impact which HCPCS code will be assigned to your product? (2) In what "site of service" do you intend to market your product? Where will your customers use the product? Which coding system (CPT ® or HCPCS) applies to your product? (3) Does a HCPCS code for a similar product already exist? Does your product fit under the existing HCPCS code? (4) Does your product need a new HCPCS code? What is the linkage, if any, between coding, payment, and coverage for the product? Researchers and companies need to start early and place the same emphasis on a reimbursement strategy as it does on a regulatory strategy. Your reimbursement strategy staff should be involved early in the process, preferably during product research and development and clinical trial discussions.
The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape.
Yousaf, Aisha; Sohail Raza, Muhammad; Ali Abbasi, Amir
2015-08-06
Enhancers lie at the heart of transcriptional and developmental gene regulation. Therefore, changes in enhancer sequences usually disrupt the target gene expression and result in disease phenotypes. Despite the well-established role of enhancers in development and disease, evolutionary sequence studies are lacking. The current study attempts to unravel the puzzle of bony vertebrates' conserved noncoding elements (CNE) enhancer evolution. Bayesian phylogenetics of enhancer sequences spotlights promising interordinal relationships among placental mammals, proposing a closer relationship between humans and laurasiatherians while placing rodents at the basal position. Clock-based estimates of enhancer evolution provided a dynamic picture of interspecific rate changes across the bony vertebrate lineage. Moreover, coelacanth in the study augmented our appreciation of the vertebrate cis-regulatory evolution during water-land transition. Intriguingly, we observed a pronounced upsurge in enhancer evolution in land-dwelling vertebrates. These novel findings triggered us to further investigate the evolutionary trend of coding as well as CNE nonenhancer repertoires, to highlight the relative evolutionary dynamics of diverse genomic landscapes. Surprisingly, the evolutionary rates of enhancer sequences were clearly at odds with those of the coding and the CNE nonenhancer sequences during vertebrate adaptation to land, with land vertebrates exhibiting significantly reduced rates of coding sequence evolution in comparison to their fast evolving regulatory landscape. The observed variation in tetrapod cis-regulatory elements caused the fine-tuning of associated gene regulatory networks. Therefore, the increased evolutionary rate of tetrapods' enhancer sequences might be responsible for the variation in developmental regulatory circuits during the process of vertebrate adaptation to land. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Provençal, Nadine; Suderman, Matthew J.; Caramaschi, Doretta; Wang, Dongsha; Hallett, Michael; Vitaro, Frank
2013-01-01
Background Animal and human studies suggest that inflammation is associated with behavioral disorders including aggression. We have recently shown that physical aggression of boys during childhood is strongly associated with reduced plasma levels of cytokines IL-1α, IL-4, IL-6, IL-8 and IL-10, later in early adulthood. This study tests the hypothesis that there is an association between differential DNA methylation regions in cytokine genes in T cells and monocytes DNA in adult subjects and a trajectory of physical aggression from childhood to adolescence. Methodology/Principal Findings We compared the methylation profiles of the entire genomic loci encompassing the IL-1α, IL-6, IL-4, IL-10 and IL-8 and three of their regulatory transcription factors (TF) NFkB1, NFAT5 and STAT6 genes in adult males on a chronic physical aggression trajectory (CPA) and males with the same background who followed a normal physical aggression trajectory (control group) from childhood to adolescence. We used the method of methylated DNA immunoprecipitation with comprehensive cytokine gene loci and TF loci microarray hybridization, statistical analysis and false discovery rate correction. We found differentially methylated regions to associate with CPA in both the cytokine loci as well as in their transcription factors loci analyzed. Some of these differentially methylated regions were located in known regulatory regions whereas others, to our knowledge, were previously unknown as regulatory areas. However, using the ENCODE database, we were able to identify key regulatory elements in many of these regions that indicate that they might be involved in the regulation of cytokine expression. Conclusions We provide here the first evidence for an association between differential DNA methylation in cytokines and their regulators in T cells and monocytes and male physical aggression. PMID:23977113
Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.
Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro
2010-05-07
Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.
... Central Office-Coding Resources AHA Team Training Health Career Center Health Forum Connect More Regulatory Relief The regulatory burden faced by hospitals is substantial and unsustainable. Read the report . More AHA Opioid Toolkit Stem the Tide: Addressing the Opioid Epidemic More ...
Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA.
Baxter, Jamie C; Sutton, Mark D
2012-08-01
The ATP-bound form of the Escherichia coli DnaA protein binds 'DnaA boxes' present in the origin of replication (oriC) and operator sites of several genes, including dnaA, to co-ordinate their transcription with initiation of replication. The Hda protein, together with the β sliding clamp, stimulates the ATPase activity of DnaA via a process termed regulatory inactivation of DnaA (RIDA), to regulate the activity of DnaA in DNA replication. Here, we used the mutant dnaN159 strain, which expresses the β159 clamp protein, to gain insight into how the actions of Hda are co-ordinated with replication. Elevated expression of Hda impeded growth of the dnaN159 strain in a Pol II- and Pol IV-dependent manner, suggesting a role for Hda managing the actions of these Pols. In a wild-type strain, elevated levels of Hda conferred sensitivity to nitrofurazone, and suppressed the frequency of -1 frameshift mutations characteristic of Pol IV, while loss of hda conferred cold sensitivity. Using the dnaN159 strain, we identified 24 novel hda alleles, four of which supported E. coli viability despite their RIDA defect. Taken together, these findings suggest that although one or more Hda functions are essential for cell viability, RIDA may be dispensable. © 2012 Blackwell Publishing Ltd.
Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene
Gastaldo, Elena; Harries, Lorna W.; Rubio-Cabezas, Oscar; Castaño, Luis
2012-01-01
Background The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. Methodology/Principal Findings Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. Conclusions/Significance This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants. PMID:22235272
Rykowski, M C; Parmelee, S J; Agard, D A; Sedat, J W
1988-08-12
We have aligned the molecular map of the Notch locus to the cytological features of the salivary gland polytene chromosomes of D. melanogaster in order to determine the interphase chromatin structure of this gene. Using high-resolution in situ hybridization and computer-aided optical microscope data collection and image analysis, we have determined that the coding portions and introns of the Notch gene, which is not expressed in this tissue, are all contained within the polytene chromosome band 3C7. The portion of the Notch gene that resides 5' to the start of transcription lies in an open chromatin conformation, the interband between bands 3C6 and 3C7. Our data are most consistent with condensation of the chromosomal DNA into 30 nm fibers in this polytene band.
Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin
2017-08-01
Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.
Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi
2015-11-06
Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene. Copyright © 2015 Elsevier Inc. All rights reserved.
Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo
2016-05-01
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellulases and coding sequences
Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong
2001-02-20
The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.
Cellulases and coding sequences
Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong
2001-01-01
The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining
Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando
2014-01-01
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user. PMID:25268582
SU-A-210-01: Why Should We Learn Radiation Oncology Billing?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, H.
The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less
SU-A-210-02: Medical Physics Opportunities at the NRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abogunde, M.
The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less
HLA-E regulatory and coding region variability and haplotypes in a Brazilian population sample.
Ramalho, Jaqueline; Veiga-Castelli, Luciana C; Donadi, Eduardo A; Mendes-Junior, Celso T; Castelli, Erick C
2017-11-01
The HLA-E gene is characterized by low but wide expression on different tissues. HLA-E is considered a conserved gene, being one of the least polymorphic class I HLA genes. The HLA-E molecule interacts with Natural Killer cell receptors and T lymphocytes receptors, and might activate or inhibit immune responses depending on the peptide associated with HLA-E and with which receptors HLA-E interacts to. Variable sites within the HLA-E regulatory and coding segments may influence the gene function by modifying its expression pattern or encoded molecule, thus, influencing its interaction with receptors and the peptide. Here we propose an approach to evaluate the gene structure, haplotype pattern and the complete HLA-E variability, including regulatory (promoter and 3'UTR) and coding segments (with introns), by using massively parallel sequencing. We investigated the variability of 420 samples from a very admixed population such as Brazilians by using this approach. Considering a segment of about 7kb, 63 variable sites were detected, arranged into 75 extended haplotypes. We detected 37 different promoter sequences (but few frequent ones), 27 different coding sequences (15 representing new HLA-E alleles) and 12 haplotypes at the 3'UTR segment, two of them presenting a summed frequency of 90%. Despite the number of coding alleles, they encode mainly two different full-length molecules, known as E*01:01 and E*01:03, which corresponds to about 90% of all. In addition, differently from what has been previously observed for other non classical HLA genes, the relationship among the HLA-E promoter, coding and 3'UTR haplotypes is not straightforward because the same promoter and 3'UTR haplotypes were many times associated with different HLA-E coding haplotypes. This data reinforces the presence of only two main full-length HLA-E molecules encoded by the many HLA-E alleles detected in our population sample. In addition, this data does indicate that the distal HLA-E promoter is by far the most variable segment. Further analyses involving the binding of transcription factors and non-coding RNAs, as well as the HLA-E expression in different tissues, are necessary to evaluate whether these variable sites at regulatory segments (or even at the coding sequence) may influence the gene expression profile. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less
Keyamura, Kenji; Katayama, Tsutomu
2011-08-19
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.
Keyamura, Kenji; Katayama, Tsutomu
2011-01-01
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944
The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.
Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas
2014-01-01
For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.
Caruccio, Nicholas
2011-01-01
DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.
USDA-ARS?s Scientific Manuscript database
Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of social behavior is associated with enhanced gene regulatory potential, which may in...
Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity
NASA Astrophysics Data System (ADS)
Mukherjee, Shashi Bajaj; Sen, Pradip Kumar
2010-10-01
Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.
Physics behind the mechanical nucleosome positioning code
NASA Astrophysics Data System (ADS)
Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut
2017-11-01
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
Müller, J-M V; Wissemann, J; Meli, M L; Dasen, G; Lutz, H; Heinzerling, L; Feige, K
2011-11-01
Whole blood pharmacokinetics of intratumourally injected naked plasmid DNA coding for equine Interleukin 12 (IL-12) was assessed as a means of in vivo gene transfer in the treatment of melanoma in grey horses. The expression of induced interferon gamma (IFN-g) was evaluated in order to determine the pharmacodynamic properties of in vivo gene transduction. Seven grey horses bearing melanoma were injected intratumourally with 250 µg naked plasmid DNA coding for IL-12. Peripheral blood and biopsies from the injection site were taken at 13 time points until day 14 post injection (p.i.). Samples were analysed using quantitative real-time PCR. Plasmid DNA was quantified in blood samples and mRNA expression for IFN-g in tissue samples. Plasmid DNA showed fast elimination kinetics with more than 99 % of the plasmid disappearing within 36 hours. IFN-g expression increased quickly after IL-12 plasmid injection, but varied between individual horses. Intratumoural injection of plasmid DNA is a feasible method for inducing transgene expression in vivo. Biological activity of the transgene IL-12 was confirmed by measuring expression of IFN-g.
Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain
2011-01-01
cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.
LaPolla, R J; Mayne, K M; Davidson, N
1984-01-01
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis
Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233
NMR studies on the structure and dynamics of lac operator DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.C.
Nuclear Magnetic Resonance spectroscopy was used to elucidate the relationships between structure, dynamics and function of the gene regulatory sequence corresponding to the lactose operon operator of Escherichia coli. The length of the DNA fragments examined varied from 13 to 36 base pair, containing all or part of the operator sequence. These DNA fragments are either derived genetically or synthesized chemically. Resonances of the imino protons were assigned by one dimensional inter-base pair nuclear Overhauser enhancement (NOE) measurements. Imino proton exchange rates were measured by saturation recovery methods. Results from the kinetic measurements show an interesting dynamic heterogeneity with amore » maximum opening rate centered about a GTG/CAC sequence which correlates with the biological function of the operator DNA. This particular three base pair sequence occurs frequently and often symmetrically in prokaryotic nd eukaryotic DNA sites where one anticipates specific protein interaction for gene regulation. The observed sequence dependent imino proton exchange rate may be a reflection of variation of the local structure of regulatory DNA. The results also indicate that the observed imino proton exchange rates are length dependent.« less
Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin
2006-11-01
The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.
Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu
2006-06-01
VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation.
Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu
2006-01-01
VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation. PMID:16757746
Integrated decision support systems for regulatory applications benefit from standardindustry practices such as code reuse, test-driven development, and modularization. Theseapproaches make meeting the federal government’s goals of transparency, efficiency, and quality assurance ...
Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.
Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H
2017-03-01
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.
Qiu, Zhengkun; Li, Ren; Zhang, Shuaibin; Wang, Ketao; Xu, Meng; Li, Jiayang; Du, Yongchen; Yu, Hong; Cui, Xia
2016-08-01
Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which depends on the orchestrated accessibility of regulatory proteins to promoters and other cis-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the developmental process. To understand the regulatory mechanism and functional elements modulating morphological and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Du, Ping; Li, Hongxia; Cao, Wei
2009-07-15
A novel and sensitive sandwich electrochemical biosensor based on the amplification of magnetic microbeads and Au nanoparticles (NPs) modified with bio bar code and PbS nanoparticles was constructed in the present work. In this method, the magnetic microspheres were coated with 4 layers polyelectrolytes in order to increase carboxyl groups on the surface of the magnetic microbeads, which enhanced the amount of the capture DNA. The amino-functionalized capture DNA on the surface of magnetic microbeads hybridized with one end of target DNA, the other end of which was hybridized with signal DNA probe labelled with Au NPs on the terminus. The Au NPs were modified with bio bar code and the PbS NPs were used as a marker for identifying the target oligoncleotide. The modification of magnetic microbeads could immobilize more amino-group terminal capture DNA, and the bio bar code could increase the amount of Au NPs that combined with the target DNA. The detection of lead ions performed by anodic stripping voltammetry (ASV) technology further improved the sensitivity of the biosensor. As a result, the present DNA biosensor showed good selectivity and sensitivity by the combined amplification. Under the optimum conditions, the linear relationship with the concentration of the target DNA was ranging from 2.0 x 10(-14) M to 1.0 x 10(-12)M and a detection limit as low as 5.0 x 10(-15)M was obtained.
Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).
Ken, C F; Lin, C T; Wu, J L; Shaw, J F
2000-06-01
A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.
NASA Astrophysics Data System (ADS)
Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.
2015-02-01
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
2013-01-01
Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed. PMID:23714207
NASA Astrophysics Data System (ADS)
Yu, Yang; Zeng, Zheng
2009-10-01
By discussing the causes behind the high amendments ratio in the implementation of urban regulatory detailed plans in China despite its law-ensured status, the study aims to reconcile conflict between the legal authority of regulatory detailed planning and the insufficient scientific support in its decision-making and compilation by introducing into the process spatial analysis based on GIS technology and 3D modeling thus present a more scientific and flexible approach to regulatory detailed planning in China. The study first points out that the current compilation process of urban regulatory detailed plan in China employs mainly an empirical approach which renders it constantly subjected to amendments; the study then discusses the need and current utilization of GIS in the Chinese system and proposes the framework of a GIS-assisted 3D spatial analysis process from the designer's perspective which can be regarded as an alternating processes between the descriptive codes and physical design in the compilation of regulatory detailed planning. With a case study of the processes and results from the application of the framework, the paper concludes that the proposed framework can be an effective instrument which provides more rationality, flexibility and thus more efficiency to the compilation and decision-making process of urban regulatory detailed plan in China.
Evidence of function for conserved noncoding sequences in Arabidopsis thaliana.
Spangler, Jacob B; Subramaniam, Sabarinath; Freeling, Michael; Feltus, F Alex
2012-01-01
• Whole genome duplication events provide a lineage with a large reservoir of genes that can be molded by evolutionary forces into phenotypes that fit alternative environments. A well-studied whole genome duplication, the α-event, occurred in an ancestor of the model plant Arabidopsis thaliana. Retained segments of the α-event have been defined in recent years in the form of duplicate protein coding sequences (α-pairs) and associated conserved noncoding DNA sequences (CNSs). Our aim was to identify any association between CNSs and α-pair co-functionality at the gene expression level. • Here, we tested for correlation between CNS counts and α-pair co-expression and expression intensity across nine expression datasets: aerial tissue, flowers, leaves, roots, rosettes, seedlings, seeds, shoots and whole plants. • We provide evidence for a putative regulatory role of the CNSs. The association of CNSs with α-pair co-expression and expression intensity varied by gene function, subgene position and the presence of transcription factor binding motifs. A range of possible CNS regulatory mechanisms, including intron-mediated enhancement, messenger RNA fold stability and transcriptional regulation, are discussed. • This study provides a framework to understand how CNS motifs are involved in the maintenance of gene expression after a whole genome duplication event. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong
2010-02-19
Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna wasmore » similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.« less
Catania, Francesco; Lynch, Michael
2010-05-04
In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua
2011-01-01
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713
Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules
Spangler, Jacob B.; Ficklin, Stephen P.; Luo, Feng; Freeling, Michael; Feltus, F. Alex
2012-01-01
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome. PMID:23024789
Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.
Spangler, Jacob B; Ficklin, Stephen P; Luo, Feng; Freeling, Michael; Feltus, F Alex
2012-01-01
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.
DNA methylation of miRNA coding sequences putatively associated with childhood obesity.
Mansego, M L; Garcia-Lacarte, M; Milagro, F I; Marti, A; Martinez, J A
2017-02-01
Epigenetic mechanisms may be involved in obesity onset and its consequences. The aim of the present study was to evaluate whether DNA methylation status in microRNA (miRNA) coding regions is associated with childhood obesity. DNA isolated from white blood cells of 24 children (identification sample: 12 obese and 12 non-obese) from the Grupo Navarro de Obesidad Infantil study was hybridized in a 450 K methylation microarray. Several CpGs whose DNA methylation levels were statistically different between obese and non-obese were validated by MassArray® in 95 children (validation sample) from the same study. Microarray analysis identified 16 differentially methylated CpGs between both groups (6 hypermethylated and 10 hypomethylated). DNA methylation levels in miR-1203, miR-412 and miR-216A coding regions significantly correlated with body mass index standard deviation score (BMI-SDS) and explained up to 40% of the variation of BMI-SDS. The network analysis identified 19 well-defined obesity-relevant biological pathways from the KEGG database. MassArray® validation identified three regions located in or near miR-1203, miR-412 and miR-216A coding regions differentially methylated between obese and non-obese children. The current work identified three CpG sites located in coding regions of three miRNAs (miR-1203, miR-412 and miR-216A) that were differentially methylated between obese and non-obese children, suggesting a role of miRNA epigenetic regulation in childhood obesity. © 2016 World Obesity Federation.
Lee, Youngdeuk; Elvitigala, Don Anushka Sandaruwan; Whang, Ilson; Lee, Sukkyoung; Kim, Hyowon; Zoysa, Mahanama De; Oh, Chulhong; Kang, Do-Hyung; Lee, Jehee
2014-09-01
Immune signaling cascades have an indispensable role in the host defense of almost all the organisms. Tumor necrosis factor (TNF) signaling is considered as a prominent signaling pathway in vertebrate as well as invertebrate species. Within the signaling cascade, TNF receptor-associated factor (TRAF) and TNF receptor-associated protein (TTRAP) has been shown to have a crucial role in the modulation of immune signaling in animals. Here, we attempted to characterize a novel molluskan ortholog of TTRAP (AbTTRAP) from disk abalone (Haliotis discus discus) and analyzed its expression levels under pathogenic stress. The complete coding sequence of AbTTRAP consisted of 1071 nucleotides, coding for a 357 amino acid peptide, with a predicted molecular mass of 40 kDa. According to our in-silico analysis, AbTTRAP resembled the typical TTRAP domain architecture, including a 5'-tyrosyl DNA phosphodiesterase domain. Moreover, phylogenetic analysis revealed its common ancestral invertebrate origin, where AbTTRAP was clustered with molluskan counterparts. Quantitative real time PCR showed universally distributed expression of AbTTRAP in selected tissues of abalone, from which more prominent expression was detected in hemocytes. Upon stimulation with two pathogen-derived mitogens, lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C), transcript levels of AbTTRAP in hemocytes and gill tissues were differentially modulated with time. In addition, the recombinant protein of AbTTRAP exhibited prominent endonuclease activity against abalone genomic DNA, which was enhanced by the presence of Mg(2+) in the medium. Collectively, these results reinforce the existence of the TNF signaling cascade in mollusks like disk abalone, further implicating the putative regulatory behavior of TTRAP in invertebrate host pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Benítez-Burraco, A
FOXP2 is the first gene linked to a hereditary variant of specific language impairment and seems to code for a transcriptional repressor that intervenes in the regulation of the development and the functioning of certain thalamic-cortical-striatal circuits. In the last three years, significant progress has been made in the determination of the structural and functional properties of the gene. These advances essentially have to do with the precise analysis of the most important structural motifs of the protein that it codes for and the main parameters that determine its interaction with DNA. They also concern the determination of the functional and behavioural properties in vivo of the main isoforms of the FOXP2 protein, the exact determination of the pattern of expression of new orthologues of the gene, and the identification of the different target genes for factor FOXP2. This new evidence suggests that protein FOXP2 protein has a high degree of versatility in vivo when it comes to binding to DNA; that its different isoforms are biologically functional; and that the FOXP2 gene is functional during embryonic development and during the adult phase. It also suggests that it is involved in the development and/or functioning of the thalamic-cortical-striatal circuits associated to motor planning, sequential behaviour and procedural learning (a significant saving in developmental terms of the regulatory mechanism in which the gene is involved), as well as the accuracy of the models of linguistic processing that consider language to be, to a large extent, the result of an interaction between certain cortical and subcortical structures.
Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production
Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander
2015-01-01
Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human. PMID:26047354
Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.
Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander
2015-01-01
Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human.
REFINE WETLAND REGULATORY PROGRAM
The Tribes will work toward refining a regulatory program by taking a draft wetland conservation code with permitting incorporated to TEB for review. Progress will then proceed in developing a permit tracking system that will track both Tribal and fee land sites within reservati...
DNA residence time is a regulatory factor of transcription repression
Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette
2017-01-01
Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492
A Structural Basis for the Regulatory Inactivation of DnaA
Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.
2009-01-01
Summary Regulatory inactivation of DnaA is dependent on Hda, a protein homologous to the AAA+ ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 Å resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174, 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation which promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel β-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda. PMID:19000695
He, Xin; Samee, Md. Abul Hassan; Blatti, Charles; Sinha, Saurabh
2010-01-01
Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an enhancer's function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously modeling the regulatory activities of a given set of sequences. PMID:20862354
Noncoding RNAs in DNA Repair and Genome Integrity
Wan, Guohui; Liu, Yunhua; Han, Cecil; Zhang, Xinna
2014-01-01
Abstract Significance: The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%–2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. Recent Advances: In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. Critical Issues: In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. Future Directions: A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications. Antioxid. Redox Signal. 20, 655–677. PMID:23879367
Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly
Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka
2010-01-01
Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877
Lim, Robyn R
2007-08-01
This article describes some work from the Therapeutic Products Directorate of Health Canada regarding Good Review Practices (GRP). Background information is provided on the Therapeutic Products Directorate (TPD) and its regulatory activities regarding drug and medical device assessment in both the pre- and post-market setting. The TPD Good Review Guiding Principles (GRGP) are described which include a Definition of a Good Therapeutic Product Regulatory Review, Ten Hallmarks of a Good Therapeutic Product Regulatory Review and Ten Precepts. Analysis of the guiding principles discusses possible linkages between the guiding principles and intellectual virtues. Through this analysis an hypothesis is developed that the guiding principles outline a code of intellectual conduct for Health Canada's reviewers of evidence for efficacy, safety, manufacturing quality and benefit-risk regarding therapeutic products. Opportunities to advance therapeutic product regulatory review as a scientific discipline in its own right and to acknowledge that these reviewers constitute a specific community of practice are discussed. Integration of intellectual and ethical approaches across therapeutic product review sectors is also suggested.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... Development Center in Massachusetts so that it can be correctly identified through DNA analysis. (Since the... distinguished from each other. DNA analysis is the only way to accurately identify these insects.) The PPQ or... regulatory officials to identify and track specific specimens through the DNA identification tests that we...
Ball, Philip
2003-01-23
The double helix is idealized for its aesthetic elegant structure, but the reality of DNA's physical existence is quite different. Most DNA in the cell is compressed into a tangled package that somehow still exposes itself to meticulous gene-regulatory control. Philip Ball holds a mirror up to what we truly know about the mysteries of DNA's life inside a cell.
Zhou, Daling; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Zhang, Deqiang
2017-10-01
Long non-coding RNAs (lncRNAs) function in various biological processes. However, their roles in secondary growth of plants remain poorly understood. Here, 15,691 lncRNAs were identified from vascular cambium, developing xylem, and mature xylem of Populus tomentosa with high and low biomass using RNA-seq, including 1,994 lncRNAs that were differentially expressed (DE) among the six libraries. 3,569 cis-regulated and 3,297 trans-regulated protein-coding genes were predicted as potential target genes (PTGs) of the DE lncRNAs to participate in biological regulation. Then, 476 and 28 lncRNAs were identified as putative targets and endogenous target mimics (eTMs) of Populus known microRNAs (miRNAs), respectively. Genome re-sequencing of 435 individuals from a natural population of P. tomentosa found 34,015 single nucleotide polymorphisms (SNPs) within 178 lncRNA loci and 522 PTGs. Single-SNP associations analysis detected 2,993 associations with 10 growth and wood-property traits under additive and dominance model. Epistasis analysis identified 17,656 epistatic SNP pairs, providing evidence for potential regulatory interactions between lncRNAs and their PTGs. Furthermore, a reconstructed epistatic network, representing interactions of 8 lncRNAs and 15 PTGs, might enrich regulation roles of genes in the phenylpropanoid pathway. These findings may enhance our understanding of non-coding genes in plants. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.
Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G
2017-12-20
Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.
Roles of Non-Coding RNA in Sugarcane-Microbe Interaction
Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.
2017-01-01
Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296
The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules
McArthur, Sarah D; Pulvermacher, Sarah C; Stauffer, George V
2006-01-01
Background In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism. Results In this study, we report that the Yersinia pestis KIM6 gcvB gene encodes two small RNAs. Transcription of gcvB is activated by the GcvA protein and repressed by the GcvR protein. The gcvB-encoded RNAs are required for repression of the Y. pestis dppA gene, encoding the periplasmic-binding protein component of the dipeptide transport system, showing that the GcvB RNAs have regulatory activity. A deletion of the gcvB gene from the Y. pestis KIM6 chromosome results in a decrease in the generation time of the organism as well as a change in colony morphology. Conclusion The results of this study indicate that the Y. pestis gcvB gene encodes two small non-coding regulatory RNAs that repress dppA expression. A gcvB deletion is pleiotropic, suggesting that the sRNAs are likely involved in controlling genes in addition to dppA. PMID:16768793
Novel numerical and graphical representation of DNA sequences and proteins.
Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D
2006-12-01
We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.
A primer on thermodynamic-based models for deciphering transcriptional regulatory logic.
Dresch, Jacqueline M; Richards, Megan; Ay, Ahmet
2013-09-01
A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks
Baumbach, Jan
2007-01-01
Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression) and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user) can be analyzed in the context of known transcriptional regulatory networks to predict putative contradictions or further gene regulatory interactions. Furthermore, it integrates protein clusters by means of heuristically solving the weighted graph cluster editing problem. In addition, it provides Web Service based access to up to date gene annotation data from GenDB. Conclusion The release 4.0 of CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene regulatory networks. It is a versatile systems biology platform to support the efficient and large-scale analysis of transcriptional regulation of gene expression in microorganisms. It is publicly available at . PMID:17986320
Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity
Shabalina, Svetlana A.; Spiridonov, Nikolay A.; Kashina, Anna
2013-01-01
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions. PMID:23293005
Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin
2011-03-29
Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.
Sheu, Yi-Jun; Kinney, Justin B.; Stillman, Bruce
2016-01-01
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability. PMID:26733669
Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements
Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L
2006-01-01
Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919
Penalized differential pathway analysis of integrative oncogenomics studies.
van Wieringen, Wessel N; van de Wiel, Mark A
2014-04-01
Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.
Self-Regulation in Broadcasting Revisited.
ERIC Educational Resources Information Center
Linton, Bruce A.
1987-01-01
Discusses the self-regulatory processes of the broadcast industry as related to advertising and programing standards after the elimination of the National Association of Broadcasters (NAB) "Code." Asserts that, even though the code is gone, the process of self-regulation continues. (MM)
Samorì, Bruno; Zuccheri, Giampaolo
2005-02-11
The nanometer scale is a special place where all sciences meet and develop a particularly strong interdisciplinarity. While biology is a source of inspiration for nanoscientists, chemistry has a central role in turning inspirations and methods from biological systems to nanotechnological use. DNA is the biological molecule by which nanoscience and nanotechnology is mostly fascinated. Nature uses DNA not only as a repository of the genetic information, but also as a controller of the expression of the genes it contains. Thus, there are codes embedded in the DNA sequence that serve to control recognition processes on the atomic scale, such as the base pairing, and others that control processes taking place on the nanoscale. From the chemical point of view, DNA is the supramolecular building block with the highest informational content. Nanoscience has therefore the opportunity of using DNA molecules to increase the level of complexity and efficiency in self-assembling and self-directing processes.
78 FR 55210 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... revise its program at 25 Pa. Code 86.1, 86.3, and 86.17, to reflect the addition of new definitions and... application fee'' at 25 Pa. Code 86.1 Pennsylvania proposes the addition of a new term; the definition of... Pennsylvania definition of ``minor amendment,'' found at 25 Pa. Code 92a.2, directly mirrors, with a few...