Sample records for coding sequences recombinant

  1. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  2. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  3. Lichenase and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  4. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination.

    PubMed

    Shao, Renfu; Barker, Stephen C

    2011-02-15

    The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Recombined sequences between the non-coding control regions of JC and BK viruses found in the urine of a renal transplantation patient.

    PubMed

    Liaw, Yu-Ching; Chen, Cheng-Hsu; Shu, Kuo-Hsiung; Fang, Chiung-Yao; Ou, Wei-Chih; Chen, Pei-Lain; Shen, Cheng-Huang; Lin, Mien-Chun; Chang, Deching; Wang, Meilin

    2012-12-01

    Kidney cells are the common host for JC virus (JCV) and BK virus (BKV). Reactivation of JCV and/or BKV in patients after organ transplantation, such as renal transplantation, may cause hemorrhagic cystitis and polyomavirus-associated nephropathy. Furthermore, JCV and BKV may be shed in the urine after reactivation in the kidney. Rearranged as well as archetypal non-coding control regions (NCCRs) of JCV and BKV have been frequently identified in human samples. In this study, three JC/BK recombined NCCR sequences were identified in the urine of a patient who had undergone renal transplantation. They were designated as JC-BK hybrids 1, 2, and 3. The three JC/BK recombinant NCCRs contain up-stream JCV as well as down-stream BKV sequences. Deletions of both JCV and BKV sequences were found in these recombined NCCRs. Recombination of DNA sequences between JCV and BKV may occur during co-infection due to the relatively high homology of the two viral genomes.

  6. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  7. A 12-year molecular survey of clinical herpes simplex virus type 2 isolates demonstrates the circulation of clade A and B strains in Germany.

    PubMed

    Schmidt-Chanasit, Jonas; Bialonski, Alexandra; Heinemann, Patrick; Ulrich, Rainer G; Günther, Stephan; Rabenau, Holger F; Doerr, Hans Wilhelm

    2010-07-01

    Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. A Sabin 2-related poliovirus recombinant contains a homologous sequence of human enterovirus species C in the viral polymerase coding region.

    PubMed

    Zhang, Yong; Zhang, Fan; Zhu, Shuangli; Chen, Li; Yan, Dongmei; Wang, Dongyan; Tang, Ruiyan; Zhu, Hui; Hou, Xiaohui; An, Hongqiu; Zhang, Hong; Xu, Wenbo

    2010-02-01

    A type 2 vaccine-related poliovirus (strain CHN3024), differing from the Sabin 2 strain by 0.44% in the VP1 coding region was isolated from a patient with vaccine-associated paralytic poliomyelitis. Sequences downstream of nucleotide position 6735 (3D(pol) coding region) were derived from an unidentified sequence; no close match for a potential parent was found, but it could be classified into a non-polio human enteroviruses species C (HEV-C) phylogeny. The virus differed antigenically from the parental Sabin strain, having an amino acid substitution in the neutralizing antigenic site 1. The similarity between CHN3024 and Sabin 2 sequences suggests that the recombination was recent; this is supported by the estimation that the initiating OPV dose was given only 36-75 days before sampling. The patient's clinical manifestations, intratypic differentiation examination, and whole-genome sequencing showed that this recombinant exhibited characteristics of neurovirulent vaccine-derived polioviruses (VDPV), which may, thus, pose a potential threat to a polio-free world.

  9. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  10. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  11. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  12. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly.

    PubMed

    Bland, Michael J; Ducos-Galand, Magaly; Val, Marie-Eve; Mazel, Didier

    2017-07-14

    Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.

  13. 1-deoxy-d-xylulose-5-phosphate reductoisomerases and method of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.

  14. 1-deoxy-D-xylulose-5-phosphate reductoisomerases, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2002-07-16

    The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.

  15. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

    PubMed

    Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C

    2018-06-01

    High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.

  16. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  17. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    DOEpatents

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  18. A Sabin 3-Derived Poliovirus Recombinant Contained a Sequence Homologous with Indigenous Human Enterovirus Species C in the Viral Polymerase Coding Region†

    PubMed Central

    Arita, Minetaro; Zhu, Shuang-Li; Yoshida, Hiromu; Yoneyama, Tetsuo; Miyamura, Tatsuo; Shimizu, Hiroyuki

    2005-01-01

    Outbreaks of poliomyelitis caused by circulating vaccine-derived polioviruses (cVDPVs) have been reported in areas where indigenous wild polioviruses (PVs) were eliminated by vaccination. Most of these cVDPVs contained unidentified sequences in the nonstructural protein coding region which were considered to be derived from human enterovirus species C (HEV-C) by recombination. In this study, we report isolation of a Sabin 3-derived PV recombinant (Cambodia-02) from an acute flaccid paralysis (AFP) case in Cambodia in 2002. We attempted to identify the putative recombination counterpart of Cambodia-02 by sequence analysis of nonpolio enterovirus isolates from AFP cases in Cambodia from 1999 to 2003. Based on the previously estimated evolution rates of PVs, the recombination event resulting in Cambodia-02 was estimated to have occurred within 6 months after the administration of oral PV vaccine (99.3% nucleotide identity in VP1 region). The 2BC and the 3Dpol coding regions of Cambodia-02 were grouped into the genetic cluster of indigenous coxsackie A virus type 17 (CAV17) (the highest [87.1%] nucleotide identity) and the cluster of indigenous CAV13-CAV18 (the highest [94.9%] nucleotide identity) by the phylogenic analysis of the HEV-C isolates in 2002, respectively. CAV13-CAV18 and CAV17 were the dominant HEV-C serotypes in 2002 but not in 2001 and in 2003. We found a putative recombination between CAV13-CAV18 and CAV17 in the 3CDpro coding region of a CAV17 isolate. These results suggested that a part of the 3Dpol coding region of PV3(Cambodia-02) was derived from a HEV-C strain genetically related to indigenous CAV13-CAV18 strains in 2002 in Cambodia. PMID:16188967

  19. Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus

    PubMed Central

    McGee, Charles E.; Tsetsarkin, Konstantin A.; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L.; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely. PMID:21826243

  20. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus.

    PubMed

    McGee, Charles E; Tsetsarkin, Konstantin A; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.

  1. Nucleic and amino acid sequences relating to a novel transketolase, and methods for the expression thereof

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Lange, Bernd Markus; McCaskill, David G.

    2001-01-01

    cDNAs encoding 1-deoxyxylulose-5-phosphate synthase from peppermint (Mentha piperita) have been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) are provided which code for the expression of 1-deoxyxylulose-5-phosphate synthase from plants. In another aspect the present invention provides for isolated, recombinant DXPS proteins, such as the proteins having the sequences set forth in SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8. In other aspects, replicable recombinant cloning vehicles are provided which code for plant 1-deoxyxylulose-5-phosphate synthases, or for a base sequence sufficiently complementary to at least a portion of 1-deoxyxylulose-5-phosphate synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding a plant 1-deoxyxylulose-5-phosphate synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant 1-deoxyxylulose-5-phosphate synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant 1-deoxyxylulose-5-phosphate synthase may be used to obtain expression or enhanced expression of 1-deoxyxylulose-5-phosphate synthase in plants in order to enhance the production of 1-deoxyxylulose-5-phosphate, or its derivatives such as isopentenyl diphosphate (BP), or may be otherwise employed for the regulation or expression of 1-deoxyxylulose-5-phosphate synthase, or the production of its products.

  2. Beta.-glucosidase coding sequences and protein from orpinomyces PC-2

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong; Ximenes, Eduardo A.

    2001-02-06

    Provided is a novel .beta.-glucosidase from Orpinomyces sp. PC2, nucleotide sequences encoding the mature protein and the precursor protein, and methods for recombinant production of this .beta.-glucosidase.

  3. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  4. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion.

    PubMed

    Zhang, J R; Norris, S J

    1998-08-01

    The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.

  5. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  6. Production of recombinant adenovirus containing human interlukin-4 gene.

    PubMed

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-11-01

    Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics.

  7. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  8. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  9. [Construction of the superantigen SEA transfected laryngocarcinoma cells].

    PubMed

    Ji, Xiaobin; Jingli, J V; Liu, Qicai; Xie, Jinghua

    2013-04-01

    To construct an eukaryotic expression vectors containing superantigen staphylococcal enterotoxin A (SEA) gene, and to identify its expression in laryngeal squamous carcinoma cells. SEA full-length gene fragment was obtained from ATCC13565 genome of the staphylococcus, referencing standard strains producing SEA. Coding sequence of SEA was artificially synthetized. Than, SEA gene fragments was subcloned into eukaryotic expression vector pIRES-EGFP. The recombinant plasmid pSEA-IRES-EGFP was constructed and was transfected to laryngocarcinoma Hep-2 cells. Resistant clones were screened by G418. The expression of SEA in laryngocarcinoma cells was identified with ELISA and RT-PCR method. The subclone of artificially synthetized SEA gene was subclone to eukaryotic expression vector pires-EGFP. Flanking sequence confirmed that SEA sequence was fully identical to the coding sequence of standard staphylococcus strains ATCC13565 in Genbank. After recombinant plasmid transfected to laryngocarcinoma cells, the resistant clones was obtained after screening for two weeks. The clones were selected. The specific gene fragment was obtained by RT-PCR amplification. ELISA assay confirmed that the content of SEA protein in supernatant fluid of cell culture had reached about Pg level. The recombinant eukaryotic expression vector containing superantigen SEA gene is successfully constructed, and is capable of effective expression and continued secretion of SEA protein in laryngochrcinoma Hep-2 cells after recombinant plasmid transfected to laryngocarcinoma cells.

  10. Isolation of an intertypic poliovirus capsid recombinant from a child with vaccine-associated paralytic poliomyelitis.

    PubMed

    Martín, Javier; Samoilovich, Elena; Dunn, Glynis; Lackenby, Angie; Feldman, Esphir; Heath, Alan; Svirchevskaya, Ekaterina; Cooper, Gill; Yermalovich, Marina; Minor, Philip D

    2002-11-01

    The isolation of a capsid intertypic poliovirus recombinant from a child with vaccine-associated paralytic poliomyelitis is described. Virus 31043 had a Sabin-derived type 3-type 2-type 1 recombinant genome with a 5'-end crossover point within the capsid coding region. The result was a poliovirus chimera containing the entire coding sequence for antigenic site 3a derived from the Sabin type 2 strain. The recombinant virus showed altered antigenic properties but did not acquire type 2 antigenic characteristics. The significance of the presence in nature of such poliovirus chimeras and the consequences for the current efforts to detect potentially dangerous vaccine-derived poliovirus strains are discussed in the context of the global polio eradication initiative.

  11. Noncytopathogenic Pestivirus Strains Generated by Nonhomologous RNA Recombination: Alterations in the NS4A/NS4B Coding Region

    PubMed Central

    Gallei, Andreas; Orlich, Michaela; Thiel, Heinz-Juergen; Becher, Paul

    2005-01-01

    Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses. PMID:16254361

  12. Antiretroviral drug resistance and phylogenetic diversity of HIV-1 in Chile.

    PubMed

    Ríos, Maritza; Delgado, Elena; Pérez-Alvarez, Lucía; Fernández, Jorge; Gálvez, Paula; de Parga, Elena Vázquez; Yung, Verónica; Thomson, Michael M; Nájera, Rafael

    2007-06-01

    This study reports the analysis of human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) coding sequences from 136 HIV-1-infected subjects from Chile, 66 (49%) of them under antiretroviral (ARV) treatment. The prevalence of mutations conferring high or intermediate resistance levels to ARVs was 77% among treated patients and 2.5% among drug-naïve subjects. The distribution of resistance prevalence in treated patients by drug class was 61% to nucleoside RT inhibitors, 84% to nonnucleoside RT inhibitors, and 46% to PR inhibitors. Phylogenetic analysis revealed that 115 (85%) subjects were infected with subtype B viruses, 1 with a subtype F1 virus, and 20 (15%) carried BF intersubtype recombinants. Most BF recombinants grouped into two clusters, one related to CRF12_BF, while the other could represent a new circulating recombinant form (CRF). In conclusion, this is the first report analysing the prevalence of ARV resistance which includes patients under HAART from Chile. Additionally, phylogenetic analysis of the PR-RT coding sequences reveals the presence of BF intersubtype recombinants. (c) 2007 Wiley-Liss, Inc.

  13. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  14. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  15. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    PubMed Central

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. Materials and Methods In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Results Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. Conclusion This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics. PMID:23493491

  16. Isolation of an Intertypic Poliovirus Capsid Recombinant from a Child with Vaccine-Associated Paralytic Poliomyelitis

    PubMed Central

    Martín, Javier; Samoilovich, Elena; Dunn, Glynis; Lackenby, Angie; Feldman, Esphir; Heath, Alan; Svirchevskaya, Ekaterina; Cooper, Gill; Yermalovich, Marina; Minor, Philip D.

    2002-01-01

    The isolation of a capsid intertypic poliovirus recombinant from a child with vaccine-associated paralytic poliomyelitis is described. Virus 31043 had a Sabin-derived type 3-type 2-type 1 recombinant genome with a 5′-end crossover point within the capsid coding region. The result was a poliovirus chimera containing the entire coding sequence for antigenic site 3a derived from the Sabin type 2 strain. The recombinant virus showed altered antigenic properties but did not acquire type 2 antigenic characteristics. The significance of the presence in nature of such poliovirus chimeras and the consequences for the current efforts to detect potentially dangerous vaccine-derived poliovirus strains are discussed in the context of the global polio eradication initiative. PMID:12368335

  17. Expression of a recombinant human sperm-agglutinating mini-antibody in tobacco (Nicotiana tabacum L.).

    PubMed

    Xu, Bingfang; Copolla, Michael; Herr, John C; Timko, Michael P

    2007-01-01

    The murine monoclonal antibody (mAB) S19 recognizes an N-linked carbohydrate antigen designated sperm agglutination antigen-1 (SAGA1) located on the membrane protein CD52. This antigen is added to the sperm surface during epididymal maturation. Binding of the S19 mAB to SAGA-1 causes the rapid agglutination of sperm and blocks pre-fertilization events. Previous studies indicated that the S19 mAB may be a potential specific spermicidal agent (termed a spermistatic) capable of replacing current spermicidal products that contain harsh detergents with harmful side effects. The nucleotide sequences encoding the heavy (H) and light (L) chains of the S19 antibody were cloned. A chimeric gene was constructed using the nucleotide sequences encoding the variable regions of both the H and L chains, and this gene (scFv1 9) was expressed in transgenic tobacco (Nicotiana tabacum L.) to produce a recombinant anti-sperm antibody (RASA). Highest levels of RASA expression were observed in BY-2 plant cell suspension cultures and regenerated N. tabacum cv. Xanthi plants transformant in which the RASA coding sequences were expressed under the control of the Cauliflower Mosaic Virus 35S promoter containing a double-enhancer sequence (2X CaMV 35S). Subsequent modifications of the transgene including the addition of a 5'-untranslated sequence from the tobacco etch virus (TEV leader sequence), N-terminal fusion of the coding region with an endoplasmic reticulum targeting signal of patatin (pat) and C-terminal fusion with the endoplasmic reticulum retention signal peptide KDEL showed further enhancement of RASA expression. The plant-expressed RASA formed intrachain disulfide bonds and was primarily soluble in the cytoplasmic fraction of the cells. Introduction of a poly-histidine (6xHIS) tag in the recombinant RASA protein allowed for rapid purification of the recombinant protein using Ni-NTA chromatography. Optimization of scale-up production and purification of this plant-derived recombinant protein should provide large quantities of an inexpensive spermistatic plantibody.

  18. Detection and characterization of hepatitis A virus circulating in Egypt.

    PubMed

    Hamza, Hazem; Abd-Elshafy, Dina Nadeem; Fayed, Sayed A; Bahgat, Mahmoud Mohamed; El-Esnawy, Nagwa Abass; Abdel-Mobdy, Emam

    2017-07-01

    Hepatitis A virus (HAV) still poses a considerable problem worldwide. In the current study, hepatitis A virus was recovered from wastewater samples collected from three wastewater treatment plants over one year. Using RT-PCR, HAV was detected in 43 out of 68 samples (63.2%) representing both inlet and outlet. Eleven positive samples were subjected to sequencing targeting the VP1-2A junction region. Phylogenetic analysis revealed that all samples belonged to subgenotype IB with few substitutions at the amino acid level. The complete sequence of one isolate (HAV/Egy/BI-11/2015) showed that the similarity at the amino acid level was not reflected at the nucleotide level. However, the deduced amino acid sequence derived from the complete nucleotide sequence showed distinct substitutions in the 2B, 2C, and 3A regions. Recombination analysis revealed a recombination event between X75215 (subgenotype IA) and AF268396 (subgenotype IB) involving a portion of the 2B nonstructural protein coding region (nucleotides 3757-3868) assuming the herein characterized sequence an actual recombinant. Despite the role of recombination in picornaviruses evolution, its involvement in HAV evolution has rarely been reported, and this may be due to the limited available complete HAV sequences. To our knowledge, this represents the first characterized complete sequence of an Egyptian isolate and the described recombination event provides an important update on the circulating HAV strains in Egypt.

  19. Coestimation of recombination, substitution and molecular adaptation rates by approximate Bayesian computation.

    PubMed

    Lopes, J S; Arenas, M; Posada, D; Beaumont, M A

    2014-03-01

    The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1 coding data sets.

  20. Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain

    PubMed Central

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348

  1. HIV classification using the coalescent theory

    PubMed Central

    Bulla, Ingo; Schultz, Anne-Kathrin; Schreiber, Fabian; Zhang, Ming; Leitner, Thomas; Korber, Bette; Morgenstern, Burkhard; Stanke, Mario

    2010-01-01

    Motivation: Existing coalescent models and phylogenetic tools based on them are not designed for studying the genealogy of sequences like those of HIV, since in HIV recombinants with multiple cross-over points between the parental strains frequently arise. Hence, ambiguous cases in the classification of HIV sequences into subtypes and circulating recombinant forms (CRFs) have been treated with ad hoc methods in lack of tools based on a comprehensive coalescent model accounting for complex recombination patterns. Results: We developed the program ARGUS that scores classifications of sequences into subtypes and recombinant forms. It reconstructs ancestral recombination graphs (ARGs) that reflect the genealogy of the input sequences given a classification hypothesis. An ARG with maximal probability is approximated using a Markov chain Monte Carlo approach. ARGUS was able to distinguish the correct classification with a low error rate from plausible alternative classifications in simulation studies with realistic parameters. We applied our algorithm to decide between two recently debated alternatives in the classification of CRF02 of HIV-1 and find that CRF02 is indeed a recombinant of Subtypes A and G. Availability: ARGUS is implemented in C++ and the source code is available at http://gobics.de/software Contact: ibulla@uni-goettingen.de Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:20400454

  2. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  3. In vitro V(D)J recombination: signal joint formation.

    PubMed

    Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D

    1996-11-26

    The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

  4. HYBRIDCHECK: software for the rapid detection, visualization and dating of recombinant regions in genome sequence data.

    PubMed

    Ward, Ben J; van Oosterhout, Cock

    2016-03-01

    HYBRIDCHECK is a software package to visualize the recombination signal in large DNA sequence data set, and it can be used to analyse recombination, genetic introgression, hybridization and horizontal gene transfer. It can scan large (multiple kb) contigs and whole-genome sequences of three or more individuals. HYBRIDCHECK is written in the r software for OS X, Linux and Windows operating systems, and it has a simple graphical user interface. In addition, the r code can be readily incorporated in scripts and analysis pipelines. HYBRIDCHECK implements several ABBA-BABA tests and visualizes the effects of hybridization and the resulting mosaic-like genome structure in high-density graphics. The package also reports the following: (i) the breakpoint positions, (ii) the number of mutations in each introgressed block, (iii) the probability that the identified region is not caused by recombination and (iv) the estimated age of each recombination event. The divergence times between the donor and recombinant sequence are calculated using a JC, K80, F81, HKY or GTR correction, and the dating algorithm is exceedingly fast. By estimating the coalescence time of introgressed blocks, it is possible to distinguish between hybridization and incomplete lineage sorting. HYBRIDCHECK is libré software and it and its manual are free to download from http://ward9250.github.io/HybridCheck/. © 2015 John Wiley & Sons Ltd.

  5. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets.

    PubMed

    Springer, Mark S; Gatesy, John

    2018-02-26

    coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset-the 'recombination ratchet'-is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d'etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful enough to infer the correct species tree for difficult phylogenetic problems in the anomaly zone, where concatenation is expected to fail because of ILS, then there should be a decreasing probability of inferring the correct species tree using longer loci with many intralocus recombination breakpoints (i.e., increased levels of concatenation).

  6. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets

    PubMed Central

    Springer, Mark S.; Gatesy, John

    2018-01-01

    Summary coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset—the ‘recombination ratchet’—is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d’etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful enough to infer the correct species tree for difficult phylogenetic problems in the anomaly zone, where concatenation is expected to fail because of ILS, then there should be a decreasing probability of inferring the correct species tree using longer loci with many intralocus recombination breakpoints (i.e., increased levels of concatenation). PMID:29495400

  7. Stepwise detection of recombination breakpoints in sequence alignments.

    PubMed

    Graham, Jinko; McNeney, Brad; Seillier-Moiseiwitsch, Françoise

    2005-03-01

    We propose a stepwise approach to identify recombination breakpoints in a sequence alignment. The approach can be applied to any recombination detection method that uses a permutation test and provides estimates of breakpoints. We illustrate the approach by analyses of a simulated dataset and alignments of real data from HIV-1 and human chromosome 7. The presented simulation results compare the statistical properties of one-step and two-step procedures. More breakpoints are found with a two-step procedure than with a single application of a given method, particularly for higher recombination rates. At higher recombination rates, the additional breakpoints were located at the cost of only a slight increase in the number of falsely declared breakpoints. However, a large proportion of breakpoints still go undetected. A makefile and C source code for phylogenetic profiling and the maximum chi2 method, tested with the gcc compiler on Linux and WindowsXP, are available at http://stat-db.stat.sfu.ca/stepwise/ jgraham@stat.sfu.ca.

  8. Recombination and Population Mosaic of a Multifunctional Viral Gene, Adeno-Associated Virus cap

    PubMed Central

    Takeuchi, Yasuhiro; Myers, Richard; Danos, Olivier

    2008-01-01

    Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV) cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI) revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u) region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred. PMID:18286191

  9. Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99.

    PubMed

    Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja

    2014-01-01

    Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A-C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5'UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses.

  10. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    PubMed Central

    Thor, Sharmi W.; Hilt, Deborah A.; Kissinger, Jessica C.; Paterson, Andrew H.; Jackwood, Mark W.

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV) isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus. PMID:21994806

  11. Evolution and Diversity of the Human Hepatitis D Virus Genome

    PubMed Central

    Huang, Chi-Ruei; Lo, Szecheng J.

    2010-01-01

    Human hepatitis delta virus (HDV) is the smallest RNA virus in genome. HDV genome is divided into a viroid-like sequence and a protein-coding sequence which could have originated from different resources and the HDV genome was eventually constituted through RNA recombination. The genome subsequently diversified through accumulation of mutations selected by interactions between the mutated RNA and proteins with host factors to successfully form the infectious virions. Therefore, we propose that the conservation of HDV nucleotide sequence is highly related with its functionality. Genome analysis of known HDV isolates shows that the C-terminal coding sequences of large delta antigen (LDAg) are the highest diversity than other regions of protein-coding sequences but they still retain biological functionality to interact with the heavy chain of clathrin can be selected and maintained. Since viruses interact with many host factors, including escaping the host immune response, how to design a program to predict RNA genome evolution is a great challenging work. PMID:20204073

  12. Cloning and Sequencing of Defective Particles Derived from the Autonomous Parvovirus Minute Virus of Mice for the Construction of Vectors with Minimal cis-Acting Sequences

    PubMed Central

    Clément, Nathalie; Avalosse, Bernard; El Bakkouri, Karim; Velu, Thierry; Brandenburger, Annick

    2001-01-01

    The production of wild-type-free stocks of recombinant parvovirus minute virus of mice [MVM(p)] is difficult due to the presence of homologous sequences in vector and helper genomes that cannot easily be eliminated from the overlapping coding sequences. We have therefore cloned and sequenced spontaneously occurring defective particles of MVM(p) with very small genomes to identify the minimal cis-acting sequences required for DNA amplification and virus production. One of them has lost all capsid-coding sequences but is still able to replicate in permissive cells when nonstructural proteins are provided in trans by a helper plasmid. Vectors derived from this particle produce stocks with no detectable wild-type MVM after cotransfection with new, matched, helper plasmids that present no homology downstream from the transgene. PMID:11152501

  13. BCL2 oncogene translocation is mediated by a chi-like consensus

    PubMed Central

    1992-01-01

    Examination of 64 translocations involving the major breakpoint region (mbr) of the BCL2 oncogene and the immunoglobulin heavy chain locus identified three short (14, 16, and 18 bp) segments within the mbr at which translocations occurred with very high frequency. Each of these clusters was associated with a 15-bp region of sequence homology, the principal one containing an octamer related to chi, the procaryotic activator of recombination. The presence of short deletions and N nucleotide additions at the breakpoints, as well as involvement of JH and DH coding regions, suggested that these sequences served as signals capable of interacting with the VDJ recombinase complex, even though no homology with the traditional heptamer/spacer/nonamer (IgRSS) existed. Furthermore, the BCL2 signal sequences were employed in a bidirectional fashion and could mediate recombination of one mbr region with another. Segments homologous to the BCL2 signal sequences flanked individual members of the XP family of diversity gene segments, which were themselves highly overrepresented in the reciprocal products (18q-) of BCL2 translocation. We propose that the chi-like signal sequences of BCL2 represent a distinct class of recognition sites for the recombinase complex, responsible for initiating interactions between regions of DNA separated by great distances, and that BCL2 translocation begins by a recombination event between mbr and DXP chi signals. Since recombinant joints containing chi, not IgRSS, occur in brain cells expressing RAG-1 (Matsuoka, M., F. Nagawa, K. Okazaki, L. Kingsbury, K. Yoshida, U. Muller, D. T. Larue, J. A. Winer, and H. Sakano. 1991. Science [Wash. DC]. 254:81; reference 1), we further suggest that the product of this gene could mediate both BCL2 translocation and the first step of normal DJ assembly through the creation of chi joints, rather than signal or coding joints. PMID:1588282

  14. A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo

    PubMed Central

    Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072

  15. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    PubMed

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype.

    PubMed

    Ferragut, Fátima; Vega, Celina G; Mauroy, Axel; Conceição-Neto, Nádia; Zeller, Mark; Heylen, Elisabeth; Uriarte, Enrique Louge; Bilbao, Gladys; Bok, Marina; Matthijnssens, Jelle; Thiry, Etienne; Badaracco, Alejandra; Parreño, Viviana

    2016-06-01

    Bovine noroviruses are enteric pathogens detected in fecal samples of both diarrheic and non-diarrheic calves from several countries worldwide. However, epidemiological information regarding bovine noroviruses is still lacking for many important cattle producing countries from South America. In this study, three bovine norovirus genogroup III sequences were determined by conventional RT-PCR and Sanger sequencing in feces from diarrheic dairy calves from Argentina (B4836, B4848, and B4881, all collected in 2012). Phylogenetic studies based on a partial coding region for the RNA-dependent RNA polymerase (RdRp, 503 nucleotides) of these three samples suggested that two of them (B4836 and B4881) belong to genotype 2 (GIII.2) while the third one (B4848) was more closely related to genotype 1 (GIII.1) strains. By deep sequencing, the capsid region from two of these strains could be determined. This confirmed the circulation of genotype 1 (B4848) together with the presence of another sequence (B4881) sharing its highest genetic relatedness with genotype 1, but sufficiently distant to constitute a new genotype. This latter strain was shown in silico to be a recombinant: phylogenetic divergence was detected between its RNA-dependent RNA polymerase coding sequence (genotype GIII.2) and its capsid protein coding sequence (genotype GIII.1 or a potential norovirus genotype). According to this data, this strain could be the second genotype GIII.2_GIII.1 bovine norovirus recombinant described in literature worldwide. Further analysis suggested that this strain could even be a potential norovirus GIII genotype, tentatively named GIII.4. The data provides important epidemiological and evolutionary information on bovine noroviruses circulating in South America. Copyright © 2016. Published by Elsevier B.V.

  17. Identification of Recombinant Human Rhinovirus A and C in Circulating Strains from Upper and Lower Respiratory Infections

    PubMed Central

    Kim, Hak; Kim, Kisoon; Kim, Dae-Won; Jung, Hee-Dong; Min Cheong, Hyang; Kim, Ki Hwan; Soo Kim, Dong; Kim, You-Jin

    2013-01-01

    Human rhinoviruses (HRVs), in the Enterovirus genus within the family Picornaviridae, are a highly prevalent cause of acute respiratory infection (ARI). Enteroviruses are genetically highly variable, and recombination between serotypes is known to be a major contribution to their diversity. Recently it was reported that recombination events in HRVs cause the diversity of HRV-C. This study analyzed parts of the viral genes spanning the 5′ non- coding region (NCR) through to the viral protein (VP) encoding sequences of 105 HRV field isolates from 51 outpatient cases of Acute Respiratory Infectious Network (ARINET) and 54 inpatient cases of severe lower respiratory infection (SLRI) surveillance, in order to identify recombination in field samples. When analyzing parts of the 5′NCR and VP4/VP2 encoding sequences, we found intra- and interspecies recombinants in field strains of HRV-A and -C. Nineteen cases of recombination events (18.1%) were found among 105 field strains. For HRV-A, there were five cases (4.8%) of intraspecies recombination events and three cases (2.8%) of interspecies recombination events. For HRV-C, there were four cases (3.8%) of intraspecies recombination events and seven cases (6.7%) of interspecies recombination events. Recombination events were significantly more frequently observed in the ARINET samples (18 cases) than in the SLRI samples (1 case; P< 0.0001). The recombination breakpoints were located in nucleotides (nt) 472–554, which comprise stem-loop 5 in the internal ribosomal entry site (IRES), based on the HRV-B 35 sequence (accession no. FJ445187). Our findings regarding genomic recombination in circulating HRV-A and -C strains suggest that recombination might play a role in HRV fitness and could be a possible determinant of disease severity caused by various HRV infections in patients with ARI. PMID:23826363

  18. Cloning and expression of cDNA coding for bouganin.

    PubMed

    den Hartog, Marcel T; Lubelli, Chiara; Boon, Louis; Heerkens, Sijmie; Ortiz Buijsse, Antonio P; de Boer, Mark; Stirpe, Fiorenzo

    2002-03-01

    Bouganin is a ribosome-inactivating protein that recently was isolated from Bougainvillea spectabilis Willd. In this work, the cloning and expression of the cDNA encoding for bouganin is described. From the cDNA, the amino-acid sequence was deduced, which correlated with the primary sequence data obtained by amino-acid sequencing on the native protein. Bouganin is synthesized as a pro-peptide consisting of 305 amino acids, the first 26 of which act as a leader signal while the 29 C-terminal amino acids are cleaved during processing of the molecule. The mature protein consists of 250 amino acids. Using the cDNA sequence encoding the mature protein of 250 amino acids, a recombinant protein was expressed, purified and characterized. The recombinant molecule had similar activity in a cell-free protein synthesis assay and had comparable toxicity on living cells as compared to the isolated native bouganin.

  19. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  20. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less

  1. Recombination in the Evolution of Enterovirus C Species Sub-Group that Contains Types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99

    PubMed Central

    Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja

    2014-01-01

    Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A–C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5′UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses. PMID:24722726

  2. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a. beta. -mannanase from the extremely thermophilic bacterium Caldocellum saccharolyticum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luethi, E.; Jasmat, N.B.; Grayling, R.A.

    1991-03-01

    A {lambda} recombinant phage expressing {beta}-mannanase activity in Escherichia coli has been isolated from a genomic library of the extremely thermophilic anaerobe Caldocellum saccharolyticum. The gene was cloned into pBR322 on a 5-kb BamHI fragment, and its location was obtained by deletion analysis. The sequence of a 2.1-kb fragment containing the mannanase gene has been determined. One open reading frame was found which could code for a protein of M{sub r} 38,904. The mannanase gene (manA) was overexpressed in E. coli by cloning the gene downstream from the lacZ promoter of pUC18. The enzyme was most active at pH 6more » and 80 C and degraded locust bean gum, guar gum, Pinus radiata glucomannan, and konjak glucomannan. The noncoding region downstream from the mannanase gene showed strong homology to celB, a gene coding for a cellulase from the same organism, suggesting that the manA gene might have been inserted into its present position on the C. saccharolyticum genome by homologous recombination.« less

  3. Presence of a Shared 5'-Leader Sequence in Ancestral Human and Mammalian Retroviruses and Its Transduction into Feline Leukemia Virus.

    PubMed

    Kawasaki, Junna; Kawamura, Maki; Ohsato, Yoshiharu; Ito, Jumpei; Nishigaki, Kazuo

    2017-10-15

    Recombination events induce significant genetic changes, and this process can result in virus genetic diversity or in the generation of novel pathogenicity. We discovered a new recombinant feline leukemia virus (FeLV) gag gene harboring an unrelated insertion, termed the X region, which was derived from Felis catus endogenous gammaretrovirus 4 (FcERV-gamma4). The identified FcERV-gamma4 proviruses have lost their coding capabilities, but some can express their viral RNA in feline tissues. Although the X-region-carrying recombinant FeLVs appeared to be replication-defective viruses, they were detected in 6.4% of tested FeLV-infected cats. All isolated recombinant FeLV clones commonly incorporated a middle part of the FcERV-gamma4 5'-leader region as an X region. Surprisingly, a sequence corresponding to the portion contained in all X regions is also present in at least 13 endogenous retroviruses (ERVs) observed in the cat, human, primate, and pig genomes. We termed this shared genetic feature the commonly shared (CS) sequence. Despite our phylogenetic analysis indicating that all CS-sequence-carrying ERVs are classified as gammaretroviruses, no obvious closeness was revealed among these ERVs. However, the Shannon entropy in the CS sequence was lower than that in other parts of the provirus genome. Notably, the CS sequence of human endogenous retrovirus T had 73.8% similarity with that of FcERV-gamma4, and specific signals were detected in the human genome by Southern blot analysis using a probe for the FcERV-gamma4 CS sequence. Our results provide an interesting evolutionary history for CS-sequence circulation among several distinct ancestral viruses and a novel recombined virus over a prolonged period. IMPORTANCE Recombination among ERVs or modern viral genomes causes a rapid evolution of retroviruses, and this phenomenon can result in the serious situation of viral disease reemergence. We identified a novel recombinant FeLV gag gene that contains an unrelated sequence, termed the X region. This region originated from the 5' leader of FcERV-gamma4, a replication-incompetent feline ERV. Surprisingly, a sequence corresponding to the X region is also present in the 5' portion of other ERVs, including human endogenous retroviruses. Scattered copies of the ERVs carrying the unique genetic feature, here named the commonly shared (CS) sequence, were found in each host genome, suggesting that ancestral viruses may have captured and maintained the CS sequence. More recently, a novel recombinant FeLV hijacked the CS sequence from inactivated FcERV-gamma4 as the X region. Therefore, tracing the CS sequences can provide unique models for not only the modern reservoir of new recombinant viruses but also the genetic features shared among ancient retroviruses. Copyright © 2017 American Society for Microbiology.

  4. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  5. Complete coding regions of the prototypes enterovirus B93 and C95: phylogenetic analyses of the P1 and P3 regions of EV-B and EV-C strains.

    PubMed

    Junttila, N; Lévêque, N; Magnius, L O; Kabue, J P; Muyembe-Tamfum, J J; Maslin, J; Lina, B; Norder, H

    2015-03-01

    Complete coding regions were sequenced for two new enterovirus genomes: EV-B93 previously identified by VP1 sequencing, derived from a child with acute flaccid paralysis in the Democratic Republic of Congo; and EV-C95 from a French soldier with acute gastroenteritis in Djibouti. The EV-B93 P1 had more than 30% nucleotide divergence from other EV-B types, with highest similarity to E-15 and EV-B80. The P1 nucleotide sequence of EV-C95 was most similar, 71%, to CV-A21. Complete coding regions for the new enteroviruses were compared with those of 135 EV-B and 176 EV-C strains representing all types available in GenBank. When strains from the same outbreak or strains isolated during the same year in the same geographical region were excluded, 27 of the 58 EV-B, and 16 of the 23 EV-C types were represented by more than one sequence. However, for EV-B the P3 sequences formed three clades mainly according to origin or time of isolation, irrespective of type, while for EV-C the P3 sequences segregated mainly according to disease manifestation, with most strains causing paralysis, including polioviruses, forming one clade, and strains causing respiratory illness forming another. There was no intermixing of types between these two clades, apart from two EV-C96 strains. The EV-B P3 sequences had lower inter-clade and higher intra-clade variability as compared to the EV-C sequences, which may explain why inter-clade recombinations are more frequent in EV-B. Further analysis of more isolates may shed light on the role of recombinations in the evolution of EV-B in geographical context. © 2014 Wiley Periodicals, Inc.

  6. Codon Optimizing for Increased Membrane Protein Production: A Minimalist Approach.

    PubMed

    Mirzadeh, Kiavash; Toddo, Stephen; Nørholm, Morten H H; Daley, Daniel O

    2016-01-01

    Reengineering a gene with synonymous codons is a popular approach for increasing production levels of recombinant proteins. Here we present a minimalist alternative to this method, which samples synonymous codons only at the second and third positions rather than the entire coding sequence. As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification of a mini-library by PCR; and (3) screening for high-expressing clones.

  7. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  8. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    PubMed

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  9. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    PubMed

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  10. Molecular cloning, expression and characterization of 100K gene of fowl adenovirus-4 for prevention and control of hydropericardium syndrome.

    PubMed

    Shah, M S; Ashraf, A; Khan, M I; Rahman, M; Habib, M; Qureshi, J A

    2016-01-01

    Fowl adenovirus-4 is an infectious agent causing Hydropericardium syndrome in chickens. Adenovirus are non-enveloped virions having linear, double stranded DNA. Viral genome codes for few structural and non structural proteins. 100K is an important non-structural viral protein. Open reading frame for coding sequence of 100K protein was cloned with oligo histidine tag and expressed in Escherichia coli as a fusion protein. Nucleotide sequence of the gene revealed that 100K gene of FAdV-4 has high homology (98%) with the respective gene of FAdV-10. Recombinant 100K protein was expressed in E. coli and purified by nickel affinity chromatography. Immunization of chickens with recombinant 100K protein elicited significant serum antibody titers. However challenge protection test revealed that 100K protein conferred little protection (40%) to the immunized chicken against pathogenic viral challenge. So it was concluded that 100K gene has 2397 bp length and recombinant 100K protein has molecular weight of 95 kDa. It was also found that the recombinant protein has little capacity to affect the immune response because in-spite of having an important role in intracellular transport & folding of viral capsid proteins during viral replication, it is not exposed on the surface of the virus at any stage. Copyright © 2015 The International Alliance for Biological Standardization. All rights reserved.

  11. Dielectronic recombination data for dynamic finite-density plasmas. XV. The silicon isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Kaur, Jagjit; Gorczyca, T. W.; Badnell, N. R.

    2018-02-01

    Context. We aim to present a comprehensive theoretical investigation of dielectronic recombination (DR) of the silicon-like isoelectronic sequence and provide DR and radiative recombination (RR) data that can be used within a generalized collisional-radiative modelling framework. Aims: Total and final-state level-resolved DR and RR rate coefficients for the ground and metastable initial levels of 16 ions between P+ and Zn16+ are determined. Methods: We carried out multi-configurational Breit-Pauli DR calculations for silicon-like ions in the independent processes, isolated resonance, distorted wave approximation. Both Δnc = 0 and Δnc = 1 core excitations are included using LS and intermediate coupling schemes. Results: Results are presented for a selected number of ions and compared to all other existing theoretical and experimental data. The total dielectronic and radiative recombination rate coefficients for the ground state are presented in tabulated form for easy implementation into spectral modelling codes. These data can also be accessed from the Atomic Data and Analysis Structure (ADAS) OPEN-ADAS database. This work is a part of an assembly of a dielectronic recombination database for the modelling of dynamic finite-density plasmas.

  12. Reconstitution of wild type viral DNA in simian cells transfected with early and late SV40 defective genomes.

    PubMed

    O'Neill, F J; Gao, Y; Xu, X

    1993-11-01

    The DNAs of polyomaviruses ordinarily exist as a single circular molecule of approximately 5000 base pairs. Variants of SV40, BKV and JCV have been described which contain two complementing defective DNA molecules. These defectives, which form a bipartite genome structure, contain either the viral early region or the late region. The defectives have the unique property of being able to tolerate variable sized reiterations of regulatory and terminus region sequences, and portions of the coding region. They can also exchange coding region sequences with other polyomaviruses. It has been suggested that the bipartite genome structure might be a stage in the evolution of polyomaviruses which can uniquely sustain genome and sequence diversity. However, it is not known if the regulatory and terminus region sequences are highly mutable. Also, it is not known if the bipartite genome structure is reversible and what the conditions might be which would favor restoration of the monomolecular genome structure. We addressed the first question by sequencing the reiterated regulatory and terminus regions of E- and L-SV40 DNAs. This revealed a large number of mutations in the regulatory regions of the defective genomes, including deletions, insertions, rearrangements and base substitutions. We also detected insertions and base substitutions in the T-antigen gene. We addressed the second question by introducing into permissive simian cells, E- and L-SV40 genomes which had been engineered to contain only a single regulatory region. Analysis of viral DNA from transfected cells demonstrated recombined genomes containing a wild type monomolecular DNA structure. However, the complete defectives, containing reiterated regulatory regions, could often compete away the wild type genomes. The recombinant monomolecular genomes were isolated, cloned and found to be infectious. All of the DNA alterations identified in one of the regulatory regions of E-SV40 DNA were present in the recombinant monomolecular genomes. These and other findings indicate that the bipartite genome state can sustain many mutations which wtSV40 cannot directly sustain. However, the mutations can later be introduced into the wild type genomes when the E- and L-SV40 DNAs recombine to generate a new monomolecular genome structure.

  13. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation.

    PubMed

    Ralph, Duncan K; Matsen, Frederick A

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM.

  14. Rare natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus isolated from a case of acute flaccid paralysis in Brazil, 2015.

    PubMed

    Cassemiro, Klécia M S M; Burlandy, Fernanda M; da Silva, Edson E

    2016-07-01

    A natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus was isolated from an acute flaccid paralytic case in Brazil. Genome sequencing revealed the uncommon location of the crossover site in the VP1 coding region (nucleotides 3251-3258 of Sabin 3 genome). The Sabin 2 donor sequence replaced the last 118 nt of VP1, resulting in the substitution of the complete antigenic site IIIa by PV2-specific amino acids. The low overall number of nucleotide substitutions in P1 region indicated that the predicted replication time of the isolate was about 8-9 weeks. Two of the principal determinants of attenuation in Sabin 3 genomes were mutated (U472C and C2493U), but the temperature-sensitive phenotype of the isolate was preserved. Our results support the theory that there exists a PV3/PV2 recombination hotspot site in the tail region of the VP1 capsid protein and that the recombination may occur soon after oral poliovirus vaccine administration.

  15. Two viral strains and a possible novel recombinant are responsible for the explosive injecting drug use-associated HIV type 1 epidemic in Estonia.

    PubMed

    Zetterberg, Veera; Ustina, Valentina; Liitsola, Kirsi; Zilmer, Kai; Kalikova, Nelli; Sevastianova, Ksenia; Brummer-Korvenkontio, Henrikki; Leinikki, Pauli; Salminen, Mika O

    2004-11-01

    HIV-1 infection has been rare in Estonia. In 2000, an explosive epidemic among injecting drug users was detected in the Eastern border region, resulting in 3603 newly reported cases by the end of 2003. The molecular epidemiology of the outbreak was studied to establish whether the Estonian epidemic is linked to the epidemics in Eastern Europe. Over 200 newly infected individuals were prospectively sampled from June 2000 to March 2002 in a geographically representative way, with known dates of diagnosis and information of probable route of transmission. Viral regions coding for two viral gene regions were directly sequenced from plasma viral RNA and phylogenetically analyzed. In addition, a larger region coding for the entire env gene was sequenced from one sample and studied for indications of possible recombinant structure. The Estonian HIV outbreak was found to be caused by simultaneous introduction of two strains: a minor subtype A strain very similar to the Eastern European subtype A strain (approximately 8% of cases), and a second major strain (77%) found to be most closely related to the CRF06-cpx strain, previously described only from African countries. The variability in the two clusters was very low, suggesting point source introductions. Ten percent of cases seemed to be newly generated recombinants of the A and CRF06-cpx strains. Analysis of viral diversification over time revealed a rate of change within the V3 region of 0.83%/year for the CRF06-cpx strain, consistent with findings from other subtypes. Due to the relatively frequently found novel recombinant forms, the Estonian HIV-1 epidemic may allow studies of coinfection and intersubtype recombination in detail.

  16. Recombination within the nonstructural genes of the parvovirus minute virus of mice (MVM) generates functional levels of wild-type NS1, which can be detected in the absence of selective pressure following transfection of nonreplicating plasmids.

    PubMed

    Pearson, J L; Pintel, D J

    2000-03-30

    Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences. Copyright 2000 Academic Press.

  17. Outbreak of poliomyelitis in Finland in 1984-85 - Re-analysis of viral sequences using the current standard approach.

    PubMed

    Simonen, Marja-Leena; Roivainen, Merja; Iber, Jane; Burns, Cara; Hovi, Tapani

    2010-01-01

    In 1984, a wild type 3 poliovirus (PV3/FIN84) spread all over Finland causing nine cases of paralytic poliomyelitis and one case of aseptic meningitis. The outbreak was ended in 1985 with an intensive vaccination campaign. By limited sequence comparison with previously isolated PV3 strains, closest relatives of PV3/FIN84 were found among strains circulating in the Mediterranean region. Now we wanted to reanalyse the relationships using approaches currently exploited in poliovirus surveillance. Cell lysates of 22 strains isolated during the outbreak and stored frozen were subjected to RT-PCR amplification in three genomic regions without prior subculture. Sequences of the entire VP1 coding region, 150 nucleotides in the VP1-2A junction, most of the 5' non-coding region, partial sequences of the 3D RNA polymerase coding region and partial 3' non-coding region were compared within the outbreak and with sequences available in data banks. In addition, complete nucleotide sequences were obtained for 2 strains isolated from two different cases of disease during the outbreak. The results confirmed the previously described wide intraepidemic variation of the strains, including amino acid substitutions in antigenic sites, as well as the likely Mediterranean region origin of the strains. Simplot and bootscanning analyses of the complete genomes indicated complicated evolutionary history of the non-capsid coding regions of the genome suggesting several recombinations with different HEV-C viruses in the past.

  18. Mechanisms generating long range correlation in nucleotide composition of the Borrelia Burgdorferi genome

    NASA Astrophysics Data System (ADS)

    Mackiewicz, P.; Gierlik, A.; Kowalczuk, M.; Szczepanik, D.; Dudek, M. R.; Cebrat, S.

    1999-12-01

    We have analysed protein coding and intergenic sequences in the Borrelia burgdorferi (the Lyme disease bacterium) genome using different kinds of DNA walks. Genes occupying the leading strand of DNA have significantly different nucleotide composition from genes occupying the lagging strand. Nucleotide compositional bias of the two DNA strands reflects the aminoacid composition of proteins. 96% of genes coding for ribosomal proteins lie on the leading DNA strand, which suggests that the positions of these as well as other genes are non-random. In the B. burgdorferi genome, the asymmetry in intergenic DNA sequences is lower than the asymmetry in the third positions in codons. All these characters of the B. burgdorferi genome suggest that both replication-associated mutational pressure and recombination mechanisms have established the specific structure of the genome and now any recombination leading to inversion of a gene in respect to the direction of replication is forbidden. This property of the genome allows us to assume that it is in a steady state, which enables us to fix some parameters for simulations of DNA evolution.

  19. Translational resistivity/conductivity of coding sequences during exponential growth of Escherichia coli.

    PubMed

    Takai, Kazuyuki

    2017-01-21

    Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented. Copyright © 2016. Published by Elsevier Ltd.

  20. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana).

    PubMed

    Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila

    2010-07-16

    Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.

  1. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    PubMed Central

    Torrent, C; Gabus, C; Darlix, J L

    1994-01-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer. Images PMID:8289369

  2. Complete coding sequence characterization and comparative analysis of the putative novel human rhinovirus (HRV) species C and B

    PubMed Central

    2011-01-01

    Background Human Rhinoviruses (HRVs) are well recognized viral pathogens associated with acute respiratory tract illnesses (RTIs) abundant worldwide. Although recent studies have phylogenetically identified the new HRV species (HRV-C), data on molecular epidemiology, genetic diversity, and clinical manifestation have been limited. Result To gain new insight into HRV genetic diversity, we determined the complete coding sequences of putative new members of HRV species C (HRV-CU072 with 1% prevalence) and HRV-B (HRV-CU211) identified from clinical specimens collected from pediatric patients diagnosed with a symptom of acute lower RTI. Complete coding sequence and phylogenetic analysis revealed that the HRV-CU072 strain shared a recent common ancestor with most closely related Chinese strain (N4). Comparative analysis at the protein level showed that HRV-CU072 might accumulate substitutional mutations in structural proteins, as well as nonstructural proteins 3C and 3 D. Comparative analysis of all available HRVs and HEVs indicated that HRV-C contains a relatively high G+C content and is more closely related to HEV-D. This might be correlated to their replication and capability to adapt to the high temperature environment of the human lower respiratory tract. We herein report an infrequently occurring intra-species recombination event in HRV-B species (HRV-CU211) with a crossing over having taken place at the boundary of VP2 and VP3 genes. Moreover, we observed phylogenetic compatibility in all HRV species and suggest that dynamic mechanisms for HRV evolution seem to be related to recombination events. These findings indicated that the elementary units shaping the genetic diversity of HRV-C could be found in the nonstructural 2A and 3D genes. Conclusion This study provides information for understanding HRV genetic diversity and insight into the role of selection pressure and recombination mechanisms influencing HRV evolution. PMID:21214911

  3. Complete coding sequence characterization and comparative analysis of the putative novel human rhinovirus (HRV) species C and B.

    PubMed

    Linsuwanon, Piyada; Payungporn, Sunchai; Suwannakarn, Kamol; Chieochansin, Thaweesak; Theamboonlers, Apiradee; Poovorawan, Yong

    2011-01-07

    Human Rhinoviruses (HRVs) are well recognized viral pathogens associated with acute respiratory tract illnesses (RTIs) abundant worldwide. Although recent studies have phylogenetically identified the new HRV species (HRV-C), data on molecular epidemiology, genetic diversity, and clinical manifestation have been limited. To gain new insight into HRV genetic diversity, we determined the complete coding sequences of putative new members of HRV species C (HRV-CU072 with 1% prevalence) and HRV-B (HRV-CU211) identified from clinical specimens collected from pediatric patients diagnosed with a symptom of acute lower RTI. Complete coding sequence and phylogenetic analysis revealed that the HRV-CU072 strain shared a recent common ancestor with most closely related Chinese strain (N4). Comparative analysis at the protein level showed that HRV-CU072 might accumulate substitutional mutations in structural proteins, as well as nonstructural proteins 3C and 3 D. Comparative analysis of all available HRVs and HEVs indicated that HRV-C contains a relatively high G+C content and is more closely related to HEV-D. This might be correlated to their replication and capability to adapt to the high temperature environment of the human lower respiratory tract. We herein report an infrequently occurring intra-species recombination event in HRV-B species (HRV-CU211) with a crossing over having taken place at the boundary of VP2 and VP3 genes. Moreover, we observed phylogenetic compatibility in all HRV species and suggest that dynamic mechanisms for HRV evolution seem to be related to recombination events. These findings indicated that the elementary units shaping the genetic diversity of HRV-C could be found in the nonstructural 2A and 3D genes. This study provides information for understanding HRV genetic diversity and insight into the role of selection pressure and recombination mechanisms influencing HRV evolution.

  4. The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: evidence of recombination in an animal mitochondrial genome.

    PubMed

    Gibson, Tracey; Blok, Vivian C; Phillips, Mark S; Hong, Gary; Kumarasinghe, Duminda; Riley, Ian T; Dowton, Mark

    2007-04-01

    We sequenced four mitochondrial subgenomes from the potato cyst nematode Globodera pallida, previously characterized as one of the few animals to have a multipartite mitochondrial genome. The sequence data indicate that three of these subgenomic mitochondrial circles are mosaics, comprising long, multigenic fragments derived from fragments of the other circles. This pattern is consistent with the operation of intermitochondrial recombination, a process generally considered absent in animal mitochondria. We also report that many of the duplicated genes contain deleterious mutations, ones likely to render the gene nonfunctional; gene conversion does not appear to be homogenizing the different gene copies. The proposed nonfunctional copies are clustered on particular circles, whereas copies that are likely to code functional gene products are clustered on others.

  5. Allergenicity of native/recombinant tropomyosin, per a 7, of American cockroach (CR), Periplaneta americana, among CR allergic Thais.

    PubMed

    Sookrung, Nitat; Indrawattana, Nitaya; Tungtrongchitr, Anchalee; Bunnag, Chaweewan; Tantilipikorn, Pongsakorn; Kwangsri, Sukanya; Chaicump, Wanpen

    2009-03-01

    In this study, native tropomyosin (Per a 7) of American cockroach (CR), Periplaneta americana, caught in Thailand was purified. Also, gene sequence encoding full length tropomyosin of the CR was PCR amplified by using degenerate primers designed from gene sequences coding for P. americana tropomyosin of the database (Per a 7.0101 and Per a 7.0102; accession no.Y14854 and AF106961, respectively). Amino acid sequence deduced from the nucleotide sequence encoding P. americana tropomyosin of this study (GenBank accession no. FJ976895) had 98.59% identity with the sequences of Per a 7.0101 and Per a 7.0102 and was 97.18% identical to the Bla g 7 sequence of German cockroach, Blatella germanica (accession no. AF260897). The native and recombinant tropomyosins (approximately 34 kDa) were used as antigens in sandwich ELISA for detecting specific IgE in serum samples of 14 consented allergic patients who were positive by skin test to crude CR extract in comparison to 5 individuals who were skin test negative. It was found that 8 (57%) and 6 (43%) of the CR allergic patients gave positive IgE binding results to the native and the recombinant proteins, respectively, while none of the non-allergic counterparts was positive. Results of immunoblotting conformed to the ELISA results. Tropomyosin extracted from the P. americana caught in Thailand has potential as standard P. americana allergen in clinical monitoring of the allergic Thai patients.

  6. Characterization of Helper Virus-Independent Cytopathogenic Classical Swine Fever Virus Generated by an In Vivo RNA Recombination System

    PubMed Central

    Gallei, Andreas; Rümenapf, Till; Thiel, Heinz-Jürgen; Becher, Paul

    2005-01-01

    Molecular analyses revealed that most cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In contrast to bovine viral diarrhea virus (BVDV), cp classical swine fever virus (CSFV) field isolates were rarely detected and always represented helper virus-dependent subgenomes. To investigate RNA recombination in more detail, we recently established an in vivo system allowing the efficient generation of recombinant cp BVDV strains in cell culture after transfecting a synthetic subgenomic and nonreplicatable transcript into cells being infected with noncp BVDV (A. Gallei, A. Pankraz, H.-J. Thiel, and P. Becher, J. Virol. 78:6271-6281, 2004). Using an analogous approach, the first helper virus-independent cp CSFV strain (CP G1) has now been generated by RNA recombination. Accordingly, this study demonstrates the applicability of RNA recombination for designing new viral RNA genomes. The genomic RNA of CP G1 has a calculated size of 18.139 kb, almost 6 kb larger than all previously described CSFV genomes. It contains cellular sequences encoding a polyubiquitin fragment directly upstream of the nonstructural protein NS3 coding gene together with a duplication of viral sequences. CP G1 induces a cytopathic effect on different tissue culture cell lines from pigs and cattle. Subsequent analyses addressed growth kinetics, expression of NS3, and genetic stability of CP G1. PMID:15681445

  7. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce anmore » immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.« less

  8. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  9. Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain.

    PubMed

    Moreno, I M; Malpica, J M; Díaz-Pendón, J A; Moriones, E; Fraile, A; García-Arenal, F

    2004-01-05

    The genetic structure of the population of Watermelon mosaic virus (WMV) in Spain was analysed by the biological and molecular characterisation of isolates sampled from its main host plant, melon. The population was a highly homogeneous one, built of a single pathotype, and comprising isolates closely related genetically. There was indication of temporal replacement of genotypes, but not of spatial structure of the population. Analyses of nucleotide sequences in three genomic regions, that is, in the cistrons for the P1, cylindrical inclusion (CI) and capsid (CP) proteins, showed lower similar values of nucleotide diversity for the P1 than for the CI or CP cistrons. The CI protein and the CP were under tighter evolutionary constraints than the P1 protein. Also, for the CI and CP cistrons, but not for the P1 cistron, two groups of sequences, defining two genetic strains, were apparent. Thus, different genomic regions of WMV show different evolutionary dynamics. Interestingly, for the CI and CP cistrons, sequences were clustered into two regions of the sequence space, defining the two strains above, and no intermediary sequences were identified. Recombinant isolates were found, accounting for at least 7% of the population. These recombinants presented two interesting features: (i) crossover points were detected between the analysed regions in the CI and CP cistrons, but not between those in the P1 and CI cistrons, (ii) crossover points were not observed within the analysed coding regions for the P1, CI or CP proteins. This indicates strong selection against isolates with recombinant proteins, even when originated from closely related strains. Hence, data indicate that genotypes of WMV, generated by mutation or recombination, outside of acceptable, discrete, regions in the evolutionary space, are eliminated from the virus population by negative selection.

  10. Conditional sterility in plants

    DOEpatents

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  11. A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences.

    PubMed

    Alcantara, Luiz Carlos Junior; Cassol, Sharon; Libin, Pieter; Deforche, Koen; Pybus, Oliver G; Van Ranst, Marc; Galvão-Castro, Bernardo; Vandamme, Anne-Mieke; de Oliveira, Tulio

    2009-07-01

    Human immunodeficiency virus type-1 (HIV-1), hepatitis B and C and other rapidly evolving viruses are characterized by extremely high levels of genetic diversity. To facilitate diagnosis and the development of prevention and treatment strategies that efficiently target the diversity of these viruses, and other pathogens such as human T-lymphotropic virus type-1 (HTLV-1), human herpes virus type-8 (HHV8) and human papillomavirus (HPV), we developed a rapid high-throughput-genotyping system. The method involves the alignment of a query sequence with a carefully selected set of pre-defined reference strains, followed by phylogenetic analysis of multiple overlapping segments of the alignment using a sliding window. Each segment of the query sequence is assigned the genotype and sub-genotype of the reference strain with the highest bootstrap (>70%) and bootscanning (>90%) scores. Results from all windows are combined and displayed graphically using color-coded genotypes. The new Virus-Genotyping Tools provide accurate classification of recombinant and non-recombinant viruses and are currently being assessed for their diagnostic utility. They have incorporated into several HIV drug resistance algorithms including the Stanford (http://hivdb.stanford.edu) and two European databases (http://www.umcutrecht.nl/subsite/spread-programme/ and http://www.hivrdb.org.uk/) and have been successfully used to genotype a large number of sequences in these and other databases. The tools are a PHP/JAVA web application and are freely accessible on a number of servers including: http://bioafrica.mrc.ac.za/rega-genotype/html/, http://lasp.cpqgm.fiocruz.br/virus-genotype/html/, http://jose.med.kuleuven.be/genotypetool/html/.

  12. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    PubMed

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  13. Progress of targeted genome modification approaches in higher plants.

    PubMed

    Cardi, Teodoro; Neal Stewart, C

    2016-07-01

    Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.

  14. Recombinant lactoferrin (Lf) of Vechur cow, the critical breed of Bos indicus and the Lf gene variants.

    PubMed

    Anisha, Shashidharan; Bhasker, Salini; Mohankumar, Chinnamma

    2012-03-01

    Vechur cow, categorized as a critically maintained breed by the FAO, is a unique breed of Bos indicus due to its extremely small size, less fodder intake, adaptability, easy domestication and traditional medicinal property of the milk. Lactoferrin (Lf) is an iron-binding glycoprotein that is found predominantly in the milk of mammals. The full coding region of Lf gene of Vechur cow was cloned, sequenced and expressed in a prokaryotic system. Antibacterial activity of the recombinant Lf showed suppression of bacterial growth. To the best of our knowledge this is the first time that the full coding region of Lf gene of B. indicus Vechur breed is sequenced, successfully expressed in a prokaryotic system and characterized. Comparative analysis of Lf gene sequence of five Vechur cows with B. taurus revealed 15 SNPs in the exon region associated with 11 amino acid substitutions. The amino acid arginine was noticed as a pronounced substitution and the tertiary structure analysis of the BLfV protein confirmed the positions of arginine in the β sheet region, random coil and helix region 1. Based on the recent reports on the nutritional therapies of arginine supplementation for wound healing and for cardiovascular diseases, the higher level of arginine in the lactoferrin protein of Vechur cow milk provides enormous scope for further therapeutic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple individuals that necessarily comprise such templates. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana)

    PubMed Central

    2010-01-01

    Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. Conclusions A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana. PMID:20637079

  17. Polyomavirus BK non-coding control region rearrangements in health and disease.

    PubMed

    Sharma, Preety M; Gupta, Gaurav; Vats, Abhay; Shapiro, Ron; Randhawa, Parmjeet S

    2007-08-01

    BK virus is an increasingly recognized pathogen in transplanted patients. DNA sequencing of this virus shows considerable genomic variability. To understand the clinical significance of rearrangements in the non-coding control region (NCCR) of BK virus (BKV), we report a meta-analysis of 507 sequences, including 40 sequences generated in our own laboratory, for associations between rearrangements and disease, tissue tropism, geographic origin, and viral genotype. NCCR rearrangements were less frequent in (a) asymptomatic BKV viruria compared to patients viral nephropathy (1.7% vs. 22.5%), and (b) viral genotype 1 compared to other genotypes (2.4% vs. 11.2%). Rearrangements were commoner in malignancy (78.6%), and Norwegians (45.7%), and less common in East Indians (0%), and Japanese (4.3%). A surprising number of rearranged sequences were reported from mononuclear cells of healthy subjects, whereas most plasma sequences were archetypal. This difference could not be related to potential recombinase activity in lymphocytes, as consensus recombination signal sequences could not be found in the NCCR region. NCCR rearrangements are neither required nor a sufficient condition to produce clinical disease. BKV nephropathy and hemorrhagic cystitis are not associated with any unique NCCR configuration or nucleotide sequence.

  18. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae).

    PubMed

    Walker, Joseph F; Zanis, Michael J; Emery, Nancy C

    2014-04-01

    Complete chloroplast genome studies can help resolve relationships among large, complex plant lineages such as Asteraceae. We present the first whole plastome from the Madieae tribe and compare its sequence variation to other chloroplast genomes in Asteraceae. We used high throughput sequencing to obtain the Lasthenia burkei chloroplast genome. We compared sequence structure and rates of molecular evolution in the small single copy (SSC), large single copy (LSC), and inverted repeat (IR) regions to those for eight Asteraceae accessions and one Solanaceae accession. The chloroplast sequence of L. burkei is 150 746 bp and contains 81 unique protein coding genes and 4 coding ribosomal RNA sequences. We identified three major inversions in the L. burkei chloroplast, all of which have been found in other Asteraceae lineages, and a previously unreported inversion in Lactuca sativa. Regions flanking inversions contained tRNA sequences, but did not have particularly high G + C content. Substitution rates varied among the SSC, LSC, and IR regions, and rates of evolution within each region varied among species. Some observed differences in rates of molecular evolution may be explained by the relative proportion of coding to noncoding sequence within regions. Rates of molecular evolution vary substantially within and among chloroplast genomes, and major inversion events may be promoted by the presence of tRNAs. Collectively, these results provide insight into different mechanisms that may promote intramolecular recombination and the inversion of large genomic regions in the plastome.

  19. Cre recombinase-mediated site-specific recombination between plant chromosomes.

    PubMed Central

    Qin, M; Bayley, C; Stockton, T; Ow, D W

    1994-01-01

    We report the use of the bacteriophage P1 Cre-lox system for generating conservative site-specific recombination between tobacco chromosomes. Two constructs, one containing a promoterless hygromycin-resistance gene preceded by a lox site (lox-hpt) and the other containing a cauliflower mosaic virus 35S promoter linked to a lox sequence and the cre coding region (35S-lox-cre), were introduced separately into tobacco plants. Crosses between plants harboring either construct produced plants with the two constructs situated on different chromosomes. Plants with recombination events were identified by selecting for hygromycin resistance, a phenotype expressed upon recombination. Molecular analysis showed that these recombination events occurred specifically at the lox sites and resulted in the reciprocal exchange of flanking host DNA. Progenies of these plants showed 67-100% cotransmission of the new transgenes, 35S-lox-hpt and lox-cre, consistent with the preferential cosegregation of translocated chromosomes. These results illustrate that site-specific recombination systems can be useful tools for the large-scale manipulation of eukaryotic chromosomes in vivo. Images PMID:8127869

  20. Molecular cloning and analysis of Schizosaccharomyces pombe Reb1p: sequence-specific recognition of two sites in the far upstream rDNA intergenic spacer.

    PubMed Central

    Zhao, A; Guo, A; Liu, Z; Pape, L

    1997-01-01

    The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645

  1. Cloning, overexpression and interaction of recombinant Fur from the cyanobacterium Anabaena PCC 7119 with isiB and its own promoter.

    PubMed

    Bes, M T; Hernández, J A; Peleato, M L; Fillat, M F

    2001-01-15

    A gene coding for a Fur (ferric uptake regulation) protein from the cyanobacterium Anabaena PCC 7119 has been cloned and overexpressed in Escherichia coli. DNA sequence analysis confirmed the presence of a 151-amino-acid open reading frame that showed homology with the Fur proteins reported for the unicellular cyanobacteria Synechococcus 7942 and Synechocystis PCC 6803. Two putative Fur-binding sites were detected in the promoter regions of the fur gene from Anabaena. Partially purified recombinant Fur binds to the flavodoxin promoter as well as its own promoter. This suggests that the Fur gene is autoregulated in Anabaena.

  2. Expression of a foot-and-mouth disease virus immunodominant epitope by a filamentous bacteriophage vector.

    PubMed

    Kim, Y J; Lebreton, F; Kaiser, C; Crucière, C; Rémond, M

    2004-02-01

    We described the construction of a recombinant filamentous phage displaying on its surface the immunodominant site of VP1 protein of foot-and-mouth disease virus (FMDV). The coding sequence was inserted at the amino-terminus of the major coat protein pVIII via a spacer. The hybrid phage proved to be antigenic as it was recognized by polyclonal and monoclonal anti FMDV sera. In two experiments involving immunisation of guinea-pigs with the recombinant phage, a low antibody response was generated. This suggests a possible role for phage displayed peptides in inducing anti FMDV immunity and the possibility of further development is discussed.

  3. Split Personality of a Potyvirus: To Specialize or Not to Specialize?

    PubMed Central

    Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.

    2014-01-01

    Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I–VI, but none within groups VII–IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges. PMID:25148372

  4. The Effect of α-Mating Factor Secretion Signal Mutations on Recombinant Protein Expression in Pichia pastoris

    PubMed Central

    Lin-Cereghino, Geoff P.; Stark, Carolyn M.; Kim, Daniel; Chang, Jennifer; Shaheen, Nadia; Poerwanto, Hansel; Agari, Kimiko; Moua, Pachai; Low, Lauren K.; Tran, Namphuong; Huang, Amy D.; Nattestad, Maria; Oshiro, Kristin T.; Chang, John William; Chavan, Archana; Tsai, Jerry W.; Lin-Cereghino, Joan

    2013-01-01

    The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins are initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future. PMID:23454485

  5. Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon Caldera, Kamchatka, Russia

    PubMed Central

    Wagner, Isaac D.; Varghese, Litty B.; Hemme, Christopher L.; Wiegel, Juergen

    2013-01-01

    Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of diversity for this taxon were assessed by multilocus sequence analysis (MLSA) of 106 strains. Analysis of eight protein-coding loci (gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB) revealed that all loci were polymorphic and that nucleotide substitutions were mostly synonymous. There were 148 variable nucleotide sites across 8003 bp concatenates of the protein-coding loci. While pairwise FST values indicated a small but significant level of genetic differentiation between most subpopulations, there was a negligible relationship between genetic divergence and spatial separation. Strains with the same allelic profile were only isolated from the same hot spring, occasionally from consecutive years, and single locus variant (SLV) sequence types were usually derived from the same spring. While recombination occurred, there was an “epidemic” population structure in which a particular T. uzonensis sequence type rose in frequency relative to the rest of the population. These results demonstrate spatial diversity patterns for an anaerobic bacterial species in a relative small geographic location and reinforce the view that terrestrial geothermal springs are excellent places to look for biogeographic diversity patterns regardless of the involved distances. PMID:23801987

  6. Characterisation of tropomyosin and paramyosin as vaccine candidate molecules for the poultry red mite, Dermanyssus gallinae.

    PubMed

    Wright, Harry W; Bartley, Kathryn; Huntley, John F; Nisbet, Alasdair J

    2016-10-12

    Dermanyssus gallinae is the most economically important haematophagous ectoparasite in commercial egg laying flocks worldwide. It infests the hens during the night where it causes irritation leading to restlessness, pecking and in extreme cases anaemia and increased cannibalism. Due to an increase in the occurrence of acaricide-resistant D. gallinae populations, new control strategies are required and vaccination may offer a sustainable alternative to acaricides. In this study, recombinant forms of D. gallinae tropomyosin (Der g 10) and paramyosin (Der g 11) were produced, characterised and tested as vaccine candidate molecules. The D. gallinae paramyosin (Der g 11) coding sequence was characterised and recombinant versions of Der g 11 and D. gallinae tropomyosin (Der g 10) were produced. Hens were immunised with the recombinant proteins and the resulting antibodies were fed to D. gallinae and mite mortality evaluated. Sections of mites were probed with anti- Der g 11 and Der g 10 antibodies to identify the tissue distribution of these protein in D. gallinae. The entire coding sequence of Der g 11 was 2,622 bp encoding 874 amino acid residues. Immunohistochemical staining of mite sections revealed that Der g 10 and Der g 11 were located throughout D. gallinae tissues. In phylogenetic analyses of these proteins both clustered with orthologues from tick species rather than with orthologues from astigmatid mites. Antibodies raised in hens against recombinant forms of these proteins significantly increased D. gallinae mortality, by 19 % for Der g 10 (P < 0.001) and by 23 % for Der g 11 (P = 0.009) when fed to the mites using an in vitro feeding device. This study has shown that Der g 10 and Der g 11 were located ubiquitously throughout D. gallinae and that antibodies raised against recombinant versions of these proteins can be used to significantly increase D. gallinae mortality in an in vitro feeding assay. When comparing archived data for all recombinant and native proteins assessed as vaccines using this in vitro feeding assay, Der g 10 and Der g 11 ranked highly and performed better than some of the pools of native proteins.

  7. Co-Circulation and Evolution of Polioviruses and Species C Enteroviruses in a District of Madagascar

    PubMed Central

    Rakoto-Andrianarivelo, Mala; Guillot, Sophie; Iber, Jane; Balanant, Jean; Blondel, Bruno; Riquet, Franck; Martin, Javier; Kew, Olen; Randriamanalina, Bakolalao; Razafinimpiasa, Lalatiana; Rousset, Dominique; Delpeyroux, Francis

    2007-01-01

    Between October 2001 and April 2002, five cases of acute flaccid paralysis (AFP) associated with type 2 vaccine-derived polioviruses (VDPVs) were reported in the southern province of the Republic of Madagascar. To determine viral factors that favor the emergence of these pathogenic VDPVs, we analyzed in detail their genomic and phenotypic characteristics and compared them with co-circulating enteroviruses. These VDPVs appeared to belong to two independent recombinant lineages with sequences from the type 2 strain of the oral poliovaccine (OPV) in the 5′-half of the genome and sequences derived from unidentified species C enteroviruses (HEV-C) in the 3′-half. VDPV strains showed characteristics similar to those of wild neurovirulent viruses including neurovirulence in poliovirus-receptor transgenic mice. We looked for other VDPVs and for circulating enteroviruses in 316 stools collected from healthy children living in the small area where most of the AFP cases occurred. We found vaccine PVs, two VDPVs similar to those found in AFP cases, some echoviruses, and above all, many serotypes of coxsackie A viruses belonging to HEV-C, with substantial genetic diversity. Several coxsackie viruses A17 and A13 carried nucleotide sequences closely related to the 2C and the 3Dpol coding regions of the VDPVs, respectively. There was also evidence of multiple genetic recombination events among the HEV-C resulting in numerous recombinant genotypes. This indicates that co-circulation of HEV-C and OPV strains is associated with evolution by recombination, resulting in unexpectedly extensive viral diversity in small human populations in some tropical regions. This probably contributed to the emergence of recombinant VDPVs. These findings give further insight into viral ecosystems and the evolutionary processes that shape viral biodiversity. PMID:18085822

  8. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    PubMed Central

    Paul, Sinu; Piontkivska, Helen

    2009-01-01

    Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1) regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL) epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007), we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms). The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations) that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines) and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges associated with viral escape. PMID:19580659

  9. A Molecular Portrait of De Novo Genes in Yeasts.

    PubMed

    Vakirlis, Nikolaos; Hebert, Alex S; Opulente, Dana A; Achaz, Guillaume; Hittinger, Chris Todd; Fischer, Gilles; Coon, Joshua J; Lafontaine, Ingrid

    2018-03-01

    New genes, with novel protein functions, can evolve "from scratch" out of intergenic sequences. These de novo genes can integrate the cell's genetic network and drive important phenotypic innovations. Therefore, identifying de novo genes and understanding how the transition from noncoding to coding occurs are key problems in evolutionary biology. However, identifying de novo genes is a difficult task, hampered by the presence of remote homologs, fast evolving sequences and erroneously annotated protein coding genes. To overcome these limitations, we developed a procedure that handles the usual pitfalls in de novo gene identification and predicted the emergence of 703 de novo gene candidates in 15 yeast species from 2 genera whose phylogeny spans at least 100 million years of evolution. We validated 85 candidates by proteomic data, providing new translation evidence for 25 of them through mass spectrometry experiments. We also unambiguously identified the mutations that enabled the transition from noncoding to coding for 30 Saccharomyces de novo genes. We established that de novo gene origination is a widespread phenomenon in yeasts, only a few being ultimately maintained by selection. We also found that de novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions where the probability of finding a fortuitous and transcribed ORF is the highest. Finally, we found a more than 3-fold enrichment of de novo genes at recombination hot spots, which are GC-rich and nucleosome-free regions, suggesting that meiotic recombination contributes to de novo gene emergence in yeasts.

  10. Complete genome sequence of a coxsackievirus B3 recombinant isolated from an aseptic meningitis outbreak in eastern China.

    PubMed

    Zhang, Wenqiang; Lin, Xiaojuan; Jiang, Ping; Tao, Zexin; Liu, Xiaolin; Ji, Feng; Wang, Tongzhan; Wang, Suting; Lv, Hui; Xu, Aiqiang; Wang, Haiyan

    2016-08-01

    Coxsackievirus B3 (CV-B3) has frequently been associated with aseptic meningitis outbreaks in China. To identify sequence motifs related to aseptic meningitis and to construct an infectious clone, the genome sequence of 08TC170, a representative strain isolated from cerebrospinal fluid (CSF) samples from an outbreak in Shandong in 2008, was determined, and the coding regions for P1-P3 and VP1 were aligned. The first 21 and last 20 residues were "TTAAAACAGCCTGTGGGTTGT" and "ATTCTCCGCATTCGGTGCGG", respectively. The whole genome consisted of 7401 nucleotides, sharing 80.8 % identity with the prototype strain Nancy and low sequence similarity with members of clusters A-C. In contrast, 08TC170 showed high sequence similarity to members of cluster D. An especially high level of sequence identity (≥97.7 %) was found within a branch constituted by 08TC170 and four Chinese strains that clustered together in all of the P1-P3 phylogenic trees. In addition, 08TC170 also possessed a close relationship to the Hong Kong strain 26362/08 in VP1. Similarity plot analysis showed that 08TC170 was most similar to the Chinese CV-B3 strain SSM in P1 and the partial P2 coding region but to the CV-B5 or E-6 strain in 2C and following regions. A T277A mutation was found in 08TC170 and other strains isolated in 2008-2010, but not in strains isolated before 2008, which had high sequence similarity and formed the cluster A277. The results suggested that 08TC170 was the product of both intertypic recombination and point mutation, whose effects on viral neurovirulence will be investigated in a further study. The high homology between 08TC170 and other strains revealed their co-circulation in mainland China and Hong Kong and indicates that further surveillance is needed.

  11. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  12. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups.

    PubMed

    Herrnstadt, Corinna; Elson, Joanna L; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M; Anderson, Christen; Ghosh, Soumitra S; Olefsky, Jerrold M; Beal, M Flint; Davis, Robert E; Howell, Neil

    2002-05-01

    The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.

  13. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    PubMed Central

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  14. Sequence-independent construction of ordered combinatorial libraries with predefined crossover points.

    PubMed

    Jézéquel, Laetitia; Loeper, Jacqueline; Pompon, Denis

    2008-11-01

    Combinatorial libraries coding for mosaic enzymes with predefined crossover points constitute useful tools to address and model structure-function relationships and for functional optimization of enzymes based on multivariate statistics. The presented method, called sequence-independent generation of a chimera-ordered library (SIGNAL), allows easy shuffling of any predefined amino acid segment between two or more proteins. This method is particularly well adapted to the exchange of protein structural modules. The procedure could also be well suited to generate ordered combinatorial libraries independent of sequence similarities in a robotized manner. Sequence segments to be recombined are first extracted by PCR from a single-stranded template coding for an enzyme of interest using a biotin-avidin-based method. This technique allows the reduction of parental template contamination in the final library. Specific PCR primers allow amplification of two complementary mosaic DNA fragments, overlapping in the region to be exchanged. Fragments are finally reassembled using a fusion PCR. The process is illustrated via the construction of a set of mosaic CYP2B enzymes using this highly modular approach.

  15. Identification of a natural intergenotypic recombinant hepatitis delta virus genotype 1 and 2 in Vietnamese HBsAg-positive patients.

    PubMed

    Sy, B T; Nguyen, H M; Toan, N L; Song, L H; Tong, H V; Wolboldt, C; Binh, V Q; Kremsner, P G; Velavan, T P; Bock, C-T

    2015-01-01

    Hepatitis D virus (HDV) infection is acquired as a co- /superinfection of Hepatitis B virus (HBV) and can modulate the pathophysiology of chronic hepatitis B and related liver diseases including hepatocellular carcinoma. Among the eight distinct HDV genotypes reported, relatively few studies have attempted to investigate the prevalence of HDV mixed genotypes and RNA recombination of HDV. With a recorded prevalence of 10-20% HBV infection in Vietnam, this study investigated the HDV variability, HDV genotypes and HDV recombination among twenty-one HDV isolates in Vietnamese HBsAg-positive patients. HDV subgenomic and full-length genome sequences were obtained using newly established HDV-specific RT-PCR techniques. The nucleotide homology was observed from 74.6% to 99.4% among the investigated full-length genome of the HDV isolates. We observed HDV genotype 1 and HDV genotype 2 in the investigated Vietnamese patients. Although no HDV genotype mixtures were observed, we report here a newly identified recombinant of HDV genotypes (HDV 1 and HDV 2). The identified recombinant HDV isolate C03 revealed sequence homology to both HDV genotype 1 (nt1 to nt907) and HDV genotype 2 (nt908 to nt1675; HDAg coding region) with a breakpoint at nt908. Our findings demonstrate the prevalence of intergenotypic recombination between HDV genotypes 1 and 2 in a Vietnamese HBsAg-positive patient. Extended investigation on the distribution and prevalence of HDV, HDV mixed genotypes and recombinant HDV genotypes in a larger Vietnamese population offers vital insights into understanding of the micro-epidemiology of HDV and subsequent pathophysiology in chronic HBV- /HDV-related liver diseases. © 2014 John Wiley & Sons Ltd.

  16. Human common acute lymphoblastic leukemia-derived cell lines are competent to recombine their T-cell receptor delta/alpha regions along a hierarchically ordered pathway.

    PubMed

    Hansen-Hagge, T E; Yokota, S; Reuter, H J; Schwarz, K; Bartram, C R

    1992-11-01

    Rearrangements of the T-cell receptor (TCR) delta locus are observed in the majority of human B-cell precursor acute lymphoblastic leukemias (ALL) with a striking predominance of V delta 2(D)D delta 3 recombinations in common ALL (cALL) patients. Recently, we and others showed that almost 20% of cALL cases are characterized by further recombination of V delta 2(D)D delta 3 segments to J alpha elements, thereby deleting the TCR delta locus in analogy to the delta Rec/psi J alpha pathway in differentiating alpha/beta-positive T cells. We report here that two human cALL-derived cell lines, REH and Nalm-6, are competent to recombine the TCR delta/alpha locus under standard tissue culture conditions. Analysis of different REH subclones obtained by limiting dilution of the initial culture showed a biased recombination of V delta 2D delta 3 to distinct J alpha elements. During prolonged tissue culture, a subclone acquired growth advantage and displaced parental cells as well as other subclones. Frequently, the DJ junctions of REH subclones contained extended stretches of palindromic sequences derived from modified D delta 3 coding elements. The other cell line, Nalm-6, started the TCR delta/alpha recombination with an unusual signal joint of a cryptic recombinase signal sequence (RSS) upstream of D delta 3 to the 3' RSS of D delta 3. The RSS dimer was subsequently rearranged in all investigated subclones to an identical J alpha element. Both cell lines might become valuable tools to unravel the complex regulation of TCR delta/alpha recombination pathways in malignant and normal lymphopoiesis.

  17. Studies towards the potential of poliovirus as a vector for the expression of HPV 16 virus-like-particles.

    PubMed

    van Kuppeveld, Frank J M; de Jong, Arjan; Dijkman, Henri B P M; Andino, Raul; Melchers, Willem J G

    2002-11-15

    Development of human cervical carcinomas is associated with infection by certain human papillomavirus (HPV) types. Thus, protection against HPV infection through vaccination may prevent development of cervical cancer. The purpose of this study was to investigate the possibility of using a poliovirus recombinant vector to induce immunity against HPV. A poliovirus recombinant was constructed which contained the complete coding sequence of the HPV 16 major capsid protein L1, between the P1 and P2 region of the poliovirus polyprotein. A replication-competent virus was obtained after transfection of the recombinant RNA into tissue culture cells. Electron microscopically examination of cells infected with the poliovirus-HPV L1 recombinant indicated that HPV 16 L1 self-assembles into virus-like particles. To investigate the immunological response in vivo, susceptible transgenic mice carrying the poliovirus receptor were infected with the recombinant poliovirus. In all mice a modest but consistent immune response against HPV 16 was observed. Based on these results, the potential for picornavirus-derived vectors in vaccine development against HPV infection is discussed.

  18. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae.

    PubMed

    Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S

    2015-09-01

    The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding  sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine.

  19. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots

    PubMed Central

    Stukenbrock, Eva H.; Dutheil, Julien Y.

    2018-01-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. PMID:29263029

  20. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    PubMed

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  1. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes.

  2. The effects of sex-biased gene expression and X-linkage on rates of sequence evolution in Drosophila.

    PubMed

    Campos, José Luis; Johnston, Keira; Charlesworth, Brian

    2017-12-08

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes (the faster-X effect) can be caused by the fixation of recessive or partially recessive advantageous mutations. This effect should be largest for advantageous mutations that affect only male fitness, and least for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using coding and functionally significant non-coding sequences of genes with different levels of sex-biased expression. Consistent with theory, nonsynonymous substitutions in most male-biased and unbiased genes show faster adaptive evolution on the X. However, genes with very low recombination rates do not show such an effect, possibly as a consequence of Hill-Robertson interference. Contrary to expectation, there was a substantial faster-X effect for female-biased genes. After correcting for recombination rate differences, however, female-biased genes did not show a faster X-effect. Similar analyses of non-coding UTRs and long introns showed a faster-X effect for all groups of genes, other than introns of female-biased genes. Given the strong evidence that deleterious mutations are mostly recessive or partially recessive, we would expect a slower rate of evolution of X-linked genes for slightly deleterious mutations that become fixed by genetic drift. Surprisingly, we found little evidence for this after correcting for recombination rate, implying that weakly deleterious mutations are mostly close to being semidominant. This is consistent with evidence from polymorphism data, which we use to test how models of selection that assume semidominance with no sex-specific fitness effects may bias estimates of purifying selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Genetic characterisation of the recent foot-and-mouth disease virus subtype A/IRN/2005

    PubMed Central

    Klein, Joern; Hussain, Manzoor; Ahmad, Munir; Normann, Preben; Afzal, Muhammad; Alexandersen, Soren

    2007-01-01

    Background According to the World Reference Laboratory for FMD, a new subtype of FMDV serotype A was detected in Iran in 2005. This subtype was designated A/IRN/2005, and rapidly spread throughout Iran and moved westwards into Saudi Arabia and Turkey where it was initially detected from August 2005 and subsequently caused major disease problems in the spring of 2006. The same subtype reached Jordan in 2007. As part of an ongoing project we have also detected this subtype in Pakistan with the first positive samples detected in April 2006. To characterise this subtype in detail, we have sequenced and analysed the complete coding sequence of three subtype A/IRN/2005 isolates collected in Pakistan in 2006, the complete coding sequence of one subtype A/IRN/2005 isolate collected during the first outbreak in Turkey in 2005 and, in addition, the partial 1D coding sequence derived from 4 epithelium samples and 34 swab-samples from Asian buffaloes or cattle subsequently found to be infected with the A/IRN/2005 subtype. Results The phylogenies of the genome regions encoding for the structural proteins, displayed, with the exception of 1A, distinct, serotype-specific clustering and an evolutionary relationship of the A/IRN/2005 sublineage with the A22 sublineage. Potential recombination events have been detected in parts of the genome region coding for the non-structural proteins of FMDV. In addition, amino acid substitutions have been detected in the deduced VP1 protein sequence, potentially related to clinical or subclinical outcome of FMD. Indications of differential susceptibility for developing a subclinical course of disease between Asian buffaloes and cattle have been detected. Furthermore, hitherto unknown insertions of 2 amino acids before the second start codon, as well as sublineage specific amino acids have been detected in the genome region encoding for the leader proteinase of A/IRN/2005 sublineage. Conclusion Our findings indicate that the A/IRN/2005 sublineage has undergone two different paths of evolution for the structural and non-structural genome regions. The structural genome regions have had their evolutionary starting point in the A22 sublineage. It can be assumed that, due to the quasispecies structure of FMDV populations and the error-prone replication process, advantageous mutations in a changed environment have been fixed and lead to the occurrence of the new A/IRN/2005 sublineage. Together with this mechanism, recombination within the non-structural genome regions, potentially modifying the virulence of the virus, may be involved in the success of this new sublineage. The possible origin of this recombinant virus may be a co-infection with Asia1 and a serotype A precursor of the A/IRN/2005 sublineage potentially within Asian Buffaloes, as these appears to relatively easy become infected, but usually without developing clinical disease and consequently showing not a strong acute inflammatory immune response against a second FMDV infection. PMID:18001482

  4. Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system.

    PubMed

    George, Susan; Bhasker, Salini; Madhav, Harish; Nair, Archana; Chinnamma, Mohankumar

    2014-02-01

    Bromelain (BRM) is a defense protein present in the fruit and stem of pineapple (Ananas comosus) and it is grouped as a cysteine protease enzyme with diversified medicinal uses. Based on its therapeutic applications, bromelain has got sufficient attention in pharmaceutical industries. In the present study, the full coding gene of bromelain in pineapple stem (1,093 bp) was amplified by RT-PCR. The PCR product was cloned, sequenced, and characterized. The sequence analysis of the gene revealed the single nucleotide polymorphism and its phylogenetic relatedness. The peptide sequence deduced from the gene showed the amino acid variations, physicochemical properties and secondary and tertiary structural features of the protein. The full BRM gene was transformed to prokaryotic vector pET32b and expressed in Escherichia coli BL21 DE3pLysS host cells successfully. The identity of the recombinant bromelain (rBRM) protein was confirmed by Western blot analysis using anti-BRM-rabbit IgG antibody. The activity of recombinant bromelain compared with purified native bromelain was determined by protease assay. The inhibitory effect of rBRM compared with native BRM in the growth of Gram-positive and Gram-negative strains of Streptococcus agalactiae and Escherichia coli O111 was evident from the antibacterial sensitivity test. To the best of our knowledge, this is the first report showing the bactericidal property of rBRM expressed in a prokaryotic system.

  5. Detecting and Analyzing Genetic Recombination Using RDP4.

    PubMed

    Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev

    2017-01-01

    Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

  6. Structural and functional partitioning of bread wheat chromosome 3B.

    PubMed

    Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine

    2014-07-18

    We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.

  7. Construction of a Full-Length Enriched cDNA Library and Preliminary Analysis of Expressed Sequence Tags from Bengal Tiger Panthera tigris tigris

    PubMed Central

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-01-01

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers. PMID:23708105

  8. Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

    PubMed

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-05-24

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.

  9. RICO: A NEW APPROACH FOR FAST AND ACCURATE REPRESENTATION OF THE COSMOLOGICAL RECOMBINATION HISTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendt, W. A.; Wandelt, B. D.; Chluba, J.

    2009-04-15

    We present RICO, a code designed to compute the ionization fraction of the universe during the epoch of hydrogen and helium recombination with an unprecedented combination of speed and accuracy. This is accomplished by training the machine learning code PICO on the calculations of a multilevel cosmological recombination code which self-consistently includes several physical processes that were neglected previously. After training, RICO is used to fit the free electron fraction as a function of the cosmological parameters. While, for example, at low redshifts (z {approx}< 900), much of the net change in the ionization fraction can be captured by loweringmore » the hydrogen fudge factor in RECFAST by about 3%, RICO provides a means of effectively using the accurate ionization history of the full recombination code in the standard cosmological parameter estimation framework without the need to add new or refined fudge factors or functions to a simple recombination model. Within the new approach presented here, it is easy to update RICO whenever a more accurate full recombination code becomes available. Once trained, RICO computes the cosmological ionization history with negligible fitting error in {approx}10 ms, a speedup of at least 10{sup 6} over the full recombination code that was used here. Also RICO is able to reproduce the ionization history of the full code to a level well below 0.1%, thereby ensuring that the theoretical power spectra of cosmic microwave background (CMB) fluctuations can be computed to sufficient accuracy and speed for analysis from upcoming CMB experiments like Planck. Furthermore, it will enable cross-checking different recombination codes across cosmological parameter space, a comparison that will be very important in order to assure the accurate interpretation of future CMB data.« less

  10. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan

    PubMed Central

    Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M.; Su, Chang; Carter, Meredith; Stone, Mars; Hasan, Rumina; Hasan, Zahra; Busch, Michael P.; Denny, Thomas N.; Gao, Feng

    2016-01-01

    A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan. PMID:27973597

  11. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis.

    PubMed

    Morrison, Cheryl L; Iwanowicz, Luke; Work, Thierry M; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  12. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    USGS Publications Warehouse

    Morrison, Cheryl L.; Iwanowicz, Luke R.; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deborah; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  13. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    PubMed Central

    Iwanowicz, Luke; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants. PMID:29479497

  14. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    PubMed Central

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  15. atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.

    2011-10-01

    atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.

  16. Genome sequence analysis of five Canadian isolates of strawberry mottle virus reveals extensive intra-species diversity and a longer RNA2 with increased coding capacity compared to a previously characterized European isolate.

    PubMed

    Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène

    2016-06-01

    In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.

  17. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance.

    PubMed

    Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique

    2018-01-05

    Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.

  18. Recombinant Hepatitis E virus like particles can function as RNA nanocarriers.

    PubMed

    Panda, Subrat Kumar; Kapur, Neeraj; Paliwal, Daizy; Durgapal, Hemlata

    2015-06-24

    Assembled virus-like particles (VLPs) without genetic material, with structure similar to infectious virions, have been successfully used as vaccines. We earlier described in vitro assembly, characterisation and tissue specific receptor dependent Clathrin mediated entry of empty HEV VLPs, produced from Escherichia coli expressed HEV capsid protein (pORF2). Similar VLP's have been described as a potential candidate vaccine (Hecolin) against HEV. We have attempted to use such recombinant assembled Hepatitis E virus (HEV) VLPs as a carrier for heterologous RNA with protein coding sequence fused in-frame with HEV 5' region (containing cap and encapsidation signal) and investigated, if the relevant protein could be expressed and elicit an immune response in vivo. In vitro transcribed red fluorescent protein (RFP)/Hepatitis B virus surface antigen (HBsAg) RNA, fused to 5'-HEV sequence with cap and encapsidation signal (1-249 nt), was packaged into the recombinant HEV-VLPs and incubated with five different cell lines (Huh7, A549, Vero, HeLa and SiHa). The pORF2-VLPs could specifically transfer exogenous coding RNA into Huh7 and A549 cells. In vivo, Balb/c mice were immunized (intramuscular injections) with 100 µg pORF2-VLP encapsidated with 5'-methyl-G-HEV (1-249 nt)-HBsAg RNA, blood samples were collected and screened by ELISA for anti-pORF2 and anti-HBsAg antibodies. Humoral immune response could be elicited in Balb/c mice against both HEV capsid protein and cargo RNA encoded HBsAg protein. These findings suggest that other than being a possible vaccine, HEV pORF2-VLPs can be used as a promising non-replicative tissue specific gene delivery system.

  19. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. Themore » toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.« less

  20. Genomic analysis of coxsackieviruses A1, A19, A22, enteroviruses 113 and 104: viruses representing two clades with distinct tropism within enterovirus C

    PubMed Central

    Haq, Saddef; Sameroff, Stephen; Howie, Stephen R. C.; Lipkin, W. Ian

    2013-01-01

    Coxsackieviruses (CV) A1, CV-A19 and CV-A22 have historically comprised a distinct phylogenetic clade within Enterovirus (EV) C. Several novel serotypes that are genetically similar to these three viruses have been recently discovered and characterized. Here, we report the coding sequence analysis of two genotypes of a previously uncharacterized serotype EV-C113 from Bangladesh and demonstrate that it is most similar to CV-A22 and EV-C116 within the capsid region. We sequenced novel genotypes of CV-A1, CV-A19 and CV-A22 from Bangladesh and observed a high rate of recombination within this group. We also report genomic analysis of the rarely reported EV-C104 circulating in the Gambia in 2009. All available EV-C104 sequences displayed a high degree of similarity within the structural genes but formed two clusters within the non-structural genes. One cluster included the recently reported EV-C117, suggesting an ancestral recombination between these two serotypes. Phylogenetic analysis of all available complete genome sequences indicated the existence of two subgroups within this distinct Enterovirus C clade: one has been exclusively recovered from gastrointestinal samples, while the other cluster has been implicated in respiratory disease. PMID:23761409

  1. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    PubMed

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  2. Isolated Fungal Promoters and Gene Transcription Terminators and Methods of Protein and Chemical Production in a Fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  3. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  4. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K

    2014-05-27

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  5. Immunodiagnostic Value of Echinococcus Granulosus Recombinant B8/1 Subunit of Antigen B.

    PubMed

    Savardashtaki, Amir; Sarkari, Bahador; Arianfar, Farzane; Mostafavi-Pour, Zohreh

    2017-06-01

    Cystic echinococcosis (CE), as a chronic parasitic disease, is a major health problem in many countries. The performance of the currently available serodiagnostic tests for the diagnosis of CE is unsatisfactory. The current study aimed at sub-cloning a gene, encoding the B8/1 subunit of antigen B (AgB) from Echinococcus granulosus, using gene optimization for the immunodiagnosis of human CE. The coding sequence for AgB8/1 subunit of Echinococcus granulosus was selected from GenBank and was gene-optimized. The sequence was synthesized and inserted into pGEX-4T-1 vector. Purification was performed with GST tag affinity column. Diagnostic performance of the produced recombinant antigen, native antigen B and a commercial ELISA kit were further evaluated in an ELISA system, using a panel of sera from CE patients and controls. SDS-PAGE demonstrated that the protein of interest had a high expression level and purity after GST tag affinity purification. Western blotting verified the immunoreactivity of the produced recombinant antigen with the sera of CE patients. In an ELISA system, the sensitivity and specificity (for human CE diagnosis) of the recombinant antigen, native antigen B and commercial kit were respectively 93% and 92%, 87% and 90% and 97% and 95%. The produced recombinant antigen showed a high diagnostic value which can be recommended for serodiagnosis of CE in Iran and other CE-endemic areas. Utilizing the combination of other subunits of AgB8 would improve the performance value of the introduced ELISA system.

  6. Identification and characterization of a novel zebrafish (Danio rerio) pentraxin-carbonic anhydrase.

    PubMed

    Patrikainen, Maarit S; Tolvanen, Martti E E; Aspatwar, Ashok; Barker, Harlan R; Ortutay, Csaba; Jänis, Janne; Laitaoja, Mikko; Hytönen, Vesa P; Azizi, Latifeh; Manandhar, Prajwol; Jáger, Edit; Vullo, Daniela; Kukkurainen, Sampo; Hilvo, Mika; Supuran, Claudiu T; Parkkila, Seppo

    2017-01-01

    Carbonic anhydrases (CAs) are ubiquitous, essential enzymes which catalyze the conversion of carbon dioxide and water to bicarbonate and H + ions. Vertebrate genomes generally contain gene loci for 15-21 different CA isoforms, three of which are enzymatically inactive. CA VI is the only secretory protein of the enzymatically active isoforms. We discovered that non-mammalian CA VI contains a C-terminal pentraxin (PTX) domain, a novel combination for both CAs and PTXs. We isolated and sequenced zebrafish ( Danio rerio ) CA VI cDNA, complete with the sequence coding for the PTX domain, and produced the recombinant CA VI-PTX protein. Enzymatic activity and kinetic parameters were measured with a stopped-flow instrument. Mass spectrometry, analytical gel filtration and dynamic light scattering were used for biophysical characterization. Sequence analyses and Bayesian phylogenetics were used in generating hypotheses of protein structure and CA VI gene evolution. A CA VI-PTX antiserum was produced, and the expression of CA VI protein was studied by immunohistochemistry. A knock-down zebrafish model was constructed, and larvae were observed up to five days post-fertilization (dpf). The expression of ca6 mRNA was quantitated by qRT-PCR in different developmental times in morphant and wild-type larvae and in different adult fish tissues. Finally, the swimming behavior of the morphant fish was compared to that of wild-type fish. The recombinant enzyme has a very high carbonate dehydratase activity. Sequencing confirms a 530-residue protein identical to one of the predicted proteins in the Ensembl database (ensembl.org). The protein is pentameric in solution, as studied by gel filtration and light scattering, presumably joined by the PTX domains. Mass spectrometry confirms the predicted signal peptide cleavage and disulfides, and N-glycosylation in two of the four observed glycosylation motifs. Molecular modeling of the pentamer is consistent with the modifications observed in mass spectrometry. Phylogenetics and sequence analyses provide a consistent hypothesis of the evolutionary history of domains associated with CA VI in mammals and non-mammals. Briefly, the evidence suggests that ancestral CA VI was a transmembrane protein, the exon coding for the cytoplasmic domain was replaced by one coding for PTX domain, and finally, in the therian lineage, the PTX-coding exon was lost. We knocked down CA VI expression in zebrafish embryos with antisense morpholino oligonucleotides, resulting in phenotype features of decreased buoyancy and swim bladder deflation in 4 dpf larvae. These findings provide novel insights into the evolution, structure, and function of this unique CA form.

  7. The Dermatophagoides farinae group 22 allergen: cloning and expression in Escherichia coli.

    PubMed

    Cui, Yu-bao; Cai, Hong-xing; Zhou, Ying; Wang, Nan; Yu, Li-li; Yang, Li; Zhang, Cheng-bo

    2015-09-01

    Dermatophagoides farinae (Hughes) (Acari: Pyroglyphidae) and other domestic mites produce allergens that affect people worldwide. Here, the complementary DNA (cDNA) coding for group 22 allergen of D. farinae (Der f 22) from China was cloned, sequenced, and expressed successfully. The cDNA encoding Der f 22 was synthesized by reverse transcription polymerase chain reaction (RT-PCR), then ligated to the pCold-TF for expression in Escherichia coli BL21 cells. The purified recombinant fusion protein was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western-blotting, and tandem matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF). The full-length cDNA comprised 468 nucleotides and was 99.57% (466/468) identical with the reference sequence (GenBank: DQ643992). After the plasmid pCold-TF-Der f 22 was transformed into E. coli BL21 and expressed with the induction of IPTG, SDS-PAGE showed a specific band for the recombinant fusion protein. The recombinant fusion protein, which was purified by chromatography, bound with a His-tagged antibody by Western blotting. MALDI-TOF/TOF mass spectrometry revealed that the structure of the recombinant protein was identical to the predicted Der f 22 structure. The hydrophilic protein contains a signal peptide of 20 amino acids, and the mature Der f 22 consists of 135 amino acid residues with a molecular weight of 14.7 kDa and theoretical isoelectric points (pI) of 6.38. Its secondary structure comprises an alpha helix (38.5%), beta-sheet (45.9%), random coils (11.85%), and beta-turns (11.1%). This work represents the first reported full-length sequence and successful cloning of Der f 22 from D. farinae in China; bioinformatics analysis can be used to further study the allergenicity and clinical utility of the recombinant Der f 22. © 2015 ARS-AAOA, LLC.

  8. Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Zvirbliene, Aurelija; Kucinskaite, Indre; Sezaite, Indre; Slibinskas, Rimantas; Coiras, Mayte; de Ory Manchon, Fernando; López-Huertas, María Rosa; Pérez-Breña, Pilar; Staniulis, Juozas; Narkeviciute, Irena; Sasnauskas, Kestutis

    2008-05-01

    Human parainfluenza virus types 1 and 3 (HPIV1 and HPIV3, respectively), members of the virus family Paramyxoviridae, are common causes of lower respiratory tract infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. In order to synthesize recombinant HPIV1 and HPIV3 nucleocapsid proteins, the coding sequences were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of recombinant virus nucleocapsid proteins expression (20-24 mg l(-1) of yeast culture) was obtained. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. These structures contained host RNA, which was resistant to RNase treatment. The nucleocapsid proteins were stable in yeast and were easily purified by caesium chloride gradient ultracentrifugation. Therefore, this system proved to be simple, efficient and cost-effective, suitable for high-level production of parainfluenza virus nucleocapsids as nucleocapsid-like particles. When used as coating antigens in an indirect ELISA, the recombinant N proteins reacted with sera of patients infected with HPIV1 or 3. Serological assays to detect HPIV-specific antibodies could be designed on this basis.

  9. Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995-2012).

    PubMed

    Gavin, W; Blash, S; Buzzell, N; Pollock, D; Chen, L; Hawkins, N; Howe, J; Miner, K; Pollock, J; Porter, C; Schofield, M; Echelard, Y; Meade, H

    2018-02-01

    Production of transgenic founder goats involves introducing and stably integrating an engineered piece of DNA into the genome of the animal. At LFB USA, the ultimate use of these transgenic goats is for the production of recombinant human protein therapeutics in the milk of these dairy animals. The transgene or construct typically links a milk protein specific promoter sequence, the coding sequence for the gene of interest, and the necessary downstream regulatory sequences thereby directing expression of the recombinant protein in the milk during the lactation period. Over the time period indicated (1995-2012), pronuclear microinjection was used in a number of programs to insert transgenes into 18,120, 1- or 2- cell stage fertilized embryos. These embryos were transferred into 4180 synchronized recipient females with 1934 (47%) recipients becoming pregnant, 2594 offspring generated, and a 109 (4.2%) of those offspring determined to be transgenic. Even with new and improving genome editing tools now available, pronuclear microinjection is still the predominant and proven technology used in this commercial setting supporting regulatory filings and market authorizations when producing founder transgenic animals with large transgenes (> 10 kb) such as those necessary for directing monoclonal antibody production in milk.

  10. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  11. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae)

    PubMed Central

    Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming

    2016-01-01

    Background and Aims Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Methods Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Key Results Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5′ end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. Conclusions The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1. PMID:27582362

  12. A novel process of viral vector barcoding and library preparation enables high-diversity library generation and recombination-free paired-end sequencing

    PubMed Central

    Davidsson, Marcus; Diaz-Fernandez, Paula; Schwich, Oliver D.; Torroba, Marcos; Wang, Gang; Björklund, Tomas

    2016-01-01

    Detailed characterization and mapping of oligonucleotide function in vivo is generally a very time consuming effort that only allows for hypothesis driven subsampling of the full sequence to be analysed. Recent advances in deep sequencing together with highly efficient parallel oligonucleotide synthesis and cloning techniques have, however, opened up for entirely new ways to map genetic function in vivo. Here we present a novel, optimized protocol for the generation of universally applicable, barcode labelled, plasmid libraries. The libraries are designed to enable the production of viral vector preparations assessing coding or non-coding RNA function in vivo. When generating high diversity libraries, it is a challenge to achieve efficient cloning, unambiguous barcoding and detailed characterization using low-cost sequencing technologies. With the presented protocol, diversity of above 3 million uniquely barcoded adeno-associated viral (AAV) plasmids can be achieved in a single reaction through a process achievable in any molecular biology laboratory. This approach opens up for a multitude of in vivo assessments from the evaluation of enhancer and promoter regions to the optimization of genome editing. The generated plasmid libraries are also useful for validation of sequencing clustering algorithms and we here validate the newly presented message passing clustering process named Starcode. PMID:27874090

  13. A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast

    PubMed Central

    Fritsch, Emilie S.; Chabbert, Christophe D.; Klaus, Bernd; Steinmetz, Lars M.

    2014-01-01

    In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance. PMID:25081569

  14. A genome-wide map of mitochondrial DNA recombination in yeast.

    PubMed

    Fritsch, Emilie S; Chabbert, Christophe D; Klaus, Bernd; Steinmetz, Lars M

    2014-10-01

    In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance. Copyright © 2014 by the Genetics Society of America.

  15. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    USDA-ARS?s Scientific Manuscript database

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  16. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    PubMed

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C. glutamicum, emphasizing the importance of developing IS element free host strains.

  17. Isolation and molecular cloning of a fast-growing strain of human hepatitis A virus from its double-stranded replicative form.

    PubMed Central

    Venuti, A; Di Russo, C; del Grosso, N; Patti, A M; Ruggeri, F; De Stasio, P R; Martiniello, M G; Pagnotti, P; Degener, A M; Midulla, M

    1985-01-01

    A fast-growing strain of human hepatitis A virus was selected and characterized. The virus has the unusual property of developing a strong cytopathic effect in tissue culture in 7 to 10 days. Sequences of the viral genome were cloned into recombinant plasmids with the double-stranded replicative form as a template for the reverse transcription of cDNA. Restriction analysis and direct sequencing indicate that this strain is different from that described by Ticehurst et al. (Proc. Natl. Acad. Sci. USA 80:5885-5889, 1983) in the region that presumptively codes for the major capsid protein VP1, but both isolates have conserved large areas of homology in the untranslated 5'-terminal sequences of the genome. Images PMID:2997478

  18. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  19. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs)

    PubMed Central

    Maass, David R.; Sepulveda, Jorge; Pernthaner, Anton; Shoemaker, Charles B.

    2007-01-01

    Recombinant single domain antibody fragments (VHHs) that derive from the unusual camelid heavy chain only IgG class (HCAbs) have many favourable properties compared with single-chain antibodies prepared from conventional IgG. As a result, VHHs have become widely used as binding reagents and are beginning to show potential as therapeutic agents. To date, the source of VHH genetic material has been camels and llamas despite their large size and limited availability. Here we demonstrate that the smaller, more tractable and widely available alpaca is an excellent source of VHH coding DNA. Alpaca sera IgG consists of about 50% HCAbs, mostly of the short-hinge variety. Sequencing of DNA encoding more than 50 random VHH and hinge domains permitted the design of PCR primers that will amplify virtually all alpaca VHH coding DNAs for phage display library construction. Alpacas were immunized with ovine tumour necrosis factor α (TNFα) and a VHH phage display library was prepared from a lymph node that drains the sites of immunizations and successfully employed in the isolation of VHHs that bind and neutralize ovine TNFα. PMID:17568607

  20. Cloning and characterization of two novel DNases from Streptococcus pyogenes.

    PubMed

    Hasegawa, Tadao; Torii, Keizo; Hashikawa, Shinnosuke; Iinuma, Yoshitsugu; Ohta, Michio

    2002-06-01

    The proteins in the culture supernatant (exoproteins) from Streptococcus pyogenes serotype M1 were separated by two-dimensional gel electrophoresis, and their N-terminal amino acid sequences were determined. The amino acid sequences were compared to sequences in the S. pyogenes genome database. The coding sequence showed similarity to sequences of two genes, mf2-v ( mf2 variant) and mf3, which had sequence similarity to genes encoding mitogenic factor (MF); MF has DNase activity. The recombinant genes were expressed in Escherichia coli and the proteins were synthesized. Mf2-v and Mf3 had DNase activity. The activity of Mf2-v was localized to the C-terminal half of the protein. The mf3 gene was shown to be present in most clinically isolated strains of S. pyogenes tested, and the mf2gene was detected in 20% of the isolates. The products of the mf2 and mf3 genes in clinically isolated S. pyogenes strains were thus shown to be DNases.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  2. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  4. Cloning of human prourokinase cDNA without the signal peptide and expression in Escherichia coli.

    PubMed

    Hu, B; Li, J; Yu, W; Fang, J

    1993-01-01

    Human prourokinase (pro-UK) cDNA without the signal peptide was obtained using synthetic oligonucleotide and DNA recombination techniques and was successfully expressed in E. coli. The plasmid pMMUK which contained pro-UK cDNA (including both the entire coding sequence and the sequence for signal peptide) was digested with Hind III and PstI, so that the N-terminal 371-bp fragment could be recovered. A 304-bp fragment was collected from the 371-bp fragment after partial digestion with Fnu4HI in order to remove the signal peptide sequence. An intermediate plasmid was formed after this 304-bp fragment and the synthetic oligonucleotide was ligated with pUC18. Correctness of the ligation was confirmed by enzyme digestion and sequencing. By joining the PstI-PstI fragment of pro-UK to the plasmid we obtained the final plasmid which contained the entire coding sequence of pro-UK without the signal peptide. The coding sequence with correct orientation was inserted into pBV220 under the control of the temperature-induced promoter PRPL, and mature pro-UK was expressed in E. coli at 42 degrees C. Both sonicated supernatant and inclusion bodies of the bacterial host JM101 showed positive results by ELISA and FAPA assays. After renaturation, the biological activity of the expressed product was increased from 500-1000IU/L to about 60,000IU/L. The bacterial pro-UK showed a molecular weight of about 47,000 daltons by Western blot analysis. It can be completely inhibited by UK antiserum but not by t-PA antiserum nor by normal rabbit serum.

  5. Evolutionary interaction between W/Y chromosome and transposable elements.

    PubMed

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.

  6. Large-scale chromatin remodeling at the immunoglobulin heavy chain locus: a paradigm for multigene regulation.

    PubMed

    Bolland, Daniel J; Wood, Andrew L; Corcoran, Anne E

    2009-01-01

    V(D)J recombination in lymphocytes is the cutting and pasting together of antigen receptor genes in cis to generate the enormous variety of coding sequences required to produce diverse antigen receptor proteins. It is the key role of the adaptive immune response, which must potentially combat millions of different foreign antigens. Most antigen receptor loci have evolved to be extremely large and contain multiple individual V, D and J genes. The immunoglobulin heavy chain (Igh) and immunoglobulin kappa light chain (Igk) loci are the largest multigene loci in the mammalian genome and V(D)J recombination is one of the most complicated genetic processes in the nucleus. The challenge for the appropriate lymphocyte is one of macro-management-to make all of the antigen receptor genes in a particular locus available for recombination at the appropriate developmental time-point. Conversely, these large loci must be kept closed in lymphocytes in which they do not normally recombine, to guard against genomic instability generated by the DNA double strand breaks inherent to the V(D)J recombination process. To manage all of these demanding criteria, V(D)J recombination is regulated at numerous levels. It is restricted to lymphocytes since the Rag genes which control the DNA double-strand break step of recombination are only expressed in these cells. Within the lymphocyte lineage, immunoglobulin recombination is restricted to B-lymphocytes and TCR recombination to T-lymphocytes by regulation of locus accessibility, which occurs at multiple levels. Accessibility of recombination signal sequences (RSSs) flanking individual V, D and J genes at the nucleosomal level is the key micro-management mechanism, which is discussed in greater detail in other chapters. This chapter will explore how the antigen receptor loci are regulated as a whole, focussing on the Igh locus as a paradigm for the mechanisms involved. Numerous recent studies have begun to unravel the complex and complementary processes involved in this large-scale locus organisation. We will examine the structure of the Igh locus and the large-scale and higher-order chromatin remodelling processes associated with V(D)J recombination, at the level of the locus itself, its conformational changes and its dynamic localisation within the nucleus.

  7. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    PubMed

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  8. Recombination in feline immunodeficiency virus from feral and companion domestic cats.

    PubMed

    Hayward, Jessica J; Rodrigo, Allen G

    2008-06-17

    Recombination is a relatively common phenomenon in retroviruses. We investigated recombination in Feline Immunodeficiency Virus from naturally-infected New Zealand domestic cats (Felis catus) by sequencing regions of the gag, pol and env genes. The occurrence of intragenic recombination was highest in env, with evidence of recombination in 6.4% (n = 156) of all cats. A further recombinant was identified in each of the gag (n = 48) and pol (n = 91) genes. Comparisons of phylogenetic trees across genes identified cases of incongruence, indicating intergenic recombination. Three (7.7%, n = 39) of these incongruencies were found to be significantly different using the Shimodaira-Hasegawa test.Surprisingly, our phylogenies from the gag and pol genes showed that no New Zealand sequences group with reference subtype C sequences within intrasubtype pairwise distances. Indeed, we find one and two distinct unknown subtype groups in gag and pol, respectively. These observations cause us to speculate that these New Zealand FIV strains have undergone several recombination events between subtype A parent strains and undefined unknown subtype strains, similar to the evolutionary history hypothesised for HIV-1 "subtype E".Endpoint dilution sequencing was used to confirm the consensus sequences of the putative recombinants and unknown subtype groups, providing evidence for the authenticity of these sequences. Endpoint dilution sequencing also resulted in the identification of a dual infection event in the env gene. In addition, an intrahost recombination event between variants of the same subtype in the pol gene was established. This is the first known example of naturally-occurring recombination in a cat with infection of the parent strains. Evidence of intragenic recombination in the gag, pol and env regions, and complex intergenic recombination, of FIV from naturally-infected domestic cats in New Zealand was found. Strains of unknown subtype were identified in all three gene regions. These results have implications for the use of the current FIV vaccine in New Zealand.

  9. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence ofmore » the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.« less

  10. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  11. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  12. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation.

    PubMed

    Biondo, Ronaldo; da Silva, Felipe Almeida; Vicente, Elisabete José; Souza Sarkis, Jorge Eduardo; Schenberg, Ana Clara Guerrini

    2012-08-07

    This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgAβ gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb(2+), Zn(2+), Cu(2+), Cd(2+), Mn(2+), and Ni(2+) ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.

  13. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  14. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  15. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  16. Cloning, expression, and characterization of a novel (S)-specific alcohol dehydrogenase from Lactobacillus kefir.

    PubMed

    Chen, Qilei; Hu, Youjia; Zhao, Wenjie; Zhu, Chunbao; Zhu, Baoquan

    2010-01-01

    A gene encoding a novel (S)-specific NADH-dependent alcohol dehydrogenase (LK-ADH) was isolated from the genomic DNA of Lactobacillus kefir DSM 20587 by thermal asymmetric interlaced-polymerase chain reaction. The nucleotide sequence of (S)-LK-ADH gene (adhS) was determined, which consists of an open reading frame of 1,044 bp, coding for 347 amino acids with a molecular mass of 37.065 kDa. After a BLAST similarity search in GenBank database, the amino acid sequence of (S)-LK-ADH showed some homologies to several zinc containing medium-chain alcohol dehydrogenases. This novel gene was deposited into GenBank with the accession number of EU877965. adhS gene was subcloned into plasmid pET-28a(+), and recombinant (S)-LK-ADH was successfully expressed in E. coli BL21(DE3) by isopropyl-beta-D-1-thiogalactopyranoside induction. Purified enzyme showed a high enantioselectivity in the reduction of acetophenone to (S)-phenylethanol with an ee value of 99.4%. The substrate specificity and cofactor preference of recombinant (S)-LK-ADH were also tested.

  17. Identification, molecular and functional characterization of calmodulin gene of Phytomonas serpens 15T that shares high similarity with its pathogenic counterparts Trypanosoma cruzi.

    PubMed

    de Souza, Tatiana de Arruda Campos Brasil; Graça-de Souza, Viviane Krominski; Lancheros, César Armando Contreras; Monteiro-Góes, Viviane; Krieger, Marco Aurélio; Goldenberg, Samuel; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2011-03-01

    In trypanosomatids, Ca²+-binding proteins can affect parasite growth, differentiation and invasion. Due to their importance for parasite maintenance, they become an attractive target for drug discovery and design. Phytomonas serpens 15T is a non-human pathogenic trypanosomatid that expresses important protein homologs of human pathogenic trypanosomatids. In this study, the coding sequence of calmodulin, a Ca²+-binding protein, of P. serpens 15T was cloned and characterized. The encoded polypeptide (CaMP) displayed high amino acid identity to homolog protein of Trypanosoma cruzi and four helix-loop-helix motifs were found. CaMP sequence analysis showed 20 amino acid substitutions compared to its mammalian counterparts. This gene is located on a chromosomal band with estimated size of 1,300 kb and two transcripts were detected by Northern blot analysis. A polyclonal antiserum raised against the recombinant protein recognized a polypeptide with an estimated size of 17 kDa in log-phase promastigote extracts. The recombinant CaMP retains its Ca²+-binding capacity.

  18. The construction of recombinant industrial yeasts free of bacterial sequences by directed gene replacement into a nonessential region of the genome.

    PubMed

    Xiao, W; Rank, G H

    1989-03-15

    The yeast SMR1 gene was used as a dominant resistance-selectable marker for industrial yeast transformation and for targeting integration of an economically important gene at the homologous ILV2 locus. A MEL1 gene, which codes for alpha-galactosidase, was inserted into a dispensable upstream region of SMR1 in vitro; different treatments of the plasmid (pWX813) prior to transformation resulted in 3' end, 5' end and replacement integrations that exhibited distinct integrant structures. One-step replacement within a nonessential region of the host genome generated a stable integration of MEL1 devoid of bacterial plasmid DNA. Using this method, we have constructed several alpha-galactosidase positive industrial Saccharomyces strains. Our study provides a general method for stable gene transfer in most industrial Saccharomyces yeasts, including those used in the baking, brewing (ale and lager), distilling, wine and sake industries, with solely nucleotide sequences of interest. The absence of bacterial DNA in the integrant structure facilitates the commercial application of recombinant DNA technology in the food and beverage industry.

  19. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    PubMed

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.

  20. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    PubMed Central

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and thereby lead to improved therapy. Our findings suggest mechanisms for occurrence of recombinants observed in patients. PMID:23555245

  1. Complete genome analysis of porcine kobuviruses from the feces of pigs in Japan.

    PubMed

    Akagami, Masataka; Ito, Mika; Niira, Kazutaka; Kuroda, Moegi; Masuda, Tsuneyuki; Haga, Kei; Tsuchiaka, Shinobu; Naoi, Yuki; Kishimoto, Mai; Sano, Kaori; Omatsu, Tsutomu; Aoki, Hiroshi; Katayama, Yukie; Oba, Mami; Oka, Tomoichiro; Ichimaru, Toru; Yamasato, Hiroshi; Ouchi, Yoshinao; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto

    2017-08-01

    Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.

  2. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus.

    PubMed

    Takahata, Satoshi; Yago, Takumi; Iwabuchi, Keisuke; Hirakawa, Hideki; Suzuki, Yutaka; Onodera, Yasuyuki

    2016-01-01

    Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers.

    PubMed

    Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa

    2010-03-01

    Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.

  4. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef.more » We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes.« less

  5. Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing.

    PubMed

    Duez, Marc; Giraud, Mathieu; Herbert, Ryan; Rocher, Tatiana; Salson, Mikaël; Thonier, Florian

    2016-01-01

    The B and T lymphocytes are white blood cells playing a key role in the adaptive immunity. A part of their DNA, called the V(D)J recombinations, is specific to each lymphocyte, and enables recognition of specific antigenes. Today, with new sequencing techniques, one can get billions of DNA sequences from these regions. With dedicated Repertoire Sequencing (RepSeq) methods, it is now possible to picture population of lymphocytes, and to monitor more accurately the immune response as well as pathologies such as leukemia. Vidjil is an open-source platform for the interactive analysis of high-throughput sequencing data from lymphocyte recombinations. It contains an algorithm gathering reads into clonotypes according to their V(D)J junctions, a web application made of a sample, experiment and patient database and a visualization for the analysis of clonotypes along the time. Vidjil is implemented in C++, Python and Javascript and licensed under the GPLv3 open-source license. Source code, binaries and a public web server are available at http://www.vidjil.org and at http://bioinfo.lille.inria.fr/vidjil. Using the Vidjil web application consists of four steps: 1. uploading a raw sequence file (typically a FASTQ); 2. running RepSeq analysis software; 3. visualizing the results; 4. annotating the results and saving them for future use. For the end-user, the Vidjil web application needs no specific installation and just requires a connection and a modern web browser. Vidjil is used by labs in hematology or immunology for research and clinical applications.

  6. Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing

    PubMed Central

    Duez, Marc; Herbert, Ryan; Rocher, Tatiana; Salson, Mikaël; Thonier, Florian

    2016-01-01

    Background The B and T lymphocytes are white blood cells playing a key role in the adaptive immunity. A part of their DNA, called the V(D)J recombinations, is specific to each lymphocyte, and enables recognition of specific antigenes. Today, with new sequencing techniques, one can get billions of DNA sequences from these regions. With dedicated Repertoire Sequencing (RepSeq) methods, it is now possible to picture population of lymphocytes, and to monitor more accurately the immune response as well as pathologies such as leukemia. Methods and Results Vidjil is an open-source platform for the interactive analysis of high-throughput sequencing data from lymphocyte recombinations. It contains an algorithm gathering reads into clonotypes according to their V(D)J junctions, a web application made of a sample, experiment and patient database and a visualization for the analysis of clonotypes along the time. Vidjil is implemented in C++, Python and Javascript and licensed under the GPLv3 open-source license. Source code, binaries and a public web server are available at http://www.vidjil.org and at http://bioinfo.lille.inria.fr/vidjil. Using the Vidjil web application consists of four steps: 1. uploading a raw sequence file (typically a FASTQ); 2. running RepSeq analysis software; 3. visualizing the results; 4. annotating the results and saving them for future use. For the end-user, the Vidjil web application needs no specific installation and just requires a connection and a modern web browser. Vidjil is used by labs in hematology or immunology for research and clinical applications. PMID:27835690

  7. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  8. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    PubMed Central

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  9. Widespread recombination in published animal mtDNA sequences.

    PubMed

    Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E

    2005-04-01

    Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.

  10. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Whole-Genome Sequencing of Theileria parva Strains Provides Insight into Parasite Migration and Diversification in the African Continent

    PubMed Central

    Hayashida, Kyoko; Abe, Takashi; Weir, William; Nakao, Ryo; Ito, Kimihito; Kajino, Kiichi; Suzuki, Yutaka; Jongejan, Frans; Geysen, Dirk; Sugimoto, Chihiro

    2013-01-01

    The disease caused by the apicomplexan protozoan parasite Theileria parva, known as East Coast fever or Corridor disease, is one of the most serious cattle diseases in Eastern, Central, and Southern Africa. We performed whole-genome sequencing of nine T. parva strains, including one of the vaccine strains (Kiambu 5), field isolates from Zambia, Uganda, Tanzania, or Rwanda, and two buffalo-derived strains. Comparison with the reference Muguga genome sequence revealed 34 814–121 545 single nucleotide polymorphisms (SNPs) that were more abundant in buffalo-derived strains. High-resolution phylogenetic trees were constructed with selected informative SNPs that allowed the investigation of possible complex recombination events among ancestors of the extant strains. We further analysed the dN/dS ratio (non-synonymous substitutions per non-synonymous site divided by synonymous substitutions per synonymous site) for 4011 coding genes to estimate potential selective pressure. Genes under possible positive selection were identified that may, in turn, assist in the identification of immunogenic proteins or vaccine candidates. This study elucidated the phylogeny of T. parva strains based on genome-wide SNPs analysis with prediction of possible past recombination events, providing insight into the migration, diversification, and evolution of this parasite species in the African continent. PMID:23404454

  12. Whole-genome sequencing of Theileria parva strains provides insight into parasite migration and diversification in the African continent.

    PubMed

    Hayashida, Kyoko; Abe, Takashi; Weir, William; Nakao, Ryo; Ito, Kimihito; Kajino, Kiichi; Suzuki, Yutaka; Jongejan, Frans; Geysen, Dirk; Sugimoto, Chihiro

    2013-06-01

    The disease caused by the apicomplexan protozoan parasite Theileria parva, known as East Coast fever or Corridor disease, is one of the most serious cattle diseases in Eastern, Central, and Southern Africa. We performed whole-genome sequencing of nine T. parva strains, including one of the vaccine strains (Kiambu 5), field isolates from Zambia, Uganda, Tanzania, or Rwanda, and two buffalo-derived strains. Comparison with the reference Muguga genome sequence revealed 34 814-121 545 single nucleotide polymorphisms (SNPs) that were more abundant in buffalo-derived strains. High-resolution phylogenetic trees were constructed with selected informative SNPs that allowed the investigation of possible complex recombination events among ancestors of the extant strains. We further analysed the dN/dS ratio (non-synonymous substitutions per non-synonymous site divided by synonymous substitutions per synonymous site) for 4011 coding genes to estimate potential selective pressure. Genes under possible positive selection were identified that may, in turn, assist in the identification of immunogenic proteins or vaccine candidates. This study elucidated the phylogeny of T. parva strains based on genome-wide SNPs analysis with prediction of possible past recombination events, providing insight into the migration, diversification, and evolution of this parasite species in the African continent.

  13. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    PubMed

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  14. The agents of natural genome editing.

    PubMed

    Witzany, Guenther

    2011-06-01

    The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.

  15. Genetic variations in merozoite surface antigen genes of Babesia bovis detected in Vietnamese cattle and water buffaloes.

    PubMed

    Yokoyama, Naoaki; Sivakumar, Thillaiampalam; Tuvshintulga, Bumduuren; Hayashida, Kyoko; Igarashi, Ikuo; Inoue, Noboru; Long, Phung Thang; Lan, Dinh Thi Bich

    2015-03-01

    The genes that encode merozoite surface antigens (MSAs) in Babesia bovis are genetically diverse. In this study, we analyzed the genetic diversity of B. bovis MSA-1, MSA-2b, and MSA-2c genes in Vietnamese cattle and water buffaloes. Blood DNA samples from 258 cattle and 49 water buffaloes reared in the Thua Thien Hue province of Vietnam were screened with a B. bovis-specific diagnostic PCR assay. The B. bovis-positive DNA samples (23 cattle and 16 water buffaloes) were then subjected to PCR assays to amplify the MSA-1, MSA-2b, and MSA-2c genes. Sequencing analyses showed that the Vietnamese MSA-1 and MSA-2b sequences are genetically diverse, whereas MSA-2c is relatively conserved. The nucleotide identity values for these MSA gene sequences were similar in the cattle and water buffaloes. Consistent with the sequencing data, the Vietnamese MSA-1 and MSA-2b sequences were dispersed across several clades in the corresponding phylogenetic trees, whereas the MSA-2c sequences occurred in a single clade. Cattle- and water-buffalo-derived sequences also often clustered together on the phylogenetic trees. The Vietnamese MSA-1, MSA-2b, and MSA-2c sequences were then screened for recombination with automated methods. Of the seven recombination events detected, five and two were associated with the MSA-2b and MSA-2c recombinant sequences, respectively, whereas no MSA-1 recombinants were detected among the sequences analyzed. Recombination between the sequences derived from cattle and water buffaloes was very common, and the resultant recombinant sequences were found in both host animals. These data indicate that the genetic diversity of the MSA sequences does not differ between cattle and water buffaloes in Vietnam. They also suggest that recombination between the B. bovis MSA sequences in both cattle and water buffaloes might contribute to the genetic variation in these genes in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.

    PubMed

    Bitrián, Marta; Roodbarkelari, Farshad; Horváth, Mihály; Koncz, Csaba

    2011-03-01

    Recombineering, permitting precise modification of genes within bacterial artificial chromosomes (BACs) through homologous recombination mediated by lambda phage-encoded Red proteins, is a widely used powerful tool in mouse, Caenorhabditis and Drosophila genetics. As Agrobacterium-mediated transfer of large DNA inserts from binary BACs and TACs into plants occurs at low frequency, recombineering is so far seldom exploited in the analysis of plant gene functions. We have constructed binary plant transformation vectors, which are suitable for gap-repair cloning of genes from BACs using recombineering methods previously developed for other organisms. Here we show that recombineering facilitates PCR-based generation of precise translational fusions between coding sequences of fluorescent reporter and plant proteins using galK-based exchange recombination. The modified target genes alone or as part of a larger gene cluster can be transferred by high-frequency gap-repair into plant transformation vectors, stably maintained in Agrobacterium and transformed without alteration into plants. Versatile application of plant BAC-recombineering is illustrated by the analysis of developmental regulation and cellular localization of interacting AKIN10 catalytic and SNF4 activating subunits of Arabidopsis Snf1-related (SnRK1) protein kinase using in vivo imaging. To validate full functionality and in vivo interaction of tagged SnRK1 subunits, it is demonstrated that immunoprecipitated SNF4-YFP is bound to a kinase that phosphorylates SnRK1 candidate substrates, and that the GFP- and YFP-tagged kinase subunits co-immunoprecipitate with endogenous wild type AKIN10 and SNF4. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  17. Evolutionary Dynamics of the Gametologous CTNNB1 Gene on the Z and W Chromosomes of Snakes.

    PubMed

    Laopichienpong, Nararat; Muangmai, Narongrit; Chanhome, Lawan; Suntrarachun, Sunutcha; Twilprawat, Panupon; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2017-03-01

    Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the nonrecombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these 2 genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion–deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of 2 major clades: 1) Z-linked sequences of Caenophidia and 2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia.

  18. Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae.

    PubMed

    Colson, A M; Slonimski, P P

    1979-01-02

    Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous segments of the mitochondrial DNA sequence which code for a single polypeptide sequence of cytochrome b. In each segment mutations which modify the polypeptide sequence can occur leading to the loss (BOX mutants) or to a modification (drug resistant mutants) of the enzyme activity.

  19. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing "central dogma" for future molecular/genetic biology remains to be explored.

  20. Sequence analysis and heterologous expression of the wool cuticle-degrading enzyme encoding genes in Fusarium oxysporum 26-1.

    PubMed

    Chaya, Etsushi; Suzuki, Tohru; Karita, Shuichi; Hanya, Akira; Yoshino-Yasuda, Shoko; Kitamoto, Noriyuki

    2014-06-01

    Two protease-like proteins, KrtA and KrtC, were identified in Fusarium oxysporum 26-1. Genes coding these proteins, krtA and krtC, were isolated and characterized. Recombinant KrtA (rKrtA) and KrtC (rKrtC) were successfully expressed in Aspergillus oryzae and secreted. The combination of rKrtA and rKrtC completely removed the cuticle of wool fibers. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    PubMed Central

    2012-01-01

    Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose following a Michaelis–Menten kinetics with a KM of 9.13 mg/ml and a vmax of 3469 μM min-1. The enzyme exhibits a half life of around 24 h and 96 h at 60°C and 50°C, respectively and shows a retention of around 80% of activity after 96 h at 40°C. Conclusions In this manuscript, we describe the isolation of a new cellulolytic strain, Streptomyces sp. G12, from industrial waste based compost, the identification of the enzymes putatively responsible for its cellulolytic activity, the cloning and the recombinant expression of the gene coding for the Streptomyces sp. G12 cellulase CelStrep, that was characterized showing to exhibit a relevant thermoresistance increasing its potential for cellulose conversion. PMID:23267666

  2. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  3. Characterization, genetic diversity, and evolutionary link of Cucumber mosaic virus strain New Delhi from India.

    PubMed

    Koundal, Vikas; Haq, Qazi Mohd Rizwanul; Praveen, Shelly

    2011-02-01

    The genome of Cucumber mosaic virus New Delhi strain (CMV-ND) from India, obtained from tomato, was completely sequenced and compared with full genome sequences of 14 known CMV strains from subgroups I and II, for their genetic diversity. Sequence analysis suggests CMV-ND shares maximum sequence identity at the nucleotide level with a CMV strain from Taiwan. Among all 15 strains of CMV, the encoded protein 2b is least conserved, whereas the coat protein (CP) is most conserved. Sequence identity values and phylogram results indicate that CMV-ND belongs to subgroup I. Based on the recombination detection program result, it appears that CMV is prone to recombination, and different RNA components of CMV-ND have evolved differently. Recombinational analysis of all 15 CMV strains detected maximum recombination breakpoints in RNA2; CP showed the least recombination sites.

  4. Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination.

    PubMed

    Schlecht, Hélène B; Lichten, Michael; Goldman, Alastair S H

    2004-11-01

    As yeast cells enter meiosis, chromosomes move from a centromere-clustered (Rabl) to a telomere-clustered (bouquet) configuration and then to states of progressive homolog pairing where telomeres are more dispersed. It is uncertain at which stage of this process sequences commit to recombine with each other. Previous analyses using recombination between dispersed homologous sequences (ectopic recombination) support the view that, on average, homologs are aligned end to end by the time of commitment to recombination. We have undertaken further analyses incorporating new inserts, chromosome rearrangements, an alternate mode of recombination initiation, and mutants that disrupt nuclear structure or telomere metabolism. Our findings support previous conclusions and reveal that distance from the nearest telomere is an important parameter influencing recombination between dispersed sequences. In general, the farther dispersed sequences are from their nearest telomere, the less likely they are to engage in ectopic recombination. Neither the mode of initiating recombination nor the formation of the bouquet appears to affect this relationship. We suggest that aspects of telomere localization and behavior influence the organization and mobility of chromosomes along their entire length, during a critical period of meiosis I prophase that encompasses the homology search.

  5. Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained.

    PubMed

    Zheng, Hongying; Nagaraja, Ganachari M; Kaur, Punit; Asea, Edwina E; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72(bv) (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72(bv) enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72(bv) in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72(bv) can now be used to unlock the important role Hsp72 plays in modulating immune function.

  6. Chaperokine Function of Recombinant Hsp72 Produced in Insect Cells Using a Baculovirus Expression System Is Retained*

    PubMed Central

    Zheng, Hongying; Nagaraja, Ganachari M.; Kaur, Punit; Asea, Edwina E.; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72bv (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72bv enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72bv in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72bv can now be used to unlock the important role Hsp72 plays in modulating immune function. PMID:19861412

  7. Recombination in Enteroviruses Is a Biphasic Replicative Process Involving the Generation of Greater-than Genome Length ‘Imprecise’ Intermediates

    PubMed Central

    Lowry, Kym; Woodman, Andrew; Cook, Jonathan; Evans, David J.

    2014-01-01

    Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. PMID:24945141

  8. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    PubMed

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Transposable elements and G-quadruplexes.

    PubMed

    Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej

    2015-09-01

    A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.

  10. [Cloning, sequencing and prokaryotic expression of cDNAs for the antifreeze protein family from the beetle Tenebrio molitor].

    PubMed

    Liu, Zhong-Yuan; Wang, Yun; Lü, Guo-Dong; Wang, Xian-Lei; Zhang, Fu-Chun; Ma, Ji

    2006-12-01

    The partial cDNA sequence coding for the antifreeze proteins in the Tenebrio molitor was obtained by RT-PCR. Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze proteins. The recombinant pGEX-4T-1-tmafp-XJ430 was introduced into E. coli BL21 to induce a GST fusion protein by IPTG. SDS-PAGE of the fusion protein demonstrated that the antifreeze protein migrated at a size of 38 kDa. The immunization was performed by intra-muscular injection of pCDNA3-tmafp-XJ430, and then antiserum was detected by ELISA. The titer of the antibody was 1:2,000. Western blotting analysis showed the antiserum was specific against the antifreeze protein. This finding could lead to further investigation of the properties and function of antifreeze proteins.

  11. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

    PubMed

    Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R

    2004-07-01

    The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.

  12. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    PubMed

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  13. Expression of ayu (Plecoglossus altivelis) Pit-1 in Escherichia coli: its purification and immunohistochemical detection using monoclonal antibody.

    PubMed

    Chiu, Chi-Chien; John, Joseph Abraham Christopher; Hseu, Tzong-Hsiung; Chang, Chi-Yao

    2002-03-01

    The pituitary-specific transcription factor Pit-1 belongs to the family of POU-domain proteins and is known to play an important role in the differentiation of pituitary cells. Here we report the complete nucleotide sequence of cDNA encoding Pit-1 from the brackish water fish, ayu (Plecoglossus altivelis). Nucleotide sequence analysis of 1910 bp of ayu Pit-1 cDNA revealed an open reading frame of 1074 bp that encodes a protein of 358 amino acids containing a POU-specific domain, POU homeodomain, and an STA (Ser/Thr-rich activation) transactivation domain. We inserted the coding region of Pit-1 cDNA, obtained by PCR, into a pET-20b(+) plasmid to produce recombinant Pit-1 in Escherichia coli BL21 (DE3) pLysS cells. Upon induction with isopropyl beta-D-thiogalactopyranoside, Pit-1 was expressed and accumulated as inclusion bodies in E. coli. The protein was then purified in one step by affinity chromatography on a nickel-nitrilotriacetic acid agarose column under denaturing conditions. This method yielded 0.7 mg of highly pure and stable protein per 200 ml of bacterial culture. A band of 40 kDa, resolved as recombinant ayu Pit-1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, agrees well with the molecular mass calculated from the translated cDNA sequence. The purified recombinant Pit-1 was confirmed in vitro through Western blot analysis, using its monoclonal antibody. This monoclonal antibody detected Pit-1 in the nuclei of ayu developing pituitary by immunohistochemical reaction. It serves as a good reagent for the detection of ayu Pit-1 in situ. Copyright 2002 Elsevier Science (USA).

  14. Cellular Transfection to Deliver Alanine-Glyoxylate Aminotransferase to Hepatocytes: A Rational Gene Therapy for Primary Hyperoxaluria-1 (PH-1)

    PubMed Central

    Koul, Sweaty; Johnson, Thomas; Pramanik, Saroj; Koul, Hari

    2005-01-01

    Background: Primary hyperoxaluria-type 1 (PH-1) is a rare autosomal recessive disorder of glyoxalate metabolism caused by deficiency in the liver-specific peroxisomal enzyme alanine-glyoxalate transaminase 1 (AGT) resulting in the increased oxidation of glyoxalate to oxalate. Accumulation of oxalate in the kidney and other soft tissues results in loss of renal function and significant morbidity. The present treatment options offer some relief in the short term, but they are not completely successful. In the present study, we tested the feasibility of corrective gene therapy for this metabolic disorder. Methods: A cDNA library was made from HepG2 cells. PCR primers were designed for the AGT sequence with modifications to preclude mistargeting during gene delivery. Amplified AGT cDNA was cloned as a fusion protein with green fluorescent protein (GFP) using the vector EGFP-C1 (Clontech) for monitoring subcellular distribution. Sequence and expression of the fusion protein was verified. Fusion protein vectors were transfected into hepatocytes by liposomal transfection. AGT expression and subcellular distribution was monitored by GFP fluorescence. Results: HepG2 cells express full-length mRNA coding for AGT as confirmed by insert size as well as sequence determination. Selective primers allowed us to generate a modified recombinant GFP-AGT fusion protein. Cellular transfections with Lipofectamine resulted in transfection efficiencies of 60–90%. The recombinant AGT did localize to peroxisomes as monitored by GFP fluorescence. Conclusions: The results demonstrate preliminary in vitro feasibility data for AGT transfection into the hepatocytes. To the best of our knowledge, this is the first study to attempt recombinant AGT gene therapy for treatment of primary hyperoxaluria-1. PMID:15849465

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasek, Marta; Boeggeman, Elizabeth; Ramakrishnan, Boopathy

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of amore » large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.« less

  16. Cloning and High-Level Expression of α-Galactosidase cDNA from Penicillium purpurogenum

    PubMed Central

    Shibuya, Hajime; Nagasaki, Hiroaki; Kaneko, Satoshi; Yoshida, Shigeki; Park, Gwi Gun; Kusakabe, Isao; Kobayashi, Hideyuki

    1998-01-01

    The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides. PMID:9797312

  17. Recombinant protein secretion in Pseudozyma flocculosa and Pseudozyma antarctica with a novel signal peptide.

    PubMed

    Cheng, Yali; Avis, Tyler J; Bolduc, Sébastien; Zhao, Yingyi; Anguenot, Raphaël; Neveu, Bertrand; Labbé, Caroline; Belzile, François; Bélanger, Richard R

    2008-12-01

    Secretion of recombinant proteins aims to reproduce the correct posttranslational modifications of the expressed protein while simplifying its recovery. In this study, secretion signal sequences from an abundantly secreted 34-kDa protein (P34) from Pseudozyma flocculosa were cloned. The efficiency of these sequences in the secretion of recombinant green fluorescent protein (GFP) was investigated in two Pseudozyma species and compared with other secretion signal sequences, from S. cerevisiae and Pseudozyma spp. The results indicate that various secretion signal sequences were functional and that the P34 signal peptide was the most effective secretion signal sequence in both P. flocculosa and P. antarctica. The cells correctly processed the secretion signal sequences, including P34 signal peptide, and mature GFP was recovered from the culture medium. This is the first report of functional secretion signal sequences in P. flocculosa. These sequences can be used to test the secretion of other recombinant proteins and for studying the secretion pathway in P. flocculosa and P. antarctica.

  18. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Genetic characterization of a Coxsackie A9 virus associated with aseptic meningitis in Alberta, Canada in 2010

    PubMed Central

    2013-01-01

    Background An unusually high incidence of aseptic meningitis caused by enteroviruses was noted in Alberta, Canada between March and October 2010. Sequence based typing was performed on the enterovirus positive samples to gain a better understanding of the molecular characteristics of the Coxsackie A9 (CVA-9) strain responsible for most cases in this outbreak. Methods Molecular typing was performed by amplification and sequencing of the VP2 region. The genomic sequence of one of the 2010 outbreak isolates was compared to a CVA-9 isolate from 2003 and the prototype sequence to study genetic drift and recombination. Results Of the 4323 samples tested, 213 were positive for enteroviruses (4.93%). The majority of the positives were detected in CSF samples (n = 157, 73.71%) and 81.94% of the sequenced isolates were typed as CVA-9. The sequenced CVA-9 positives were predominantly (94.16%) detected in patients ranging in age from 15 to 29 years and the peak months for detection were between March and October. Full genome sequence comparisons revealed that the CVA-9 viruses isolated in Alberta in 2003 and 2010 were highly homologous to the prototype CVA-9 in the structural VP1, VP2 and VP3 regions but divergent in the VP4, non-structural and non-coding regions. Conclusion The increase in cases of aseptic meningitis was associated with enterovirus CVA-9. Sequence divergence between the prototype strain of CVA-9 and the Alberta isolates suggests genetic drifting and/or recombination events, however the sequence was conserved in the antigenic regions determined by the VP1, VP2 and VP3 genes. These results suggest that the increase in CVA-9 cases likely did not result from the emergence of a radically different immune escape mutant. PMID:23521862

  20. Isolation, Cloning, and Expression of an Acid Phosphatase Containing Phosphotyrosyl Phosphatase Activity from Prevotella intermedia

    PubMed Central

    Chen, Xiaochi; Ansai, Toshihiro; Awano, Shuji; Iida, Toshiya; Barik, Sailen; Takehara, Tadamichi

    1999-01-01

    A novel acid phosphatase containing phosphotyrosyl phosphatase (PTPase) activity, designated PiACP, from Prevotella intermedia ATCC 25611, an anaerobe implicated in progressive periodontal disease, has been purified and characterized. PiACP, a monomer with an apparent molecular mass of 30 kDa, did not require divalent metal cations for activity and was sensitive to orthovanadate but highly resistant to okadaic acid. The enzyme exhibited substantial activity against tyrosine phosphate-containing peptides derived from the epidermal growth factor receptor. On the basis of N-terminal and internal amino acid sequences of purified PiACP, the gene coding for PiACP was isolated and sequenced. The PiACP gene consisted of 792 bp and coded for a basic protein with an Mr of 29,164. The deduced amino acid sequence exhibited striking similarity (25 to 64%) to those of members of class A bacterial acid phosphatases, including PhoC of Morganella morganii, and involved a conserved phosphatase sequence motif that is shared among several lipid phosphatases and the mammalian glucose-6-phosphatases. The highly conservative motif HCXAGXXR in the active domain of PTPase was not found in PiACP. Mutagenesis of recombinant PiACP showed that His-170 and His-209 were essential for activity. Thus, the class A bacterial acid phosphatases including PiACP may function as atypical PTPases, the biological functions of which remain to be determined. PMID:10559178

  1. The high-level expression of human tissue plasminogen activator in the milk of transgenic mice with hybrid gene locus strategy.

    PubMed

    Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Xiong, Fuyin; Lv, Yuemeng; Zheng, Tao; Huang, Peitang; Chen, Hongxing

    2012-02-01

    Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.

  2. Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation.

    PubMed

    Jeevan, A; McFarland, C T; Yoshimura, T; Skwor, T; Cho, H; Lasco, T; McMurray, D N

    2006-01-01

    Gamma interferon (IFN-gamma) plays a critical role in the protective immune responses against mycobacteria. We previously cloned a cDNA coding for guinea pig IFN-gamma (gpIFN-gamma) and reported that BCG vaccination induced a significant increase in the IFN-gamma mRNA expression in guinea pig cells in response to living mycobacteria and that the virulent H37Rv strain of Mycobacterium tuberculosis stimulated less IFN-gamma mRNA than did the attenuated H37Ra strain. In this study, we successfully expressed and characterized recombinant gpIFN-gamma with a histidine tag at the N terminus (His-tagged rgpIFN-gamma) in Escherichia coli. rgpIFN-gamma was identified as an 18-kDa band in the insoluble fraction; therefore, the protein was purified under denaturing conditions and renatured. N-terminal amino acid sequencing of the recombinant protein yielded the sequence corresponding to the N terminus of His-tagged gpIFN-gamma. The recombinant protein upregulated major histocompatibility complex class II expression in peritoneal macrophages. The antiviral activity of rgpIFN-gamma was demonstrated with a guinea pig fibroblast cell line (104C1) infected with encephalomyocarditis virus. Interestingly, peritoneal macrophages treated with rgpIFN-gamma did not produce any nitric oxide but did produce hydrogen peroxide and suppressed the intracellular growth of mycobacteria. Furthermore, rgpIFN-gamma induced morphological alterations in cultured macrophages. Thus, biologically active rgpIFN-gamma has been successfully produced and characterized in our laboratory. The study of rgpIFN-gamma will further increase our understanding of the cellular and molecular responses induced by BCG vaccination in the guinea pig model of pulmonary tuberculosis.

  3. Complete Genome Analysis of an Enterovirus EV-B83 Isolated in China.

    PubMed

    Tang, Jingjing; Li, Qiongfen; Tian, Bingjun; Zhang, Jie; Li, Kai; Ding, Zhengrong; Lu, Lin

    2016-07-12

    Enterovirus B83 (EV-B83) is a recently identified member of enterovirus species B. It is a rarely reported serotype and up to date, only the complete genome sequence of the prototype strain from the United States is available. In this study, we describe the complete genomic characterization of an EV-B83 strain 246/YN/CHN/08HC isolated from a healthy child living in border region of Yunnan Province, China in 2008. Compared with the prototype strain, it had 79.6% similarity in the complete genome and 78.9% similarity in the VP1 coding region, reflecting the great genetic divergence among them. VP1-coding region alignment revealed it had 77.2-91.3% with other EV-B83 sequences available in GenBank. Similarity plot analysis revealed it had higher identity with several other EV-B serotypes than the EV-B83 prototype strain in the P2 and P3 coding region, suggesting multiple recombination events might have occurred. The great genetic divergence with previously isolated strains and the extremely rare isolation suggest this serotype has circulated at a low epidemic strength for many years. This is the first report of complete genome of EV-B83 in China.

  4. Differentiation of the glucocerebrosidase gene from pseudogene by long-template PCR: Implications for Gaucher disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayebi, N.; Cushner, S.; Sidransky, E.

    1996-09-01

    We describe the use of long-template PCR to differentiate the glucocerebrosidase gene from its pseudogene, which will simplify molecular diagnostic testing and the detection of known and new mutations in patients with Gaucher disease. Gaucher disease results from the inherited deficiency of the lysosomal enzyme, glucocerebrosidase. Sixteen kilobases downstream of the glucocerebrosidase gene is a pseudogene, which is {approximately}2 kb shorter and has >96% identity to the coding regions of the functional gene. Many mutations encountered in Gaucher patients are identical to sequences ordinarily found only in the pseudogene, and some result from recombination between the gene and pseudogene. Thus,more » for diagnostic purposes it is essential to differentiate between sequences from the gene and pseudogene. 9 refs., 1 fig.« less

  5. Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization.

    PubMed Central

    Bozzoni, I; Beccari, E; Luo, Z X; Amaldi, F

    1981-01-01

    Poly-A+ mRNA from Xenopus laevis oocytes, partially enriched for r-protein coding capacity has been used as starting material for preparing a cDNA bank in plasmid pBR322. The clones containing sequences specific for r-proteins have been selected by translation of the complementary mRNAs. Clones for six different r-proteins have been identified and utilized as probes for studying their genomic organization. Two gene copies per haploid genome were found for r-proteins L1, L14, S19, and four-five for protein S1, S8 and L32. Moreover a population polymorphism has been observed for the genomic regions containing sequences for r-protein S1, S8 and L14. Images PMID:6112733

  6. The complete genome sequence of a south Indian isolate of Rice tungro spherical virus reveals evidence of genetic recombination between distinct isolates.

    PubMed

    Sailaja, B; Anjum, Najreen; Patil, Yogesh K; Agarwal, Surekha; Malathi, P; Krishnaveni, D; Balachandran, S M; Viraktamath, B C; Mangrauthia, Satendra K

    2013-12-01

    In this study, complete genome of a south Indian isolate of Rice tungro spherical virus (RTSV) from Andhra Pradesh (AP) was sequenced, and the predicted amino acid sequence was analysed. The RTSV RNA genome consists of 12,171 nt without the poly(A) tail, encoding a putative typical polyprotein of 3,470 amino acids. Furthermore, cleavage sites and sequence motifs of the polyprotein were predicted. Multiple alignment with other RTSV isolates showed a nucleotide sequence identity of 95% to east Indian isolates and 90% to Philippines isolates. A phylogenetic tree based on complete genome sequence showed that Indian isolates clustered together, while Vt6 and PhilA isolates of Philippines formed two separate clusters. Twelve recombination events were detected in RNA genome of RTSV using the Recombination Detection Program version 3. Recombination analysis suggested significant role of 5' end and central region of genome in virus evolution. Further, AP and Odisha isolates appeared as important RTSV isolates involved in diversification of this virus in India through recombination phenomenon. The new addition of complete genome of first south Indian isolate provided an opportunity to establish the molecular evolution of RTSV through recombination analysis and phylogenetic relationship.

  7. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China

    PubMed Central

    Fan, Qin; Zhang, Yong; Hu, Lan; Sun, Qiang; Cui, Hui; Yan, Dongmei; Sikandaner, Huerxidan; Tang, Haishu; Wang, Dongyan; Zhu, Zhen; Zhu, Shuangli; Xu, Wenbo

    2015-01-01

    Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89. PMID:26685900

  8. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China.

    PubMed

    Fan, Qin; Zhang, Yong; Hu, Lan; Sun, Qiang; Cui, Hui; Yan, Dongmei; Sikandaner, Huerxidan; Tang, Haishu; Wang, Dongyan; Zhu, Zhen; Zhu, Shuangli; Xu, Wenbo

    2015-12-21

    Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89.

  9. Single-step purification and characterization of recombinant aspartase of Aeromonas media NFB-5.

    PubMed

    Singh, Ram Sarup; Yadav, Mukesh

    2012-07-01

    Aspartase (L-aspartate ammonia-lyase; EC 4.3.1.1) catalyzes the reversible amination of fumaric acid to produce L-aspartic acid. Aspartase coding gene (aspA) of Aeromonas media NFB-5 was cloned, sequenced, and expressed with His tag using pET-21b⁺ expression vector in Escherichia coli BL21. Higher expression was obtained with IPTG (1.5 mM) induction for 5 h at 37 °C in LB medium supplemented with 0.3% K₂HPO₄ and 0.3% KH₂PO₄. Recombinant His tagged aspartase was purified using Ni-NTA affinity chromatography and characterized for various biochemical and kinetic parameters. The purified aspartase showed optimal activity at pH 8.5 and 8.0 in the presence and absence of magnesium ions, respectively. The optimum temperature was determined to be 35 °C. The enzyme showed apparent K(m) and V(max) values for L-aspartate as 2.01 mM and 114 U/mg, respectively. The enzyme was stable in pH range of 6.5-9.5 and temperature up to 45 °C. Divalent metal ion requirement of enzyme was efficiently fulfilled by Mg²⁺, Mn²⁺, and Ca²⁺ ions. The cloned gene (aspA) product showed molecular weight of approximately 51 kDa by SDS-PAGE, which is in agreement with the molecular weight calculated from putative amino acid sequence. This is the first report on expression and characterization of recombinant aspartase from A. media.

  10. A novel non prophage(-like) gene-intervening element within gerE that is reconstituted during sporulation in Bacillus cereus ATCC10987.

    PubMed

    Abe, Kimihiro; Shimizu, Shin-Ya; Tsuda, Shuhei; Sato, Tsutomu

    2017-09-12

    Gene rearrangement is a widely-shared phenomenon in spore forming bacteria, in which prophage(-like) elements interrupting sporulation-specific genes are excised from the host genome to reconstitute the intact gene. Here, we report a novel class of gene-intervening elements, named gin, inserted in the 225 bp gerE-coding region of the B. cereus ATCC10987 genome, which generates a sporulation-specific rearrangement. gin has no phage-related genes and possesses three site-specific recombinase genes; girA, girB, and girC. We demonstrated that the gerE rearrangement occurs at the middle stage of sporulation, in which site-specific DNA recombination took place within the 9 bp consensus sequence flanking the disrupted gerE segments. Deletion analysis of gin uncovered that GirC and an additional factor, GirX, are responsible for gerE reconstitution. Involvement of GirC and GirX in DNA recombination was confirmed by an in vitro recombination assay. These results broaden the definition of the sporulation-specific gene rearrangement phenomenon: gene-intervening elements are not limited to phage DNA but may include non-viral genetic elements that carry a developmentally-regulated site-specific recombination system.

  11. Evolutionary advantage via common action of recombination and neutrality

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Hu, Chin-Kun

    2013-11-01

    We investigate evolution models with recombination and neutrality. We consider the Crow-Kimura (parallel) mutation-selection model with the neutral fitness landscape, in which there is a central peak with high fitness A, and some of 1-point mutants have the same high fitness A, while the fitness of other sequences is 0. We find that the effect of recombination and neutrality depends on the concrete version of both neutrality and recombination. We consider three versions of neutrality: (a) all the nearest neighbor sequences of the peak sequence have the same high fitness A; (b) all the l-point mutations in a piece of genome of length l≥1 are neutral; (c) the neutral sequences are randomly distributed among the nearest neighbors of the peak sequences. We also consider three versions of recombination: (I) the simple horizontal gene transfer (HGT) of one nucleotide; (II) the exchange of a piece of genome of length l, HGT-l; (III) two-point crossover recombination (2CR). For the case of (a), the 2CR gives a rather strong contribution to the mean fitness, much stronger than that of HGT for a large genome length L. For the random distribution of neutral sequences there is a critical degree of neutrality νc, and for μ<μc and (μc-μ) is not large, the 2CR suppresses the mean fitness while HGT increases it; for ν much larger than νc, the 2CR and HGT-l increase the mean fitness larger than that of the HGT. We also consider the recombination in the case of smooth fitness landscapes. The recombination gives some advantage in the evolutionary dynamics, where recombination distinguishes clearly the mean-field-like evolutionary factors from the fluctuation-like ones. By contrast, mutations affect the mean-field-like and fluctuation-like factors similarly. Consequently, recombination can accelerate the non-mean-field (fluctuation) type dynamics without considerably affecting the mean-field-like factors.

  12. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  13. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  14. Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders.

    PubMed

    Craig, Catherine L; Riekel, Christian

    2002-12-01

    The known silk fibroins and fibrous glues are thought to be encoded by members of the same gene family. All silk fibroins sequenced to date contain regions of long-range order (crystalline regions) and/or short-range order (non-crystalline regions). All of the sequenced fibroin silks (Flag or silk from flagelliform gland in spiders; Fhc or heavy chain fibroin silks produced by Lepidoptera larvae) are made up of hierarchically organized, repetitive arrays of amino acids. Fhc fibroin genes are characterized by a similar molecular genetic architecture of two exons and one intron, but the organization and size of these units differs. The Flag, Ser (sericin gene) and BR (Balbiani ring genes; both fibrous proteins) genes are made up of multiple exons and introns. Sequences coding for crystalline and non-crystalline protein domains are integrated in the repetitive regions of Fhc and MA exons, but not in the protein glues Ser1 and BR-1. Genetic 'hot-spots' promote recombination errors in Fhc, MA, and Flag. Codon bias, structural constraint, point mutations, and shortened coding arrays may be alternative means of stabilizing precursor mRNA transcripts. Differential regulation of gene expression and selective splicing of the mRNA transcript may allow rapid adaptation of silk functional properties to different physical environments.

  15. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1989-01-01

    The gene coding for Escherichia coli arginyl-tRNA synthetase (argS) was isolated as a fragment of 2.4 kb after analysis and subcloning of recombinant plasmids from the Clarke and Carbon library. The clone bearing the gene overproduces arginyl-tRNA synthetase by a factor 100. This means that the enzyme represents more than 20% of the cellular total protein content. Sequencing revealed that the fragment contains a unique open reading frame of 1734 bp flanked at its 5' and 3' ends respectively by 247 bp and 397 bp. The length of the corresponding protein (577 aa) is well consistent with earlier Mr determination (about 70 kd). Primer extension analysis of the ArgRS mRNA by reverse transcriptase, located its 5' end respectively at 8 and 30 nucleotides downstream of a TATA and a TTGAC like element (CTGAC) and 60 nucleotides upstream of the unusual translation initiation codon GUG; nuclease S1 analysis located the 3'-end at 48 bp downstream of the translation termination codon. argS has a codon usage pattern typical for highly expressed E. coli genes. With the exception of the presence of a HVGH sequence similar to the HIGH consensus element, ArgRS has no relevant sequence homologies with other aminoacyl-tRNA synthetases. Images PMID:2668891

  16. Cloning and expression of 130-kd mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. Israelensis in Escherichia coli.

    PubMed

    Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S

    1987-07-01

    Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.

  17. On the conservative nature of intragenic recombination

    PubMed Central

    Drummond, D. Allan; Silberg, Jonathan J.; Meyer, Michelle M.; Wilke, Claus O.; Arnold, Frances H.

    2005-01-01

    Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related β-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among β-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function. PMID:15809422

  18. On the conservative nature of intragenic recombination.

    PubMed

    Drummond, D Allan; Silberg, Jonathan J; Meyer, Michelle M; Wilke, Claus O; Arnold, Frances H

    2005-04-12

    Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related beta-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among beta-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function.

  19. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus.

    PubMed

    Lin, Chia-Chi; Yang, Zhi-Wei; Iang, Shan-Bei; Chao, Mei

    2015-01-02

    Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Recombinant OspC identification and antigenicity detection from Borrelia burgdorferi PD91 in China].

    PubMed

    Chen, Jian; Wan, Kang-Lin

    2003-10-01

    To recombine OspC gene from Borrelia burgdorferi PD91 of China and expressed it in E. coli for early diagnosis of Lyme disease. The OspC gene was amplified from the genome of Borrelia burgdorferi PD91 strain by polymerase chain reaction and recombined with plasmid PET-11D. The recombinant plasmid PET-11D-OspC was identified with PCR, restriction endonuclease analysis and sequencing. The antigenicity was verified with Western Blot. OspC gene was cloned correctly into vector PET-11D. The resultant sequence was definitely different from the published sequence. The recombinant OspC seemed to have had strong antigenicity. The findings laid basis for the studies on early diagnosis of Lyme disease.

  1. External Guide Sequences Targeting the aac(6′)-Ib mRNA Induce Inhibition of Amikacin Resistance▿

    PubMed Central

    Bistué, Alfonso J. C. Soler; Ha, Hongphuc; Sarno, Renee; Don, Michelle; Zorreguieta, Angeles; Tolmasky, Marcelo E.

    2007-01-01

    The dissemination of AAC(6′)-I-type acetyltransferases have rendered amikacin and other aminoglycosides all but useless in some parts of the world. Antisense technologies could be an alternative to extend the life of these antibiotics. External guide sequences are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. Thirteen-nucleotide external guide sequences complementary to locations within five regions accessible for interaction with antisense oligonucleotides in the mRNA that encodes AAC(6′)-Ib were analyzed. While small variations in the location targeted by different external guide sequences resulted in big changes in efficiency of binding to native aac(6′)-Ib mRNA, most of them induced high levels of RNase P-mediated cleavage in vitro. Recombinant plasmids coding for selected external guide sequences were introduced into Escherichia coli harboring aac(6′)-Ib, and the transformant strains were tested to determine their resistance to amikacin. The two external guide sequences that showed the strongest binding efficiency to the mRNA in vitro, EGSC3 and EGSA2, interfered with expression of the resistance phenotype at different degrees. Growth curve experiments showed that E. coli cells harboring a plasmid coding for EGSC3, the external guide sequence with the highest mRNA binding affinity in vitro, did not grow for at least 300 min in the presence of 15 μg of amikacin/ml. EGSA2, which had a lower mRNA-binding affinity in vitro than EGSC3, inhibited the expression of amikacin resistance at a lesser level; growth of E. coli harboring a plasmid coding for EGSA2, in the presence of 15 μg of amikacin/ml was undetectable for 200 min but reached an optical density at 600 nm of 0.5 after 5 h of incubation. Our results indicate that the use of external guide sequences could be a viable strategy to preserve the efficacy of amikacin. PMID:17387154

  2. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    PubMed

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

  3. Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes

    PubMed Central

    Dreissig, Steven; Fuchs, Jörg; Himmelbach, Axel; Mascher, Martin; Houben, Andreas

    2017-01-01

    Meiotic recombination is a fundamental mechanism to generate novel allelic combinations which can be harnessed by breeders to achieve crop improvement. The recombination landscape of many crop species, including the major crop barley, is characterized by a dearth of recombination in 65% of the genome. In addition, segregation distortion caused by selection on genetically linked loci is a frequent and undesirable phenomenon in double haploid populations which hampers genetic mapping and breeding. Here, we present an approach to directly investigate recombination at the DNA sequence level by combining flow-sorting of haploid pollen nuclei of barley with single-cell genome sequencing. We confirm the skewed distribution of recombination events toward distal chromosomal regions at megabase resolution and show that segregation distortion is almost absent if directly measured in pollen. Furthermore, we show a bimodal distribution of inter-crossover distances, which supports the existence of two classes of crossovers which are sensitive or less sensitive to physical interference. We conclude that single pollen nuclei sequencing is an approach capable of revealing recombination patterns in the absence of segregation distortion. PMID:29018459

  4. Genetic diversity in the feline leukemia virus gag gene.

    PubMed

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-02

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    PubMed

    Alverson, Andrew J; Zhuo, Shi; Rice, Danny W; Sloan, Daniel B; Palmer, Jeffrey D

    2011-01-20

    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  6. Characterization of full genome sequences of chicken anemia viruses circulating in Egypt reveals distinct genetic diversity and evidence of recombination.

    PubMed

    Erfan, Ahmed M; Selim, Abdullah A; Naguib, Mahmoud M

    2018-06-02

    Chicken anemia virus (CAV) is one of the commercially important diseases of poultry worldwide. In Egypt, CAV has been reported to be a potential threat to the commercial poultry sectors. Hence, this study was aimed at isolation and full genomic analysis of CAVs circulating in chicken populations in different geographical location in Egypt. A total of 42 samples were collected from broiler chicken flocks in 9 governorates in Egypt from 12 to 42 days of age. The mortality rate observed among chickens was ranging from 3% to 22%. Nineteen out of 42 farms were found positive for the CAV genome by polymerase chain reaction (PCR). Full genome sequencing was conducted for 18 positive samples. Genetic analysis revealed a high similarity of >99% in 11 viruses with the vaccine strain Del-Ros; while the other seven samples shared close similarity to CAV field strains isolated from China, Taiwan, and Brazil. The data also indicated Q139 and Q144 amino acids substitutions among the VP1 of Egyptian field strains, which are known to be important in virus replication and spread. Phylogenetic analysis of the sequenced viruses (n = 18) based on either the full gene nucleotide sequence or VP1 coding sequence, suggested the circulation of four distinct genotypes in Egypt designated as group A, B, C and D. Moreover, evidence of recombination was detected among four Egyptian CAVs located within group A. The findings of this study succeeded to elucidate the epidemiological and genetic features of CAVs circulating in Egypt, and underscores the important of CAVs surveillance. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events.

    PubMed

    James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei

    2016-04-01

    Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.

  8. Homologous recombination within the capsid gene of porcine circovirus type 2 subgroup viruses via natural co-infection

    USDA-ARS?s Scientific Manuscript database

    Several studies had reported homologous recombination between porcine circovirus type 2 (PCV2)-group 1 (Gp1) and -group 2 (Gp2) viruses. Interestingly, the recombination events described thus far mapped either within the Rep gene sequences or the sequences flanking the Rep gene region. Previously, ...

  9. Recombinant Rp1 genes confer necrotic or nonspecific resistance phenotypes.

    PubMed

    Smith, Shavannor M; Steinau, Martin; Trick, Harold N; Hulbert, Scot H

    2010-06-01

    Genes at the Rp1 rust resistance locus of maize confer race-specific resistance to the common rust fungus Puccinia sorghi. Three variant genes with nonspecific effects (HRp1 -Kr1N, -D*21 and -MD*19) were found to be generated by intragenic crossing over within the LRR region. The LRR region of most NBS-LRR encoding genes is quite variable and codes for one of the regions in resistance gene proteins that controls specificity. Sequence comparisons demonstrated that the Rp1-Kr1N recombinant gene was identical to the N-terminus of the rp1-kp2 gene and C-terminus of another gene from its HRp1-K grandparent. The Rp1-D*21 recombinant gene consists of the N-terminus of the rp1-dp2 gene and C-terminus of the Rp1-D gene from the parental haplotype. Similarly, a recombinant gene from the Rp1-MD*19 haplotype has the N-terminus of an rp1 gene from the HRp1-M parent and C-terminus of the rp1-D19 gene from the HRp1-D parent. The recombinant Rp1 -Kr1N, -D*21 and -MD*19 genes activated defense responses in the absence of their AVR proteins triggering HR (hypersensitive response) in the absence of the pathogen. The results indicate that the frequent intragenic recombination events that occur in the Rp1 gene cluster not only recombine the genes into novel haplotypes, but also create genes with nonspecific effects. Some of these may contribute to nonspecific quantitative resistance but others have severe consequences for the fitness of the plant.

  10. A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.

    PubMed

    Shen, Wen; Gao, Lu; Balakrishnan, Mini; Bambara, Robert A

    2009-12-04

    The co-packaged RNA genomes of human immunodeficiency virus-1 recombine at a high rate. Recombination can mix mutations to generate viruses that escape immune response. A cell-culture-based system was designed previously to map recombination events in a 459-bp region spanning the primer binding site through a portion of the gag protein coding region. Strikingly, a strong preferential site for recombination in vivo was identified within a 112-nucleotide-long region near the beginning of gag. Strand transfer assays in vitro revealed that three pause bands in the gag hot spot each corresponded to a run of guanosine (G) residues. Pausing of reverse transcriptase is known to promote recombination by strand transfer both in vivo and in vitro. To assess the significance of the G runs, we altered them by base substitutions. Disruption of the G runs eliminated both the associated pausing and strand transfer. Some G-rich sequences can develop G-quartet structures, which were first proposed to form in telomeric DNA. G-quartet structure formation is highly dependent on the presence of specific cations. Incubation in cations discouraging G-quartets altered gel mobility of the gag template consistent with breakdown of G-quartet structure. The same cations faded G-run pauses but did not affect pauses caused by hairpins, indicating that quartet structure causes pausing. Moreover, gel analysis with cations favoring G-quartet structure indicated no structure in mutated templates. Overall, results point to reverse transcriptase pausing at G runs that can form quartets as a unique feature of the gag recombination hot spot.

  11. Expression and characterization of codon-optimized Crimean-Congo hemorrhagic fever virus Gn glycoprotein in insect cells.

    PubMed

    Rahpeyma, Mehdi; Samarbaf-Zadeh, Alireza; Makvandi, Manoochehr; Ghadiri, Ata A; Dowall, Stuart D; Fotouhi, Fatemeh

    2017-07-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.

  12. Compositions and methods for the expression of selenoproteins in eukaryotic cells

    DOEpatents

    Gladyshev, Vadim [Lincoln, NE; Novoselov, Sergey [Puschino, RU

    2012-09-25

    Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.

  13. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    PubMed Central

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  15. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: Towards category theory-like systematization of molecular/genetic biology

    PubMed Central

    2014-01-01

    Background Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. Results We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation ‘Dj’ corresponding to a DNA sequence but based on the five-letter base set; also, ‘Dj’s are expressed graphically. Insertions and deletions of a series of letters ‘E’ are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by ‘Dj◦B(j→k) = Dk’ (or ‘Rj◦B(j→k) = Rk’). Based on the operations of this group, two types of groups—a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases—are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical “central dogma” via a category theory-like way is presented for future developments. Conclusions Despite the large incompleteness of our methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing “central dogma” for future molecular/genetic biology remains to be explored. PMID:24885369

  16. Sequence requirement of the ade6-4095 meiotic recombination hotspot in Schizosaccharomyces pombe.

    PubMed

    Foulis, Steven J; Fowler, Kyle R; Steiner, Walter W

    2018-02-01

    Homologous recombination occurs at a greatly elevated frequency in meiosis compared to mitosis and is initiated by programmed double-strand DNA breaks (DSBs). DSBs do not occur at uniform frequency throughout the genome in most organisms, but occur preferentially at a limited number of sites referred to as hotspots. The location of hotspots have been determined at nucleotide-level resolution in both the budding and fission yeasts, and while several patterns have emerged regarding preferred locations for DSB hotspots, it remains unclear why particular sites experience DSBs at much higher frequency than other sites with seemingly similar properties. Short sequence motifs, which are often sites for binding of transcription factors, are known to be responsible for a number of hotspots. In this study we identified the minimum sequence required for activity of one of such motif identified in a screen of random sequences capable of producing recombination hotspots. The experimentally determined sequence, GGTCTRGACC, closely matches the previously inferred sequence. Full hotspot activity requires an effective sequence length of 9.5 bp, whereas moderate activity requires an effective sequence length of approximately 8.2 bp and shows significant association with DSB hotspots. In combination with our previous work, this result is consistent with a large number of different sequence motifs capable of producing recombination hotspots, and supports a model in which hotspots can be rapidly regenerated by mutation as they are lost through recombination.

  17. Detection and analysis of recombination in GII.4 norovirus strains causing gastroenteritis outbreaks in Alberta.

    PubMed

    Hasing, Maria E; Hazes, Bart; Lee, Bonita E; Preiksaitis, Jutta K; Pang, Xiaoli L

    2014-10-01

    Recombination is an important mechanism generating genetic diversity in norovirus (NoV) that occurs commonly at the NoV polymerase-capsid (ORF1/2) junction. The genotyping method based on partial ORF2 sequences currently used to characterize circulating NoV strains in gastroenteritis outbreaks in Alberta cannot detect such recombination events and provides only limited information on NoV genetic evolution. The objective of this study was to determine whether any NoV GII.4 strains causing outbreaks in Alberta are recombinants. Twenty stool samples collected during outbreaks occurring between July 2004 and January 2012 were selected to include the GII.4 variants Farmington Hills 2002, Hunter 2004, Yerseke 2006a, Den Haag 2006b, Apeldoorn 2007, New Orleans 2009, and Sydney 2012 based on previous NoV ORF2-genotyping results. Near full-length NoV genome sequences were obtained, aligned with reference sequences from GenBank and analyzed with RDPv4.13. Two sequences corresponding to Apeldoorn 2007, and Sydney 2012 were identified as recombinants with breakpoints near the ORF1/2 junction and putative parental strains as previously reported. We also identified, for the first time, a non-recombinant sequence resembling the ORF2-3 parent of the recombinant cluster Sydney 2012 responsible for the most recent pandemic. Our results confirmed the presence of recombinant NoV GII.4 strains in Alberta, and highlight the importance of including additional genomic regions in surveillance studies to trace the evolution of pandemic NoV GII.4 strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Selections that isolate recombinant mitochondrial genomes in animals

    PubMed Central

    Ma, Hansong; O'Farrell, Patrick H

    2015-01-01

    Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germline and revealed somatic recombination. When the recombination partner was a diverged Drosophila melanogaster genome or a genome from a different species such as Drosophila yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome. DOI: http://dx.doi.org/10.7554/eLife.07247.001 PMID:26237110

  19. The consequences of sequence erosion in the evolution of recombination hotspots.

    PubMed

    Tiemann-Boege, Irene; Schwarz, Theresa; Striedner, Yasmin; Heissl, Angelika

    2017-12-19

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans -acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.

  20. The consequences of sequence erosion in the evolution of recombination hotspots

    PubMed Central

    Schwarz, Theresa; Heissl, Angelika

    2017-01-01

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro. Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109225

  1. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera.

    PubMed

    Campo, Daniel; García-Vázquez, Eva

    2012-01-01

    The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).

  2. Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates

    PubMed Central

    Figuet, Emeric; Ballenghien, Marion; Romiguier, Jonathan; Galtier, Nicolas

    2015-01-01

    Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins. PMID:25527834

  3. Construction of baculovirus expression vector of miRNAs and its expression in insect cells.

    PubMed

    Huang, Yong; Zou, Quan; Shen, Xing Jia; Yu, Xue Li; Wang, Zhan Bin; Cheng, Xiang Chao

    2012-01-01

    MicroRNAs (miRNAs) are endogenous small non-protein coding RNAs that play important regulatory roles in animals and plants by binding to target transcripts for cleavage or translational repression. The miR-9a is very conservative in animals from flies to humans. Studies indicated that miR-9a is involved in the regulation of neurogenesis in animals. In our study, the baculovirus expression system was used to transcribe a recombinant vector containing miR-9a for further analysis the function ofmiR-9a. The sequence ofpre-miR-9a from silkworm DNA was first cloned into the donor pFastBac. The enhanced green fluorescent protein (EGFP) was used as reporter gene. The recombinant donor plasmid pFastBac-miR-9a was transformed into E.coli DH10Bac/AcNPV forming Bacmid-9a which was transfected into insect cells with cational lipofectin. The transcription of mature miR-9a was detected by Real-time PCR. The results show the recombinant Bacmid-9a was successfully constructed and effectively transcribed miR-9a in infected Sf21 insect cells.

  4. Overexpression, purification, and characterization of SHPTP1, a Src homology 2-containing protein-tyrosine-phosphatase.

    PubMed Central

    Pei, D; Neel, B G; Walsh, C T

    1993-01-01

    A protein-tyrosine-phosphatase (PTPase; EC 3.1.3.48) containing two Src homology 2 (SH2) domains, SHPTP1, was previously identified in hematopoietic and epithelial cells. By placing the coding sequence of the PTPase behind a bacteriophage T7 promoter, we have overexpressed both the full-length enzyme and a truncated PTPase domain in Escherichia coli. In each case, the soluble enzyme was expressed at levels of 3-4% of total soluble E. coli protein. The recombinant proteins had molecular weights of 63,000 and 45,000 for the full-length protein and the truncated PTPase domain, respectively, as determined by SDS/PAGE. The recombinant enzymes dephosphorylated p-nitrophenyl phosphate, phosphotyrosine, and phosphotyrosyl peptides but not phosphoserine, phosphothreonine, or phosphoseryl peptides. The enzymes showed a strong dependence on pH and ionic strength for their activity, with pH optima of 5.5 and 6.3 for the full-length enzyme and the catalytic domain, respectively, and an optimal NaCl concentration of 250-300 mM. The recombinant PTPases had high Km values for p-nitrophenyl phosphate and exhibited non-Michaelis-Menten kinetics for phosphotyrosyl peptides. Images PMID:8430079

  5. Sequence divergence of the red and green visual pigments in great apes and humans.

    PubMed Central

    Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G

    1994-01-01

    We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777

  6. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  7. Interferon-gamma of the giant panda (Ailuropoda melanoleuca): complementary DNA cloning, expression, and phylogenetic analysis.

    PubMed

    Tao, Yaqiong; Zeng, Bo; Xu, Liu; Yue, Bisong; Yang, Dong; Zou, Fangdong

    2010-01-01

    Interferon-gamma (IFN-gamma) is the only member of type II IFN and is vital in the regulation of immune and inflammatory responses. Herein we report the cloning, expression, and sequence analysis of IFN-gamma from the giant panda (Ailuropoda melanoleuca). The open reading frame of this gene is 501 base pair in length and encodes a polypeptide consisting of 166 amino acids. All conserved N-linked glycosylation sites and cysteine residues among carnivores were found in the predicted amino acid sequence of the giant panda. Recombinant giant panda IFN-gamma with a V5 epitope and polyhistidine tag was expressed in HEK293 host cells and confirmed by Western blotting. Phylogenetic analysis of mammalian IFN-gamma-coding sequences indicated that the giant panda IFN-gamma was closest to that of carnivores, then to ungulates and dolphin, and shared a distant relationship with mouse and human. These results represent a first step into the study of IFN-gamma in giant panda.

  8. Impact of exogenous sequences on the characteristics of an epidemic type 2 recombinant vaccine-derived poliovirus.

    PubMed

    Riquet, Franck B; Blanchard, Claire; Jegouic, Sophie; Balanant, Jean; Guillot, Sophie; Vibet, Marie-Anne; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2008-09-01

    Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.

  9. Molecular characterization of a novel proto-type antimicrobial protein galectin-1 from striped murrel.

    PubMed

    Arasu, Abirami; Kumaresan, Venkatesh; Sathyamoorthi, Akila; Chaurasia, Mukesh Kumar; Bhatt, Prasanth; Gnanam, Annie J; Palanisamy, Rajesh; Marimuthu, Kasi; Pasupuleti, Mukesh; Arockiaraj, Jesu

    2014-11-01

    In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue.

    PubMed

    Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu

    2006-09-01

    A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

  11. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2

    PubMed Central

    Hambly, Emma; Tétart, Francoise; Desplats, Carine; Wilson, William H.; Krisch, Henry M.; Mann, Nicholas H.

    2001-01-01

    Sequence analysis of a 10-kb region of the genome of the marine cyanomyovirus S-PM2 reveals a homology to coliphage T4 that extends as a contiguous block from gene (g)18 to g23. The order of the S-PM2 genes in this region is similar to that of T4, but there are insertions and deletions of small ORFs of unknown function. In T4, g18 codes for the tail sheath, g19, the tail tube, g20, the head portal protein, g21, the prohead core protein, g22, a scaffolding protein, and g23, the major capsid protein. Thus, the entire module that determines the structural components of the phage head and contractile tail is conserved between T4 and this cyanophage. The significant differences in the morphology of these phages must reflect the considerable divergence of the amino acid sequence of their homologous virion proteins, which uniformly exceeds 50%. We suggest that their enormous diversity in the sea could be a result of genetic shuffling between disparate phages mediated by such commonly shared modules. These conserved sequences could facilitate genetic exchange by providing partially homologous substrates for recombination between otherwise divergent phage genomes. Such a mechanism would thus expand the pool of phage genes accessible by recombination to all those phages that share common modules. PMID:11553768

  12. Crossovers are associated with mutation and biased gene conversion at recombination hotspots.

    PubMed

    Arbeithuber, Barbara; Betancourt, Andrea J; Ebner, Thomas; Tiemann-Boege, Irene

    2015-02-17

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination.

  13. Crossovers are associated with mutation and biased gene conversion at recombination hotspots

    PubMed Central

    Arbeithuber, Barbara; Betancourt, Andrea J.; Ebner, Thomas; Tiemann-Boege, Irene

    2015-01-01

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination. PMID:25646453

  14. A novel system for the production of high levels of functional human therapeutic proteins in stable cells with a Semliki Forest virus noncytopathic vector.

    PubMed

    Casales, Erkuden; Aranda, Alejandro; Quetglas, Jose I; Ruiz-Guillen, Marta; Rodriguez-Madoz, Juan R; Prieto, Jesus; Smerdou, Cristian

    2010-05-31

    Semliki Forest virus (SFV) vectors lead to high protein expression in mammalian cells, but expression is transient due to vector cytopathic effects, inhibition of host cell proteins and RNA-based expression. We have used a noncytopathic SFV mutant (ncSFV) RNA vector to generate stable cell lines expressing two human therapeutic proteins: insulin-like growth factor I (IGF-I) and cardiotrophin-1 (CT-1). Therapeutic genes were fused at the carboxy-terminal end of Puromycin N-acetyl-transferase gene by using as a linker the sequence coding for foot-and-mouth disease virus (FMDV) 2A autoprotease. These cassettes were cloned into the ncSFV vector. Recombinant ncSFV vectors allowed rapid and efficient selection of stable BHK cell lines with puromycin. These cells expressed IGF-I and CT-1 in supernatants at levels reaching 1.4 and 8.6 microg/10(6)cells/24 hours, respectively. Two cell lines generated with each vector were passaged ten times during 30 days, showing constant levels of protein expression. Recombinant proteins expressed at different passages were functional by in vitro signaling assays. Stability at RNA level was unexpectedly high, showing a very low mutation rate in the CT-1 sequence, which did not increase at high passages. CT-1 was efficiently purified from supernatants of ncSFV cell lines, obtaining a yield of approximately 2mg/L/24 hours. These results indicate that the ncSFV vector has a great potential for the production of recombinant proteins in mammalian cells. 2010 Elsevier B.V. All rights reserved.

  15. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding.

    PubMed

    Zhou, Jinlin; Gong, Haiyan; Zhou, Yongzhi; Xuan, Xuenan; Fujisaki, Kozo

    2006-12-01

    A cDNA coding a glycine-rich protein was identified from the Rhipicephalus haemaphysaloides tick. The cDNA named here as RH50 was 1,823 bp, including a single open reading frame (ORF) of 1,518 nucleotides. The ORF encodes a polypeptide of 506 amino acid residues with a size of 50 kDa, as calculated by a computer. The predicted amino acid sequence of RH50 showed a low homology to sequences of some known extracellular matrix-like proteins. The native protein was identified in both the fed tick salivary gland lysates and extracts of cement material using the serum against the recombinant protein. Reverse transcription polymerase chain reaction results showed that RH50 mRNA was only transcribed in partially fed tick salivary glands, not in unfed tick salivary glands or partially fed tick midgut, fat body, or ovary. The differential expression of RH50 protein in fed tick salivary glands was confirmed by immunofluorescence. The low attachment rate both in the adult and nymphal tick, and the high mortality of immature ticks (nymph) feeding on recombinant RH50-immunized rabbits were found. These results show that the RH50 protein could be a useful candidate for anti-tick vaccine development.

  16. A 590 kb deletion caused by non-allelic homologous recombination between two LINE-1 elements in a patient with mesomelia-synostosis syndrome.

    PubMed

    Kohmoto, Tomohiro; Naruto, Takuya; Watanabe, Miki; Fujita, Yuji; Ujiro, Sae; Okamoto, Nana; Horikawa, Hideaki; Masuda, Kiyoshi; Imoto, Issei

    2017-04-01

    Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS. © 2017 Wiley Periodicals, Inc.

  17. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

    PubMed Central

    Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987

  18. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.

    PubMed

    Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.

  19. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species

    PubMed Central

    Xie, Jianbo; Shi, Haowen; Du, Zhenglin; Wang, Tianshu; Liu, Xiaomeng; Chen, Sanfeng

    2016-01-01

    Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR. PMID:26856413

  20. Antigenic Variation in the Lyme Spirochete: Insights into Recombinational Switching with a Suggested Role for Error-Prone Repair.

    PubMed

    Verhey, Theodore B; Castellanos, Mildred; Chaconas, George

    2018-05-29

    The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  2. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.

    PubMed Central

    Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W

    2002-01-01

    Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055

  3. Recombination Analysis of Herpes Simplex Virus 1 Reveals a Bias toward GC Content and the Inverted Repeat Regions

    PubMed Central

    Lee, Kyubin; Kolb, Aaron W.; Sverchkov, Yuriy; Cuellar, Jacqueline A.; Craven, Mark

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) causes recurrent mucocutaneous ulcers and is the leading cause of infectious blindness and sporadic encephalitis in the United States. HSV-1 has been shown to be highly recombinogenic; however, to date, there has been no genome-wide analysis of recombination. To address this, we generated 40 HSV-1 recombinants derived from two parental strains, OD4 and CJ994. The 40 OD4-CJ994 HSV-1 recombinants were sequenced using the Illumina sequencing system, and recombination breakpoints were determined for each of the recombinants using the Bootscan program. Breakpoints occurring in the terminal inverted repeats were excluded from analysis to prevent double counting, resulting in a total of 272 breakpoints in the data set. By placing windows around the 272 breakpoints followed by Monte Carlo analysis comparing actual data to simulated data, we identified a recombination bias toward both high GC content and intergenic regions. A Monte Carlo analysis also suggested that recombination did not appear to be responsible for the generation of the spontaneous nucleotide mutations detected following sequencing. Additionally, kernel density estimation analysis across the genome found that the large, inverted repeats comprise a recombination hot spot. IMPORTANCE Herpes simplex virus 1 (HSV-1) virus is the leading cause of sporadic encephalitis and blinding keratitis in developed countries. HSV-1 has been shown to be highly recombinogenic, and recombination itself appears to be a significant component of genome replication. To date, there has been no genome-wide analysis of recombination. Here we present the findings of the first genome-wide study of recombination performed by generating and sequencing 40 HSV-1 recombinants derived from the OD4 and CJ994 parental strains, followed by bioinformatics analysis. Recombination breakpoints were determined, yielding 272 breakpoints in the full data set. Kernel density analysis determined that the large inverted repeats constitute a recombination hot spot. Additionally, Monte Carlo analyses found biases toward high GC content and intergenic and repetitive regions. PMID:25926637

  4. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    PubMed

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  5. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression

    PubMed Central

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919

  6. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  7. Orpinomyces cellulase CelE protein and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-29

    A CDNA designated celE cloned from Orpinomyces PC-2 encodes a polypeptide (CelE) of 477 amino acids. CelE is highly homologous to CelB of Orpinomyces (72.3% identity) and Neocallimastix (67.9% identity), and like them, it has a non-catalytic repeated peptide domain (NCRPD) at the C-terminal end. The catalytic domain of CelE is homologous to glycosyl hydrolases of Family 5, found in several anaerobic bacteria. The gene of celE is devoid of introns. The recombinant proteins CelE and CelB of Orpinomyces PC-2 randomly hydrolyze carboxymethylcellulose and cello-oligosaccharides in the pattern of endoglucanases.

  8. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    PubMed Central

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  9. Isolation of a complementary DNA clone for thyroid microsomal antigen. Homology with the gene for thyroid peroxidase.

    PubMed Central

    Seto, P; Hirayu, H; Magnusson, R P; Gestautas, J; Portmann, L; DeGroot, L J; Rapoport, B

    1987-01-01

    The thyroid microsomal antigen (MSA) in autoimmune thyroid disease is a protein of approximately 107 kD. We screened a human thyroid cDNA library constructed in the expression vector lambda gt11 with anti-107-kD monoclonal antibodies. Of five clones obtained, the recombinant beta-galactosidase fusion protein from one clone (PM-5) was confirmed to react with the monoclonal antiserum. The complementary DNA (cDNA) insert from PM-5 (0.8 kb) was used as a probe on Northern blot analysis to estimate the size of the mRNA coding for the MSA. The 2.9-kb messenger RNA (mRNA) species observed was the same size as that coding for human thyroid peroxidase (TPO). The probe did not bind to human liver mRNA, indicating the thyroid-specific nature of the PM-5-related mRNA. The nucleotide sequence of PM-5 (842 bp) was determined and consisted of a single open reading frame. Comparison of the nucleotide sequence of PM-5 with that presently available for pig TPO indicates 84% homology. In conclusion, a cDNA clone representing part of the microsomal antigen has been isolated. Sequence homology with porcine TPO, as well as identity in the size of the mRNA species for both the microsomal antigen and TPO, indicate that the microsomal antigen is, at least in part, TPO. Images PMID:3654979

  10. [Cloning and sequence analysis of recombinant fusion gene of Escherichia coli heat-liable enterotoxin B subunit and Actinobacillus actinomycetemcomitans fimbria associative protein].

    PubMed

    Li, Yi; Sun, Hong-chen; Guo, Xue-jun; Feng, Shu-zhang

    2005-02-01

    To clone the recombinant fusion gene of Escherichia coli heat-liable enterotoxin B subunit (Ltb) and Actinobacillus actinomycetemcomitans fimbria associative protein (Fap). Two couples of primers were designed for PCR according to the known sequence of ltb and fap. The ltb and fap gene were obtained by amplification PCR technique from plasmid EWD299 of Escherichia coli and Actinobacillus actinomycetemcomitans 310 DNA respectively, and fused them by PCR. The fusion gene ltb-fap were cloning into plasmid pET28a(+). The recombined plasmid pET28a ltb-fap was transformed into Escherichia coli DH5alpha. The recombinant was screened and identified by restriction enzyme and PCR. The cloned gene was sequenced. The ltb-fap about 531bp in size was obtained successfully, and identified by PCR, restrictive enzyme and sequence analysis. The vector of pET28a ltb-fap was obtained.

  11. Multifaceted regulation of V(D)J recombination

    NASA Astrophysics Data System (ADS)

    Wang, Guannan

    V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg 2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.

  12. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    PubMed

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-03-04

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. Copyright © 2015 Leung et al.

  13. Construction of a lactose-assimilating strain of baker's yeast.

    PubMed

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.

  14. Recombinant dissection of myosin heavy chain of Toxocara canis shows strong clustering of antigenic regions.

    PubMed

    Obwaller, A; Duchêne, M; Bruhn, H; Steipe, B; Tripp, C; Kraft, D; Wiedermann, G; Auer, H; Aspöck, H

    2001-05-01

    Myosins from nematode parasites elicit strong humoral and cellular immune responses and have been investigated as vaccine candidates. In this study we cloned and sequenced a cDNA coding for myosin heavy chain from Toxocara canis, a nematode parasite of canids which may also infect humans and cause various unspecific symptoms. To determine the major antigenic regions the myosin heavy chain was systematically dissected into ten overlapping recombinant fusion polypeptides which were purified by metal chelate chromatography. Single fragments were then tested for their IgG reactivity in sera from toxocarosis patients and healthy probands. Two regions, one region at the mid to carboxy-terminal end of the head domain and one region in the rod domain, were identified as major antigens, which in combination were positive with 86% of the sera. The other domains were less reactive. This shows that the patients' IgG reactivity was not directed evenly against all parts of the molecule, but was rather clustered in few regions.

  15. A novel S-enantioselective amidase acting on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide from Arthrobacter sp. S-2.

    PubMed

    Fuhshuku, Ken-ichi; Watanabe, Shunsuke; Nishii, Tetsuro; Ishii, Akihiro; Asano, Yasuhisa

    2015-01-01

    A novel S-enantioselective amidase acting on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide was purified from Arthrobacter sp. S-2. The enzyme acted S-enantioselectively on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide to yield (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanoic acid. Based on the N-terminal amino acid sequence of this amidase, the gene coding S-amidase was cloned from the genomic DNA of Arthrobacter sp. S-2 and expressed in an Escherichia coli host. The recombinant S-amidase was purified and characterized. Furthermore, the purified recombinant S-amidase with the C-His6-tag, which was expressed in E. coli as the C-His6-tag fusion protein, was used in the kinetic resolution of (±)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide to obtain (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanoic acid and (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide.

  16. Genetic diversity of HIV-1 non-B strains in Sicily: evidence of intersubtype recombinants by sequence analysis of gag, pol, and env genes.

    PubMed

    Tramuto, Fabio; Bonura, Filippa; Perna, Anna Maria; Mancuso, Salvatrice; Firenze, Alberto; Romano, Nino; Vitale, Francesco

    2007-09-01

    The molecular epidemiology of HIV-1 strains in Sicily (Italy) was phylogenetically investigated by the analysis of HIV-1 gag, pol, and env gene sequences from 11 HIV-1 non-B strains from 408 HIV-1-seropositive patients observed from September 2001 to August 2006. Sequences suggestive of recombination were further investigated by bootscanning analysis of various fragments. Overall, we identified several second-generation recombinant (SGRs) strains, which contained genetic material of CRF02_AG in at least one gene. Notably, three individuals were found to be infected with subsubtype A3, and one of them showed genetic recombination with subsubtype A4. The current study emphasizes the genetic analysis of gag, pol, and env genes as a powerful tool to trace the spread of complex HIV-1 recombinant forms, and highlight the genetic diversity of HIV-1 non-B strains in Italy.

  17. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  18. Variation block-based genomics method for crop plants.

    PubMed

    Kim, Yul Ho; Park, Hyang Mi; Hwang, Tae-Young; Lee, Seuk Ki; Choi, Man Soo; Jho, Sungwoong; Hwang, Seungwoo; Kim, Hak-Min; Lee, Dongwoo; Kim, Byoung-Chul; Hong, Chang Pyo; Cho, Yun Sung; Kim, Hyunmin; Jeong, Kwang Ho; Seo, Min Jung; Yun, Hong Tai; Kim, Sun Lim; Kwon, Young-Up; Kim, Wook Han; Chun, Hye Kyung; Lim, Sang Jong; Shin, Young-Ah; Choi, Ik-Young; Kim, Young Sun; Yoon, Ho-Sung; Lee, Suk-Ha; Lee, Sunghoon

    2014-06-15

    In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.

  19. Novel HBV recombinants between genotypes B and C in 3'-terminal reverse transcriptase (RT) sequences are associated with enhanced viral DNA load, higher RT point mutation rates and place of birth among Chinese patients.

    PubMed

    Liu, Baoming; Yang, Jing-Xian; Yan, Ling; Zhuang, Hui; Li, Tong

    2018-01-01

    As one of the major global public health concerns, hepatitis B virus (HBV) can be divided into at least eight genotypes, which may be related to disease severity and treatment response. We previously demonstrated that genotypes B and C HBV, with distinct geographical distribution in China, had divergent genotype-dependent amino acid polymorphisms and variations in reverse transcriptase (RT) gene region, a target of antiviral therapy using nucleos(t)ide analogues. Recently recombination between HBV genotypes B and C was reported to occur in the RT region. However, their frequency and clinical significance is poorly understood. Here full-length HBV RT sequences from 201 Chinese chronic hepatitis B (CHB) patients were amplified and sequenced, among which 31.34% (63/201) were genotype B whereas 68.66% (138/201) genotype C. Although no intergenotypic recombination was detected among C-genotype HBV, 38.10% (24/63) of B-genotype HBV had recombination with genotype C in the 3'-terminal RT sequences. The patients with B/C intergenotypic recombinants had significantly (P<0.05) higher serum HBV DNA level than the "pure" B-genotype cohort did. Moreover, the B/C intergenotypic recombinants were prone to more substitutions at several specific residues in the RT region than genotype B or C. Besides, unlike their parental genotypes, the recombinant HBV appeared to display an altered geographic distribution feature in China. Our findings provide novel insight into the virological, clinical and epidemiological features of new HBV B/C intergenotypic recombinants at the 3' end of RT sequences among Chinese CHB patients. The highly complex genetic background of the novel recombinant HBV carrying new mutations affecting RT protein may contribute to an enhanced heterogeneity in treatment response or prognosis among CHB patients. Published by Elsevier B.V.

  20. Analysis of HIV-1 intersubtype recombination breakpoints suggests region with high pairing probability may be a more fundamental factor than sequence similarity affecting HIV-1 recombination.

    PubMed

    Jia, Lei; Li, Lin; Gui, Tao; Liu, Siyang; Li, Hanping; Han, Jingwan; Guo, Wei; Liu, Yongjian; Li, Jingyun

    2016-09-21

    With increasing data on HIV-1, a more relevant molecular model describing mechanism details of HIV-1 genetic recombination usually requires upgrades. Currently an incomplete structural understanding of the copy choice mechanism along with several other issues in the field that lack elucidation led us to perform an analysis of the correlation between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarity to further explore structural mechanisms. Near full length sequences of URFs from Asia, Europe, and Africa (one sequence/patient), and representative sequences of worldwide CRFs were retrieved from the Los Alamos HIV database. Their recombination patterns were analyzed by jpHMM in detail. Then the relationships between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarities were investigated. Pearson correlation test showed that all URF groups and the CRF group exhibit the same breakpoint distribution pattern. Additionally, the Wilcoxon two-sample test indicated a significant and inexplicable limitation of recombination in regions with high pairing probability. These regions have been found to be strongly conserved across distinct biological states (i.e., strong intersubtype similarity), and genetic similarity has been determined to be a very important factor promoting recombination. Thus, the results revealed an unexpected disagreement between intersubtype similarity and breakpoint distribution, which were further confirmed by genetic similarity analysis. Our analysis reveals a critical conflict between results from natural HIV-1 isolates and those from HIV-1-based assay vectors in which genetic similarity has been shown to be a very critical factor promoting recombination. These results indicate the region with high-pairing probabilities may be a more fundamental factor affecting HIV-1 recombination than sequence similarity in natural HIV-1 infections. Our findings will be relevant in furthering the understanding of HIV-1 recombination mechanisms.

  1. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  2. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    PubMed

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  3. The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1

    PubMed Central

    Hudson, Peter J.; Poss, Mary

    2010-01-01

    Newcastle Disease Virus (NDV) is a pathogenic strain of avian paramyxovirus (aPMV-1) that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on viral glycoproteins. PMID:20421950

  4. New Insights into Asian Prunus Viruses in the Light of NGS-Based Full Genome Sequencing.

    PubMed

    Marais, Armelle; Faure, Chantal; Candresse, Thierry

    2016-01-01

    Double stranded RNAs were purified from five Prunus sources of Asian origin and submitted to 454 pyrosequencing after a random, whole genome amplification. Four complete genomes of Asian prunus virus 1 (APV1), APV2 and APV3 were reconstructed from the sequencing reads, as well as four additional, near-complete genome sequences. Phylogenetic analyses confirmed the close relationships of these three viruses and the taxonomical position previously proposed for APV1, the only APV so far completely sequenced. The genetic distances in the respective polymerase and coat protein genes as well as their gene products suggest that APV2 should be considered as a distinct viral species in the genus Foveavirus, even if the amino acid identity levels in the polymerase are very close to the species demarcation criteria for the family Betaflexiviridae. However, the situation is more complex for APV1 and APV3, for which opposite conclusions are obtained depending on the gene (polymerase or coat protein) analyzed. Phylogenetic and recombination analyses suggest that recombination events may have been involved in the evolution of APV. Moreover, genome comparisons show that the unusually long 3' non-coding region (3' NCR) is highly variable and a hot spot for indel polymorphisms. In particular, two APV3 variants differing only in their 3' NCR were identified in a single Prunus source, with 3' NCRs of 214-312 nt, a size similar to that observed in other foveaviruses, but 567-850 nt smaller than in other APV3 isolates. Overall, this study provides critical genome information of these viruses, frequently associated with Prunus materials, even though their precise role as pathogens remains to be elucidated.

  5. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli.

    PubMed

    Perelle, S; Gibert, M; Boquet, P; Popoff, M R

    1993-12-01

    The iota toxin which is produced by Clostridium perfringens type E, is a binary toxin consisting of two independent polypeptides: Ia, which is an ADP-ribosyltransferase, and Ib, which is involved in the binding and internalization of the toxin into the cell. Two degenerate oligonucleotide probes deduced from partial amino acid sequence of each component of C. spiroforme toxin, which is closely related to the iota toxin, were used to clone three overlapping DNA fragments containing the iota-toxin genes from C. perfringens type E plasmid DNA. Two genes, in the same orientation, coding for Ia (387 amino acids) and Ib (875 amino acids) and separated by 243 noncoding nucleotides were identified. A predicted signal peptide was found for each component, and the secreted Ib displays two domains, the propeptide (172 amino acids) and the mature protein (664 amino acids). The Ia gene has been expressed in Escherichia coli and C. perfringens, under the control of its own promoter. The recombinant polypeptide obtained was recognized by Ia antibodies and ADP-ribosylated actin. The expression of the Ib gene was obtained in E. coli harboring a recombinant plasmid encompassing the putative promoter upstream of the Ia gene and the Ia and Ib genes. Two residues which have been found to be involved in the NAD+ binding site of diphtheria and pseudomonas toxins are conserved in the predicted Ia sequence (Glu-14 and Trp-19). The predicted amino acid Ib sequence shows 33.9% identity with and 54.4% similarity to the protective antigen of the anthrax toxin complex. In particular, the central region of Ib, which contains a predicted transmembrane segment (Leu-292 to Ser-308), presents 45% identity with the corresponding protective antigen sequence which is involved in the translocation of the toxin across the cell membrane.

  6. New Insights into Asian Prunus Viruses in the Light of NGS-Based Full Genome Sequencing

    PubMed Central

    Marais, Armelle; Faure, Chantal; Candresse, Thierry

    2016-01-01

    Double stranded RNAs were purified from five Prunus sources of Asian origin and submitted to 454 pyrosequencing after a random, whole genome amplification. Four complete genomes of Asian prunus virus 1 (APV1), APV2 and APV3 were reconstructed from the sequencing reads, as well as four additional, near-complete genome sequences. Phylogenetic analyses confirmed the close relationships of these three viruses and the taxonomical position previously proposed for APV1, the only APV so far completely sequenced. The genetic distances in the respective polymerase and coat protein genes as well as their gene products suggest that APV2 should be considered as a distinct viral species in the genus Foveavirus, even if the amino acid identity levels in the polymerase are very close to the species demarcation criteria for the family Betaflexiviridae. However, the situation is more complex for APV1 and APV3, for which opposite conclusions are obtained depending on the gene (polymerase or coat protein) analyzed. Phylogenetic and recombination analyses suggest that recombination events may have been involved in the evolution of APV. Moreover, genome comparisons show that the unusually long 3’ non-coding region (3' NCR) is highly variable and a hot spot for indel polymorphisms. In particular, two APV3 variants differing only in their 3’ NCR were identified in a single Prunus source, with 3' NCRs of 214–312 nt, a size similar to that observed in other foveaviruses, but 567–850 nt smaller than in other APV3 isolates. Overall, this study provides critical genome information of these viruses, frequently associated with Prunus materials, even though their precise role as pathogens remains to be elucidated. PMID:26741704

  7. Selfish drive can trump function when animal mitochondrial genomes compete

    PubMed Central

    Ma, Hansong; O’Farrell, Patrick H.

    2016-01-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106

  8. Identification of a novel 15.5 kb SHOX deletion associated with marked intrafamilial phenotypic variability and analysis of its molecular origin.

    PubMed

    Alexandrou, Angelos; Papaevripidou, Ioannis; Tsangaras, Kyriakos; Alexandrou, Ioanna; Tryfonidis, Marios; Christophidou-Anastasiadou, Violetta; Zamba-Papanicolaou, Eleni; Koumbaris, George; Neocleous, Vassos; Phylactou, Leonidas A; Skordis, Nicos; Tanteles, George A; Sismani, Carolina

    2016-12-01

    Haploinsufficiency of the short stature homeobox contaning SHOX gene has been shown to result in a spectrum of phenotypes ranging from Leri-Weill dyschondrosteosis (LWD) at the more severe end to SHOX-related short stature at the milder end of the spectrum. Most alterations are whole gene deletions, point mutations within the coding region, or microdeletions in its flanking sequences. Here, we present the clinical and molecular data as well as the potential molecular mechanism underlying a novel microdeletion, causing a variable SHOX-related haploinsufficiency disorder in a three-generation family. The phenotype resembles that of LWD in females, in males, however, the phenotypic expression is milder. The 15523-bp SHOX intragenic deletion, encompassing exons 3-6, was initially detected by array-CGH, followed by MLPA analysis. Sequencing of the breakpoints indicated an Alu recombination-mediated deletion (ARMD) as the potential causative mechanism.

  9. Production of recombinant porcine colipase secreted by Pichia pastoris and its application to improve dietary fat digestion and growth of postweaning piglets.

    PubMed

    Liu, Fang-Chueh; Chen, Hsiao-Ling; Chong, Kowit-Yu; Hsu, A-Li; Chen, Chuan-Mu

    2008-01-01

    Recombinant porcine pancreatic colipase (pCoL) was produced in the methylotrophic yeast Pichia pastoris. A synthetic yeast secretion cassette was constructed with the constitutive promoter of the glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene and the yeast alpha-mating factor signal peptide. The pCoL cDNA corresponding in the coding sequence, excluding a 16-amino acid segment of the native signal sequence, was cloned into the pGAPZalphaB vector and integrated into the genome of P. pastoris. Yeast transformants were cultured and bioactive pCoL protein was detected in the supernatant at a high-level of 126.8 mg/L after 3 days of culture. The transformed yeast containing the highest recombinant colipase level (pCoL yeast) and native yeast GS 115 not containing pCoL (non-pCoL yeast, as a control group) were separately cultured and the supernatants were adsorbed by dried skim milk. In an animal trial, two concentrations of colipase activity (0 vs. 5,000 U/kg in the diet) were blended with the pig corn-soybean basal diet and fed to weaned piglets for 4 weeks. The pCoL-administrated test group gained significantly more weight than piglets in the control group when measured at Day 15 (11.84 +/- 0.70 vs. 10.59 +/- 0.39 kg, P < 0.05), Day 22 (15.84 +/- 0.95 vs. 14.32 +/- 0.59 kg, P < 0.01), and Day 28 (20.19 +/- 1.47 vs. 18.54 +/- 0.92 kg, P < 0.01) after weaning. The blood triglyceride (TG) concentrations were significantly increased in the experimental test group that received recombinant colipase on the 28th day of postweaning when compared with that of the control group (32.50 vs. 16.37 mg/dL; P < 0.0001). These experimental data suggest that the use of recombinant porcine colipase as a dietary supplement provides an alternative approach for improving fat digestion and enhancing growth in postweaning piglets.

  10. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE

    PubMed Central

    Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao

    2017-01-01

    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study. PMID:28252053

  11. The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya.

    PubMed

    Wu, Meng; Moore, Richard C

    2015-06-01

    Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill-Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.

  12. Genetic Diversity of the Ordinary Strain of Potato virus Y (PVY) and Origin of Recombinant PVY Strains

    PubMed Central

    Karasev, Alexander V.; Hu, Xiaojun; Brown, Celeste J.; Kerlan, Camille; Nikolaeva, Olga V.; Crosslin, James M.; Gray, Stewart M.

    2011-01-01

    The ordinary strain of Potato virus Y (PVY), PVYO, causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene. A novel substrain of PVYO was recently reported, PVYO-O5, which is spreading in the United States and is distinguished from other PVYO isolates serologically (i.e., reacting to the otherwise PVYN-specific monoclonal antibody 1F5). To characterize this new PVYO-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVYO and PVYO-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis. In all, 44 PVYO isolates were sequenced, including 31 from the previously defined PVYO-O5 group, and subjected to whole-genome analysis. PVYO-O5 isolates formed a separate lineage within the PVYO genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato. On the other hand, the PVYO sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree. To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVYO genomes was conducted. The analysis revealed that PVYN:O and PVYN-Wi recombinants acquired their PVYO segments from two separate PVYO lineages, whereas the PVYNTN recombinant acquired its PVYO segment from the same lineage as PVYN:O. These data suggest that PVYN:O and PVYN-Wi recombinants originated from two separate recombination events involving two different PVYO parental genomes, whereas the PVYNTN recombinants likely originated from the PVYN:O genome via additional recombination events. PMID:21675922

  13. Illegitimate recombination mediated by calf thymus DNA topoisomerase II in vitro.

    PubMed Central

    Bae, Y S; Kawasaki, I; Ikeda, H; Liu, L F

    1988-01-01

    We have found that purified calf thymus DNA topoisomerase II mediates recombination between two phage lambda DNA molecules in an in vitro system. The enzyme mainly produced a linear monomer recombinant DNA that can be packaged in vitro. Novobiocin and anti-calf thymus DNA topoisomerase II antibody inhibit this ATP-dependent recombination. The recombinant molecules contain duplications or deletions, and most crossovers take place between nonhomologous sequences of lambda DNA, as judged by the sequences of recombination junctions. Therefore, the recombination mediated by the calf thymus DNA topoisomerase II is an illegitimate recombination that is similar to recombination mediated by Escherichia coli DNA gyrase or phage T4 DNA topoisomerase. The subunit exchange model, which has been suggested for the DNA gyrase-mediated recombination, is now generalized as follows: DNA topoisomerase II molecules bind to DNAs, associate with each other, and lead to the exchange of DNA strands through the exchange of topoisomerase II subunits. Illegitimate recombination might be carried out by a general mechanism in organisms ranging from prokaryotes to higher eukaryotes. Images PMID:2832845

  14. Recombinants of influenza virus type B as potential live vaccine candidates: RNA characterization and evaluation in man.

    PubMed Central

    Lobmann, M.; Delem, A.; Jovanovic, D.; Peetermans, J.

    1981-01-01

    Two recombinants (R22 and R75) of the attenuated B/USSR/69 strain Bright and the virulent B/Hong Kong/5/72 and one recombinant (R5) of Bright and the virulent B/Hong Kong /8/73 were selected for genotypic and phenotypic caracterization. All three recombinants had the growth property of the attenuated parent Brigit. Analysis of their RNA's by polyacrylamide gel electrophoresis revealed that, the strains R22 and R75 had derived all their genes from Brigit, those coding for haemagglutinin excepted. These recombinants were clinically evaluated and found to be attenuated and immunogenic. The recombinant R5 which derived, besides the bene coding for the haemagglutinin, several other genes from B/Hong Kong/8/73 was only partly attenuated since it induced influenza-like symptoms in one out of three volunteers. It is concluded that the strain Brigit can be used as a donor of genes for the attenuation of the B/Hong Kong/5/72 virus and that recombinants of influenza type B can be identified, like influenza type A recombinants, by their RNA pattern. Images Plate 1 PMID:7019320

  15. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    PubMed

    Stelzl, Evelyn; Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H; Hillman, Grantland; Hamilton, Aaron T; Mehta, Rochak; Heil, Marintha L; Marins, Ed G; Santner, Brigitte I; Kessler, Harald H

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  16. Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms

    PubMed Central

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements. PMID:16945140

  17. Common and diverse features of cocirculating type 2 and 3 recombinant vaccine-derived polioviruses isolated from patients with poliomyelitis and healthy children.

    PubMed

    Joffret, Marie-Line; Jégouic, Sophie; Bessaud, Maël; Balanant, Jean; Tran, Coralie; Caro, Valerie; Holmblat, Barbara; Razafindratsimandresy, Richter; Reynes, Jean-Marc; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2012-05-01

    Five cases of poliomyelitis due to type 2 or 3 recombinant vaccine-derived polioviruses (VDPVs) were reported in the Toliara province of Madagascar in 2005. We sequenced the genome of the VDPVs isolated from the patients and from 12 healthy children and characterized phenotypic aspects, including pathogenicity, in mice transgenic for the poliovirus receptor. We identified 6 highly complex mosaic recombinant lineages composed of sequences derived from different vaccine polioviruses and other species C human enteroviruses (HEV-Cs). Most had some recombinant genome features in common and contained nucleotide sequences closely related to certain cocirculating coxsackie A virus isolates. However, they differed in terms of their recombinant characteristics or nucleotide substitutions and phenotypic features. All VDPVs were neurovirulent in mice. This study confirms the genetic relationship between type 2 and 3 VDPVs, indicating that both types can be involved in a single outbreak of disease. Our results highlight the various ways in which a vaccine-derived poliovirus may become pathogenic in complex viral ecosystems, through frequent recombination events and mutations. Intertypic recombination between cocirculating HEV-Cs (including polioviruses) appears to be a common mechanism of genetic plasticity underlying transverse genetic variability.

  18. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    PubMed

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of recombination hotspots among individuals, opening a new avenue for motif finding. Tested on an established motif and simulated datasets, LDsplit shows promise to discover novel DNA motifs for meiotic recombination hotspots.

  19. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms

    PubMed Central

    2014-01-01

    Background As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Results Recently, an algorithm called “LDsplit” has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. Conclusions LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of recombination hotspots among individuals, opening a new avenue for motif finding. Tested on an established motif and simulated datasets, LDsplit shows promise to discover novel DNA motifs for meiotic recombination hotspots. PMID:24533858

  20. Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions.

    PubMed

    Liu, Maoyan; Liu, Xiangning; Li, Xun; Zhang, Deyong; Dai, Liangyin; Tang, Qianjun

    2016-03-01

    The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92% sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.

  1. Creation of a Recombinant Rift Valley Fever Virus with a Two-Segmented Genome ▿ †

    PubMed Central

    Brennan, Benjamin; Welch, Stephen R.; McLees, Angela; Elliott, Richard M.

    2011-01-01

    Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed. PMID:21795328

  2. Ribosomal DNA replication fork barrier and HOT1 recombination hot spot: shared sequences but independent activities.

    PubMed

    Ward, T R; Hoang, M L; Prusty, R; Lau, C K; Keil, R L; Fangman, W L; Brewer, B J

    2000-07-01

    In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3' of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to the cis-acting, mitotic hyperrecombination site called HOT1. We have found that the RFB and HOT1 activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB and HOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, while HOT1 activity is independent of replication fork arrest, HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).

  3. The evolutionary turnover of recombination hot spots contributes to speciation in mice.

    PubMed

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R Daniel; Petukhova, Galina V

    2016-02-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. Published by Cold Spring Harbor Laboratory Press.

  4. The evolutionary turnover of recombination hot spots contributes to speciation in mice

    PubMed Central

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R. Daniel; Petukhova, Galina V.

    2016-01-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. PMID:26833728

  5. Variation in a surface-exposed region of the Mycoplasma pneumoniae P40 protein as a consequence of homologous DNA recombination between RepMP5 elements.

    PubMed

    Spuesens, Emiel B M; van de Kreeke, Nick; Estevão, Silvia; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis

    2011-02-01

    Mycoplasma pneumoniae is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the M. pneumoniae genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by M. pneumoniae. To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.

  6. Exceptionally high levels of recombination across the honey bee genome.

    PubMed

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  7. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals.

    PubMed

    Cavanagh, Jorunn Pauline; Hjerde, Erik; Holden, Matthew T G; Kahlke, Tim; Klingenberg, Claus; Flægstad, Trond; Parkhill, Julian; Bentley, Stephen D; Sollid, Johanna U Ericson

    2014-11-01

    Staphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation. Whole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny. SNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A-G), of which four (A-D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication. The presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  8. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals

    PubMed Central

    Cavanagh, Jorunn Pauline; Hjerde, Erik; Holden, Matthew T. G.; Kahlke, Tim; Klingenberg, Claus; Flægstad, Trond; Parkhill, Julian; Bentley, Stephen D.; Sollid, Johanna U. Ericson

    2014-01-01

    Objectives Staphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation. Methods Whole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny. Results SNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A–G), of which four (A–D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication. Conclusions The presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen. PMID:25038069

  9. Uncoupling cis-Acting RNA Elements from Coding Sequences Revealed a Requirement of the N-Terminal Region of Dengue Virus Capsid Protein in Virus Particle Formation

    PubMed Central

    Samsa, Marcelo M.; Mondotte, Juan A.; Caramelo, Julio J.

    2012-01-01

    Little is known about the mechanism of flavivirus genome encapsidation. Here, functional elements of the dengue virus (DENV) capsid (C) protein were investigated. Study of the N-terminal region of DENV C has been limited by the presence of overlapping cis-acting RNA elements within the protein-coding region. To dissociate these two functions, we used a recombinant DENV RNA with a duplication of essential RNA structures outside the C coding sequence. By the use of this system, the highly conserved amino acids FNML, which are encoded in the RNA cyclization sequence 5′CS, were found to be dispensable for C function. In contrast, deletion of the N-terminal 18 amino acids of C impaired DENV particle formation. Two clusters of basic residues (R5-K6-K7-R9 and K17-R18-R20-R22) were identified as important. A systematic mutational analysis indicated that a high density of positive charges, rather than particular residues at specific positions, was necessary. Furthermore, a differential requirement of N-terminal sequences of C for viral particle assembly was observed in mosquito and human cells. While no viral particles were observed in human cells with a virus lacking the first 18 residues of C, DENV propagation was detected in mosquito cells, although to a level about 50-fold less than that observed for a wild-type (WT) virus. We conclude that basic residues at the N terminus of C are necessary for efficient particle formation in mosquito cells but that they are crucial for propagation in human cells. This is the first report demonstrating that the N terminus of C plays a role in DENV particle formation. In addition, our results suggest that this function of C is differentially modulated in different host cells. PMID:22072762

  10. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders.

    PubMed

    Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge

    2015-02-01

    Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., <30 bp) deletions than do other vertebrate genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.

  11. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    PubMed

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  12. IRiS: construction of ARG networks at genomic scales.

    PubMed

    Javed, Asif; Pybus, Marc; Melé, Marta; Utro, Filippo; Bertranpetit, Jaume; Calafell, Francesc; Parida, Laxmi

    2011-09-01

    Given a set of extant haplotypes IRiS first detects high confidence recombination events in their shared genealogy. Next using the local sequence topology defined by each detected event, it integrates these recombinations into an ancestral recombination graph. While the current system has been calibrated for human population data, it is easily extendible to other species as well. IRiS (Identification of Recombinations in Sequences) binary files are available for non-commercial use in both Linux and Microsoft Windows, 32 and 64 bit environments from https://researcher.ibm.com/researcher/view_project.php?id = 2303 parida@us.ibm.com.

  13. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota. PMID:29925671

  14. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.

    PubMed

    Rolland, N; Droux, M; Lebrun, M; Douce, R

    1993-01-01

    The last enzymatic step for L-cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL, EC 4.2.99.8) which synthesizes L-cysteine from O-acetylserine and "sulfide." We have isolated and characterized a full-length cDNA (1432 bp) from a lambda gt11 library of spinach leaf encoding the complete precursor of the chloroplast isoform. The 1149-nucleotide open reading frame coding for O-acetylserine(thiol)lyase was in the direction opposite that of the lambda gt11 beta-galactosidase gene. The derived amino acid sequence indicates that the protein precursor consists of 383 amino acid residues including a N-terminal presequence peptide of 52 residues. The amino acid sequence of mature spinach chloroplast O-acetylserine(thiol)lyase shows 40 and 57% homology with its bacterial counterparts. Sequence comparison with several pyridoxal 5'-phosphate-containing proteins reveals the presence of a lysine residue assumed to be involved in cofactor binding. A synthetic cDNA was constructed, coding for the entire 331-amino-acid mature O-acetylserine(thiol)lyase and for an initiating methionine. A high level of expression of the active mature chloroplast isoform was achieved in an Escherichia coli strain carrying the T7 RNA polymerase system (F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, 1990, in Methods in Enzymology, D. V. Goeddel, Ed., Vol. 185, pp. 60-89, Academic Press, San Diego, CA). Addition of pyridoxine to the bacterial growth medium enhanced the enzyme activity due to the recombinant protein. The extent of production is 25-fold higher than in chloroplast from spinach leaves and the recombinant protein presents the relative molecular mass and immunological properties of the natural enzyme from spinach leaf chloroplast. This work, together with our previous biochemical studies, are in accordance with a prokaryotic type enzyme for L-cysteine biosynthesis in higher plant chloroplasts. Southern blot analysis indicated that O-acetylserine(thiol)lyase is encoded by multiple genes in the spinach leaf genomic DNA.

  15. Precise genotyping and recombination detection of Enterovirus

    PubMed Central

    2015-01-01

    Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution. PMID:26678286

  16. Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae).

    PubMed

    Sullivan, Alexis R; Schiffthaler, Bastian; Thompson, Stacey Lee; Street, Nathaniel R; Wang, Xiao-Ru

    2017-07-01

    Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.

    PubMed

    Abuin, A; Zhang, H; Bradley, A

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.

  18. Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations

    PubMed Central

    Abuin, Alejandro; Zhang, HeJu; Bradley, Allan

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017

  19. Molecular cloning, heterologous expression and functional characterization of gamma tocopherol methyl transferase (γ-TMT) from Glycine max.

    PubMed

    Tewari, Kalpana; Dahuja, Anil; Sachdev, Archana; Kumar, Vaibhav; Ali, Kishwar; Kumar, Amresh; Kumari, Sweta

    2017-12-01

    γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is the last enzyme in the tocopherol biosynthetic pathway and it catalyzes the conversion of γ-tocopherol into α-tocopherol, the nutritionally significant and most bioactive form of vitamin E. Although the γ-TMT gene has been successfully overexpressed in many crops to enhance their α-tocopherol content but still only few attempts have been made to uncover its structural, functional and regulation aspects at protein level. In this study, we have cloned the complete 909bp coding sequence of Glycine max γ-TMT (Gm γ-TMT) gene that encodes the corresponding protein comprising of 302 amino acid residues. The deduced Gm γ-TMT protein showed 74-87% sequence identity with other characterized plant γ-TMTs. Gm γ-TMT belongs to Class I Methyl Transferases that have a Rossmann-like fold which consists of a seven-stranded β sheet joined by α helices. Heterologous expression of Gm γ-TMT in pET29a expression vector under the control of bacteriophage T7 promoter produced a 37.9 kDa recombinant Gm γ-TMT protein with histidine hexamer tag at its C-terminus. The expression of recombinant Gm γ-TMT protein was confirmed by western blotting using anti-His antibody. The recombinant protein was purified by Ni 2+ -NTA column chromatography. The purified protein showed SAM dependent methyltransferase activity. The α-tocopherol produced in the in-vitro reaction catalyzed by the purified enzyme was detected using reverse phase HPLC. This study has laid the foundation to unveil the biochemical understanding of Gm γ-TMT enzyme which can be further explored by studying its kinetic behaviour, substrate specificity and its interaction with other biomolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production.

    PubMed

    Zhang, Lin-Lin; Tan, Mei-Juan; Liu, Guang-Lei; Chi, Zhe; Wang, Guang-Yuan; Chi, Zhen-Ming

    2015-04-01

    The INU1 gene encoding an exo-inulinase from the marine-derived yeast Candida membranifaciens subsp. flavinogenie W14-3 was cloned and characterized. It had an open reading frame of 1,536 bp long encoding an inulinase. The coding region of it was not interrupted by any intron. The cloned gene encoded 512 amino acid residues of a protein with a putative signal peptide of 23 amino acids and a calculated molecular mass of 57.8 kDa. The protein sequence deduced from the inulinase gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP FS and Q. The protein also had six conserved putative N-glycosylation sites. The deduced inulinase from the yeast strain W14-3 was found to be closely related to that from Candida kutaonensis sp. nov. KRF1, Kluyveromyces marxianus, and Cryptococcus aureus G7a. The inulinase gene with its signal peptide encoding sequence was subcloned into the pMIRSC11 expression vector and expressed in Saccharomyces sp. W0. The recombinant yeast strain W14-3-INU-112 obtained could produce 16.8 U/ml of inulinase activity and 12.5 % (v/v) ethanol from 250 g/l of inulin within 168 h. The monosaccharides were detected after the hydrolysis of inulin with the crude inulinase (the yeast culture). All the results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.

  1. HIV genetic diversity in Cameroon: possible public health importance.

    PubMed

    Ndongmo, Clement B; Pieniazek, Danuta; Holberg-Petersen, Mona; Holm-Hansen, Carol; Zekeng, Leopold; Jeansson, Stig L; Kaptue, Lazare; Kalish, Marcia L

    2006-08-01

    To monitor the evolving molecular epidemiology and genetic diversity of HIV in a country where many distinct strains cocirculate, we performed genetic analyses on sequences from 75 HIV-1-infected Cameroonians: 74 were group M and 1 was group O. Of the group M sequences, 74 were classified into the following env gp41 subtypes or recombinant forms: CRF02 (n = 54), CRF09 (n = 2), CRF13 (n = 2), A (n = 5), CRF11 (n = 4), CRF06 (n = 1), G (n = 2), F2 (n = 2), and E (n = 1, CRF01), and 1 was a JG recombinant. Comparison of phylogenies for 70 matched gp41 and protease sequences showed inconsistent classifications for 18 (26%) strains. Our data show that recombination is rampant in Cameroon with recombinant viruses continuing to recombine, adding to the complexity of circulating HIV strains. This expanding genetic diversity raises public health concerns for the ability of diagnostic assays to detect these unique HIV mosaic variants and for the development of broadly effective HIV vaccines.

  2. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes.

    PubMed Central

    Weinreich, D M; Rand, D M

    2000-01-01

    We report that patterns of nonneutral DNA sequence evolution among published nuclear and mitochondrially encoded protein-coding loci differ significantly in animals. Whereas an apparent excess of amino acid polymorphism is seen in most (25/31) mitochondrial genes, this pattern is seen in fewer than half (15/36) of the nuclear data sets. This differentiation is even greater among data sets with significant departures from neutrality (14/15 vs. 1/6). Using forward simulations, we examined patterns of nonneutral evolution using parameters chosen to mimic the differences between mitochondrial and nuclear genetics (we varied recombination rate, population size, mutation rate, selective dominance, and intensity of germ line bottleneck). Patterns of evolution were correlated only with effective population size and strength of selection, and no single genetic factor explains the empirical contrast in patterns. We further report that in Arabidopsis thaliana, a highly self-fertilizing plant with effectively low recombination, five of six published nuclear data sets also exhibit an excess of amino acid polymorphism. We suggest that the contrast between nuclear and mitochondrial nonneutrality in animals stems from differences in rates of recombination in conjunction with a distribution of selective effects. If the majority of mutations segregating in populations are deleterious, high linkage may hinder the spread of the occasional beneficial mutation. PMID:10978302

  3. Cloning, optimization of induction conditions and purification of Mycobacterium tuberculosis Rv1733c protein expressed in Escherichia coli

    PubMed Central

    Ashayeri-Panah, Mitra; Eftekhar, Fereshteh; Kazemi, Bahram; Joseph, Joan

    2017-01-01

    Background and Objectives: Rv1733c is a latency antigen from Mycobacterium tuberculosis, a probable integral-membrane protein with promiscuous T-cell and B-cell epitopes, making it a potential vaccine candidate against tuberculosis. This study aimed to clone and optimize the expression of recombinant Rv1733c in Escherichia coli for purification. Materials and Methods: Chemically synthesized rv1733c coding sequence was cloned in pET-23a(+) followed by transforming E. coli BL21 (DE3) cells. To evaluate the induction conditions for optimized expression, factorial design of experiments was employed using four different media as well as four levels of isopropyl-b-D-thiogalactopyranosid [IPTG] concentration and duration of induction. The recombinant protein was then purified using a His-tag purification kit and detected through western blotting. Results: Recombinant Rv1733c (> 24 kDa) was expressed and accumulated in the cytoplasm of the E. coli cells. Medium composition showed the most significant effect on the yield of the recombinant protein (P = 0.000). The highest yield of recombinant Rv1733c occurred in the presence of 0.4 mM of IPTG in Terrific Broth medium (containing 1.2% tryptone, 2.4% yeast extract, 72 mM K 2 HPO 4 , 17 mM KH 2 PO 4 and 0.4% glycerol) after 10 h at 37°C. Under these conditions, the expression level was around 0.5 g/L of culture medium. Purified Rv1733c was detected by an anti-polyhistidine antibody and a tuberculosis patient’s serum. Systematic optimization of induction conditions gave us high yield of recombinant polyhistidine-tagged Rv1733c in E. coli which was successfuly purified. Conclusion: We believe that the purified Rv1733c recombinant protein from M. tuberculosis might be a good candidate for vaccine production against tuberculosis. PMID:29213997

  4. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  5. A molecular model for illegitimate recombination in Bacillus subtilis.

    PubMed

    Temeyer, K B; Hopkins, K M; Chapman, L F

    1991-01-01

    The recombinant DNA junctions at which pUB110 and Bacillus subtilis chromosomal DNA were joined to form the plasmid pKBT1 were cloned and sequenced. From the sequencing data we conclude that the pUB110 sequence is intact in the pair of cloned pKBT1 fragments and pTL12 sequences are not present. A molecular model for the formation of pKBT1 based on structural motifs characteristic of the joint sites is presented.

  6. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination.

    PubMed

    Sammler, Svenja; Bleidorn, Christoph; Tiedemann, Ralph

    2011-01-14

    Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.

  7. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination

    PubMed Central

    2011-01-01

    Background Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. Conclusions The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes. PMID:21235758

  8. Genetic Analysis of Israel Acute Paralysis Virus: Distinct Clusters Are Circulating in the United States▿

    PubMed Central

    Palacios, G.; Hui, J.; Quan, P. L.; Kalkstein, A.; Honkavuori, K. S.; Bussetti, A. V.; Conlan, S.; Evans, J.; Chen, Y. P.; vanEngelsdorp, D.; Efrat, H.; Pettis, J.; Cox-Foster, D.; Holmes, E. C.; Briese, T.; Lipkin, W. I.

    2008-01-01

    Israel acute paralysis virus (IAPV) is associated with colony collapse disorder of honey bees. Nonetheless, its role in the pathogenesis of the disorder and its geographic distribution are unclear. Here, we report phylogenetic analysis of IAPV obtained from bees in the United States, Canada, Australia, and Israel and the establishment of diagnostic real-time PCR assays for IAPV detection. Our data indicate the existence of at least three distinct IAPV lineages, two of them circulating in the United States. Analysis of representatives from each proposed lineage suggested the possibility of recombination events and revealed differences in coding sequences that may have implications for virulence. PMID:18434396

  9. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing

    PubMed Central

    Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H.; Hillman, Grantland; Hamilton, Aaron T.; Mehta, Rochak; Heil, Marintha L.; Marins, Ed G.; Santner, Brigitte I.; Kessler, Harald H.

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189–3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment. PMID:28742818

  10. Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg

    2005-04-15

    Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less

  11. Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization.

    PubMed Central

    Haseloff, J; Goelet, P; Zimmern, D; Ahlquist, P; Dasgupta, R; Kaesberg, P

    1984-01-01

    The plant viruses alfalfa mosaic virus (AMV) and brome mosaic virus (BMV) each divide their genetic information among three RNAs while tobacco mosaic virus (TMV) contains a single genomic RNA. Amino acid sequence comparisons suggest that the single proteins encoded by AMV RNA 1 and BMV RNA 1 and by AMV RNA 2 and BMV RNA 2 are related to the NH2-terminal two-thirds and the COOH-terminal one-third, respectively, of the largest protein encoded by TMV. Separating these two domains in the TMV RNA sequence is an amber termination codon, whose partial suppression allows translation of the downstream domain. Many of the residues that the TMV read-through domain and the segmented plant viruses have in common are also conserved in a read-through domain found in the nonstructural polyprotein of the animal alphaviruses Sindbis and Middelburg. We suggest that, despite substantial differences in gene organization and expression, all of these viruses use related proteins for common functions in RNA replication. Reassortment of functional modules of coding and regulatory sequence from preexisting viral or cellular sources, perhaps via RNA recombination, may be an important mechanism in RNA virus evolution. PMID:6611550

  12. Cloning and characterization of a type 3 iodothyronine deiodinase (D3) in the liver of the chondrichtyan Chiloscyllium punctatum.

    PubMed

    Martínez, Lidia Mayorga; Orozco, Aurea; Villalobos, Patricia; Valverde-R, Carlos

    2008-05-01

    Thyroid hormone bioactivity is finely regulated at the cellular level by the peripheral iodothyronine deiodinases (D). The study of thyroid function in fish has been restricted mainly to teleosts, whereas the study and characterization of Ds have been overlooked in chondrichthyes. Here we report the cloning and operational characterization of both the native and the recombinant hepatic type 3 iodothyronine deiodinase in the tropical shark Chiloscyllium punctatum. Native and recombinant sD3 show identical catalytic activities: a strong preference for T3-inner-ring deiodination, a requirement for a high concentration of DTT, a sequential reaction mechanism, and resistance to PTU inhibition. The cloned cDNA contains 1298 nucleotides [excluding the poly(A) tail] and encodes a predicted protein of 259 amino acids. The triplet TGA coding for selenocysteine (Sec) is at position 123. The consensus selenocysteine insertion sequence (SECIS) was identified 228 bp upstream of the poly(A) tail and corresponds to form 2. The deduced amino acid sequence was 77% and 72% identical to other D3 cDNAs in fishes and other vertebrates, respectively. As in the case of other piscivore teleost species, shark expresses hepatic D3 through adulthood. This characteristic may be associated with the alimentary strategy in which the protection from an exogenous overload of thyroid hormones could be of physiological importance for thyroidal homeostasis.

  13. A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity.

    PubMed

    Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G

    2017-07-25

    Extracellular esterase activity was detected in submerged cultures of Rhizoctonia solani grown in the presence of sugar beet pectin or Tween 80. Putative type B feruloyl esterase (FAE) coding sequences found in the genome data of the basidiomycete were heterologously expressed in Pichia pastoris. Recombinant enzyme production on the 5-L bioreactor scale (Rs pCAE: 3245UL -1 ) exceeded the productivity of the wild type strain by a factor of 800. Based on substrate specificity profiling, the purified recombinant Rs pCAE was classified as a p-coumaroyl esterase (pCAE) with a pronounced chlorogenic acid esterase side activity. The Rs pCAE was also active on methyl cinnamate, caffeate and ferulate and on feruloylated saccharides. The unprecedented substrate profile of Rs pCAE together with the lack of sequence similarity to known FAEs or pCAEs suggested that the Rs pCAE represents a new type of enzyme. Hydroxycinnamic acids were released from agro-industrial side-streams, such as destarched wheat bran (DSWB), sugar beet pectin (SBP) and coffee pulp (CP). Overnight incubation of coffee pulp with the Rs pCAE resulted in the efficient release of p-coumaric (100%), caffeic (100%) and ferulic acid (85%) indicating possible applications for the valorization of food processing wastes and for the enhanced degradation of lignified biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    PubMed

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  15. Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei.

    PubMed

    Arthornthurasuk, Siriphan; Jenkhetkan, Wantha; Suwan, Eukote; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Wattana-Amorn, Pakorn; Svasti, Jisnuson; Kongsaeree, Prachumporn T

    2018-05-19

    A novel β-glucosidase from higher termite Microcerotermes annandalei (MaBG) was obtained via a screening method targeting β-glucosidases with increased activities in the presence of glucose. The purified natural MaBG showed a subunit molecular weight of 55 kDa and existed in a native form as a dimer without any glycosylation. Gene-specific primers designed from its partial amino acid sequences were used to amplify the corresponding 1,419-bp coding sequence of MaBG which encodes a 472-amino acid glycoside hydrolase family 1 (GH1) β-glucosidase. When expressed in Komagataella pastoris, the recombinant MaBG appeared as a ~ 55-kDa protein without glycosylation modifications. Kinetic parameters as well as the lack of secretion signal suggested that MaBG is an intracellular enzyme and not involved in cellulolysis. The hydrolytic activities of MaBG were enhanced in the presence of up to 3.5-4.5 M glucose, partly due to its strong transglucosylation activity, which suggests its applicability in biosynthetic processes. The potential synthetic activities of the recombinant MaBG were demonstrated in the synthesis of para-nitrophenyl-β-D-gentiobioside via transglucosylation and octyl glucoside via reverse hydrolysis. The information obtained from this study has broadened our insight into the functional characteristics of this variant of termite GH1 β-glucosidase and its applications in bioconversion and biotechnology.

  16. Ancient DNA sequence revealed by error-correcting codes.

    PubMed

    Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo

    2015-07-10

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.

  17. Ancient DNA sequence revealed by error-correcting codes

    PubMed Central

    Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  18. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  19. Genes encoding Xenopus laevis Ig L chains: Implications for the evolution of [kappa] and [lambda] chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zezza, D.J.; Stewart, S.E.; Steiner, L.A.

    1992-12-15

    Xenopus laevis Ig contain two distinct types of L chains, designated [rho] or L1 and [sigma] or L2. The authors have analyzed Xenopus genomic DNA by Southern blotting with cDNA probes specific for L1 V and C regions. Many fragments hybridized to the V probe, but only one or two fragments hybridized to the C probe. Corresponding C, J, and V gene segments were identified on clones isolated from a genomic library prepared from the same DNA. One clone contains a C gene segment separated from a J gene segment by an intron of 3.4 kb. The J and Cmore » gene segments are nearly identical in sequence to cDNA clones analyzed previously. The C segment is somewhat more similar and the J segment considerably more similar in sequence to the corresponding segments of mammalian [kappa] chains than to those of mammalian [lambda] chains. Upstream of the J segment is a typical recombination signal sequence with a spacer of 23 bp, as in J[kappa]. A second clone from the library contains four V gene segments, separated by 2.1 to 3.6 kb. Two of these, V1 and V3, have the expected structural and regulatory features of V genes, and are very similar in sequence to each other and to mammalian V[kappa]. A third gene segment, V2, resembles V1 and V3 in its coding region and nearby 5[prime]-flanking region, but diverges in sequence 5[prime] to position [minus]95 with loss of the octamer promoter element. The fourth V-like segment is similar to the others at the 3[prime]-end, but upstream of codon 64 bears no resemblance in sequence to any Ig V region. All four V segments have typical recombination signal sequences with 12-bp spacers at their 3[prime]-ends, as in V[kappa]. Taken together, the data suggest that Xenopus L1 L chain genes are members of the [kappa] gene family. 80 refs., 9 figs.« less

  20. Recombinant Arthrobacter β-1, 3-glucanase as a potential effector molecule for paratransgenic control of Chagas disease

    PubMed Central

    2013-01-01

    Background Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T. cruzi. Here, the potential role of recombinant endoglucanases as anti-trypanosomal agents for paratransgenic application is examined. The surface of T. cruzi is covered by a thick coat of mucin-like glycoproteins that have been proposed to play a role in the binding of T. cruzi to the membrane surface of the vector gut. We hypothesize that disruption of these glycoconjugates could arrest parasite development in the vector and abort the transmission cycle. In this work, we examine the effects of recombinant Arthrobacter luteus β-1, 3-glucanase expressed via Rhodococcus rhodnii on T. cruzi Sylvio II strain. Methods and results The coding sequence for β-1, 3-glucanase was cloned in-frame to a heterologous promoter/signal sequence from the Mycobacterium kansasii alpha antigen gene resident in an E. coli/R. rhodnii shuttle vector. The resulting construct was confirmed by sequencing, and electroporated into R. rhodnii. Expression products from positive clones were purified from log phase cultures followed by dialysis into physiological buffers. Lysates and media were quantitated by ELISA against rabbit antibody specific to β-1,3-glucanase. Glucanase-positive samples were applied to live T. cruzi parasites in culture and viability accessed by spectrophotometric and fluorescent microscopic measurements. R. rhodnii-expressed β-1,3-glucanase exhibited toxicity against T. cruzi compared to controls when applied at 5 and 10% of the total culture volume. The decrease in cell viability ranged from a maximum of 50% for the media treatments to 80% for the filtered lysates. Conclusions These results suggest that recombinant β-glucanase could be a powerful addition to the arsenal of effector molecules for paratransgenic control of Chagas disease. In future studies, the ability of β-glucanase to function in combination with other effector molecules will be explored. Dual targeting of T. cruzi should not only slow resistance but also permit synergistic or additive lethal effects on T. cruzi. PMID:23497594

  1. Recombinant Arthrobacter β-1, 3-glucanase as a potential effector molecule for paratransgenic control of Chagas disease.

    PubMed

    Jose, Christo; Klein, Nicole; Wyss, Sarah; Fieck, Annabeth; Hurwitz, Ivy; Durvasula, Ravi

    2013-03-14

    Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T. cruzi. Here, the potential role of recombinant endoglucanases as anti-trypanosomal agents for paratransgenic application is examined. The surface of T. cruzi is covered by a thick coat of mucin-like glycoproteins that have been proposed to play a role in the binding of T. cruzi to the membrane surface of the vector gut. We hypothesize that disruption of these glycoconjugates could arrest parasite development in the vector and abort the transmission cycle. In this work, we examine the effects of recombinant Arthrobacter luteus β-1, 3-glucanase expressed via Rhodococcus rhodnii on T. cruzi Sylvio II strain. The coding sequence for β-1, 3-glucanase was cloned in-frame to a heterologous promoter/signal sequence from the Mycobacterium kansasii alpha antigen gene resident in an E. coli/R. rhodnii shuttle vector. The resulting construct was confirmed by sequencing, and electroporated into R. rhodnii. Expression products from positive clones were purified from log phase cultures followed by dialysis into physiological buffers. Lysates and media were quantitated by ELISA against rabbit antibody specific to β-1,3-glucanase. Glucanase-positive samples were applied to live T. cruzi parasites in culture and viability accessed by spectrophotometric and fluorescent microscopic measurements. R. rhodnii-expressed β-1,3-glucanase exhibited toxicity against T. cruzi compared to controls when applied at 5 and 10% of the total culture volume. The decrease in cell viability ranged from a maximum of 50% for the media treatments to 80% for the filtered lysates. These results suggest that recombinant β-glucanase could be a powerful addition to the arsenal of effector molecules for paratransgenic control of Chagas disease. In future studies, the ability of β-glucanase to function in combination with other effector molecules will be explored. Dual targeting of T. cruzi should not only slow resistance but also permit synergistic or additive lethal effects on T. cruzi.

  2. Feline immunodeficiency virus (FIV) env recombinants are common in natural infections.

    PubMed

    Bęczkowski, Paweł M; Hughes, Joseph; Biek, Roman; Litster, Annette; Willett, Brian J; Hosie, Margaret J

    2014-09-17

    Recombination is a common feature of retroviral biology and one of the most important factors responsible for generating viral diversity at both the intra-host and the population levels. However, relatively little is known about rates and molecular processes of recombination for retroviruses other than HIV, including important model viruses such as feline immunodeficiency virus (FIV). We investigated recombination in complete FIV env gene sequences (n = 355) isolated from 43 naturally infected cats. We demonstrated that recombination is abundant in natural FIV infection, with over 41% of the cats being infected with viruses containing recombinant env genes. In addition, we identified shared recombination breakpoints; the most significant hotspot occurred between the leader/signal fragment and the remainder of env. Our results have identified the leader/signal fragment of env as an important site for recombination and highlight potential limitations of the current phylogenetic classification of FIV based on partial env sequences. Furthermore, the presence of abundant recombinant FIV in the USA poses a significant challenge for commercial diagnostic tests and should inform the development of the next generation of FIV vaccines.

  3. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    PubMed Central

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard, Brianna K.; Cheramie, Martin N.; Eime, Anne M.; Golden, Kathryn L.; Hawkins, Allyson P.; Hill, Jessica E.; Kampmeier, Jessica A.; Kern, Cody D.; Magnuson, Emily E.; Miller, Ashley R.; Morrow, Cody M.; Peairs, Julia C.; Pickett, Gentry L.; Popelka, Sarah A.; Scott, Alexis J.; Teepe, Emily J.; TerMeer, Katie A.; Watchinski, Carmen A.; Watson, Lucas A.; Weber, Rachel E.; Woodard, Kate A.; Barnard, Daron C.; Appiah, Isaac; Giddens, Michelle M.; McNeil, Gerard P.; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C.; Buhler, Jeremy; Mardis, Elaine R.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  4. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  5. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  6. Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): rearrangements in the IQM and ARNS1EF gene clusters.

    PubMed

    Doğan, Özgül; Korkmaz, E Mahir

    2017-10-01

    The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.

  7. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  8. Cloning, sequencing, and expression of the gene encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in Methanothermus fervidus.

    PubMed

    Matussek, K; Moritz, P; Brunner, N; Eckerskorn, C; Hensel, R

    1998-11-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.

  9. Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui†

    PubMed Central

    Johnsen, Ulrike; Schönheit, Peter

    2004-01-01

    During growth of the halophilic archaeon Haloarcula marismortui on d-xylose, a specific d-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to d-xylose, d-ribose was oxidized at similar kinetic constants, whereas d-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)—coding for a 39.9-kDA protein—was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui. PMID:15342590

  10. Precise identification of endogenous proviruses of NFS/N mice participating in recombination with moloney ecotropic murine leukemia virus (MuLV) to generate polytropic MuLVs.

    PubMed

    Alamgir, A S M; Owens, Nick; Lavignon, Marc; Malik, Frank; Evans, Leonard H

    2005-04-01

    Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.

  11. Two-terminal video coding.

    PubMed

    Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei

    2009-03-01

    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.

  12. [Construction and expression of recombinant lentiviral vectors of AKT2,PDK1 and BAD].

    PubMed

    Zhu, Jing; Chen, Bo-Jiang; Huang, Na; Li, Wei-Min

    2014-03-01

    To construct human protein kinase B (ATK2), phosphoinositide-dependent kinase 1 (PDK1) and bcl-2-associated death protein (BAD) lentiviral expression vector, and to determine their expressions in 293T cells. Total RNA was extracted from lung cancer tissues. The full-length coding regions of human ATK2, BAD and PDK1 cDNA were amplified via RT-PCR using specific primers, subcloned into PGEM-Teasy and then sequenced for confirmation. The full-length coding sequence was cut out with a specific restriction enzyme digest and subclone into pCDF1-MCS2-EF1-copGFP. The plasmids were transfected into 293T cells using the calcium phosphate method. The over expression of AKT2, BAD and PDK1 were detected by Western blot. AKT2, PDK1 and BAD were subcloned into pCDF1-MCS2-EF1-copGFP, with an efficiency of transfection of 100%, 95%, and 90% respectively. The virus titers were 6.7 x 10(6) PFU/mL in the supernatant. After infection, the proteins of AKT2, PDK1 and BAD were detected by Western blot. The lentivial vector pCDF1-MCS2-EF1-copGFP containing AKT2, BAD and PDK1 were successfully constructed and expressed in 293T cells.

  13. Orpinomyces cellulase celf protein and coding sequences

    DOEpatents

    Li, Xin-Liang; Chen, Huizhong; Ljungdahl, Lars G.

    2000-09-05

    A cDNA (1,520 bp), designated celF, consisting of an open reading frame (ORF) encoding a polypeptide (CelF) of 432 amino acids was isolated from a cDNA library of the anaerobic rumen fungus Orpinomyces PC-2 constructed in Escherichia coli. Analysis of the deduced amino acid sequence showed that starting from the N-terminus, CelF consists of a signal peptide, a cellulose binding domain (CBD) followed by an extremely Asn-rich linker region which separate the CBD and the catalytic domains. The latter is located at the C-terminus. The catalytic domain of CelF is highly homologous to CelA and CelC of Orpinomyces PC-2, to CelA of Neocallimastix patriciarum and also to cellobiohydrolase IIs (CBHIIs) from aerobic fungi. However, Like CelA of Neocallimastix patriciarum, CelF does not have the noncatalytic repeated peptide domain (NCRPD) found in CelA and CelC from the same organism. The recombinant protein CelF hydrolyzes cellooligosaccharides in the pattern of CBHII, yielding only cellobiose as product with cellotetraose as the substrate. The genomic celF is interrupted by a 111 bp intron, located within the region coding for the CBD. The intron of the celF has features in common with genes from aerobic filamentous fungi.

  14. Coupled transcription and processing of mouse ribosomal RNA in a cell-free system.

    PubMed Central

    Mishima, Y; Mitsuma, T; Ogata, K

    1985-01-01

    An in vitro processing system of mouse rRNA was achieved using an RNA polymerase I-specific transcription system, (S100) and recombinant plasmids consisting of mouse rRNA gene (rDNA) segments containing the transcription initiation and 5'-terminal region of 18S (or 41S) rRNA. Pulse-chase experiments showed that a specific processing occurred with transcripts of the plasmid DNAs when the direction of transcription was the correct orientation relative to the 18S rRNA coding sequence, but not with transcripts of the DNA templates in which this coding sequence was in the opposite orientation. From the S1 nuclease protection analyses, we concluded that there are several steps of endonucleolytic cleavage including one 105 nucleotides upstream from the 5' end of 18S rRNA. Intermediates cleaved at this site were identified in in vivo processing of rRNA. This result indicates that endonucleolytic cleavage takes place 105 nucleotides upstream from the 5' terminus of 18S rRNA prior to the formation of mature 18S rRNA. Trimming or cleavage of the 105 nucleotides may be involved in the formation of the 5' terminus of mature 18S rRNA. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3004977

  15. Molecular Evolution of a Type 1 Wild-Vaccine Poliovirus Recombinant during Widespread Circulation in China

    PubMed Central

    Liu, Hong-Mei; Zheng, Du-Ping; Zhang, Li-Bi; Oberste, M. Steven; Pallansch, Mark A.; Kew, Olen M.

    2000-01-01

    Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3′-terminal sequences of VP1 (115 nt) and the 5′ half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3′ half of 2A were more distantly related (<90% nucleotide sequence match) to those of other contemporary wild polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of ∼3.7 × 10−2 substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection. PMID:11070012

  16. Near Full-Length Identification of a Novel HIV-1 CRF01_AE/B/C Recombinant in Northern Myanmar.

    PubMed

    Zhou, Yan-Heng; Chen, Xin; Liang, Yue-Bo; Pang, Wei; Qin, Wei-Hong; Zhang, Chiyu; Zheng, Yong-Tang

    2015-08-01

    The Myanmar-China border appears to be the "hot spot" region for the occurrence of HIV-1 recombination. The majority of the previous analyses of HIV-1 recombination were based on partial genomic sequences, which obviously cannot reflect the reality of the genetic diversity of HIV-1 in this area well. Here, we present a near full-length characterization of a novel HIV-1 CRF01_AE/B/C recombinant isolated from a long-distance truck driver in Northern Myanmar. It is the first description of a near full-length genomic sequence in Myanmar since 2003, and might be one of the most complicated HIV-1 chimeras ever detected in Myanmar, containing four CRF01_AE, six B segments, and five C segments separated by 14 breakpoints throughout its genome. The discovery and characterization of this new CRF01_AE/B/C recombinant indicate that intersubtype recombination is ongoing in Myanmar, continuously generating new forms of HIV-1. More work based on near full-length sequence analyses is urgently needed to better understand the genetic diversity of HIV-1 in these regions.

  17. Estimating diversifying selection and functional constraint in the presence of recombination.

    PubMed

    Wilson, Daniel J; McVean, Gilean

    2006-03-01

    Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying selection or functional constraint in a sample of gene sequences. However, when there has been recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is not appropriate, and inference based on a single tree can give misleading results. In the presence of high levels of recombination, the identification of sites experiencing diversifying selection can suffer from a false-positive rate as high as 90%. We present a model that uses a population genetics approximation to the coalescent with recombination and use reversible-jump MCMC to perform Bayesian inference on both the dN/dS ratio and the recombination rate, allowing each to vary along the sequence. We demonstrate that the method has the power to detect variation in the dN/dS ratio and the recombination rate and does not suffer from a high false-positive rate. We use the method to analyze the porB gene of Neisseria meningitidis and verify the inferences using prior sensitivity analysis and model criticism techniques.

  18. Estimating Diversifying Selection and Functional Constraint in the Presence of Recombination

    PubMed Central

    Wilson, Daniel J.; McVean, Gilean

    2006-01-01

    Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying selection or functional constraint in a sample of gene sequences. However, when there has been recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is not appropriate, and inference based on a single tree can give misleading results. In the presence of high levels of recombination, the identification of sites experiencing diversifying selection can suffer from a false-positive rate as high as 90%. We present a model that uses a population genetics approximation to the coalescent with recombination and use reversible-jump MCMC to perform Bayesian inference on both the dN/dS ratio and the recombination rate, allowing each to vary along the sequence. We demonstrate that the method has the power to detect variation in the dN/dS ratio and the recombination rate and does not suffer from a high false-positive rate. We use the method to analyze the porB gene of Neisseria meningitidis and verify the inferences using prior sensitivity analysis and model criticism techniques. PMID:16387887

  19. Intrastrain heterogeneity of the mgpB gene in Mycoplasma genitalium is extensive in vitro and in vivo and suggests that variation is generated via recombination with repetitive chromosomal sequences.

    PubMed

    Iverson-Cabral, Stefanie L; Astete, Sabina G; Cohen, Craig R; Rocha, Eduardo P C; Totten, Patricia A

    2006-07-01

    Mycoplasma genitalium is associated with reproductive tract disease in women and may persist in the lower genital tract for months, potentially increasing the risk of upper tract infection and transmission to uninfected partners. Despite its exceptionally small genome (580 kb), approximately 4% is composed of repeated elements known as MgPar sequences (MgPa repeats) based on their homology to the mgpB gene that encodes the immunodominant MgPa adhesin protein. The presence of these MgPar sequences, as well as mgpB variability between M. genitalium strains, suggests that mgpB and MgPar sequences recombine to produce variant MgPa proteins. To examine the extent and generation of diversity within single strains of the organism, we examined mgpB variation within M. genitalium strain G-37 and observed sequence heterogeneity that could be explained by recombination between the mgpB expression site and putative donor MgPar sequences. Similarly, we analyzed mgpB sequences from cervical specimens from a persistently infected woman (21 months) and identified 17 different mgpB variants within a single infecting M. genitalium strain, confirming that mgpB heterogeneity occurs over the course of a natural infection. These observations support the hypothesis that recombination occurs between the mgpB gene and MgPar sequences and that the resulting antigenically distinct MgPa variants may contribute to immune evasion and persistence of infection.

  20. Construction of recombinant Mip-FlaA dominant epitope vaccine against Legionella pneumophila and evaluation of the immunogenicity and protective immunity.

    PubMed

    He, Jinlei; Zhang, Junrong; He, Yanxia; Huang, Fan; Li, Jiao; Chen, Qiwei; Chen, Dali; Chen, Jianping

    2016-02-01

    Legionnaires' disease, a kind of systemic disease with pneumonia as the main manifestation, is caused by Legionella pneumophila (L. pneumophila). In order to prevent the disease, we optimized Mip and FlaA, the virulence factors of L. pneumophila, to design recombinant Mip-FlaA dominant epitope vaccine against the pathogen. Firstly, the coding sequences of mip and flaA were optimized by DNAStar software and Expasy protein analysis system, and then, the tertiary structure and function of recombinant Mip-FlaA were predicted by PHYRE2 Protein Fold Recognition Server. After that, the optimized mip, flaA and mip-flaA were cloned, expressed and purified, and the proteins were used as dominant epitope vaccines to immunize BABL/c mice. Moreover, the IgG titers, histological changes in lung and the level of TNF-α, IFN-γ, IL-6 and IL-1β were detected to reflect the immunogenicity and protective immunity of the vaccines. The results of SDS-PAGE and Western blot proved the recombinant Mip-FlaA was successfully expressed. ELISA results of IgG titers and these cytokines showed Mip-FlaA group was capable to induce the strongest immune response, compared to PBS, Mip and FlaA groups. In addition, histopathology analysis demonstrated the mice immunized with Mip-FlaA showed better immune protection. Therefore, the work indicated that the above-described biological tools were useful in optimization of epitope vaccine. Antigenic characterization and immune protection of recombinant Mip-FlaA would be of great value in understanding the immunopathogenesis of the disease and in developing possible vaccine against the pathogen.

  1. Molecular Design of Performance Proteins With Repetitive Sequences

    NASA Astrophysics Data System (ADS)

    Vendrely, Charlotte; Ackerschott, Christian; Römer, Lin; Scheibel, Thomas

    Most performance proteins responsible for the mechanical stability of cells and organisms reveal highly repetitive sequences. Mimicking such performance proteins is of high interest for the design of nanostructured biomaterials. In this article, flagelliform silk is exemplary introduced to describe a general principle for designing genes of repetitive performance proteins for recombinant expression in Escherichia coli . In the first step, repeating amino acid sequence motifs are reversely transcripted into DNA cassettes, which can in a second step be seamlessly ligated, yielding a designed gene. Recombinant expression thereof leads to proteins mimicking the natural ones. The recombinant proteins can be assembled into nanostructured materials in a controlled manner, allowing their use in several applications.

  2. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    PubMed

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  3. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    PubMed

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  4. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  5. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.

    PubMed

    Rizzon, Carène; Marais, Gabriel; Gouy, Manolo; Biémont, Christian

    2002-03-01

    We analyzed the distribution of 54 families of transposable elements (TEs; transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of Drosophila melanogaster, using data from the sequenced genome. The density of LTR and non-LTR retrotransposons (RNA-based elements) was high in regions with low recombination rates, but there was no clear tendency to parallel the recombination rate. However, the density of transposons (DNA-based elements) was significantly negatively correlated with recombination rate. The accumulation of TEs in regions of reduced recombination rate is compatible with selection acting against TEs, as selection is expected to be weaker in regions with lower recombination. The differences in the relationship between recombination rate and TE density that exist between chromosome arms suggest that TE distribution depends on specific characteristics of the chromosomes (chromatin structure, distribution of other sequences), the TEs themselves (transposition mechanism), and the species (reproductive system, effective population size, etc.), that have differing influences on the effect of natural selection acting against the TE insertions.

  6. First report of an HIV-1 triple recombinant of subtypes B, C and F in Buenos Aires, Argentina.

    PubMed

    Pando, María A; Eyzaguirre, Lindsay M; Segura, Marcela; Bautista, Christian T; Marone, Rubén; Ceballos, Ana; Montano, Silvia M; Sánchez, José L; Weissenbacher, Mercedes; Avila, María M; Carr, Jean K

    2006-09-07

    We describe the genetic diversity of currently transmitted strains of HIV-1 in men who have sex with men (MSM) in Buenos Aires, Argentina between 2000 and 2004. Nearly full-length sequence analysis of 10 samples showed that 6 were subtype B, 3 were BF recombinant and 1 was a triple recombinant of subtypes B, C and F. The 3 BF recombinants were 3 different unique recombinant forms. Full genome analysis of one strain that was subtype F when sequenced in pol was found to be a triple recombinant. Gag and pol were predominantly subtype F, while gp120 was subtype B; there were regions of subtype C interspersed throughout. The young man infected with this strain reported multiple sexual partners and sero-converted between May and November of 2004. This study reported for the first time the full genome analysis of a triple recombinant between subtypes B, C and F, that combines in one virus the three most common subtypes in South America.

  7. A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein.

    PubMed

    Li, Yifeng

    2012-02-01

    LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans and it has a multifunctional role in host defense. The peptide has been shown to possess immunomodulatory functions in addition to antimicrobial activity. To provide sufficient material for biological and structural characterization of this important peptide, various systems were developed to produce recombinant LL-37 in Escherichia coli. In one previous approach, LL-37 coding sequence was cloned into vector pET-32a, allowing the peptide to be expressed as a thioredoxin fusion. The fusion protein contains two thrombin cleavage sites: a vector-encoded one that is 30-residue upstream of the insert and an engineered one that is immediately adjacent to LL-37. Cleavage at these two sites shall generate three fragments, one of which is the target peptide. However, when the fusion protein was treated with thrombin, cleavage only occurred at the remote upstream site. A plausible explanation is that the thrombin site adjacent to LL-37 is less accessible due to the peptide's aggregation tendency and cleavage at the remote site generates a fragment, which forms a large aggregate that buries the intended site. In this study, I deleted the vector-encoded thrombin site and S tag in pET-32a, and then inserted the coding sequence for LL-37 plus a thrombin site into the modified vector. Although removing the S tag did not change the oligomeric state of the fusion protein, deletion of the vector-encoded thrombin site allowed the fusion to be cleaved at the engineered site to release LL-37. The released peptide was separated from the carrier and cleavage enzyme by size-exclusion chromatography. This new approach enables a quick production of high quality active LL-37 with a decent amount. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  9. Recombinant yeast with improved ethanol tolerance and related methods of use

    DOEpatents

    Gasch, Audrey P [Madison, WI; Lewis, Jeffrey A [Madison, WI

    2012-05-15

    The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

  10. The complete genome sequence of human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a unique fiber gene.

    PubMed

    Kaján, Győző L; Kajon, Adriana E; Pinto, Alexis Castillo; Bartha, Dániel; Arnberg, Niklas

    2017-10-15

    A novel human adenovirus was isolated from a pediatric case of acute respiratory disease in Panama City, Panama in 2011. The clinical isolate was initially identified as an intertypic recombinant based on hexon and fiber gene sequencing. Based on the analysis of its complete genome sequence, the novel complex recombinant Human mastadenovirus D (HAdV-D) strain was classified into a new HAdV type: HAdV-84, and it was designated Adenovirus D human/PAN/P309886/2011/84[P43H17F84]. HAdV-D types possess usually an ocular or gastrointestinal tropism, and respiratory association is scarcely reported. The virus has a novel fiber type, most closely related to, but still clearly distant from that of HAdV-36. The predicted fiber is hypothesised to bind sialic acid with lower affinity compared to HAdV-37. Bioinformatic analysis of the complete genomic sequence of HAdV-84 revealed multiple homologous recombination events and provided deeper insight into HAdV evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  12. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles

    PubMed Central

    Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  13. A Systematic Analysis of the Structures of Heterologously Expressed Proteins and Those from Their Native Hosts in the RCSB PDB Archive.

    PubMed

    Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan

    2016-01-01

    Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms.

  14. A Systematic Analysis of the Structures of Heterologously Expressed Proteins and Those from Their Native Hosts in the RCSB PDB Archive

    PubMed Central

    Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan

    2016-01-01

    Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms. PMID:27517583

  15. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, C.-K.; Chen, W.-J., E-mail: wjchen@mail.cgu.edu.t; Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan

    2009-11-25

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay onmore » the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.« less

  16. Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression.

    PubMed

    Parrish, C R; Coia, G; Hill, A; Müllbacher, A; Westaway, E G; Blanden, R V

    1991-07-01

    A series of recombinant vaccinia viruses expressing various parts of the entire Kunjin virus (KUN) coding region was used to analyse the cytotoxic T (Tc) cell responses to KUN. CBA/H mice inoculated with KUN or West Nile virus were shown to develop responses to KUN or various vaccinia virus expression constructs in either primary cytotoxic assays, or after secondary stimulation of the Tc cells in vitro with KUN antigens. Tc cells from CBA mice showed the strongest response to target cells infected with recombinant vaccinia viruses expressing parts of the KUN NS3 and NS4A proteins, and only a weak response to the other structural or non-structural proteins. Further analysis of deleted versions of the NS3-NS4A region showed that the main epitope recognized was derived from a sequence of 99 amino acids spanning parts of NS3 and NS4A. No other major epitopes were detected by Tc cells from CBA mice in the remaining 3333 amino acids of the KUN polypeptide.

  17. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells.

    PubMed

    Weyer, U; Possee, R D

    1991-12-01

    A baculovirus transfer vector, pAcUW3, was developed to facilitate the insertion of two influenza virus genes, those encoding the haemagglutinin (HA) and neuraminidase (NA) membrane glycoproteins, into the Autographa californica nuclear polyhedrosis virus genome in a single cotransfection experiment. The NA gene was inserted in place of the polyhedrin coding sequences under the control of the polyhedrin promoter, whereas the HA gene was placed under the control of a copy of the p10 promoter at a site upstream of and in opposite orientation to the polyhedrin promoter. After infection of Spodoptera frugiperda cells with the recombinant virus, AcUW3HANA, both HA and NA were expressed in the very late phase of infection and were shown to be functional in appropriate assays. Immunofluorescence assays demonstrated their localization at the surface of infected insect cells. The expression of both foreign genes in the recombinant virus was found to be stable for at least 12 passages in cell culture.

  18. Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    PubMed Central

    Storchova, Helena; Müller, Karel; Lau, Steffen; Olson, Matthew S.

    2012-01-01

    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species. PMID:22383961

  19. [Studies on antigencity of human immunodeficiency virus type 1 (HIV-1) external glycoprotein as well as its expression in Pichia pastoris].

    PubMed

    Zhao, Li-Hui; Yu, Xiang-Hui; Jiang, Chun-Lai; Wu, Yong-Ge; Shen, Jia-Cong; Kong, Wei

    2007-05-01

    Based on the computer simulation, we analyzed hydrophobicity, potential epitope of recombined subtypes HIV-1 Env protein (851 amino acids) from Guangxi in China. Compared with conservative peptides of other subtypes in env protein, three sequences (469-511aa, 538-674aa, 700-734aa) were selected to recombine into a chimeric gene that codes three conservative epitope peptides with stronger antigencity, and was constructed in the yeast expression plasmid pPICZB. Chimeric proteins were expressed in Pichia pastoris under the induction of methanol, and were analyzed by SDS-PAGE and Westernblot. The results showed that fusion proteins of three-segment antigen were expressed in Pichia pastoris and that specific protein band at the site of 40kD was target protein, which is interacted with HIV-1 serum. The target proteins were purified by metal Ni-sepharose 4B, and were demonstrated to possess good antigenic specificity from the data of ELISA. This chimeric antigen may be used as research and developed into HIV diagnostic reagents.

  20. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.

    PubMed

    Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne

    2015-08-20

    For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Analysis of the 5′ untranslated region (5′UTR) of the alcohol oxidase 1 (AOX1) gene in recombinant protein expression in Pichia pastoris

    PubMed Central

    Staley, Chris A.; Huang, Amy; Nattestad, Maria; Oshiro, Kristin T.; Ray, Laura E.; Mulye, Tejas; Li, Zhiguo Harry; Le, Thu; Stephens, Justin J.; Gomez, Seth R.; Moy, Allison D.; Nguyen, Jackson C.; Franz, Andreas H.; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P.

    2012-01-01

    Pichia pastoris is a methylotrophic yeast that has been genetically engineered to express over one thousand heterologous proteins valued for industrial, pharmaceutical and basic research purposes. In most cases, the 5′ untranslated region (UTR) of the alcohol oxidase 1 (AOX1) gene is fused to the coding sequence of the recombinant gene for protein expression in this yeast. Because the effect of the AOX1 5′UTR on protein expression is not known, site-directed mutagenesis was performed in order to decrease or increase the length of this region. Both of these types of changes were shown to affect translational efficiency, not transcript stability. While increasing the length of the 5′UTR clearly decreased expression of a β-galactosidase reporter in a proportional manner, a deletion analysis demonstrated that the AOX1 5′UTR contains a complex mixture of both positive and negative cis-acting elements, suggesting that the construction of a synthetic 5′UTR optimized for a higher level of expression may be challenging. PMID:22285974

  2. A new RT-PCR assay for the identification of the predominant recombination types in 2C and 3D genomic regions of vaccine-derived poliovirus strains.

    PubMed

    Pliaka, V; Dedepsidis, E; Kyriakopoulou, Z; Mpirli, K; Tsakogiannis, D; Pratti, A; Levidiotou-Stefanou, S; Markoulatos, P

    2010-06-01

    In the post-eradication era of wild polioviruses, the only remaining sources of poliovirus infection worldwide would be the vaccine-derived polioviruses (VDPVs). As the preponderance of countries certified to be polio-free has switched from OPV (oral poliovirus vaccine) to IPV (inactivated poliovirus vaccine), importation of recombinant evolved derivatives of vaccinal strains would have serious implication for public health. To test the robustness of the proposed RT-PCR screening analysis, eleven recombinant vaccine-derived polioviruses that were characterized previously by sequencing by our group, in addition to three recently identified recombinant environmental isolates were assayed. Although the most definitive characterization of VDPVs is by genomic sequencing, in this study we describe a new, inexpensive and broadly applicable RT-PCR assay for the identification of the predominant recombination types S3/Sx in 2C and S2/Sx in 3D genomic regions respectively of VDPVs, that can be readily implemented in laboratories lacking sequencing facilities as a first approach for the early detection of vaccine-derived poliovirus (VDPVs).

  3. Molecular cloning, sequence characterization and recombinant expression of Nanog gene in goat fibroblast cells using lentiviral based expression system.

    PubMed

    Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Kumar, Surender; Kumar, Sudarshan; Mohanty, Ashok K; Kaushik, Jai K; Malakar, Dhruba

    2014-01-01

    Nanog is a homeodomain containing protein which plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in stem cells. Because of its unique expression in stem cells it is also regarded as pluripotency marker. In this study goat Nanog (gNanog) gene has been amplified, cloned and characterized at sequence level with successful over-expression in CHO-K1 cell line using a lentiviral based system. gNanog ORF is 903 bp long which codes for Nanog protein of size 300 amino acids (aas). Complete nucleotide sequence shows some evolutionary mutation in goat in comparision to other species. Protein sequence of goat is highly similar to other species. Overall, gNanog nucleotide sequence and predicted protein sequence showed high similarity and minimum divergence with cattle (96 % identity/4 % divergence) and buffalo (94/5 %) while low similarity and high divergence with pig (84/15 %), human (81/23 %) and mouse (69/40 %) indicating evolutionary closeness of gNanog to cattle and buffalo. gNanog lentiviral expression construct was prepared for over-expression of Nanog gene in adult goat fibroblast cells. Lentiviral expression construct of Nanog enabled continuous protein expression for induction and maintenance of pluripotency. Western blotting revealed the expression of Nanog gene at protein level which supported that the lentiviral expression system is highly promising for Nanog protein expression in differentiated goat cell.

  4. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  5. Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708.

    PubMed Central

    Baron, S F; Franklund, C V; Hylemon, P B

    1991-01-01

    Southern blot analysis indicated that the gene encoding the constitutive, NADP-linked bile acid 7 alpha-hydroxysteroid dehydrogenase of Eubacterium sp. strain VPI 12708 was located on a 6.5-kb EcoRI fragment of the chromosomal DNA. This fragment was cloned into bacteriophage lambda gt11, and a 2.9-kb piece of this insert was subcloned into pUC19, yielding the recombinant plasmid pBH51. DNA sequence analysis of the 7 alpha-hydroxysteroid dehydrogenase gene in pBH51 revealed a 798-bp open reading frame, coding for a protein with a calculated molecular weight of 28,500. A putative promoter sequence and ribosome binding site were identified. The 7 alpha-hydroxysteroid dehydrogenase mRNA transcript in Eubacterium sp. strain VPI 12708 was about 0.94 kb in length, suggesting that it is monocistronic. An Escherichia coli DH5 alpha transformant harboring pBH51 had approximately 30-fold greater levels of 7 alpha-hydroxysteroid dehydrogenase mRNA, immunoreactive protein, and specific activity than Eubacterium sp. strain VPI 12708. The 7 alpha-hydroxysteroid dehydrogenase purified from the pBH51 transformant was similar in subunit molecular weight, specific activity, and kinetic properties to that from Eubacterium sp. strain VPI 12708, and it reached with antiserum raised against the authentic enzyme on Western immunoblots. Alignment of the amino acid sequence of the 7 alpha-hydroxysteroid dehydrogenase with those of 10 other pyridine nucleotide-linked alcohol/polyol dehydrogenases revealed six conserved amino acid residues in the N-terminal regions thought to function in coenzyme binding. Images PMID:1856160

  6. Genetic diversity and recombination analysis of sweepoviruses from Brazil

    PubMed Central

    2012-01-01

    Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

  7. Analysis of HIV Type 1 BF Recombinant Sequences from South America Dates the Origin of CRF12_BF to a Recombination Event in the 1970s

    PubMed Central

    Dilernia, Dario A.; Jones, Leandro R.; Pando, Maria A.; Rabinovich, Roberto D.; Damilano, Gabriel D.; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel

    2011-01-01

    Abstract HIV-1 epidemics in South America are believed to have originated in part from the subtype B epidemic initiated in the Caribbean/North America region. However, circulation of BF recombinants in similar proportions was extensively reported. Information currently shows that many BF recombinants share a recombination structure similar to that found in the CRF12_BF. In the present study, analyzing a set of 405 HIV sequences, we identified the most likely origin of the BF epidemic in an early event of recombination. We found that the subtype B epidemics in South America analyzed in the present study were initiated by a founder event that occurred in the early 1970s, a few years after the introduction of these strains in the Americas. Regarding the F/BF recombinant epidemics, by analyzing a subtype F genomic segment within the viral gene gag present in the majority of the BF recombinants, we found evidence of a geographic divergence very soon after the introduction of subtype F strains in South America. Moreover, through analysis of a subtype B segment present in all the CRF12_BF-like recombination structure, we estimated the circulation of the subtype B strain that gave rise to that recombinant structure around the same time period estimated for the introduction of subtype F strains. The HIV epidemics in South America were initiated in part through a founder event driven by subtype B strains coming from the previously established epidemic in the north of the continent. A second introduction driven by subtype F strains is likely to have encountered the incipient subtype B epidemic that soon after their arrival recombined with them, originating the BF epidemic in the region. These results may explain why in South America the majority of F sequences are found as BF recombinants. PMID:20919926

  8. Genome sequence analysis of dengue virus 1 isolated in Key West, Florida.

    PubMed

    Shin, Dongyoung; Richards, Stephanie L; Alto, Barry W; Bettinardi, David J; Smartt, Chelsea T

    2013-01-01

    Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.

  9. A network approach to analyzing highly recombinant malaria parasite genes.

    PubMed

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  10. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    PubMed Central

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  11. A functional analysis of the spacer of V(D)J recombination signal sequences.

    PubMed

    Lee, Alfred Ian; Fugmann, Sebastian D; Cowell, Lindsay G; Ptaszek, Leon M; Kelsoe, Garnett; Schatz, David G

    2003-10-01

    During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jbeta2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a "digital" requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an "analog" manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for "RSS information content." The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein-DNA interactions in various biological systems.

  12. Recombinative Generalization: An Exploratory Study in Musical Reading

    PubMed Central

    Perez, William Ferreira; de Rose, Julio C

    2010-01-01

    The present study aimed to extend the findings of recombinative generalization research in alphabetical reading and spelling to the context of musical reading. One participant was taught to respond discriminatively to six two-note sequences, choosing the corresponding notation on the staff in the presence of each sequence. When novel three- and four-note sequences were presented, she selected the corresponding notation. These results suggest the generality of previous research to the context of musical teaching. PMID:22477462

  13. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene Identification, Expression, and Biochemical Properties of Recombinant Proteins

    DTIC Science & Technology

    2013-01-01

    predicted amino acid sequences of the three encoded BmAChEs were no more closely related to one another than AChEs from different organisms and their...solely on nucleotide and amino acid sequence similarity; however, the cholinesterase gene family contains a number of related enzymes and structural...acetylcholinesterase of P. papatasi was cloned, sequenced , and expressed in the baculo- virus system to generate a recombinant enzyme for biochemical

  14. CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing.

    PubMed

    Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie

    2017-05-15

    B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.

  16. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses.

    PubMed

    Henzy, Jamie E; Gifford, Robert J; Johnson, Welkin E; Coffin, John M

    2014-03-01

    Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation of novel retroviral lineages. Retroviruses insert viral DNA into the host DNA during infection, and therefore vertebrate genomes contain a "fossil record" of endogenous retroviral sequences thought to represent past infections of germ cells. We examined endogenous retroviral sequences in avian genomes for evidence of recombination events involving env. Although cross-species transmissions of retroviruses between vertebrate classes (from mammals to birds, for example) are thought to be rare, we here characterized a group of avian retroviruses that acquired an env sequence from a mammalian retrovirus. We offer evidence that this unusual recombinant circulated among songbirds 2 to 4 million years ago and has remained active into the recent past.

  17. The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids.

    PubMed

    Yi, Dong-Keun; Lee, Hae-Lim; Sun, Byung-Yun; Chung, Mi Yoon; Kim, Ki-Joong

    2012-05-01

    This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or intron regions. These medium size repeats may contribute to developing a cp genome-specific gene introduction vector because the region may use for specific recombination sites.

  18. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family

    PubMed Central

    Martin, Guillaume E.; Rousseau-Gueutin, Mathieu; Cordonnier, Solenn; Lima, Oscar; Michon-Coudouel, Sophie; Naquin, Delphine; de Carvalho, Julie Ferreira; Aïnouche, Malika; Salmon, Armel; Aïnouche, Abdelkader

    2014-01-01

    Background and Aims To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the ‘inverted repeat-lacking clade’, IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. Methods The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. Key Results The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip–flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. Conclusions This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide new insights into the evolutionary landscape of the legume plastome. PMID:24769537

  19. Identification of Two New HIV-1 Circulating Recombinant Forms (CRF87_cpx and CRF88_BC) from Reported Unique Recombinant Forms in Asia.

    PubMed

    Hu, Yihong; Wan, Zhenzhou; Zhou, Yan-Heng; Smith, Davey; Zheng, Yong-Tang; Zhang, Chiyu

    2017-04-01

    The on-going generation of HIV-1 intersubtype recombination has led to new circulating recombinant forms (CRFs) and unique recombinant forms (URFs) in Asia. In this study, we evaluated whether previously reported URFs were actually CRFs. All available complete or near full-length HIV-1 URF sequences from Asia were retrieved from the HIV Los Alamos National Laboratory Sequence database, and phylogenetic, transmission cluster, and bootscan analyses were performed using MEGA 6.0, Cluster Picker 1.2.1, and SimPlot3.5.1. According to the criterion of new CRFs, two new HIV-1 CRFs (CRF87_cpx and CRF88_BC) were identified from these available URFs. CRF87_cpx comprised HIV-1 subtypes B, C, and CRF01_AE, and CRF88_BC comprised subtypes B and C. HIV Blast and bootscan analysis revealed that besides the three representative strains, there were two additional CRF87_cpx strains. Furthermore, we defined seven dominant URFs (dURF01-dURF07), each of which contained two strains sharing same recombination map and can be used as sequence references to facilitate the finding of new potential CRFs in future. These results will benefit the molecular epidemiological investigation of HIV-1 in Asia.

  20. The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of Telomeres

    PubMed Central

    Mendez-Bermudez, Aaron; Hidalgo-Bravo, Alberto; Cotton, Victoria E.; Gravani, Athanasia; Jeyapalan, Jennie N.; Royle, Nicola J.

    2012-01-01

    Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN– ALT+ cell line lacks the class of complex telomere mutations attributed to inter-telomeric recombination in other ALT+ cell lines. This suggests that WRN facilitates inter-telomeric recombination when there are sequence differences between the donor and recipient molecules or that sister-telomere interactions are suppressed in the presence of WRN and this promotes inter-telomeric recombination. Depleting BLM in the WRN– ALT+ cell line increased the mutation frequency at telomeres and at the MS32 minisatellite, which is a marker of ALT. The absence of complex telomere mutations persisted in BLM-depleted clones, and there was a clear increase in sequence homogenization across the telomere and MS32 repeat arrays. These data indicate that BLM suppresses unequal sister chromatid interactions that result in excessive homogenization at MS32 and at telomeres in ALT+ cells. PMID:22989712

  1. The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of Telomeres.

    PubMed

    Mendez-Bermudez, Aaron; Hidalgo-Bravo, Alberto; Cotton, Victoria E; Gravani, Athanasia; Jeyapalan, Jennie N; Royle, Nicola J

    2012-11-01

    Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN- ALT+ cell line lacks the class of complex telomere mutations attributed to inter-telomeric recombination in other ALT+ cell lines. This suggests that WRN facilitates inter-telomeric recombination when there are sequence differences between the donor and recipient molecules or that sister-telomere interactions are suppressed in the presence of WRN and this promotes inter-telomeric recombination. Depleting BLM in the WRN- ALT+ cell line increased the mutation frequency at telomeres and at the MS32 minisatellite, which is a marker of ALT. The absence of complex telomere mutations persisted in BLM-depleted clones, and there was a clear increase in sequence homogenization across the telomere and MS32 repeat arrays. These data indicate that BLM suppresses unequal sister chromatid interactions that result in excessive homogenization at MS32 and at telomeres in ALT+ cells.

  2. Molecular Cloning of an Immunogenic Protein of Baylisascaris procyonis and Expression in Escherichia coli for Use in Developing Improved Serodiagnostic Assays▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Hancock, Kathy; Kazacos, Kevin R.

    2010-01-01

    Larva migrans caused by Baylisascaris procyonis is an important zoonotic disease. Current serological diagnostic assays for this disease depend on the use of the parasite's larval excretory-secretory (ES) antigens. In order to identify genes encoding ES antigens and to generate recombinant antigens for use in diagnostic assays, construction and immunoscreening of a B. procyonis third-stage larva cDNA expression library was performed and resulted in identification of a partial-length cDNA clone encoding an ES antigen, designated repeat antigen 1 (RAG1). The full-length rag1 cDNA contained a 753-bp open reading frame that encoded a protein of 250 amino acids with 12 tandem repeats of a 12-amino-acid long sequence. The rag1 genomic DNA revealed a single intron of 837 bp that separated the 753-bp coding sequence into two exons delimited by canonical splice sites. No nucleotide or amino acid sequences present in the GenBank databases had significant similarity with those of RAG1. We have cloned, expressed, and purified the recombinant RAG1 (rRAG1) and analyzed its diagnostic potential by enzyme-linked immunosorbent assay. Anti-Baylisascaris species-specific rabbit serum showed strong reactivity to rRAG1, while only minimal to no reactivity was observed with sera against the related ascarids Toxocara canis and Ascaris suum, strongly suggesting the specificity of rRAG1. On the basis of these results, the identified RAG1 appears to be a promising diagnostic antigen for the development of serological assays for specific detection of B. procyonis larva migrans. PMID:20926699

  3. Segregation and recombination of a multipartite mitochondrial DNA in populations of the potato cyst nematode Globodera pallida.

    PubMed

    Armstrong, Miles R; Husmeier, Dirk; Phillips, Mark S; Blok, Vivian C

    2007-06-01

    The discovery that the potato cyst nematode Globodera pallida has a multipartite mitochondrial DNA (mtDNA) composed, at least in part, of six small circular mtDNAs (scmtDNAs) raised a number of questions concerning the population-level processes that might act on such a complex genome. Here we report our observations on the distribution of some scmtDNAs among a sample of European and South American G. pallida populations. The occurrence of sequence variants of scmtDNA IV in population P4A from South America, and that particular sequence variants are common to the individuals within a single cyst, is described. Evidence for recombination of sequence variants of scmtDNA IV in P4A is also reported. The mosaic structure of P4A scmtDNA IV sequences was revealed using several detection methods and recombination breakpoints were independently detected by maximum likelihood and Bayesian MCMC methods.

  4. [Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].

    PubMed

    Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing

    2010-10-01

    This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.

  5. Evolutionary dynamics of Newcastle disease virus

    USGS Publications Warehouse

    Miller, P.J.; Kim, L.M.; Ip, Hon S.; Afonso, C.L.

    2009-01-01

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution. ?? 2009 Elsevier Inc.

  6. Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus.

    PubMed

    Arockiaraj, Jesu; Bhatt, Prasanth; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah

    2015-08-01

    In this study, we have reported the molecular information of chemokine-19 (Chem19) from striped murrel Channa striatus (Cs). CsCC-Chem19 cDNA sequence was 555 base pair (bp) in length which is 68bp 5' untranslated region (UTR), 339bp translated region and 149bp 3' UTR. The translated region is encoded for a polypeptide of 112 amino acids. CsCC-Chem19 peptide contains a signal sequence between 1 and 26 and an interleukin (IL) 8 like domain between 24 and 89. The multiple sequence alignment showed a 'DCCL' motif, an indispensable motif present in all CC chemokines which was conserved throughout the evolution. Phylogenetic tree showed that CsCC-Chem19 formed a cluster with chemokine 19 from fishes. Secondary structure of CsCC-Chem19 revealed that the peptide contains maximum amount of coils (61.6%) compared to α-helices (25.9%%) and β-sheet (12.5%). Further, 3D analysis indicated that the cysteine residues at 33, 34, 59 and 75 making the disulfide bridges as 33 = 59 and 34 = 75. Significantly (P < 0.05) highest CsCC-Chem19 mRNA expression was observed in blood and it was up-regulated upon fungus and bacterial infection. Utilizing the coding region of CsCC-Chem19, recombinant CsCC-Chem19 protein was produced. The recombinant CsCC-Chem19 protein induced the cellular proliferation and respiratory burst activity of C. striatus peripheral blood leukocytes (PBL) in a concentration dependent manner. Moreover, the chemotactic activity showed that the recombinant CsCC-Chem19 significantly (P < 0.05) enhanced the movement of PBL of C. striatus. Conclusively, CsCC-Chem19 is a 6C CC chemokine having an ability to perform both inflammatory and homeostatic functions. However, further research is necessary to understand the potential of 6C CC chemokine 19 of C. striatus, particularly their regulatory ability on different cellular components in the defense system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12.

    PubMed

    Colbere-Garapin, F; Chousterman, S; Horodniceanu, F; Kourilsky, P; Garapin, A C

    1979-08-01

    A herpes simplex virus DNA fragment that is produced by digestion with BamHI endonuclease and carries the thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) gene has been cloned in Escherichia coli. A recombinat plasmid, pFG5, has been analyzed extensively and a detailed restriction map is presented. pFG5 DNA efficiently transforms TK- mouse L cells. The TK coding sequence in the cloned fragment has been localized and a smaller recombinant plasmid, pAG0, also carrying an active TK gene, has been constructed to serve as a more convenient vector for transfer, into TK- cells, of genes previously cloned in E. coli.

  8. Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data.

    PubMed

    Rask, Thomas S; Petersen, Bent; Chen, Donald S; Day, Karen P; Pedersen, Anders Gorm

    2016-04-22

    Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA, an open reading frame. Pyrosequencing errors, consisting mainly of nucleotide insertions and deletions, are on the other hand likely to disrupt open reading frames. Such an inverse relationship between errors and expectation based on prior knowledge can be used advantageously to guide the process known as basecalling, i.e. the inference of nucleotide sequence from raw sequencing data. The new basecalling method described here, named Multipass, implements a probabilistic framework for working with the raw flowgrams obtained by pyrosequencing. For each sequence variant Multipass calculates the likelihood and nucleotide sequence of several most likely sequences given the flowgram data. This probabilistic approach enables integration of basecalling into a larger model where other parameters can be incorporated, such as the likelihood for observing a full-length open reading frame at the targeted region. We apply the method to 454 amplicon pyrosequencing data obtained from a malaria virulence gene family, where Multipass generates 20 % more error-free sequences than current state of the art methods, and provides sequence characteristics that allow generation of a set of high confidence error-free sequences. This novel method can be used to increase accuracy of existing and future amplicon sequencing data, particularly where extensive prior knowledge is available about the obtained sequences, for example in analysis of the immunoglobulin VDJ region where Multipass can be combined with a model for the known recombining germline genes. Multipass is available for Roche 454 data at http://www.cbs.dtu.dk/services/MultiPass-1.0 , and the concept can potentially be implemented for other sequencing technologies as well.

  9. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis

    PubMed Central

    Obuchowski, Michał; Nidzworski, Dawid

    2016-01-01

    Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human—avian—swine—human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system. PMID:27902762

  10. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    DOEpatents

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  11. Generation of 2A-linked multicistronic cassettes by recombinant PCR.

    PubMed

    Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A

    2012-02-01

    The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.

  12. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region.

    PubMed

    Muslin, Claire; Joffret, Marie-Line; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis

    2015-01-01

    Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species' C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5' untranslated region (5' UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5' UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5' UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5' UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5' UTR. By contrast to the recombination of the cVDPV with the 5' UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5' UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages.

  13. Spectroscopic Measurements of Hydrogen Ion Temperature During Divertor Recombination

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Skinner, C. H.; Karney, C. F. F.

    1998-11-01

    We explore the possibility of using the neutral H_α spectral line profile to measure the ion temperature Ti in a recombining plasma. Since the H_α emissions due to recombination are larger than those due to other mechanisms, interference from non-recombining regions contributing to the chord integrated data is insignificant. A chord integrated, Doppler and Stark broadened H_α spectrum is simulated by the DEGAS 2 Monte Carlo neutral transport code(D. Stotler and C. Karney, Contrib. Plasma Phys.) 34, 392 (1994). using assumed plasma conditions. The application of a simple fitting procedure to this spectrum yields an average electron density ne and Ti consistent with the assumed plasma parameters if the spectrum is dominated by recombination from a region of modest ne variation. The interpretation of experimental data is complicated by Zeeman splitting and light reflection off surfaces. Ion temperature measurements by H_α spectroscopy appear feasible within the context of a model for the entire divertor plasma that takes these effects into account.

  14. Molecular and biochemical characterization of natural and recombinant phosphoglycerate kinase B from Trypanosoma rangeli.

    PubMed

    Villafraz, O; Rondón-Mercado, R; Cáceres, A J; Concepción, J L; Quiñones, W

    2018-04-01

    T. rangeli epimastigotes contain only a single detectable phosphoglycerate kinase (PGK) enzyme in their cytosol. Analysis of this parasite's recently sequenced genome showed a gene predicted to code for a PGK with the same molecular mass as the natural enzyme, and with a cytosolic localization as well. In this work, we have partially purified the natural PGK from T. rangeli epimastigotes. Furthermore, we cloned the predicted PGK gene and expressed it as a recombinant active enzyme. Both purified enzymes were kinetically characterized and displayed similar substrate affinities, with Km ATP values of 0.13 mM and 0.5 mM, and Km 3PGA values of 0.28 mM and 0.71 mM, for the natural and recombinant enzyme, respectively. The optimal pH for activity of both enzymes was in the range of 8-10. Like other PGKs, TrPGK is monomeric with a molecular mass of approximately 44 kDa. The enzyme's kinetic characteristics are comparable with those of cytosolic PGK isoforms from related trypanosomatid species, indicating that, most likely, this enzyme is equivalent with the PGKB that is responsible for generating ATP in the cytosol of other trypanosomatids. This is the first report of a glycolytic enzyme characterization from T. rangeli. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Base Flipping in V(D)J Recombination: Insights into the Mechanism of Hairpin Formation, the 12/23 Rule, and the Coordination of Double-Strand Breaks▿ †

    PubMed Central

    Bischerour, Julien; Lu, Catherine; Roth, David B.; Chalmers, Ronald

    2009-01-01

    Tn5 transposase cleaves the transposon end using a hairpin intermediate on the transposon end. This involves a flipped base that is stacked against a tryptophan residue in the protein. However, many other members of the cut-and-paste transposase family, including the RAG1 protein, produce a hairpin on the flanking DNA. We have investigated the reversed polarity of the reaction for RAG recombination. Although the RAG proteins appear to employ a base-flipping mechanism using aromatic residues, the putatively flipped base is not at the expected location and does not appear to stack against any of the said aromatic residues. We propose an alternative model in which a flipped base is accommodated in a nonspecific pocket or cleft within the recombinase. This is consistent with the location of the flipped base at position −1 in the coding flank, which can be occupied by purine or pyrimidine bases that would be difficult to stabilize using a single, highly specific, interaction. Finally, during this work we noticed that the putative base-flipping events on either side of the 12/23 recombination signal sequence paired complex are coupled to the nicking steps and serve to coordinate the double-strand breaks on either side of the complex. PMID:19720743

  16. Identification of a new hepatitis B virus recombinant D2/D3 in the city of São Paulo, Brazil.

    PubMed

    Santana, Luiz Claudio; Mantovani, Nathalia Pena; Ferreira, Maira Cicero; Arnold, Rafael; Duro, Rodrigo Lopes Sanz; Ferreira, Paulo Roberto Abrão; Hunter, James Richard; Leal, Élcio; Diaz, Ricardo Sobhie; Komninakis, Shirley Vasconcelos

    2017-02-01

    Two hundred forty million people are chronically infected with hepatitis B virus (HBV) worldwide. The rise of globalization has facilitated the emergence of novel HBV recombinants and genotypes. We evaluated HBV genotypes and recombinants, mutations associated with resistance to antivirals (AVs), progression of hepatic illness, and inefficient hepatitis B vaccination responses in chronically infected individuals in the city of São Paulo, Brazil. Forty-five full-length and 24 partial-length sequences were obtained. The genotype distribution was as follows: A (66.7%), D (15.9%), F (11.6%) and C (4.3%). We describe a new recombinant (D2/D3), confirmed through next-generation sequencing (NGS) and reconstruction of the quasispecies sequences in silico. Primary resistance and major vaccine escape mutations were not found. We did, however, find mutations in the S region that might may be related to HBV antigenicity changes, as well as Pre-S deletions. The precore/core mutations A1762T + G1764A (40.9%) were found mostly in genotypes A and D, and G1896A (29.55%) was more frequent in genotype D than in genotype A. The genotypic distribution reflects the history of Brazilian immigration. This is the first description of recombination between genotypes D2 and D3 in Brazil. It is also the first confirmation through NGS and reconstruction of the quasispecies in silico. However, little is known about the response to treatment of recombinants. This demonstrates the need for molecular epidemiology studies involving the analysis of full-length HBV sequences.

  17. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization.

    PubMed

    Vanz, Ana Ls; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-04-04

    Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.

  18. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community. PMID:18394164

  19. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India.

    PubMed

    Bondre, Vijay P; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N

    2016-11-01

    Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections.

  20. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India

    PubMed Central

    Bondre, Vijay P.; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N.

    2016-01-01

    Background & objectives: Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Methods: Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Results: Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Interpretation & conclusions: Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections. PMID:28361829

  1. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    PubMed

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  2. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    PubMed

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ancient Recombination Events between Human Herpes Simplex Viruses

    PubMed Central

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.

    2017-01-01

    Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565

  4. Great majority of recombination events in Arabidopsis are gene conversion events

    PubMed Central

    Yang, Sihai; Yuan, Yang; Wang, Long; Li, Jing; Wang, Wen; Liu, Haoxuan; Chen, Jian-Qun; Hurst, Laurence D.; Tian, Dacheng

    2012-01-01

    The evolutionary importance of meiosis may not solely be associated with allelic shuffling caused by crossing-over but also have to do with its more immediate effects such as gene conversion. Although estimates of the crossing-over rate are often well resolved, the gene conversion rate is much less clear. In Arabidopsis, for example, next-generation sequencing approaches suggest that the two rates are about the same, which contrasts with indirect measures, these suggesting an excess of gene conversion. Here, we provide analysis of this problem by sequencing 40 F2 Arabidopsis plants and their parents. Small gene conversion tracts, with biased gene conversion content, represent over 90% (probably nearer 99%) of all recombination events. The rate of alteration of protein sequence caused by gene conversion is over 600 times that caused by mutation. Finally, our analysis reveals recombination hot spots and unexpectedly high recombination rates near centromeres. This may be responsible for the previously unexplained pattern of high genetic diversity near Arabidopsis centromeres. PMID:23213238

  5. Molecular cloning, expression and characterization of Pru a 1, the major cherry allergen.

    PubMed

    Scheurer, S; Metzner, K; Haustein, D; Vieths, S

    1997-06-01

    A high percentage of birch pollen allergic patients experiences food hypersensitivity reactions after ingestion of several fruits and vegetables. Previous work demonstrated common epitopes on an allergen of Mr 18,000 from sweet cherry (Prunus avium) and Bet v 1, the major allergen from birch pollen. N-terminal amino acid sequencing showed a sequence identity of 67% with Bet v 1. Here we report the cloning and cDNA sequencing of this cherry allergen. The entire deduced amino acid sequence described a protein of Mr 17,700 with 59.1% identity to Bet v 1. High degrees of identity in the range of 40 to 60% were also found with related allergens from other kinds of tree pollen and plant foods as well as with stress-induced proteins from food plants such as parsley, potato and soya. The coding DNA of the cherry protein was cloned into vector pET-16b and expressed in E. coli strain BL21(DE3) as a His-tag fusion protein. As shown by SDS-PAGE, the apparent molecular masses of the nonfusion protein and the natural allergen were identical. The fusion protein showed high IgE binding potency when sera from patients allergic to cherry were tested by immunoblotting and enzyme allergosorbent tests. Moreover, it cross-reacted strongly with IgE specific for the natural counterpart and for Bet v 1. The high biological activity of the recombinant fusion protein was further confirmed by the induction of a strong histamine release in basophils from cherry-allergic patients. Since sera from 17/19 of such patients contained IgE against this allergen it was classified as a major allergen and named Pru a 1. Recombinant Pru a 1 mimics most of the allergenic potency of cherry extract and hence could be a useful tool for studying the molecular and immunological properties of pollen related food allergens.

  6. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli.

    PubMed Central

    Perelle, S; Gibert, M; Boquet, P; Popoff, M R

    1993-01-01

    The iota toxin which is produced by Clostridium perfringens type E, is a binary toxin consisting of two independent polypeptides: Ia, which is an ADP-ribosyltransferase, and Ib, which is involved in the binding and internalization of the toxin into the cell. Two degenerate oligonucleotide probes deduced from partial amino acid sequence of each component of C. spiroforme toxin, which is closely related to the iota toxin, were used to clone three overlapping DNA fragments containing the iota-toxin genes from C. perfringens type E plasmid DNA. Two genes, in the same orientation, coding for Ia (387 amino acids) and Ib (875 amino acids) and separated by 243 noncoding nucleotides were identified. A predicted signal peptide was found for each component, and the secreted Ib displays two domains, the propeptide (172 amino acids) and the mature protein (664 amino acids). The Ia gene has been expressed in Escherichia coli and C. perfringens, under the control of its own promoter. The recombinant polypeptide obtained was recognized by Ia antibodies and ADP-ribosylated actin. The expression of the Ib gene was obtained in E. coli harboring a recombinant plasmid encompassing the putative promoter upstream of the Ia gene and the Ia and Ib genes. Two residues which have been found to be involved in the NAD+ binding site of diphtheria and pseudomonas toxins are conserved in the predicted Ia sequence (Glu-14 and Trp-19). The predicted amino acid Ib sequence shows 33.9% identity with and 54.4% similarity to the protective antigen of the anthrax toxin complex. In particular, the central region of Ib, which contains a predicted transmembrane segment (Leu-292 to Ser-308), presents 45% identity with the corresponding protective antigen sequence which is involved in the translocation of the toxin across the cell membrane. Images PMID:8225592

  7. Sequence comparison in the crossover region of an oncogenic avian retrovirus recombinant and its nononcogenic parent: Genetic regions that control growth rate and oncogenic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsichlis, P.N.; Donehower, L.; Hager, G.

    1982-11-01

    NTRE is an avian retrovirus recombinant of the endogeneous nononcogenic Rous-associated virus-0 (RAV-0) and the oncogenic, exogeneous, transformation-defective (td) Prague strain of Rous sarcoma virus B (td-PrRSV-B). Oligonucleotide mapping had shown that the recombinant virus is indistinguishable from its RAV-0 parent except for the 3'-end sequences, which were derived from td-PrRSV-B. However, the virus exhibits properties which are typical of an exogenous virus: it grows to high titers in tissue culture, and it is oncogenic in vivo. To accurately define the genetic region responsible for these properties, the authors determined the nucleotide sequences of the recombinant and its RAV-0 parentmore » by using molecular clones of their DNA. These were compared with sequences already available for PrRSV-C, a virus closely related to the exogenous parent td-PrRSV-B. The results suggested that the crossover event which generated NTRE 7 took place in a region -501 to -401 nucleotides from the 3' end of the td-PrRSV parental genome and that sequences to the right of the recombination region were responsible for its growth properties and oncogenic potential. Since the exogenous-virus-specific sequences are expected to be missing from transformation-defective mutants of the Schmidt-Ruppin strain of RSV, which, like other exogeneous viruses, grow to high tiers in tissue culture and are oncogenic in vivo, the authors concluded that the growth properties and oncogenic potential of the exogeneous viruses are determined by sequences in the U3 region of the long terminal repeat. However, the authors propose that the exogeneous-virus-specific region may play a role in determining the oncogenic spectrum of a given oncogenic virus.« less

  8. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c.

    PubMed Central

    Ernst, J F; Stewart, J W; Sherman, F

    1981-01-01

    DNA sequence analysis of a cloned fragment directly established that the cyc1-11 mutation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae is a two-base-pair substitution that changes the CCA proline codon at amino acid position 76 to a UAA nonsense codon. Analysis of 11 revertant proteins and one cloned revertant gene showed that reversion of the cyc1-11 mutation can occur in three ways: a single base-pair substitution, which produces a serine replacement at position 76; recombination with the nonallelic CYC7 gene of iso-2-cytochrome c, which causes replacement of a segment in the cyc1-11 gene by the corresponding segment of the CYC7 gene; and either a two-base-pair substitution or recombination with the CYC7 gene, which causes the formation of the normal iso-1-cytochrome c sequence. These results demonstrate the occurrence of low frequencies of recombination between nonallelic genes having extensive but not complete homology. The formation of composite genes that share sequences from nonallelic genes may be an evolutionary mechanism for producing protein diversities and for maintaining identical sequences at different loci. Images PMID:6273865

  9. Inference from Samples of DNA Sequences Using a Two-Locus Model

    PubMed Central

    Griffiths, Robert C.

    2011-01-01

    Abstract Performing inference on contemporary samples of DNA sequence data is an important and challenging task. Computationally intensive methods such as importance sampling (IS) are attractive because they make full use of the available data, but in the presence of recombination the large state space of genealogies can be prohibitive. In this article, we make progress by developing an efficient IS proposal distribution for a two-locus model of sequence data. We show that the proposal developed here leads to much greater efficiency, outperforming existing IS methods that could be adapted to this model. Among several possible applications, the algorithm can be used to find maximum likelihood estimates for mutation and crossover rates, and to perform ancestral inference. We illustrate the method on previously reported sequence data covering two loci either side of the well-studied TAP2 recombination hotspot. The two loci are themselves largely non-recombining, so we obtain a gene tree at each locus and are able to infer in detail the effect of the hotspot on their joint ancestry. We summarize this joint ancestry by introducing the gene graph, a summary of the well-known ancestral recombination graph. PMID:21210733

  10. Interchromosomal recombination in Zea mays.

    PubMed Central

    Hu, W; Timmermans, M C; Messing, J

    1998-01-01

    A new allele of the 27-kD zein locus in maize has been generated by interchromosomal recombination between chromosomes of two different inbred lines. A continuous patch of at least 11,817 bp of inbred W64A, containing the previously characterized Ra allele of the 27-kD zein gene, has been inserted into the genome of A188 by a single crossover. While both junction sequences are conserved, sequences of the two homologs between these junctions differ considerably. W64A contains the 7313-bp-long retrotransposon, Zeon-1. A188 contains a second copy of the 27-kD zein gene and a 2-kb repetitive element. Therefore, recombination results in a 7.3-kb insertion and a 14-kb deletion compared to the original S+A188 allele. If nonpairing sequences are looped out, 206 single base changes, frequently clustered, are present. The structure of this allele may explain how a recently discovered example of somatic recombination occurred in an A188/W64A hybrid. This would indicate that despite these sequence differences, pairing between these alleles could occur early during plant development. Therefore, such a somatically derived chimeric chromosome can also be heritable and give rise to new alleles. PMID:9799274

  11. Epidemiology and molecular characterization of chicken anaemia virus from commercial and native chickens in Taiwan.

    PubMed

    Ou, S-C; Lin, H-L; Liu, P-C; Huang, H-J; Lee, M-S; Lien, Y-Y; Tsai, Y-L

    2018-04-25

    Chicken infectious anaemia (CIA) is a disease with a highly economic impact in the poultry industry. The infected chickens are characterized by aplastic anaemia and extreme immunosuppression, followed by the increased susceptibility to secondary infectious pathogens and suboptimal immune responses for vaccination. Commercially available CIA vaccines are routinely used in the breeders in Taiwan to protect their progeny with maternal-derived antibodies. However, CIA cases still occur in the field and little is known about the genetic characteristics of Taiwanese chicken anaemia viruses (CAVs). In this study, CAV DNA was detected in 72 of 137 flocks collected during 2010-2015. Among the PCR-positive samples, the coding regions of 51 CAVs were sequenced. Phylogenetic analysis of the VP1 gene revealed that, although most of Taiwanese CAVs belonged to genotypes II and III, some isolates were clustered into a novel genotype (genotype IV). Moreover, a Taiwanese isolate in this novel genotype IV appeared to be derived from a recombination event between genotypes II and III viruses. Five Taiwanese CAV isolates were highly similar to the vaccine strains, 26P4 or Del-Ros. Taken together, these results indicate that the sequences of CAVs in Taiwan are variable, and inter-genotypic recombination had occurred between viruses of different genotypes. Moreover, vaccine-like strains might induce clinical signs of CIA in chickens. Our findings could be useful for understanding the evolution of CAVs and development of a better control strategy for CIA. © 2018 Blackwell Verlag GmbH.

  12. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency.

    PubMed

    Chao, Mei; Lin, Chia-Chi; Lin, Feng-Ming; Li, Hsin-Pai; Iang, Shan-Bei

    2015-12-01

    Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.

  13. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively

    PubMed Central

    Mikalová, Lenka; Strouhal, Michal; Oppelt, Jan; Grange, Philippe Alain; Janier, Michel; Benhaddou, Nadjet; Dupin, Nicolas; Šmajs, David

    2017-01-01

    Background Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). An unusual human TEN 11q/j isolate was obtained from a syphilis-like primary genital lesion from a patient that returned to France from Pakistan. Methodology/Principal findings The TEN 11q/j isolate was characterized using nested PCR followed by Sanger sequencing and/or direct Illumina sequencing. Altogether, 44 chromosomal regions were analyzed. Overall, the 11q/j isolate clustered with TEN strains Bosnia A and Iraq B as expected from previous TEN classification of the 11q/j isolate. However, the 11q/j sequence in a 505 bp-long region at the TP0488 locus was similar to Treponema pallidum subsp. pallidum (TPA) strains, but not to TEN Bosnia A and Iraq B sequences, suggesting a recombination event at this locus. Similarly, the 11q/j sequence in a 613 bp-long region at the TP0548 locus was similar to Treponema pallidum subsp. pertenue (TPE) strains, but not to TEN sequences. Conclusions/Significance A detailed analysis of two recombinant loci found in the 11q/j clinical isolate revealed that the recombination event occurred just once, in the TP0488, with the donor sequence originating from a TPA strain. Since TEN Bosnia A and Iraq B were found to contain TPA-like sequences at the TP0548 locus, the recombination at TP0548 took place in a treponeme that was an ancestor to both TEN Bosnia A and Iraq B. The sequence of 11q/j isolate in TP0548 represents an ancestral TEN sequence that is similar to yaws-causing treponemes. In addition to the importance of the 11q/j isolate for reconstruction of the TEN phylogeny, this case emphasizes the possible role of TEN strains in development of syphilis-like lesions. PMID:28263990

  14. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    PubMed

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. Cloning, Sequencing, and Expression of the Gene Encoding Cyclic 2,3-Diphosphoglycerate Synthetase, the Key Enzyme of Cyclic 2,3-Diphosphoglycerate Metabolism in Methanothermus fervidus

    PubMed Central

    Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard

    1998-01-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction. PMID:9811660

  16. Genomic Investigation Reveals Highly Conserved, Mosaic, Recombination Events Associated with Capsular Switching among Invasive Neisseria meningitidis Serogroup W Sequence Type (ST)-11 Strains.

    PubMed

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2016-07-03

    Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae

    NASA Astrophysics Data System (ADS)

    Tang, Xianghai; Xu, Kuipeng; Han, Xiaojuan; Mo, Zhaolan; Mao, Yunxiang

    2018-03-01

    Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 21022T genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.

  18. Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae

    NASA Astrophysics Data System (ADS)

    Tang, Xianghai; Xu, Kuipeng; Han, Xiaojuan; Mo, Zhaolan; Mao, Yunxiang

    2016-09-01

    Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 21022T genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant diff erences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these diff erences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.

  19. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  20. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The role of recombination in the origin and evolution of Alu subfamilies.

    PubMed

    Teixeira-Silva, Ana; Silva, Raquel M; Carneiro, João; Amorim, António; Azevedo, Luísa

    2013-01-01

    Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome.

  2. Break-induced replication and recombinational telomere elongation in yeast.

    PubMed

    McEachern, Michael J; Haber, James E

    2006-01-01

    When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.

  3. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA.

    PubMed

    Piganeau, G; Eyre-Walker, A

    2004-04-01

    In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.

  4. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae).

    PubMed

    Gantenbein, Benjamin; Fet, Victor; Gantenbein-Ritter, Iris A; Balloux, François

    2005-04-07

    There has been very little undisputed evidence for recombination in animal mitochondrial DNA (mtDNA) provided so far. Previous unpublished results suggestive of mtDNA recombination in the scorpion family Buthidae, together with cytological evidence for a unique mechanism of mitochondrial fusion in that family, prompted us to investigate this group in more details. First, we sequenced the complete mtDNA genome of Mesobuthus gibbosus, and chose two genes opposing each other (16S and coxI). We then sequenced 150 individuals from the natural populations of four species of Buthidae (Old World genera Buthus and Mesobuthus). We observed strong evidence for widespread recombination through highly significant negative correlations between linkage disequilibrium and physical distance in three out of four species. The evidence is further confirmed when using five other tests for recombination and by the presence of a high amount of homoplasy in phylogenetic trees.

  5. Biparental inheritance of organelles in Pelargonium: evidence for intergenomic recombination of mitochondrial DNA.

    PubMed

    Apitz, Janina; Weihe, Andreas; Pohlheim, Frank; Börner, Thomas

    2013-02-01

    While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.

  6. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    PubMed

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  7. Recombinatorial biases and convergent recombination determine interindividual TCRβ sharing in murine thymocytes.

    PubMed

    Li, Hanjie; Ye, Congting; Ji, Guoli; Wu, Xiaohui; Xiang, Zhe; Li, Yuanyue; Cao, Yonghao; Liu, Xiaolong; Douek, Daniel C; Price, David A; Han, Jiahuai

    2012-09-01

    Overlap of TCR repertoires among individuals provides the molecular basis for public T cell responses. By deep-sequencing the TCRβ repertoires of CD4+CD8+ thymocytes from three individual mice, we observed that a substantial degree of TCRβ overlap, comprising ∼10-15% of all unique amino acid sequences and ∼5-10% of all unique nucleotide sequences across any two individuals, is already present at this early stage of T cell development. The majority of TCRβ sharing between individual thymocyte repertoires could be attributed to the process of convergent recombination, with additional contributions likely arising from recombinatorial biases; the role of selection during intrathymic development was negligible. These results indicate that the process of TCR gene recombination is the major determinant of clonotype sharing between individuals.

  8. Improved Simulations of Astrophysical Plasmas: Computation of New Dielectronic Recombination Data

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Korista, K. T.; Zatsarinny, O.; Badnell, N. R.; Savin, D. W.

    2002-01-01

    Here we recap the works of two posters presented at the 2002 NASA Laboratory Astrophysics Workshop. The first was Shortcomings of the R-Matrix Method for Treating Dielectronic Recombination. The second was Computation of Dielectronic Recombination Data for the Oxygen-Like Isoelectronic Sequence.

  9. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  10. The Murine Norovirus Core Subgenomic RNA Promoter Consists of a Stable Stem-Loop That Can Direct Accurate Initiation of RNA Synthesis

    PubMed Central

    Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C. Cheng

    2014-01-01

    ABSTRACT All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3′ of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. PMID:25392209

  11. The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis.

    PubMed

    Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C Cheng; Goodfellow, Ian

    2015-01-15

    All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. [Molecular cloning and characterization of a novel Clonorchis sinensis antigenic protein containing tandem repeat sequences].

    PubMed

    Liu, Qian; Xu, Xue-Nian; Zhou, Yan; Cheng, Na; Dong, Yu-Ting; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhu, Yong-Qiang

    2013-08-01

    To find and clone new antigen genes from the lambda-ZAP cDNA expression library of adult Clonorchis sinensis, and determine the immunological characteristics of the recombinant proteins. The cDNA expression library of adult C. sinensis was screened by pooled sera of clonorchiasis patients. The sequences of the positive phage clones were compared with the sequences in EST database, and the full-length sequence of the gene (Cs22 gene) was obtained by RT-PCR. cDNA fragments containing 2 and 3 times tandem repeat sequences were generated by jumping PCR. The sequence encoding the mature peptide or the tandem repeat sequence was respectively cloned into the prokaryotic expression vector pET28a (+), and then transformed into E. coli Rosetta DE3 cells for expression. The recombinant proteins (rCs22-2r, rCs22-3r, rCs22M-2r, and rCs22M-3r) were purified by His-bind-resin (Ni-NTA) affinity chromatography. The immunogenicity of rCs22-2r and rCs22-3r was identified by ELISA. To evaluate the immunological diagnostic value of rCs22-2r and rCs22-3r, serum samples from 35 clonorchiasis patients, 31 healthy individuals, 15 schistosomiasis patients, 15 paragonimiasis westermani patients and 13 cysticercosis patients were examined by ELISA. To locate antigenic determinants, the pooled sera of clonorchiasis patients and healthy persons were analyzed for specific antibodies by ELISA with recombinant protein rCs22M-2r and rCs22M-3r containing the tandem repeat sequences. The full-length sequence of Cs22 antigen gene of C. sinensis was obtained. It contained 13 times tandem repeat sequences of EQQDGDEEGMGGDGGRGKEKGKVEGEDGAGEQKEQA. Bioinformatics analysis indicated that the protein (Cs22) belonged to GPI-anchored proteins family. The recombinant proteins rCs22-2r and rCs22-3r showed a certain level of immunogenicity. The positive rate by ELISA coated with the purified PrCs22-2r and PrCs22-3r for sera of clonorchiasis patients both were 45.7% (16/35), and 3.2% (1/31) for those of healthy persons. There was no cross reaction with sera of schistosomiasis and cysticercosis patients. The cross reaction with sera of paragonimiasis westermani patients was 1/15. The recombinant proteins rCs22M-2r and rCs22M-3r which only contained tandem repeats were specifically recognized by pooled sera of clonorchiasis patients. The Cs22 antigen gene of Clonorchis sinensis is obtained, and the recombinant proteins have certain diagnostic value. The antigenic determinant is located in tandem repeat sequences.

  13. The genetic breakdown of sporophytic self-incompatibility in Tolpis coronopifolia (Asteraceae).

    PubMed

    Koseva, Boryana; Crawford, Daniel J; Brown, Keely E; Mort, Mark E; Kelly, John K

    2017-12-01

    Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F 2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F 2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F 2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    PubMed

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  15. Comparative Genome Analysis of “Candidatus Phytoplasma australiense” (Subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB▿ †

    PubMed Central

    Tran-Nguyen, L. T. T.; Kube, M.; Schneider, B.; Reinhardt, R.; Gibb, K. S.

    2008-01-01

    The chromosome sequence of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of “Ca. Phytoplasma australiense” with “Ca. Phytoplasma asteris” strains OY-M and AY-WB showed that the gene order was more conserved between the closely related “Ca. Phytoplasma asteris” strains than to “Ca. Phytoplasma australiense.” Differences observed between “Ca. Phytoplasma australiense” and “Ca. Phytoplasma asteris” strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function. PMID:18359806

  16. Wide Distribution of Mitochondrial Genome Rearrangements in Wild Strains of the Cultivated Basidiomycete Agrocybe aegerita

    PubMed Central

    Barroso, G.; Blesa, S.; Labarere, J.

    1995-01-01

    We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984

  17. Transposon diversity in Arabidopsis thaliana

    PubMed Central

    Le, Quang Hien; Wright, Stephen; Yu, Zhihui; Bureau, Thomas

    2000-01-01

    Recent availability of extensive genome sequence information offers new opportunities to analyze genome organization, including transposon diversity and accumulation, at a level of resolution that was previously unattainable. In this report, we used sequence similarity search and analysis protocols to perform a fine-scale analysis of a large sample (≈17.2 Mb) of the Arabidopsis thaliana (Columbia) genome for transposons. Consistent with previous studies, we report that the A. thaliana genome harbors diverse representatives of most known superfamilies of transposons. However, our survey reveals a higher density of transposons of which over one-fourth could be classified into a single novel transposon family designated as Basho, which appears unrelated to any previously known superfamily. We have also identified putative transposase-coding ORFs for miniature inverted-repeat transposable elements (MITEs), providing clues into the mechanism of mobility and origins of the most abundant transposons associated with plant genes. In addition, we provide evidence that most mined transposons have a clear distribution preference for A + T-rich sequences and show that structural variation for many mined transposons is partly due to interelement recombination. Taken together, these findings further underscore the complexity of transposons within the compact genome of A. thaliana. PMID:10861007

  18. The minisatellite of the GPI/AMF/NLK/MF gene: interspecies conservation and transcriptional activity.

    PubMed

    Williams, R R; Hassan-Walker, A F; Lavender, F L; Morgan, M; Faik, P; Ragoussis, J

    2001-05-16

    Minisatellites are tandemly repeated DNA sequences found throughout the genomes of all eukaryotes. They are regions often prone to instability and hence hypervariability; thus repeat unit sequence is generally not conserved beyond closely related species. We have studied the minisatellite located in intron 9 of the human glucose phosphate isomerase (GPI) gene (also known as neuroleukin, autocrine motility factor, maturation and differentiation factor) and have found, by Zoo blotting coupled with PCR amplification and DNA sequencing, that similar repeat units are present in seven other species of mammal. There is also evidence for the presence of the minisatellite in chicken. The repeat unit does not appear to be present at any other locus in these genomes. Minisatellite DNA has been reported to be involved in recombination activity, control of gene expression of nearby gene(s) (both transcriptional and translational), whilst others form protein coding regions. The high level of conservation exhibited by the GPI minisatellite, coupled with the unique location, strongly suggests a functional role. Our results from transient and stable transfections using luciferase reporter constructs have shown that the GPI minisatellite region can act to increase transcription from the SV40 promoter, CMV promoter and the human GPI promoter.

  19. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    NASA Astrophysics Data System (ADS)

    Kemp, Jacqueline; Longworth, Michelle

    2015-12-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  20. Thermostable NADP+-Dependent Medium-Chain Alcohol Dehydrogenase from Acinetobacter sp. Strain M-1: Purification and Characterization and Gene Expression in Escherichia coli

    PubMed Central

    Tani, Akio; Sakai, Yasuyoshi; Ishige, Takeru; Kato, Nobuo

    2000-01-01

    NADPH-dependent alkylaldehyde reducing enzyme, which was greatly induced by n-hexadecane, from Acinetobacter sp. strain M-1 was purified and characterized. The purified enzyme had molecular masses of 40 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 160 kDa as determined by gel filtration chromatography. The enzyme, which was shown to be highly thermostable, was most active toward n-heptanal and could use n-alkylaldehydes ranging from C2 to C14 and several substituted benzaldehydes, including the industrially important compounds cinnamyl aldehyde and anisaldehyde, as substrates. The alrA gene coding for this enzyme was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence encoded by the alrA gene exhibited homology to the amino acid sequences of zinc-containing alcohol dehydrogenases from various sources. The gene could be highly expressed in Escherichia coli, and the product was purified to homogeneity by simpler procedures from the recombinant than from the original host. Our results show that this enzyme can be used for industrial bioconversion of useful alcohols and aldehydes. PMID:11097895

  1. High genetic variability of HIV-1 in female sex workers from Argentina.

    PubMed

    Pando, María A; Eyzaguirre, Lindsay M; Carrion, Gladys; Montano, Silvia M; Sanchez, José L; Carr, Jean K; Avila, María M

    2007-08-13

    A cross-sectional study on 625 Female Sex Workers (FSWs) was conducted between 2000 and 2002 in 6 cities in Argentina. This study describes the genetic diversity and the resistance profile of the HIV-infected subjects. Seventeen samples from HIV positive FSWs were genotyped by env HMA, showing the presence of 9 subtype F, 6 subtype B and 2 subtype C. Sequence analysis of the protease/RT region on 16 of these showed that 10 were BF recombinants, three were subtype B, two were subtype C, and one sample presented a dual infection with subtype B and a BF recombinant. Full-length genomes of five of the protease/RT BF recombinants were also sequenced, showing that three of them were CRF12_BF. One FSW had a dual HIV-1 infection with subtype B and a BF recombinant. The B sections of the BF recombinant clustered closely with the pure B sequence isolated from the same patient. Major resistance mutations to antiretroviral drugs were found in 3 of 16 (18.8%) strains. The genetic diversity of HIV strains among FSWs in Argentina was extensive; about three-quarters of the samples were infected with diverse BF recombinants, near twenty percent had primary ART resistance and one sample presented a dual infection. Heterosexual transmission of genetically diverse, drug resistant strains among FSWs and their clients represents an important and underestimated threat, in Argentina.

  2. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex.

    PubMed

    Shiroishi, T; Hanzawa, N; Sagai, T; Ishiura, M; Gojobori, T; Steinmetz, M; Moriwaki, K

    1990-01-01

    The wm7 haplotype of the major histocompatibility complex (MHC), derived from the Japanese wild mouse Mus musculus molossinus, enhances recombination specific to female meiosis in the K/A beta interval of the MHC. We have mapped crossover points of fifteen independent recombinants from genetic crosses of the wm7 and laboratory haplotypes. Most of them were confined to a short segment of approximately 1 kilobase (kb) of DNA between the A beta 3 and A beta 2 genes, indicating the presence of a female-specific recombinational hotspot. Its location overlaps with a sex-independent hotspot previously identified in the Mus musculus castaneus CAS3 haplotype. We have cloned and sequenced DNA fragments surrounding the hotspot from the wm7 haplotype and the corresponding regions from the hotspot-negative B10.A and C57BL/10 strains. There is no significant difference between the sequences of these three strains, or between these and the published sequences of the CAS3 and C57BL/6 strains. However, a comparison of this A beta 3/A beta 2 hotspot with a previously characterized hotspot in the E beta gene revealed that they have a very similar molecular organization. Each hotspot consists of two elements, the consensus sequence of the mouse middle repetitive MT family and the tetrameric repeated sequences, which are separated by 1 kb of DNA.

  3. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    PubMed

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant targets. Biotechnol. Bioeng. 2017;114: 2348-2359. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992

  5. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    NASA Astrophysics Data System (ADS)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  6. Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.).

    PubMed

    Ross, Caitlin R; DeFelice, Dominick S; Hunt, Greg J; Ihle, Kate E; Amdam, Gro V; Rueppell, Olav

    2015-02-21

    Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

  7. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  8. Recent Livermore Excitation and Dielectronic Recombination Measurements for Laboratory and Astrophysical Spectral Modeling

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Gu, M.-F.; Harris, C. L.; Kahn, S. M.; Kim, S.-H.; Neill, P. A.; Savin, D. W.; Smith, A. J.; Utter, S. B.

    2000-01-01

    Using the EBIT facility in Livermore we produce definitive atomic data for input into spectral synthesis codes. Recent measurements of line excitation and dielectronic recombination of highly charged K-shell and L-shell ions are presented to illustrate this point.

  9. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less

  10. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE PAGES

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; ...

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less

  11. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin H; Giver, Lorraine J.

    2000-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  12. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin; Giver, Lorraine J.

    2001-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  13. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, JP; Lienert, F; Boehm, CR

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked withmore » UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.« less

  14. Unique nucleotide sequence (UNS)-guided assembly of repetitive DNA parts for synthetic biology applications

    PubMed Central

    Torella, Joseph P.; Lienert, Florian; Boehm, Christian R.; Chen, Jan-Hung; Way, Jeffrey C.; Silver, Pamela A.

    2016-01-01

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts and hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies — for example repeated terminator and insulator sequences — that complicate recombination-based assembly. We and others have recently developed DNA assembly methods that we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly-assembled constructs, or into high-quality combinatorial libraries in only 2–3 days. If the DNA parts must be generated from scratch, an additional 2–5 days are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques. PMID:25101822

  15. Methods of hydrolyzing a cellulose using halophilic, thermostable and ionic liquids tolerant cellulases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  16. Analysis of Biological Features Associated with Meiotic Recombination Hot and Cold Spots in Saccharomyces cerevisiae

    PubMed Central

    Hansen, Loren; Kim, Nak-Kyeong; Mariño-Ramírez, Leonardo; Landsman, David

    2011-01-01

    Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where systematic biases have been documented. PMID:22242140

  17. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

    PubMed

    Jin, H; Elliott, R M

    1993-03-01

    Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities.

  18. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

    PubMed Central

    Jin, H; Elliott, R M

    1993-01-01

    Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities. Images PMID:8437222

  19. First Report of a Fatal Case Associated with EV-D68 Infection in Hong Kong and Emergence of an Interclade Recombinant in China Revealed by Genome Analysis.

    PubMed

    Yip, Cyril C Y; Lo, Janice Y C; Sridhar, Siddharth; Lung, David C; Luk, Shik; Chan, Kwok-Hung; Chan, Jasper F W; Cheng, Vincent C C; Woo, Patrick C Y; Yuen, Kwok-Yung; Lau, Susanna K P

    2017-05-16

    A fatal case associated with enterovirus D68 (EV-D68) infection affecting a 10-year-old boy was reported in Hong Kong in 2014. To examine if a new strain has emerged in Hong Kong, we sequenced the partial genome of the EV-D68 strain identified from the fatal case and the complete VP1, and partial 5'UTR and 2C sequences of nine additional EV-D68 strains isolated from patients in Hong Kong. Sequence analysis indicated that a cluster of strains including the previously recognized A2 strains should belong to a separate clade, clade D, which is further divided into subclades D1 and D2. Among the 10 EV-D68 strains, 7 (including the fatal case) belonged to the previously described, newly emerged subclade B3, 2 belonged to subclade B1, and 1 belonged to subclade D1. Three EV-D68 strains, each from subclades B1, B3, and D1, were selected for complete genome sequencing and recombination analysis. While no evidence of recombination was noted among local strains, interclade recombination was identified in subclade D2 strains detected in mainland China in 2008 with VP2 acquired from clade A. This study supports the reclassification of subclade A2 into clade D1, and demonstrates interclade recombination between clades A and D2 in EV-D68 strains from China.

  20. Transposon-like properties of the major, long repetitive sequence family in the genome of Physarum polycephalum

    PubMed Central

    Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman

    1985-01-01

    A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652

Top