Sample records for coefficient thermistor based

  1. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites

    PubMed Central

    Zeng, You; Lu, Guixia; Wang, Han; Du, Jinhong; Ying, Zhe; Liu, Chang

    2014-01-01

    In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods, and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks. Moreover, the CNT/HDPE thermistors exhibit rapid electrical response to applied voltages, comparable to commercial CB-based thermistors. In light of their high current-bearing capacity and quick response, the CNT-based thermistors have great potential to be used as high-performance thermistors in practical application, especially in some critical circumstances of high temperature, large applied currents, and high applied voltages. PMID:25327951

  2. Carbon-doped single-crystalline SiGe/Si thermistor with high temperature coefficient of resistance and low noise level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radamson, H. H.; Kolahdouz, M.; Shayestehaminzadeh, S.

    2010-11-29

    SiGe (C)/Si(C) multiquantum wells have been studied as a thermistor material for future bolometers. A thermistor material for uncooled Si-based thermal detectors with thermal coefficient of resistance of 4.5%/K for 100x100 {mu}m{sup 2} pixel sizes and low noise constant (K{sub 1/f}) value of 4.4x10{sup -15} is presented. The outstanding performance of the devices is due to Ni-silicide contacts, smooth interfaces, and high quality multiquantum wells containing high Ge content.

  3. Conjugated polymer/graphene oxide nanocomposite as thermistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Girish M., E-mail: varadgm@gmail.com; Deshmukh, Kalim

    2015-06-24

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  4. Co and Fe doping effect on negative temperature coefficient characteristics of nano-grained NiMn2O4 thick films fabricated by aerosol-deposition.

    PubMed

    Ryu, Jungho; Han, Guifang; Lee, Jong-Pil; Lim, Dong-Soo; Park, Yun-Soo; Jeong, Dae-Yong

    2013-05-01

    Spinel structured highly dense NiMn2O4-based (NMO) negative temperature coefficient (NTC) thermistor thick films were fabricated by aerosol-deposition at room temperature. To enhance the thermistor B constant, which represents the temperature sensitivity of the NMO thermistor material, Co and Co-Fe doping was applied. In the case of single element doping of Co, 5 mol% doped NMO showed a high B constant of over 5000 K, while undoped NMO showed -4000 K. By doping Fe to the 5 mol% Co doped NMO, the B constant was more enhanced at over 5600 K. The aging effect on the NTC characteristics of Co doped and Fe-Co co-doped NMO thick film showed very stable resistivity-time characteristics because of the highly dense microstructure.

  5. A Simple Experiment to Determine the Characteristics of an NTC Thermistor for Low-Temperature Measurement Applications

    ERIC Educational Resources Information Center

    Mawire, A.

    2012-01-01

    A simple low-cost experiment for undergraduate students to determine the characteristics of a negative temperature coefficient of resistance thermistor is presented. The experiment measures the resistance-temperature and voltage-temperature characteristics of the thermistor. Results of the resistance-temperature experiment are used to determine…

  6. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology.

    PubMed

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-11-12

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30-250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.

  7. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology

    PubMed Central

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-01-01

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30–250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications. PMID:29137148

  8. Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics

    PubMed Central

    Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu

    2013-01-01

    A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717

  9. A temperature compensation methodology for piezoelectric based sensor devices

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji

    2017-08-01

    A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.

  10. The effect of sintering temperature on electrical characteristics of Fe2TiO5/Nb2O5 ceramics for NTC thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.

    2016-02-01

    A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.

  11. A Study of Thermistor Performance within a Textile Structure.

    PubMed

    Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L; Morris, Robert H

    2017-08-05

    Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01-0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients.

  12. Atomic Layer-Deposited Titanium-Doped Vanadium Oxide Thin Films and Their Thermistor Applications

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...

    2016-11-30

    In this paper, we report the enhancement in the temperature coefficient of resistance (TCR) of atomic layer-deposited vanadium oxide thin films through the doping of titanium oxide. The Hall effect measurement provides a potential explanation for the phenomenon. The composition and morphology of the thin films are investigated by x-ray diffraction and scanning electron microscopy techniques. The high TCR, good uniformity, and low processing temperature of the material make it a good candidate for thermistor application.

  13. A Study of Thermistor Performance within a Textile Structure

    PubMed Central

    Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L.; Morris, Robert H.

    2017-01-01

    Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01–0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients. PMID:28783067

  14. Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel.

    PubMed

    Wu, Jin; Han, Songjia; Yang, Tengzhou; Li, Zhong; Wu, Zixuan; Gui, Xuchun; Tao, Kai; Miao, Jianmin; Norford, Leslie K; Liu, Chuan; Huo, Fengwei

    2018-06-06

    An ultrastretchable thermistor that combines intrinsic stretchability, thermal sensitivity, transparency, and self-healing capability is fabricated. It is found the polyacrylamide/carrageenan double network (DN) hydrogel is highly sensitive to temperature and therefore can be exploited as a novel channel material for a thermistor. This thermistor can be stretched from 0 to 330% strain with the sensitivity as high as 2.6%/°C at extreme 200% strain. Noticeably, the mechanical, electrical, and thermal sensing properties of the DN hydrogel can be self-healed, analogous to the self-healing capability of human skin. The large mechanical deformations, such as flexion and twist with large angles, do not affect the thermal sensitivity. Good flexibility enables the thermistor to be attached on nonplanar curvilinear surfaces for practical temperature detection. Remarkably, the thermal sensitivity can be improved by introducing mechanical strain, making the sensitivity programmable. This thermistor with tunable sensitivity is advantageous over traditional rigid thermistors that lack flexibility in adjusting their sensitivity. In addition to superior sensitivity and stretchability compared with traditional thermistors, this DN hydrogel-based thermistor provides additional advantages of good transparency and self-healing ability, enabling it to be potentially integrated in soft robots to grasp real world information for guiding their actions.

  15. Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Satoh, Hiroaki; Elamaran, Durgadevi; Sharma, Yash; Hiromoto, Norihisa; Inokawa, Hiroshi

    2018-04-01

    Uncooled antenna-coupled terahertz microbolometer arrays are fabricated with a meander-type Ti thermistor, and design widths (DW) = 0.1 and 0.2 µm, considering the design requirement to miniaturize detectors. Each unit device with DW = 0.1 µm of the thermistor has about 4.7 time higher electrical responsivity (132 V/W) than that with DW = 0.2 µm (28.2 V/W) at 10 µA bias current. For DW = 0.2 µm, the calculated noise equivalent power (NEP) was 2.29 × 10‑9 W/\\sqrt{\\text{Hz}} , whereas the minimum NEP of 4.43 × 10‑10 W/\\sqrt{\\text{Hz}} was obtained for DW = 0.1 µm devices, both at 10 µA bias current. The bulk value of temperature coefficient of resistance (TCR) of the Ti thermistor is markedly compromised in low dimensional devices, still in terms of responsivity and NEP, unit devices with Ti thermistor with the lower DW shows better performance. This is because the narrow width effect is minimized owing to higher resistivity for DW = 0.1 than that for DW = 0.2 µm. In this current report, we highlights the optimization of the narrow width effect on TCR of metal interconnects in nanometer dimensions, which to the best of our knowledge is not available at present.

  16. Uncertainty propagation in the calibration equations for NTC thermistors

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Guo, Liang; Liu, Chunlong; Wu, Qingwen

    2018-06-01

    The uncertainty propagation problem is quite important for temperature measurements, since we rely so much on the sensors and calibration equations. Although uncertainty propagation for platinum resistance or radiation thermometers is well known, there have been few publications concerning negative temperature coefficient (NTC) thermistors. Insight into the propagation characteristics of uncertainty that develop when equations are determined using the Lagrange interpolation or least-squares fitting method is presented here with respect to several of the most common equations used in NTC thermistor calibration. Within this work, analytical expressions of the propagated uncertainties for both fitting methods are derived for the uncertainties in the measured temperature and resistance at each calibration point. High-precision calibration of an NTC thermistor in a precision water bath was performed by means of the comparison method. Results show that, for both fitting methods, the propagated uncertainty is flat in the interpolation region but rises rapidly beyond the calibration range. Also, for temperatures interpolated between calibration points, the propagated uncertainty is generally no greater than that associated with the calibration points. For least-squares fitting, the propagated uncertainty is significantly reduced by increasing the number of calibration points and can be well kept below the uncertainty of the calibration points.

  17. Making an Old Measurement Experiment Modern and Exciting!

    ERIC Educational Resources Information Center

    Schulze, Paul D.

    1996-01-01

    Presents a new approach for the determination of the temperature coefficient of resistance of a resistor and a thermistor. Advantages include teaching students how to linearize data in order to utilize least-squares techniques, continuously taking data over desired temperature range, using up-to-date data-acquisition techniques, teaching the use…

  18. The Effect of MnO2 Content and Sintering Atmosphere on The Electrical Properties of Iron Titanium Oxide NTC Thermistors using Yarosite

    NASA Astrophysics Data System (ADS)

    Wiendartun; Gustaman Syarif, Dani

    2017-02-01

    The effect of MnO2 content and sintering atmosphere on the characteristics of Fe2TiO5 ceramics for Negative Thermal Coefficient (NTC) thermistors by using Fe2O3 derived from yarosite has been studied. The ceramics were produced by pressing a homogeneous mixture of Fe2O3, TiO2 and MnO2 (0-2.0 w/o) powders in appropriate proportions to produce Fe2TiO5 based ceramics and sintering the pressed powder at 1100-1200°C for 3 hours in air, O2 and N2 gas. Electrical characterization was done by measuring electrical resistivity of the sintered ceramics at various temperatures from 30°C to 200°C. Microstructure and structural analyses were also carried out by using an scanning electron microscope (SEM) and x-ray diffraction (XRD). The XRD data showed that the pellets crystallize in orthorhombic. The presence of second phase could not be identified from the XRD analyses. The SEM images showed that the grain size of pellet ceramics increase with increasing of MnO2 addition, and the grains size of the ceramic sintered in oxygen gas is smaller than sintered in nitrogen gas. Electrical data showed that the value of room temperature resistance (RRT) tend to decrease with respect to the increasing of MnO2 addition and the pellet ceramics sintered in oxygen gas had the largest thermistor constant (B), activation energy (Ea), sensitivity (α) and room temperature resistance (RRT), compared to the sintered in nitrogen gas. From the electrical characteristics data, it was known that the electrical characteristics of the Fe2TiO5 pellet ceramics followed the NTC characteristic. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 2207-7145K). This can be applied as temperature sensor, and will fulfill the market requirement.

  19. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  20. A Hydrazine Leak Sensor Based on Chemically Reactive Thermistors

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Mast, Dion J.; Baker, David L.

    1999-01-01

    Leaks in the hydrazine supply system of the Shuttle APU can result in hydrazine ignition and fire in the aft compartment of the Shuttle. Indication of the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single use sensor for detection of hydrazine leaks. The sensor is composed of a thermistor bead coated with copper(II) oxide (CuO) dispersed in a clay or alumina binder. The CuO-coated thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to hydrazine the CuO reacts exothermically with the hydrazine and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit and an alarm registered by data acquisition software. Responses of this sensor to humidity changes, hydrazine concentration, binder characteristics, distance from a liquid leak, and ambient pressure levels as well as application of this sensor concept to other fluids are presented.

  1. Universal single point liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1992-10-27

    A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired. 1 figure.

  2. Universal single point liquid level sensor

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired.

  3. Thermal cycling properties of a lead-free positive temperature coefficient thermistor in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun

    2016-01-01

    A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.

  4. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  5. Validity and reliability of temperature measurement by heat flow thermistors, flexible thermocouple probes and thermistors in a stirred water bath.

    PubMed

    Versey, Nathan G; Gore, Christopher J; Halson, Shona L; Plowman, Jamie S; Dawson, Brian T

    2011-09-01

    We determined the validity and reliability of heat flow thermistors, flexible thermocouple probes and general purpose thermistors compared with a calibrated reference thermometer in a stirred water bath. Validity (bias) was defined as the difference between the observed and criterion values, and reliability as the repeatability (standard deviation or typical error) of measurement. Data were logged every 5 s for 10 min at water temperatures of 14, 26 and 38 °C for ten heat flow thermistors and 24 general purpose thermistors, and at 35, 38 and 41 °C for eight flexible thermocouple probes. Statistical analyses were conducted using spreadsheets for validity and reliability, where an acceptable bias was set at ±0.1 °C. None of the heat flow thermistors, 17% of the flexible thermocouple probes and 71% of the general purpose thermistors met the validity criterion for temperature. The inter-probe reliabilities were 0.03 °C for heat flow thermistors, 0.04 °C for flexible thermocouple probes and 0.09 °C for general purpose thermistors. The within trial intra-probe reliability of all three temperature probes was 0.01 °C. The results suggest that these temperature sensors should be calibrated individually before use at relevant temperatures and the raw data corrected using individual linear regression equations.

  6. Resistance Probes in the Science Laboratory Part I. The Thermistor Thermometer.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1987-01-01

    Describes the functioning of temperature transducers, or thermistors. Discusses the interface connections between thermistors and the game-port of several kinds of microcomputers. Demonstrates how to construct a thermistor probe and suggests several applications of the use of such probes in various scientific experiments. (TW)

  7. Carbon Black - Polyethylene Composites for PTC (Positive Temperature Coefficient) Thermistor Applications

    DTIC Science & Technology

    1987-12-01

    triphasic composite. Addition of the third filler yielded two effects. First, the filler provided sufficient mechanical stabilization of the composite...2000C. The stabilization was accomplished without diminishing the magnitude of the PTC effect. The triphasic composites also displayed equivalent or...differences in conductor and insulator --.-+icle size lead to the formation of quasi-compo- -s, resulting in a 3(0-3)-0 connectivity. Triphasic composites

  8. Assessing female sexual arousal with the labial thermistor: response specificity and construct validity.

    PubMed

    Prause, N; Heiman, J R

    2009-05-01

    The labial thermistor offers several potential psychometric advantages over existing measures of female sexual response; however, the thermistor lacked data to support these presumed advantages, especially with respect to its discriminant validity. In this study, both the labial thermistor was worn simultaneously with the vaginal photoplethysmograph as women viewed films. They also indicated their level of subjective sexual arousal using a lever. The labial thermistor discriminated sexual from nonsexual arousing stimuli and was sensitive to different levels of sexual arousal. The correspondence of the instrument with subjective sexual arousal, measured using a continuous lever, was lower during the mildly arousing sexual film and higher during the maximally sexual arousing film. One woman reported that the labial thermistor was very uncomfortable, while others indicated no or mild discomfort from each instrument. The vaginal photoplethysmograph largely replicated the effects documented by the labial thermistor, although it did not discriminate sexual stimuli of different intensity nor correspond with women's continuous lever responses as closely during the more arousing stimulus. Difficulties recording simultaneously with these instruments are noted. The labial thermistor adequately discriminates between generally arousing and sexually arousing stimuli, increasing its utility as a measure for between-subject study designs.

  9. Array of Bolometers for Submillimeter- Wavelength Operation

    NASA Technical Reports Server (NTRS)

    Bock, James; Turner, Anthony

    2007-01-01

    A feed-horn-coupled monolithic array of micromesh bolometers is undergoing development for use in a photometric camera. The array is designed for conducting astrophysical observations in a wavelength band centered at 350 m. The bolometers are improved versions of previously developed bolometers comprising metalized Si3N4 micromesh radiation absorbers coupled with neutron- transmutation-doped Ge thermistors. Incident radiation heats the absorbers above a base temperature, changing the electrical resistance of each thermistor. In the present array of improved bolometers (see figure), the thermistors are attached to the micromesh absorbers by indium bump bonds and are addressed by use of lithographed, vapor-deposited electrical leads. This architecture reduces the heat capacity and minimizes the thermal conductivity to 1/20 and 1/300, respectively, of earlier versions of these detectors, with consequent improvement in sensitivity and speed of response. The micromesh bolometers, intended to operate under an optical background set by thermal emission from an ambient-temperature space-borne telescope, are designed such that the random arrival of photons ("photon noise") dominates the noise sources arising from the detector and readout electronics. The micromesh is designed to be a highly thermally and optically efficient absorber with a limiting response time of about 100 s. The absorber and thermistor heat capacity are minimized in order to give rapid speed of response. Due to the minimization of the absorber volume, the dominant source of heat capacity arises from the thermistor.

  10. Electronic Dipstick

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake-Tronic's Negative Thermistor Coefficients (NTC) prevent engine nozzles in the Space Shuttle Orbiter from swinging from side to side changing the thrust line. This technology has been adapted to an Electronik Dipstick, used to automatically monitor automotive fluid levels. NTC's are placed at predetermined levels in the dipstick and heated. Contact with fluids dissipates the heat creating a resistance change, which is analyzed by a microprocessor. Installation is simple, and additional applications are under consideration. This product is no longer manufactured.

  11. SiGe quantum wells for uncooled long wavelength infra-red radiation (LWIR) sensors

    NASA Astrophysics Data System (ADS)

    Wissmar, S. G. E.; Radamsson, H. H.; Yamamoto, Y.; Tillack, B.; Vieider, C.; Andersson, J. Y.

    2008-03-01

    We demonstrate a novel single-crystalline high-performance thermistor material based on SiGe quantum well heterostructures. The SiGe/Si quantum wells are grown epitaxially on standard Si [001] substrates. Holes are used as charge carriers utilizing the discontinuities in the valence band structure. By optimizing design parameters such as the barrier height (by variation of the germanium content) and the fermi level Ef (by variation of the quantum well width and doping level) of the material, the layer structure can be tailored. Then a very high temperature coefficient of resistivity (TCR) can be obtained which is superior to the previous reported conventional thin film materials such as vanadium oxide and amorphous silicon. In addition, the high quality crystalline material promises very low 1/f-noise characteristics promoting an outstanding signal to noise ratio as well as well defined and uniform material properties. High-resolution X-ray diffraction was applied to characterize the thickness and Ge content of QWs. The results show sharp oscillations indicating an almost ideal super lattice with negligible relaxation and low defect density. The impact of growth temperature on the thermistor material properties was characterized by analyzing how the resulting strain primarily affects the performance of the TCR and 1/f noise. Results illustrate a value of 3.3 %/K for TCR with a low 1/f noise.

  12. Convection currents in a water calorimeter.

    PubMed

    Schulz, R J; Weinhous, M S

    1985-10-01

    A flexible, temperature-regulated water calorimeter has been constructed containing two pairs of thermistor sensors at depths of 6.23 and 10.0 cm. It may be irradiated by vertical or horizontal beams, and operated at temperatures in the range from 3 to 40 degrees C. When irradiated at 30 degrees C with a vertically downward 19 MeV electron beam, the responses of the proximal and midline thermistors were in accordance with the depth-dose curve. When irradiated horizontally, the initial patterns of temperature rise were the same, but after about 30 s (4 Gy) the rate of temperature rise decreased at the proximal thermistors and increased at the midline thermistors. Shortly after irradiation, the temperature curve and increased at the midline thermistors. Shortly after irradiation, the temperature curve of the midline thermistors crossed that for the proximal thermistors, a pattern that suggested the presence of convection currents. To test this hypothesis, the calorimeter was operated at 4 degrees C. The temperature patterns for horizontal irradiation became the same as those obtained with vertical beams, thus demonstrating the production of convection currents in water at a temperature of 30 degrees C for temperature gradients as small as 10(-3) degrees C cm-1.

  13. Recent Developments in Chemically Reactive Sensors for Propellants

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Mast, Dion J.; Baker, David L.; Fries, Joseph (Technical Monitor)

    1999-01-01

    Propellant system leaks can pose a significant hazard in aerospace operations. For example, a leak in the hydrazine supply system of the shuttle auxiliary power unit (APU) has resulted in hydrazine ignition and fire in the aft compartment of the shuttle. Sensors indicating the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single-use sensor for detection of propellant leaks. The sensor is composed of a thermistor bead coated with a substance which is chemically reactive with the propellant. The reactive thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to the propellant, the reactive coating responds exothermically to it and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit, and an alarm is registered by data acquisition software. The concept is general and has been applied to sensors for hydrazine, monomethylhydrazine, unsym-dimethylhydrazine, ammonia, hydrogen peroxide, ethanol, and dinitrogen tetroxide. Responses of these sensors to humidity, propellant concentration, distance from the liquid leak, and ambient pressure levels arc presented. A multi-use sensor has also been developed for hydrazine based on its catalytic reactivity with noble metals.

  14. Selenium immersed thermistor bolometer study

    NASA Technical Reports Server (NTRS)

    Rolls, W. H.

    1979-01-01

    The noise characteristics of thermistor bolometers immersed in layers of arsenic/selenium glass uniform in composition were examined. Using a controlled deposition technique, layers of glass were deposited, thermistor bolometers immersed, and their electrical characteristics measured after various thermal treatments. Markedly improved stability of the detector noise was observed using this new technique.

  15. Characterizing Background Events in Neutron Transmutation Doped Thermistors for CUORE-0

    NASA Astrophysics Data System (ADS)

    Dutta, Suryabrata; Cuore Collaboration

    2017-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment operating at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 15 mK. A neutron-transmutation-doped (NTD) Ge thermistor measures the thermal response from particles incident on the crystals. However, bulk and surface contamination of the NTD thermistors themselves produce distorted thermal responses inside the thermistor volume. Although these pulses are efficiently removed from the double-beta decay analysis by pulse shape cuts, they can be used to extract information about thermistor contamination. I will present a multifaceted approach to characterize these events, in which I implement an improved hot-electron thermal model, Geant4 Monte Carlo simulations of background events, and data from a previous experiment, CUORE-0, reprocessed with a new optimal filter. Using this approach, rates and energy deposition from contamination inside the NTD thermistors are measured, giving us better understanding of a CUORE background source.

  16. Interferometer-Based Calorimetric Measurements of Absorbed Dose to Water in External Beam Radiotherapy

    NASA Astrophysics Data System (ADS)

    Flores-Martinez, Everardo

    Calorimetry is often used to establish high-energy photon absorbed dose to water (ADW) primary standards as calorimetry is a direct measurement of the energy imparted to the water by ionizing radiation. Current calorimeters use thermistors to establish national standards but there is the possibility of systematic errors in these instruments because thermistors overheat due to their low heat capacity. For this reason, there has been renewed interest in using alternative temperature measurement techniques, especially those that do not require a mechanical probe. Interferometer-based thermometry is a technique that exploits the temperature dependence of the refractive index of water and can be used as an alternative method for temperature measurement in radiation calorimetry. A distinctive advantage of the use of interferometry for radiation calorimetry is the capability of obtaining 2D or 3D temperature/dose distributions. Compared to thermistor-based measurements, the use of interferometer-based ADW measurements has been limited by the low measurement resolution. Optimized setups with higher accuracy and precision are necessary to perform measurements at clinically relevant dose rates. A calorimeter for thermistor-based ADW measurements was developed. The instrument was used to measure thermal drifts and noise were measured using the instrument in a water phantom. Residual thermal drifts were accounted for by using a three-step measurement protocol. Additionally, the instrument was used to measure ADW from a 6MV photon beam from a medical linear accelerator. A Michelson-type interferometer was built, characterized, and placed inside the calorimeter with the water phantom at the reference arm. Interferometer and phantom temperature fluctuations were minimized by means of the passive thermal control provide by the calorimeter enclosure, leading to increased fringe pattern stability. The interferometer characterization included phase shift measurements induced by displacing a piezoelectric transducer. Measurements were compared with calculations to estimate the accuracy of the technique. The interferometer-based system was used to measure ADW in a water-filled glass phantom, irradiated with a 6MV photon beam. The estimated Type-A, (k = 1) uncertainty in the associated doses was about 0.3Gy, which is an order of magnitude lower than previously published interferometer-based ADW measurements. Additionally a comparative analysis was performed with the thermistor-based measurements, results for both techniques agreed within the uncertainty. This work presents the first absolute ADW measurements performed using interferometry in the dose range of linac-based radiotherapy and represents a significant step towards standards-level measurements using this technique.

  17. Thermistor bolometer radiometer signal contamination due to parasitic heat diffusion

    NASA Astrophysics Data System (ADS)

    Priestley, Kory J.; Mahan, J. R.; Haeffelin, Martial P.; Savransky, Maxim; Nguyen, Tai K.

    1995-12-01

    Current efforts are directed at creating a high-level end-to-end numerical model of scanning thermistor bolometer radiometers of the type used in the Earth Radiation Budget Experiment (ERBE) and planned for the clouds and the earth's radiative energy system (CERES) platforms. The first-principle model accurately represents the physical processes relating the electrical signal output to the radiative flux incident to the instrument aperture as well as to the instrument thermal environment. Such models are useful for the optimal design of calibration procedures, data reduction strategies, and the instruments themselves. The modeled thermistor bolometer detectors are approximately 40 micrometers thick and consist of an absorber layer, the thermistor layer, and a thermal impedance layer bonded to a thick aluminum substrate which acts as a heat sink. Thermal and electrical diffusion in the thermistor bolometer detectors is represented by a several-hundred-node- finite-difference formulation, and the temperature field within the aluminum substrate is computed using the finite-element method. The detectors are electrically connected in adjacent arms of a two-active-arm bridge circuit so that the effects of common mode thermal noise are minimized. However, because of a combination of thermistor self heating, loading of the bridge by the bridge amplifier, and the nonlinear thermistor resistance-temperature relationship, bridge deflections can still be provoked by substrate temperature changes, even when the change is uniform across the substrate. Of course, transient temperature gradients which may occur in the substrate between the two detectors will be falsely interpreted as a radiation input. The paper represents the results of an investigation to define the degree of vulnerability of thermistor bolometer radiometers to false signals provoked by uncontrolled temperature fluctuations in the substrate.

  18. AIRCRAFT SHELTER-DICE THROW Data Report

    DTIC Science & Technology

    1977-03-01

    damping fluid viscosity is temperature dependent, a number of thermistors were installed at velocity transducer locations. Accurate calibra- tion of these... thermistors enabled the temperatures at the velocity gage locations to be _etermi.ied through measurement of the thermistor resistances. These...stationary (reference) targets. As shown in Figures C-3 and C-5, targets were fabricated from steel pipe and welded to imbedded steel plates in the

  19. Developments in United Kingdom Waveguide Power Standards,

    DTIC Science & Technology

    1980-04-01

    would manifest itself when a calibrated bolometer was compared with a non-bolometric standard (including a thermistor standard where the current...Geneva mechanism and this ensures extremely smooth mechanical operation. d) temperature control of the thermistor power meters at DI and D2 to better... thermistor heads. During calibration in terms of a power standard, and a subsequent measurement, the noise and drift in the standard power meter and device

  20. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    NASA Astrophysics Data System (ADS)

    Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In

    2012-10-01

    In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.

  1. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  2. Towed Thermistor Chain Observations in Fronts-80,

    DTIC Science & Technology

    1980-10-01

    thermistors were manu- factured by Thermometrics (Model P-85) and had a time constant of about 0.1 s (D. Caldwell, personal communication). The thermistors were...salinometer and occasionally by titration . A time series of salinity determined by the three aforementioned methods appears in Figure 8. Some of the...obviously erroneous values have been removed. The difference between salinity from the CTD and from the salinometer and titration is shown in Figure 9

  3. Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Cho, Hyung J.; Sukhatme, Kalyani G.; Mahoney, John C.; Penanen, Konstantin Penanen; Vargas, Rudolph, Jr.

    2010-01-01

    A method allows combining the functions of a heater and a thermometer in a single device, a thermistor, with minimal temperature read errors. Because thermistors typically have a much smaller thermal mass than the objects they monitor, the thermal time to equilibrate the thermometer to the temperature of the object is typically much shorter than the thermal time of the object to change its temperature in response to an external perturbation.

  4. Attractive mechanical properties of a lightweight highly sensitive bi layer thermistor: polycarbonate/organic molecular conductor

    NASA Astrophysics Data System (ADS)

    Laukhina, E.; Lebedev, V.; Rovira, C.; Laukhin, V.; Veciana, J.

    2016-03-01

    The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF)2IxBr3-x, were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF)2IxBr3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications.

  5. Subsampled Numerical Experiments as a Guide for Field Deployment of Thermistor Chains

    NASA Astrophysics Data System (ADS)

    Shaw, Justin; Stastna, Marek

    2017-11-01

    Thermistor chains are a standard tool for recording temperature profiles in geophysical flows. Density values can be inferred from readings and the resulting density field analyzed for the passage of internal waves, Kelvin-Helmholtz billows, and other dynamic events. The number and spacing of the thermistors, both on and between chains, determines which events can be identified in the dataset. We examine the effect of changing these variables by subsampling a set of numerical experiments to simulate thermistor chain locations. A pseudo spectral method was used to solve the incompressible Navier-Stokes equations under the Boussinesq approximation. The resulting flows are a set of high resolution seiches where the depth was held constant across experiments, and the length was varied. Sampling a known, commonly occurring flow with relatively simple geometry allows for a clear analysis of the effects of thermistor placement in the capture of dynamic events. We will discuss three dimensional deployment strategies, as well as EOF and DMD analyses if there is time. Funded by a Grant from the National Sciences and Engineering Research Council of Canada.

  6. Investigation of the difficulties associated with the use of lead telluride and other II - IV compounds for thin film thermistors

    NASA Technical Reports Server (NTRS)

    Mclennan, W. D.

    1975-01-01

    The fabrication of thermistors was investigated for use as atmospheric temperature sensors in meteorological rocket soundings. The final configuration of the thin film thermistor is shown. The composition and primary functions of the six layers of the sensor are described. A digital controller for thin film deposition control is described which is capable of better than .1 A/sec rate control. The computer program modules for digital control of thin film deposition processing are included.

  7. SSPX thermistor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomassen, K I

    The SSPX Thermistor is a glass encapsulated bead thermistor made by Thermometrics, a BR 14 P A 103 J. The BR means ruggedized bead structure, 14 is the nominal bead diameter in mils, P refers to opposite end leads, A is the material system code letter, 103 refers to its 10 k{Omega} zero-power resistance at 25 C, and the tolerance letter J indicates {+-} 5% at 25 C. It is football shaped, with height ->, and is viewed through a slot of height h = 0.01 inches. The slot is perpendicular to the long axis of the bead, and ismore » a distance s {approx} 0.775 cm in front of the thermistor. So plasma is viewed over a large angle along the slot, but over a small angle {alpha} perpendicular to the slot. The angle {alpha} is given by 2s tan{alpha} = -> + h.« less

  8. Low-cost far infrared bolometer camera for automotive use

    NASA Astrophysics Data System (ADS)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  9. A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery.

    PubMed

    Bach, Aaron J E; Stewart, Ian B; Disher, Alice E; Costello, Joseph T

    2015-01-01

    Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Mean skin temperature ([Formula: see text]) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). [Formula: see text] was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Bland-Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of [Formula: see text] found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring [Formula: see text] in the presence of, or following, metabolic and environmental induced heat stress.

  10. Measuring the human body's microclimate using a thermal manikin.

    PubMed

    Voelker, C; Maempel, S; Kornadt, O

    2014-12-01

    The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. The findings of this study generate a better understanding of the human body’s microclimate, which is important in fields such as thermal comfort, HVAC, or indoor air quality. Additionally, the measurements can be used by CFD users for the validation of their simulations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A design of an interface board between a MRC thermistor probe and a personal computer.

    DOT National Transportation Integrated Search

    2013-09-01

    The main purpose of this project was to design and build a prototype of an interface board between an MRC temperature probe : (thermistor array) and a personal laptop computer. This interface board replaces and significantly improve the capabilities ...

  12. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  13. Solid State Carbon Monoxide Sensor

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Wood, George M. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); DAmbrosia, Christine M. (Inventor)

    1999-01-01

    A means for detecting carbon monoxide which utilizes an un-heated catalytic material to oxidize carbon monoxide at ambient temperatures. Because this reaction is exothermic, a thermistor in contact with the catalytic material is used as a sensing element to detect the heat evolved as carbon monoxide is oxidized to carbon dioxide at the catalyst surface, without any heaters or external heating elements for the ambient air or catalytic element material. Upon comparison to a reference thermistor, relative increases in the temperature of the sensing thermistor correspond positively with an increased concentration of carbon monoxide in the ambient medium and are thus used as an indicator of the presence of carbon monoxide.

  14. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  15. Mechanical Equivalent of Heat--Software for a Thermistor

    ERIC Educational Resources Information Center

    Boleman, Michael

    2008-01-01

    The Mechanical Equivalent of Heat Apparatus from PASCO scientific provides the means for doing a simple experiment to determine the mechanical equivalent of heat, "J." A necessary step of this experiment is to determine the temperature of an aluminum cylinder. By measuring the resistance of a thermistor embedded in the cylinder, one is able to…

  16. A Low-Cost Thermistor Device for Measurements of Metabolic Heat in Yeast Cells in Suspension.

    ERIC Educational Resources Information Center

    Keeling, Richard P.

    1980-01-01

    Provides illustrated directions for the construction and use of a low-cost thermistor device. Attached to a servo-type millivolt chart recorder, the device will record minute temperature changes and will simulate data obtained from an oxygen polarograph. Includes results of experiments with baker's yeast. (Author/CS)

  17. The direct determination of dose-to-water using a water calorimeter.

    PubMed

    Schulz, R J; Wuu, C S; Weinhous, M S

    1987-01-01

    A flexible, temperature-regulated, water calorimeter has been constructed which consists of three nested cylinders. The innermost "core" is a 10 X 10 cm right cylinder made of glass, the contents of which are isolated from the environment. It has two Teflon-washered glass valves for filling, and two thermistors are supported at the center by glass capillary tubes. Surrounding the core is a "jacket" that provides approximately 2 cm of air insulation between the core and the "shield." The shield surrounds the jacket with a 2.5-cm layer of temperature-regulated water flowing at 51/min. The core is filled with highly purified water the gas content of which is established prior to filling. Convection currents, which may be induced by dose gradients or thermistor power dissipation, are eliminated by operating the calorimeter at 4 degrees C. Depending upon the power level of the thermistors, 15-200 microW, and the insulation provided by the glass capillary tubing, the temperature of the thermistors is higher than that of the surrounding water. To minimize potential errors caused by differences between calibration curves obtained at finite power levels, the zero-power-level calibration curve obtained by extrapolation is employed. Also the calorimeter response is corrected for the change in power level, and therefore thermistor temperature, that follows the resistance change caused by irradiation. The response of the calorimeter to 4-MV x rays has been compared to that of an ionization chamber irradiated in an identical geometry.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery

    PubMed Central

    Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.

    2015-01-01

    Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140

  19. A Long-Term Geothermal Observatory Spanning Subseafloor Gas Hydrates in IODP Hole U1364A, Cascadia Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.

    2017-12-01

    We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.

  20. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  1. Variation in Nest Temperatures of the American Alligator Found on the Kennedy Space Center Merritt Island National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    Lowers, Russell; Guillette, Louis J.; Weiss, Stephanie

    2016-01-01

    Information on nest temperatures of the American Alligator (Alligator mississippiensis) constructed in the wild is limited. Nesting temperatures during a critical thermal sensitive period determine the sex of alligators and are therefore critical in establishing the sex biases in recruitment efforts of alligators within a given community. Nest components, varying environmental conditions, and global warming could have a significant impact on nest temperatures, thus affecting future generations of a given population. One hundred and seventy four programmable thermistors were inserted into fifty eight nests from 2010 through 2015 nesting cycles. Three thermistors were placed inside each nest cavity (one on top of the eggs, one in the middle of the eggs, and one at the bottom of the clutch of the eggs) to collect temperature profiles in the incubation chamber and throughout the entire incubation period. One thermistor was also placed near or above these nests to obtain an ambient air temperature profile. Once retrieved, data from these thermistors were downloaded to examine temperature profiles throughout the incubation period as well as during the period of sexual determination. These data would help establish survival rates related to nest temperature and predict sex ratio of recruited neonates at the Kennedy Space Center. Over three million temperatures have been recorded since 2010 for the alligator thermistor study giving us insight to the recruitment efforts found here. Precipitation was the largest influence on nesting temperatures outside of daily photoperiod, with immediate changes of up to eight degrees Celsius.

  2. Development of a semi-adiabatic isoperibol solution calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.

    2014-12-15

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperaturemore » calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.« less

  3. The Subduction Experiment. Cruise Report, R/V Oceanus, Cruise Number 240 Leg 3, Subduction 1 Mooring Deployment Cruise, 17 June - 5 July 1991

    DTIC Science & Technology

    1993-03-01

    Meteorological instrumentation was mounted to both the discus and toroid buoys. A two I part aluminum tower was attached to both buoy types. The top...Temperature Thermistor -5 to +300C 1/2 time average Thermometrics Measured during first 4K @ 25 0 C half of avg. period. Air Temperature Thermistor -10

  4. Army TLS

    DTIC Science & Technology

    2014-12-10

    depends on: 1- the properties of the ambient fluid (density, viscosity, thermal conductivity , specific heat) and, 2- the parameters of the flow (U...of the sensor element. Typical of such applications is the use of bead thermistors in gas chromatog- raphy and thermal conductivity gas analysis...length between the bead and the test terminals. All bead thermistors, by reason of their small size and the relatively high thermal conductivity of

  5. Microcalorimeters with Germanium Thermistors for High Resolution Soft and Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Silver, Eric

    2005-01-01

    This is a progress report for the third year of a three year SR&T grant to continue the advancement of NTD-based microcalorimeters. We highlight our progress to date that allowed us to garner an additional three years of funding for this work.

  6. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-07-04

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  7. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-01-01

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  8. A High-Temperature Combinatorial Technique for the Thermal Analysis of Materials

    DTIC Science & Technology

    2008-07-14

    the calorimetric cell. The power dissipated in the thermistor is determined experimentally from the current supplied to the thermistor and the...electronics unit operates as a power supply for the PnSC sensors and as a data acquisition (DAQ) system for the input/output signals from each sensor. Both...the power supply and DAQ operations are galvanically isolated to ensure a maximum signal to noise ratio for the acquired signals. The control

  9. High Resolution Near-Bed Observations in Winter Near Cape Hatteras, North Carolina

    DTIC Science & Technology

    2010-06-01

    Druck pressure sensors, Campbell optical backscatter, and Seatech or Wetlabs CSTAR transmission sensors. All the transmissometers were 25 cm path...14.0 m Depth Flobee Tripods Sontek hydra Acoustic Doppler velocimeter (ADV), thermistor 3D flow velocity, temperature 8 Hz for 17.5 min hourly Pulse...coherent acoustic Doppler profiler (PCADP), thermistor Profiles of 3D flow velocity, temperature 1 Hz for 17.5 min hourly, 6.3 cm bins Pressure

  10. Electro-thermometric study on the healing of free gingival grafts covered by two different dressings.

    PubMed

    Jańczuk, Z; Banach, J; Pastusiak, J; Syryńska, M; Zakrzewski, J

    1990-01-01

    The aim of the study was to evaluate the healing of the gingival grafts covered with Solcoseryl dental adhesive paste (Solco Basel AG) in comparison with the grafts covered with Peripac. By means of thermistor thermometer coupled with a chart recorder, three series of temperature as time recordings of grafted tissues after normalized cooling were performed--before grafting, 2 and 12 weeks after grafting. On the basis of temperature recovery curves obtained, the blood supply coefficients were computed. It was revealed that in the Solcoseryl group there was an improvement in blood supply in 75% of the cases--2 weeks, and 66%--12 weeks after grafting. In the other group, the same reaction was observed only in 50% and 30% of the cases respectively.

  11. A High-Resolution Cluster of Oceanographic Instruments for Boundary Layer Measurements under Ice.

    DTIC Science & Technology

    1985-11-01

    arrangement for use with laser velocimetry. The EO components are mounted on an aluminum chassis, which is in turn placed in an underwater housing made...temperature/conductivity probe pair used * on the HRC cluster. It consists of a thermistor probe (FASTIP, Model FP07, Thermometrics , Inc.) and a dual...component. The orientation of all three DLT)V pairs is shown in Figure 1. 3.2 Temperature and Conductivity Probes The FASTIP thermistor by Thermometrics

  12. Effect of assist negative pressure ventilation by microprocessor based iron lung on breathing effort

    PubMed Central

    Gorini, M; Villella, G; Ginanni, R; Augustynen, A; Tozzi, D; Corrado, A

    2002-01-01

    Background: The lack of patient triggering capability during negative pressure ventilation (NPV) may contribute to poor patient synchrony and induction of upper airway collapse. This study was undertaken to evaluate the performance of a microprocessor based iron lung capable of thermistor triggering. Methods: The effects of NPV with thermistor triggering were studied in four normal subjects and six patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) by measuring: (1) the time delay (TDtr) between the onset of inspiratory airflow and the start of assisted breathing; (2) the pressure-time product of the diaphragm (PTPdi); and (3) non-triggering inspiratory efforts (NonTrEf). In patients the effects of negative extrathoracic end expiratory pressure (NEEP) added to NPV were also evaluated. Results: With increasing trigger sensitivity the mean (SE) TDtr ranged from 0.29 (0.02) s to 0.21 (0.01) s (mean difference 0.08 s, 95% CI 0.05 to 0.12) in normal subjects and from 0.30 (0.02) s to 0.21 (0.01) s (mean difference 0.09 s, 95% CI 0.06 to 0.12) in patients with COPD; NonTrEf ranged from 8.2 (1.8)% to 1.2 (0.1)% of the total breaths in normal subjects and from 11.8 (2.2)% to 2.5 (0.4)% in patients with COPD. Compared with spontaneous breathing, PTPdi decreased significantly with NPV both in normal subjects and in patients with COPD. NEEP added to NPV resulted in a significant decrease in dynamic intrinsic PEEP, diaphragm effort exerted in the pre-trigger phase, and NonTrEf. Conclusions: Microprocessor based iron lung capable of thermistor triggering was able to perform assist NPV with acceptable TDtr, significant unloading of the diaphragm, and a low rate of NonTrEf. NEEP added to NPV improved the synchrony between the patient and the ventilator. PMID:11867832

  13. Thermal stresses in layered barium titanate-based semiconductor ceramics

    NASA Astrophysics Data System (ADS)

    Shut, V. N.; Gavrilov, A. V.

    2008-11-01

    Thermal stresses emerging in a barium titanate-based semiconducting ceramic during heating by electric current are studied using numerical methods. It is shown that the highest tensile stresses are formed in the plane equidistant from the electrodes. The values of these stresses can be as high as 70 MPa, which is commensurate with the critical stresses. A method is proposed for reducing stresses by developing thermistors with a layered structure.

  14. The APL-UW Multiport Acoustic Projector System

    DTIC Science & Technology

    2009-12-01

    delivered are shown in Figs. 18 and 19 . Concern regarding heat build-up in the device led APL-UW to provide two thermistors to Coiltron during the...winding process to be inserted deep inside the windings, near the core, for monitoring during operation. Leads from these thermistors can be seen in...using a chain bridle attached to the bolt eyes fixed into the top of the main tube. A tentative plan was devised to lift from a hard point welded onto

  15. Psychophysiological Studies I. Performance and Physiological Response in Learning, Short-Term Memory and Discrimination Tasks.

    DTIC Science & Technology

    1984-11-30

    PWV were recorded with a Cyborg BL907 . pulse wave velocity monitor. Two pressure sensitive transducers were placed on the left arm, one over the... Cyborg Thermal P642. . Temperature was recorded by two thermistors placed on the volar surface of the distal phalanx of the left hand (middle and index...finger) and was displayed as the average of the two thermistors (to .01 degrees Farenheit). Electromyogram activity was measured with a Cyborg P303

  16. DIY Soundcard Based Temperature Logging System. Part I: Design

    ERIC Educational Resources Information Center

    Nunn, John

    2016-01-01

    This paper aims to enable schools to make their own low-cost temperature logging instrument and to learn something about its calibration in the process. This paper describes how a thermistor can be integrated into a simple potential divider circuit which is powered with the sound output of a computer and monitored by the microphone input. The…

  17. Alien liquid detector and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, B.M.

    An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In onemore » embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.« less

  18. On-Orbit Operation and Performance of MODIS Blackbody

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Chang, T.; Barnes, W.

    2009-01-01

    MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.

  19. Discrete component bonding and thick film materials study. [of capacitor chips bonded with solders and conductive epoxies

    NASA Technical Reports Server (NTRS)

    Kinser, D. L.

    1976-01-01

    The bonding reliability of discrete capacitor chips bonded with solders and conductive epoxies was examined along with the thick film resistor materials consisting of iron oxide phosphate and vanadium oxide phosphates. It was concluded from the bonding reliability studies that none of the wide range of types of solders examined is capable of resisting failure during thermal cycling while the conductive epoxy gives substantially lower failure rates. The thick film resistor studies proved the feasibility of iron oxide phosphate resistor systems although some environmental sensitivity problems remain. One of these resistor compositions has inadvertently proven to be a candidate for thermistor applications because of the excellent control achieved upon the temperature coefficient of resistance. One new and potentially damaging phenomenon observed was the degradation of thick film conductors during the course of thermal cycling.

  20. Temperature Based Stress Analysis of Notched Members

    DTIC Science & Technology

    1979-03-01

    Strain Behavior 98 of Mild Steel 17 Percent Restoration vs. Residual Stress 99 18 Examples of a Good Weld and Three 100 Defective Welds vi LIST OF TABLES...measuring temperatures in deforming metals based on the use 27 of thermistor flakes. The system was used to show that more heating occurs near stress...thermocouples were welded to the specimen surface. This particular attachment method is quite suitable for stress analysis for the following reasons

  1. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer

    Cable, William; Romanovsky, Vladimir

    2014-03-31

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  2. The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution

    NASA Technical Reports Server (NTRS)

    Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.

    2001-01-01

    The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.

  3. Heart rate measurement based on a time-lapse image.

    PubMed

    Takano, Chihiro; Ohta, Yuji

    2007-10-01

    Using a time-lapse image acquired from a CCD camera, we developed a non-contact and non-invasive device, which could measure both the respiratory and pulse rate simultaneously. The time-lapse image of a part of the subject's skin was consecutively captured, and the changes in the average image brightness of the region of interest (ROI) were measured for 30s. The brightness data were processed by a series of operations of interpolation as follows a first-order derivative, a low pass filter of 2 Hz, and a sixth-order auto-regressive (AR) spectral analysis. Fourteen sound and healthy female subjects (22-27 years of age) participated in the experiments. Each subject was told to keep a relaxed seating posture with no physical restriction. At the same time, heart rate was measured by a pulse oximeter and respiratory rate was measured by a thermistor placed at the external naris. Using AR spectral analysis, two clear peaks could be detected at approximately 0.3 and 1.2 Hz. The peaks were thought to correspond to the respiratory rate and the heart rate. Correlation coefficients of 0.90 and 0.93 were obtained for the measurement of heart rate and respiratory rate, respectively.

  4. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  5. Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination

    NASA Technical Reports Server (NTRS)

    Prok, George M.

    1961-01-01

    The effects of surface preparation and gas flow on the recombination of nitrogen atoms at copper and platinum surfaces were determined. Atoms were generated by an electrodeless 2450-megacycle-per-second discharge, and their concentration was measured by gas-phase titration with nitric oxide. Test surfaces were either vacuum-evaporated films or spheres machined from bulk metal and cemented around small glass-bead thermistors. Heat released by recombination was measured as the difference in electrical energy required to maintain a given thermistor temperature with and without a catalytic surface exposed. Recombination coefficients measured at flow velocities of 1120, 1790, 2250, and 3460 centimeters per second and at pressures of 0.42 and 0.59 millimeter of mercury showed that flow conditions had no effect. The results were also independent of atom concentration. A rough indication of the temperature dependence was obtained; it was greater for copper than for platinum. Platinum films deposited on platinum or on glass had the same activity - about 3 percent of the atoms impinging recombined. With copper, however, the glass substrate greatly reduced the percent of atoms recombining over that of a bulk copper substrate where 4 percent of the impinging atoms recombined. This effect could be overcome by depositing a second film on top of the first. Bulk metal samples were subjected to various surface treatments including polishing, degreasing with a chlorinated hydrocarbon, washing with nitric acid, and rinsing with water. Polished, degreased platinum had low activity compared to an evaporated film, but nitric acid treatment made it equivalent. Polished, degreased copper was only slightly less active than a copper film; nitric acid etching decreased the activity still further, probably by preferentially exposing facets of low catalytic efficiency.

  6. Thermalization of X-rays in evaporated tin and bismuth films used as the absorbing materials in X-ray calorimeters

    NASA Astrophysics Data System (ADS)

    Stahle, C. K.; Kelley, R. L.; Moseley, S. H.; Szymkowiak, A. E.; Juda, M.; McCammon, D.; Zhang, J.

    1993-11-01

    We have investigated the use of evaporated tin and bismuth films as the absorbing materials in X-ray calorimeters. When the films were deposited directly on monolithic silicon calorimeters, the output signal from both Sn and Bi devices was strongly dependent on the location of the absorption event relative to the ion-implanted thermistors, presumably indicating thermistor sensitivity to a non-thermal spectrum of phonons. With Sn films we also observed that a component of the thermalization proceeded slowly, relative to a complete thermalization reference. The thermalization function could be modified by trapping magnetic flux within the film. In order to distinguish thermalization effects in the films from the thermistor sensitivity to energetic phonons, we deposited Sn and Bi films on thin Si substrates which we then affixed to calorimeters using epoxy. With glued Sn films, we were able to attain as good as 13.6 eV resolution of 6 keV X-rays with no excess broadening of the line beyond the width of the baseline, while similarly made Bi devices showed excess broadening.

  7. A Broadband Waveguide Transfer Standard for Dissemination of UK National Microwave Power Standards,

    DTIC Science & Technology

    1982-01-01

    la )PT " RT a where RT is the resistance of the thermistor when the bridge is balanced. Although the thermistor mount is temperature controlled, some...voltage difference V1 - V and Vb - V2 - V then equation la 4 ... . .. mmm mmm mmmmmmmm m m mm mm mmmm m mm A becomes 2V(V - Vb) + V 2 - 2 P a b a b (lb...Weidman, "An international intercomparison of power standards in WR-28 waveguide". Metrologia , 17, June 1981. 4 G F Engen. "A refined X-band microwave

  8. Catheter-Based Sensing In The Airways

    NASA Astrophysics Data System (ADS)

    Fouke, J. M.; Saunders, K. G.

    1988-04-01

    Studies attempting to define the role of the respiratory tract in heating and humidifying inspired air point to the need for sensing many variables including airway wall and airstream temperatures, humidity, and surface fluid pH and osmolarity. In order to make such measurements in vivo in human volunteers, catheter based technologies must be exploited both to assure subject safety and subject comfort. Miniturization of the electrodes or sensors becomes a top priority. This paper describes the use of thin-film microelectronic technology to fabricate a miniature, flexible sensor which can be placed directly onto the surface of the airway to measure the electrical conductance of the fluids present. From this information the osmolarity of the surface fluid was calculated. Physiologic evaluation of the device and corroboration of the calculations was performed in mongrel dogs. We also describe the successful application of current thermistor technology for the thermal mapping of the airways in humans in order to characterize the dynamic intrathoracic events that occur during breathing. The thermal probe consisted of a flexible polyvinyl tube that contained fourteen small thermistors fixed into the catheter. Data have been obtained in dozens of people, both normal subjects and asthmatic patients, under a variety of interventions. These data have substantively advanced the study of asthma, a particularly troublesome chronic obstructive pulmonary disorder.

  9. Computer Controlled Resonator Measurements with a 12-Liter Pyrex Sphere and a 100-Liter Titanium Sphere.

    DTIC Science & Technology

    1981-06-30

    04 C0 4~ >NC- -C 04 0 C)’ 00) Ci 04 0 C - 4 iim ClV thermistor L ___ Fig.4. Tmpertur eau in ciruit amplifier has selectable gain of 20 dB or 40 dB over...useful up to 500 kHz. The converter was adjusted to be linear over 80 dB. 6. Temperature measurements A cal ibrated thermistor which forms one arm of a...formed by stretching piano wire inside a ring. Three 5" long bars welded into this ring form feet in tripod fashion. The tension of these piano wires is

  10. Observatory enabled discovery of diffuse discharge temperature structure

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Lee, R.; Ivakin, A. N.

    2016-12-01

    Underwater cabled observatories provide long term but short time and spatial scale measurements of hydrothermal discharge properties. For the first time, an intricate picture of diffuse discharge has been captured at both Axial Volcano (Axial) and the Main Endeavour Field (MEF) on the Juan de Fuca Ridge. This study combines thermistor (3D array, 2D array and spot) and acoustic data to compare the statistical and distribution characteristics of diffuse discharge for narrow crack flow (at ASHES field on Axial) and distributive flow out of a sulfide structure (at Grotto vent in MEF). Two surprising observations seem to apply to both styles of diffuse discharge: (1) thermal variance scales with the mean temperature suggesting coherent flow structures exist in the form of plumes, wakes or boundary layers, and (2) thermal hot spots are persistently localized in space, despite tidal current disruption. Thermal variance was measured at ASHES using a 3D thermistor array (TMPSF) with 10 s sampling over two years and at Grotto using 2D thermistor arrays with 1 hr sampling over several years and a ROV-held CTD (Seabird 39plus) with 0.5 second sampling over several minutes. For locations with temperatures greater than ambient, the variance in temperature scales with the mean temperature. This unusual statistical property is characteristic of self-similar flows like plumes, wakes, and boundary layers and arises from the bounded mixing of a cooling high temperature fluid with a cold ambient fluid. Thus this observation implies an underlying coherence to the diffuse discharge that has not yet been adequately captured or described. A coherent flow like a plume should have a discoverable spatial pattern, albeit one that may vary with the influence of tides. Acoustic observations ( 1m diameter footprint) of the Grotto sulfide edifice found stable local hot spots of diffuse discharge that sway with tides. In contrast, the 3D thermistor array at ASHES sees very localized (single thermistor) hot spots that persist for months. Is this a fundamental difference between two styles of diffuse discharge? Alternate conceptual models of diffuse discharge are used to place localized observations in a spatial context and develop a rigorous understanding of the spatial and temporal pattern of diffuse discharge for both crack and distributive styles.

  11. A melting-point-of gallium apparatus for thermometer calibration.

    PubMed

    Sostman, H E; Manley, K A

    1978-08-01

    We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.

  12. [Measurement of cardiac output by thermodilution with a diode as a temperature sensor].

    PubMed

    Díaz Fernández, A; Benítez, D; Sánchez Tello, G; Márquez, L A

    1979-01-01

    An area integrator for the thermodilution curve in cardiac output measurement is described. A new temperature sensor is used, a diode with some advantages over the thermistor normally used. The main advantages are: easy calibration and replacement, and broad range of linearity. The cardiac output values obtained in dog with the integrator follow a linear relationship with those of the flowmeter. In simultaneous measurements the correlation is R = 0.96. Using a diode as temperature sensor a modification of the Steward Hamilton equation (used for thermistor) is necessary. With this new equation a monogram is performed to calculate the cardiac output from the area given by the numerical integrator.

  13. Temperature measurement and control system for transtibial prostheses: Functional evaluation.

    PubMed

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2018-01-01

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  14. Nanocrystalline SiC film thermistors for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  15. The Marine Light-Mixed Layer Experiment Cruise and Data Report: R/V Endeavor Cruise EN-224, Mooring Deployment, 27 April-1 May 1991: Cruise EN-227, Mooring Recovery, 5-23 September 1991

    DTIC Science & Technology

    1993-05-01

    C 1/2 time average Thermometrics Measured during first 4K@ 250 C half of avg. period. Air Temperature Thermistor -10 to +350 C 1/2 time average...lack of a neoprene pad oil the bottom mounting bracket base plate, allowing tLe aluminum case to directly touch the bracket. The mooring 3 hardware

  16. Environmental Measurements in the Beaufort Sea, Spring 1988

    DTIC Science & Technology

    1989-03-01

    electrical cable. The sensor package consisted of a thermistor (Sea-Bird), a conductivity cell (Sea-Bird), a pressure sensor (Paroscientific Digiquartz), and... Frankenstein and Garner9 based on the measured temperature (0Q and salinity (%o): Vb = S (-52.56/T - 2.28) for -0.5 >T >-2.06 Vb =S (-45.917/T + 0.93...Science and Engineering Monograph II-C3, Cold Regions Research and Engineer- ing Laboratory, Hanover, NH, 1967. 9. F. Frankenstein and R. Garner

  17. Thermometric sensing of nitrofurantoin by noncovalently imprinted polymers containing two complementary functional monomers.

    PubMed

    Athikomrattanakul, Umporn; Gajovic-Eichelmann, Nenad; Scheller, Frieder W

    2011-10-15

    Molecularly imprinted polymers (MIPs) for nitrofurantoin (NFT) recognition addressing in parallel of two complementary functional groups were created using a noncovalent imprinting approach. Specific tailor-made functional monomers were synthesized: a diaminopyridine derivative as the receptor for the imide residue and three (thio)urea derivatives for the interaction with the nitro group of NFT. A significantly improved binding of NFT to the new MIPs was revealed from the imprinting factor, efficiency of binding, affinity constants and maximum binding number as compared to previously reported MIPs, which addressed either the imide or the nitro residue. Substances possessing only one functionality (either the imide group or nitro group) showed significantly weaker binding to the new imprinted polymers than NFT. However, the compounds lacking both functionalities binds extremely weak to all imprinted polymers. The new imprinted polymers were applied in a flow-through thermistor in organic solvent for the first time. The MIP-thermistor allows the detection of NFT down to a concentration of 5 μM in acetonitrile + 0.2% dimethyl sulfoxide (DMSO). The imprinting factor of 3.91 at 0.1 mM of NFT as obtained by thermistor measurements is well comparable to the value obtained by batch binding experiments. © 2011 American Chemical Society

  18. Electrical Characteristics CuFe2O4 Thick Film Ceramics Made with Different Screen Size Utiizing Fe2O3 Nanopowder Derived from Yarosite for NTC Thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Syarif, Dani Gustaman

    2010-10-01

    Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100° C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 3241-3484 K and RRT = 25.6-87.0 M Ohm, fitted market requirement.

  19. Respiratory monitoring system based on the nasal pressure technique for the analysis of sleep breathing disorders: Reduction of static and dynamic errors, and comparisons with thermistors and pneumotachographs

    NASA Astrophysics Data System (ADS)

    Alves de Mesquita, Jayme; Lopes de Melo, Pedro

    2004-03-01

    Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.

  20. An afocal telescope configuration for the ESA Ariel mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, V.; Middleton, K.; Focardi, M.; Morgante, G.; Pace, E.; Claudi, R.; Micela, G.

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three candidates for the next ESA medium-class science mission (M4) expected to be launched in 2026. This mission will be devoted to observing spectroscopically in the infrared (IR) a large population of known transiting planets in the neighborhood of the Solar System, opening a new discovery space in the field of extrasolar planets and enabling the understanding of the physics and chemistry of these far away worlds. ARIEL is based on a 1-m class telescope ahead of two spectrometer channels covering the band 1.95 to 7.8 microns. In addition there are four photometric channels: two wide band, also used as fine guidance sensors, and two narrow band. During its 3.5 years of operations from L2 orbit, ARIEL will continuously observe exoplanets transiting their host star. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is composed of an off-axis portion of a two-mirror classic Cassegrain coupled to a tertiary off-axis paraboloidal mirror. The telescope and optical bench operating temperatures, as well as those of some subsystems, will be monitored and fine tuned/stabilised mainly by means of a thermal control subsystem (TCU-Telescope Control Unit) working in closed-loop feedback and hosted by the main Payload electronics unit, the Instrument Control Unit (ICU). Another important function of the TCU will be to monitor the telescope and optical bench thermistors when the Payload decontamination heaters will be switched on (when operating the instrument in Decontamination Mode) during the Commissioning Phase and cyclically, if required. Then the thermistors data will be sent by the ICU to the On Board Computer by means of a proper formatted telemetry. The latter (OBC) will be in charge of switching on and off the decontamination heaters on the basis of the thermistors readout values.

  1. DIFFERENTIAL THERMOMETRIC TITRATIONS AND THE DETERMINATION OF HEATS OF REACTION,

    DTIC Science & Technology

    TITRATION , THERMISTORS), (*HEAT OF REACTION, TITRATION ), SILVER COMPOUNDS, NITRATES, AMMONIA, PYRIDINES, ETHYLENEDIAMINE, AMINES, ALCOHOLS, BUTANOLS, PROPANOLS, SODIUM COMPOUNDS, HYDROXIDES, TEST METHODS

  2. FIRE_AX_SOF_SUR_MET

    Atmospheric Science Data Center

    2015-11-25

    ... Buoy Instrument:  Barometer Sonic Anemometer Thermistor Spatial Coverage:  (34.60, ... Earthdata Search Parameters:  Dry Bulb Temperature Pressure Sea Surface Temperature Wet Bulb Temperature ...

  3. Coulometric thermometric titration of halides in molten calcium nitrate tetrahydrate.

    PubMed

    Zsigrai, I J; Bartusz, D B

    1983-01-01

    A method for coulometric thermometric precipitation titrations of chloride, bromide and iodide in molten calcium nitrate tetrahydrate at 55 degrees with coulometrically generated silver ions has been developed. The change in temperature during the titration is followed with the aid of a thermistor bridge coupled to a recorder. To minimize the temperature effect of the passage of current through the melt, two thermistors are connected in opposition in the bridge, with one in the anodic and the other in the cathodic cell compartment. Amounts of 62-80 mumole of halide have been determined with relative error below 0.4% and relative standard deviation less than 2.7%. The relative error in determination of 40 mumole of iodide was + 2%.

  4. Services to Operate and Maintain Walter Reed Army Institute of Research’s (WRAIR) Microwave Facility.

    DTIC Science & Technology

    1994-06-20

    Sixty-four day old rats were euthanized individually in a polycarbonate cage with carbon dioxide from a 100 % carbon dioxide cylinder. Eyes were removed...grams were used. Rats were euthanized with carbon dioxide . A thermistor based temperature probe (Yellow Spring Instruments, YSI 423) was inserted 5 cm...gals). This has been a necessary procedure which evacuates carbon from the oil which in turn will build-up on the HV components and conductors in the

  5. Comparing Transition-Edge Sensor Response Times in a Modified Contact Scheme with Different Support Beams

    NASA Technical Reports Server (NTRS)

    Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.

    2013-01-01

    We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.

  6. An original method for characterizing internal waves

    NASA Astrophysics Data System (ADS)

    Casagrande, Gaëlle; Varnas, Alex Warn; Folégot, Thomas; Stéphan, Yann

    This study consisted in the characterization of internal waves in the south of the Strait of Messina (Italy). The observational data consisted in thermistor string profiles from the Coastal Ocean Acoustic Changes at High frequencies (COACH06) sea trial. An empirical orthogonal function analysis is applied to the data. The first two spatial empirical modes represent over 99% of the variability, and their corresponding time-dependent expansion coefficients take higher absolute values during internal wave events. In order to check how the expansion coefficients vary during an internal wave event, their time derivative, called here changing rates, are computed. It shows that each wave of an internal wave train is characterized by a double oscillation of the changing rates. At the front of the wave, both changing rates increase in absolute value with opposite sign, and then decrease to become null at the maximum amplitude of the wave. At the rear of the wave, the changing rates describe another period, again with opposite sign. This double oscillation can be used as a detector of internal waves, but it can also give information on the width of the wave, by measuring the length of the oscillation, as this information may sometimes be hard to read straight out of the data. When plotting the changing rates one versus another, the resulting scatter diagram puts on a butterfly shape that illustrates well this behaviour.

  7. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

    1990-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

  8. The physical model for research of behavior of grouting mixtures

    NASA Astrophysics Data System (ADS)

    Hajovsky, Radovan; Pies, Martin; Lossmann, Jaroslav

    2016-06-01

    The paper deals with description of physical model designed for verification of behavior of grouting mixtures when applied below underground water level. Described physical model has been set up to determine propagation of grouting mixture in a given environment. Extension of grouting in this environment is based on measurement of humidity and temperature with the use of combined sensors located within preinstalled special measurement probes around grouting needle. Humidity was measured by combined capacity sensor DTH-1010, temperature was gathered by a NTC thermistor. Humidity sensors measured time when grouting mixture reached sensor location point. NTC thermistors measured temperature changes in time starting from initial of injection. This helped to develop 3D map showing the distribution of grouting mixture through the environment. Accomplishment of this particular measurement was carried out by a designed primary measurement module capable of connecting 4 humidity and temperature sensors. This module also takes care of converting these physical signals into unified analogue signals consequently brought to the input terminals of analogue input of programmable automation controller (PAC) WinPAC-8441. This controller ensures the measurement itself, archiving and visualization of all data. Detail description of a complex measurement system and evaluation in form of 3D animations and graphs is supposed to be in a full paper.

  9. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  10. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  11. Polarographic carbon dioxide transducer amplifier

    NASA Technical Reports Server (NTRS)

    Stillman, G.

    1971-01-01

    Electronic amplifier contains matched pair of metal oxide semiconductor field effect transistor devices which have high input impedance and long-term stability. Thermistor in feedback loop provides temperature compensation for large drifts in the sensor.

  12. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1977

    1977-01-01

    Includes methods for demonstrating Schlieren effect, measuring refractive index, measuring acceleration, presenting concepts of optics, automatically recording weather, constructing apparaturs for sound experiments, using thermistor thermometers, using the 741 operational amplifier in analog computing, measuring inductance, electronically ringing…

  13. Differential temperature integrating diagnostic method and apparatus

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1976-01-01

    A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.

  14. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.

    1992-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

  15. Sonic Thermometer for High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  16. Electrical Characteristics CuFe{sub 2}O{sub 4} Thick Film Ceramics Made with Different Screen Size Utilizing Fe{sub 2}O{sub 3} Nanopowder Derived from Yarosite for NTC Thermistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiendartun,; Syarif, Dani Gustaman

    2010-10-24

    Fabrication of CuFe{sub 2}O{sub 4} thick film ceramics utilizing Fe{sub 2}O{sub 3} derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100 deg. C). The XRD data showed that the films crystalize in tetragonal spinel. Themore » SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe{sub 2}O{sub 4} thick film ceramics followed the NTC characteristic. The value of B and R{sub RT} of the produced CuFe{sub 2}O{sub 4} ceramics namely B = 3241-3484 K and R{sub RT} = 25.6-87.0 M Ohm, fitted market requirement.« less

  17. Development of a self-packaged 2D MEMS thermal wind sensor for low power applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-qing; Chen, Bei; Qin, Ming; Huang, Jian-qiu; Huang, Qing-an

    2015-08-01

    This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s-1, with an accuracy of 0.1 m s-1 at low speeds and 0.5 m s-1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.

  18. Towards Calibration of Sentinel 3 Data: Validation of Satellite-Derived SST Against In Situ Coastal Observations of the Portuguese Marine Waters

    NASA Astrophysics Data System (ADS)

    Vicente, Ricardo; Esteves, Rita; Lamas, Luisa; Pinto, Jose Paulo; Almeida, Sara; de Azevedo, Eduardo; Correia, Cecilia; Reis, Francisco

    2016-08-01

    Validation of future Sentinel-3 SLSTR data in the Eastern Atlantic Ocean was analysed here through a comparison of satellite-derived STT against in situ mooring buoys observations.SSTskin retrieved from IR satellite radiometers on- board ERS 1-2, Envisat, and Aqua, and concurrent SSTbulk measured with 14 buoy thermistors located at 1m depth were used to assess the statistical relationships between these datasets, with 20038 match- ups spanning from 1996 to 2015.As expected, results showed consistency between SSTskin and SSTbulk, exhibiting a correlation coefficient on the order of 98 %. Biases of both (A)ATSR and MODIS for day-time suggest a warmer satellite skin retrieval of + 0.15o and + 0.06o, respectively. For the night-time dataset, biases of - 0.25o and - 0.17o for (A)A TSR and MODIS, respectively, indicate cooler skin retrievals and reveal an inversion of the upper ocean thermic gradient. The RMSE ´s found were 0.53o for (A)ATSR and 0.41o for MODIS datasets.

  19. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  20. Condensation Testing - Shelters

    DTIC Science & Technology

    2011-12-15

    configured as recommended by the manufacturer. b. Instrument the shelter interior with four (4) temperature sensors (thermocouples, thermistors , etc...the chassis or frame secured by one of the following: spot welded terminal lug, soldering lug, screw, nut, and lockwasher? 32. On

  1. Introducing Temperature Scales.

    ERIC Educational Resources Information Center

    McIldowie, Eric

    1998-01-01

    Ignoring the interpretive problems of temperature measurement deprives students of a beneficial, positive educational experience. Suggests experimenting with different thermometers including a copper resistance thermometer, a thermistor, a thermocouple, and a constant-volume air thermometer. Provides guidance for the classroom discussion of…

  2. Electronic device simulates respiration rate and depth

    NASA Technical Reports Server (NTRS)

    Thomas, J. A.

    1964-01-01

    An oscillator circuit and a thermistor, in close proximity to a light bulb, periodically alter the heat output of the bulb by varying the voltage across its filament. Use of this simulator permits checkout tests on pneumographs.

  3. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  4. Study and realization of SI microcalorimeters for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Alessandrello, A.; Brofferio, Chiara; Camin, D. V.; Cattadori, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Maglione, A.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pignatel, Giorgio U.; Previtali, Ezio; Zanotti, Luigi

    1994-09-01

    We are developing Si-implanted thermistors to realize high resolution microcalorimeters. We plan to use these devices in an experiment for the determination of the neutrino mass. The measure implies the evaluation of the correct end-point energy of a beta spectrum with a calorimetric approach. Our study is devoted to outline the optimum fabrication process concerning performances and reproducibility. For such reasons we have realized Si thermistors with different concentration of dopant impurities and with different implant geometries. Tests are performed between 4.2 and 1.2 K using a pumped helium cryostat, and selected samples are characterized at very low temperatures in a dilution refrigerator. Good reproducibility of the devices is necessary for producing an array of detectors. At the same time suitable electronics are developed to optimize the detectors preamplifiers link: minimization of the parasitic capacitance is necessary to reduce the integration of signal and to maximize the speed response of the detector.

  5. Using a thermistor flowmeter with attached video camera for monitoring sponge excurrent speed and oscular behaviour

    PubMed Central

    Jorgensen, Damien; Webster, Nicole S.; Pineda, Mari-Carmen; Duckworth, Alan

    2016-01-01

    A digital, four-channel thermistor flowmeter integrated with time-lapse cameras was developed as an experimental tool for measuring pumping rates in marine sponges, particularly those with small excurrent openings (oscula). Combining flowmeters with time-lapse imagery yielded valuable insights into the contractile behaviour of oscula in Cliona orientalis. Osculum cross-sectional area (OSA) was positively correlated to measured excurrent speeds (ES), indicating that sponge pumping and osculum contraction are coordinated behaviours. Both OSA and ES were positively correlated to pumping rate (Q). Diel trends in pumping activity and osculum contraction were also observed, with sponges increasing their pumping activity to peak at midday and decreasing pumping and contracting oscula at night. Short-term elevation of the suspended sediment concentration (SSC) within the seawater initially decreased pumping rates by up to 90%, ultimately resulting in closure of the oscula and cessation of pumping. PMID:27994973

  6. Radiometric temperature reference

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1969-01-01

    Radiometric Temperature Reference uses a thermistor as both a heating and sensing element to maintain its resistance at a preselected level to continuously control the power supplying it. The fixed infrared radiation level must be simple, rugged, and capable of high temperature operation.

  7. Hydrologic data for a study of pre-Illinoian glacial till in Linn County, Iowa, water year 1990

    USGS Publications Warehouse

    Bowman, Phillip R.

    1991-01-01

    Ten unvented, vibrating-wire, pressure transducers with internal thermistors were buried in two boreholes at upgradient and downgradient locations to record hydraulic pressure arid water temperature at selected depths.

  8. Thermometric enzyme linked immunosorbent assay: TELISA.

    PubMed

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  9. Printed dose-recording tag based on organic complementary circuits and ferroelectric nonvolatile memories

    PubMed Central

    Nga Ng, Tse; Schwartz, David E.; Mei, Ping; Krusor, Brent; Kor, Sivkheng; Veres, Janos; Bröms, Per; Eriksson, Torbjörn; Wang, Yong; Hagel, Olle; Karlsson, Christer

    2015-01-01

    We have demonstrated a printed electronic tag that monitors time-integrated sensor signals and writes to nonvolatile memories for later readout. The tag is additively fabricated on flexible plastic foil and comprises a thermistor divider, complementary organic circuits, and two nonvolatile memory cells. With a supply voltage below 30 V, the threshold temperatures can be tuned between 0 °C and 80 °C. The time-temperature dose measurement is calibrated for minute-scale integration. The two memory bits are sequentially written in a thermometer code to provide an accumulated dose record. PMID:26307438

  10. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    NASA Technical Reports Server (NTRS)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  11. Portable Rapid Test Fuel Tank Leak Detection System

    DTIC Science & Technology

    2010-04-01

    polished. Lid is tig welded . Media: Water Result: Bubbles (encircled in red) only at threaded port and at top of the center as shown in Picture 2...bimetallic strip ( ) quartz crystal ( ) thermistor ( ) other (describe briefly) B-3 If product temperature is not

  12. Nickel-Cadmium Battery Charger.

    DTIC Science & Technology

    1981-02-23

    cells (3) 6 thermistors (4) 2 thermostats (5) 4 fuses (6) 3 hetter blankets 5a L . . .. _ . . . . . . .. . . . .. . . •. . . ,- NAI2C-92-i 45 g. There is...current measurement. q. Connector and wiring continuity testing. r. Provisions for soldering and welding connector and cell termina- tions. IV

  13. A thermocouple thermode for small animals

    NASA Technical Reports Server (NTRS)

    Williams, B. A.

    1972-01-01

    Thermode composed of two thin-walled stainless steel hypodermic needles and cooper-constantan thermocouple or small thermistor to indicate temperature at point of perfusion is used to measure brain temperature in animals. Because of relatively small size of thermode, structural damage to brain is minimized.

  14. Solar radiative heating of fiber-optic cables used to monitor temperatures in water

    NASA Astrophysics Data System (ADS)

    Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.

    2010-08-01

    In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.

  15. Study on Temperature Control System Based on SG3525

    NASA Astrophysics Data System (ADS)

    Cheng, Cong; Zhu, Yifeng; Wu, Junfeng

    2017-12-01

    In this paper, it uses the way of dry bath temperature to heat the microfluidic chip directly by the heating plate and the liquid sample in microfluidic chip is heated through thermal conductivity, thus the liquid sample will maintain at target temperature. In order to improve the reliability of the whole machine, a temperature control system based on SG3525 is designed.SG3525 is the core of the system which uses PWM wave produced by itself to drive power tube to heat the heating plate. The bridge circuit consisted of thermistor and PID regulation ensure that the temperature can be controlled at 37 °C with a correctness of ± 0.2 °C and a fluctuation of ± 0.1 °C.

  16. Construction and Instrumentation of Full-Scale Geogrid Reinforced Pavement Test Sections

    DTIC Science & Technology

    2008-04-01

    dataloggers (described below), which have internal thermistors that provide a refer- ence temperature. The dataloggers were programmed to record tempera...stainless steel plates welded together around the periphery and enclosing a fluid connected to a pressure trans- ducer through a high-pressure

  17. Recommendation of Sensors for Vehicle Transmission Diagnostics

    DTIC Science & Technology

    2012-05-01

    and a pressure switch module form the Control value module. A thermistor is contained within the pressure switch module in order to monitor the sump...fluid temperature. Sensor information is provided to the TCM through various sensors such as throttle position, speed sensor, pressure switch module

  18. A front-end electronic system for large arrays of bolometers

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B. X.

    2018-02-01

    CUORE is an array of thermal calorimeters composed of 988 crystals held at about 10 mK, whose absorbed energy is read out with semiconductor thermistors. The composition of the crystal is TeO2, and the aim is the study of the double beta decay of 130Te on very long and stable runs. CUPID-0 is an array of 26 Zn82Se crystals with double thermistor readout to study the double beta decay of 82Se. In the present paper, we present an overview of the entire front-end electronic readout chain, from the preamplifier to the anti-aliasing filter. This overview includes motivations, design strategies, circuit implementation and performance results of the electronic system, including other auxiliary yet important elements like power supplies and the slow control communication system. The stringent requirements of stability on the very long experimental runs that are foreseen during CUORE and CUPID-0 operation, are achieved thanks to novel solutions of the front-end preamplifier and of the detector bias circuit setup.

  19. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  20. Sensor capsule for diagnosis of gastric disorders

    NASA Technical Reports Server (NTRS)

    Holen, J. T.

    1972-01-01

    Motility and pH sensor capsule is developed to monitor gastric acidity, pressure, and temperature. Capsule does not interfere with digestion. Sensor is capsule which includes pH electrode, Pitran pressure transducer, and thermistor temperature sensor all potted in epoxy and enclosed in high density polyethylene sheath.

  1. Characterization of a Hall Effect Thruster Using Thermal Imaging

    DTIC Science & Technology

    2007-03-01

    to physically attach the thermocouples to the object, which is destructive to the item being monitored if a strong adhesive or welding is used...by detecting incident thermal radiation and converting it to a temperature. A thermistor bolometer, for example, consists of a material, usually

  2. Sonar Transducer Reliability Improvement Program (STRIP) FY80.

    DTIC Science & Technology

    1980-07-01

    heating element powered by a temperature conLroller (YSI model 74) with a series 400 thermistor probe. Figure 3.1 shows the data and average curves...ATTACHMENT METHODS General Welded Receptacles Threaded or Bolted Receptacles Elastomeric Bonded Receptacles I I!11 " SECTION 12 - CABLE HARNESS TEST

  3. UpTempO Buoys for Understanding and Prediction

    DTIC Science & Technology

    2014-09-30

    between the Delrin plastic pod housing and the thermistor epoxy potting. (b) Buoy ship deployment. Three Metocean-manufactured UpTempO buoys were ship...2 and 3). The box is held together with only glue and paper tape. The sensor cable is housed in an inner cardboard box that eventually separates

  4. Application of Computers for Experiment Design, Data Acquisition, and Analysis in the Chemistry Laboratory

    DTIC Science & Technology

    1990-05-01

    Obtain Thermistor Operating Characteristics ................................. 82 25. Ag+/Ci" Thermometric Titration ........................... 85 26...Experiment Program for Thermometric Titrations ............... 85 27. Appearance of the Spreadsheet in the Analysis Mode ............ 86 28...rate experiments, carbon dioxide exhalation monitoring, stream turbidity measurement, photosynthesis monitoring, pendulum timing, thermometric titrations

  5. 78 FR 33809 - Notification of Proposed Production Activity; Roper Corporation; Subzone 26G (Kitchen Ranges...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... choose the duty rates during customs entry procedures that apply to gas and electric kitchen ranges (duty... injet assemblies, vent caps, blowers, valves, gas valves, motors, fans, control boards, light indicator assemblies, timers, light indicators, capacitors, thermistors, sensors, lamps, encoder assemblies, lenses...

  6. Laboratory Connections: Using LOGO in the Science Laboratory.

    ERIC Educational Resources Information Center

    Kolodiy, George Oleh

    1991-01-01

    Described is a LOGO computer program that enables students to investigate the relationship between a digital number and the resistance in a variable resistor used to generate that number. Likewise, actual temperature readings and the corresponding resistance within a thermistor can be used for data gathering and subsequent analysis. (JJK)

  7. Self-protecting transistor oscillator for treating animal tissues

    DOEpatents

    Doss, James D.

    1980-01-01

    A transistor oscillator circuit wherein the load current applied to animal tissue treatment electrodes is fed back to the transistor. Removal of load is sensed to automatically remove feedback and stop oscillations. A thermistor on one treatment electrode senses temperature, and by means of a control circuit controls oscillator transistor current.

  8. Development and Application of a Thermistor Current Meter

    DTIC Science & Technology

    1994-01-01

    experiment," Australian Journal of Marine and Freshwater Research 41, 557-573. Burky, A. J., Way, C. M., and Lee, M. T. (1991). "The relationship...relationship of the mottled sculpin , Cottus bairdi, in a central Ohio river," Bulletin of the North American Benthological Society 9, 165. Vogel, S

  9. The Implementation and Demonstration of Flame Detection and Wireless Communications in a Consumer Appliance to Improve Fire Detection Capabilities

    DTIC Science & Technology

    2007-06-08

    Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard

  10. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  11. Photogate Timing with a Smartphone

    ERIC Educational Resources Information Center

    Forinash, Kyle; Wisman, Raymond F.

    2015-01-01

    In a previous article we demonstrated that a simple, passive external circuit incorporating a thermistor, connected to a mobile device through the headset jack, can be used to collect temperature data. The basic approach is to output a sine wave signal to the headset port, through the circuit, and input the resulting signal from the headset…

  12. Annual and seasonal temperature variance along an inter-tidal sediment transect in Yaquina bay, Oregon, 1999 - 2006

    EPA Science Inventory

    Sediment temperature was measured using submersible Onset TidbiT® recording thermistor thermometers at eelgrass (Zostera marina, Z. japonica) mid-rhizome root depth (~5 cm) at 6 stations on a transect from ~MLLW (mean lower low water) at the channel edge to near MHHW (mean higher...

  13. An Inexpensive Solution Calorimeter

    ERIC Educational Resources Information Center

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  14. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  15. Physical Chemistry of Exothermic Gas-Aerosol Calaorimetry.

    DTIC Science & Technology

    1985-01-01

    CALORTMFTRY 1. !NTRPODUCTION Infrared radiaton n the atmosphere above normA , backround level.s (an t # produced in a variety of ways. For example, combustion...measured by a thermistor is 72 0C, the sae as that of the reference targets. This ’nominal’ temperature however is not necessarily either the drop or

  16. Thin metal thermistors for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Picard, A.; Cunningham, L. K.; Jardine, A. P.

    2015-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2 GPa shock pressure. The present authors previously presented an improved fabrication technique, to examine this outstanding issue. This technique made use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. By fabricating a thin metal thermistor gauge and measuring its change in resistance during a shock experiment of known pressure, its temperature can be recovered. Heat transfer into the gauge depends strongly on the gauge dimensions and the thermal conductivity of the shocked PMMA. Here we present several improvements to the technique. By varying the gauge thickness over the range 100 nm to 10 μ m we assess the heat transfer into the gauge.

  17. The Ultrachopper tip: a wound temperature study.

    PubMed

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  18. Realization of 2:1 MUX using Mach Zhender Interferometer structure and its application in selection of output signal of MOEMS pressure and temperature sensor

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Raghuwanshi, Sanjeev Kumar

    2016-03-01

    In this paper we have initially designed a circular diaphragm based MOEMS pressure sensor and a thermistor based temperature sensor. This has been done by the help of externally modulated LiNbO3 Mach Zhender Interferometer (MZI) which senses the input voltage signal and modulates it to give an output in the form of intensity of light. This output is then calibrated to understand the proper relation between the input applied and output measured. The next aspect has been the use of MZI to work as a 2:1 MUX where two input lines are -pressure signal and temperature signal. The arrangement of MZI is then modulated in such a way that based on the requirement it chooses the proper input signal and sends it to the output port for the measurement. The design has been simulated in Opti-BPM software.

  19. Hybrid Vehicles

    DTIC Science & Technology

    2008-12-08

    chassis) by a ground strap, wire, welded connection or other suitable low-resistance mechanical connection. Case ground connectors routed from other...environment of a hybrid electric vehicle. Alternative temperature measuring transducers, e.g., thermistors , should be considered when thermocouples are...A 3. Is the ground connection to the chassis or frame mechanically secured by one of the following methods? a. Secured to a spot- welded

  20. The Pressure Cooker: A Module on the Properties of Matter. Tech Physics Series.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    Experiments to provide an understanding of the principles related to the pressure cooker are presented. Objectives included are designed to provide the learner with the ability to calibrate a thermistor for measuring temperature; explain the meaning of latent and specific heat; calculate latent and specific heat; use a Bourdon tube pressure gauge…

  1. Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry.

    PubMed

    Gras, Ronda; Luong, Jim; Haddad, Paul R; Shellie, Robert A

    2018-05-08

    An effective analytical strategy was developed and implemented to exploit the synergy derived from three different detector classes for gas chromatography, namely ultraviolet spectroscopy, flame ionization, and mass spectrometry for volatile compound analysis. This strategy was achieved by successfully hyphenating a user-selectable multi-wavelength diode array detector featuring a positive temperature coefficient thermistor as an isothermal heater to a gas chromatograph. By exploiting the non-destructive nature of the diode array detector, the effluent from the detector was split to two parallel detectors; namely a quadrupole mass spectrometer and a flame ionization detector. This multi-hyphenated configuration with the use of three detectors is a powerful approach not only for selective detection enhancement but also for improvement in structural elucidation of volatile compounds where fewer fragments can be obtained or for isomeric compound analysis. With the diode array detector capable of generating high resolution gas phase spectra, the information collected provides useful confirmatory information without a total dependence on the chromatographic separation process which is based on retention time. This information-rich approach to chromatography is achieved without incurring extra analytical time, resulting in improvements in compound identification accuracy, analytical productivity, and cost. Chromatographic performance obtained from model compounds was found to be acceptable with a relative standard deviation of the retention times of less than 0.01% RSD, and a repeatability at two levels of concentration of 100 and 1000 ppm (v/v) of less than 5% (n = 10). With this configuration, correlation of data between the three detectors was simplified by having near identical retention times for the analytes studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Colossal change in thermopower with temperature-driven p-n-type conduction switching in La x Sr2-x TiFeO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Roy, Pinku; Maiti, Tanmoy

    2018-02-01

    Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0  ⩽  x  ⩽  0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x  =  0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.

  3. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Muyskens, Mark

    1997-07-01

    Our application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor. The sensor can be used with a variety of data-acquisition systems. Applications range from general chemistry to physical chemistry, particularly where computer interfaced, digital temperature measurement is desired. Included is a detailed description of our current design with suggestions for improvement and a performance evaluation of the precision in differential measurement and the time constant for responding to temperature change.

  4. Inundation and Gas Fluxes from Amazon Lakes and Wetlands

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.

    2015-12-01

    Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than previous values applied to regional extrapolations in the Amazon basin and elsewhere.

  5. Animal Experiments at FOA Show that Microwaves Have both Physical and Psychological Effects (Mikrovagor Paverkar badeFysiskt Oth Psykiskt),

    DTIC Science & Technology

    1979-04-01

    welding and wood bon~ij u ~~, in medical equipment for heat treatment and burn surgery, in police speed checks and in burglar alarms. Frequencies vary...with a thermistor thermometer. The mice were weighed every morning between 7 and 8 o’clock. At the beginning of the investigation the animals , male

  6. Outdoor surface temperature measurement: ground truth or lie?

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  7. Thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas; Williamson, David; Jardine, Andrew

    2013-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in PMMA. However, their results disagree strongly above 2 GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 μs, allowing temperature measurement within the duration of a plate impact experiment.

  8. A Compendium of Arctic Environmental Information

    DTIC Science & Technology

    1986-03-01

    warn- ing of possible future ice invasions during petroleum drill - ing operations in open-water conditions. Development of sea ice Several basic...tubes, triple beam balance snow temperature thermistor and bridge ice ttiicl^ness hand auger, electric drill with auger, tape with toggle ice...fluids, 8 quarts daily. Acidify urine by drink- ing cranberry juice, taking Vitamin C, etc. Machines All machinery in the Arctic (engines, drills

  9. Autonomous Microstructure EM-APEX Floats

    DTIC Science & Technology

    2016-01-01

    Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats

  10. Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.

    2016-07-01

    Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.

  11. DIY soundcard based temperature logging system. Part I: design

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2016-11-01

    This paper aims to enable schools to make their own low-cost temperature logging instrument and to learn a something about its calibration in the process. This paper describes how a thermistor can be integrated into a simple potential divider circuit which is powered with the sound output of a computer and monitored by the microphone input. The voltage across a fixed resistor is recorded and scaled to convert it into a temperature reading in the range 0-100 °C. The calibration process is described with reference to fixed points and the effects of non-linearity are highlighted. An optimised calibration procedure is described which enables sub degree resolution and a software program was written which makes it possible to log, display and save temperature changes over a user determined period of time.

  12. NTD-GE Based Microcalorimeter Performance

    NASA Technical Reports Server (NTRS)

    Bandler, Simon; Silver, Eric; Schnopper, Herbert; Murray, Stephen; Barbera, Marco; Madden, Norm; Landis, Don; Beeman, Jeff; Haller, Eugene; Tucker, Greg

    2000-01-01

    Our group has been developing x-ray microcalorimeters consisting of neutron transmutation doped (NTD) germanium thermistors attached to superconducting tin absorbers. We discuss the performance of single pixel x-ray detectors, and describe an array technology. In this paper we describe the read-out circuit that allows us to measure fast signals in our detectors as this will be important in understanding the primary cause of resolution broadening. We describe briefly a multiplexing scheme that allows a number of different calorimeters to be read out using a single JFET. We list the possible causes of broadening and give a description of the experiment which best demonstrates the cause of the primary broadening source. We mention our strategy for finding a suitable solution to this problem and describe briefly a technology for building arrays of these calorimeters.

  13. Thematic mapper protoflight model preshipment review data package. Volume 4: Appendix. Part A: Multiplexer data book 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final performance test data for the thematic mapper flight model multiplexer are presented in tables. Aspects covered include A/D thresholds for bands 5, 6, and 7; cross talk; the thermistor; bilevel commands signal parameters; A/D threshold ambient, voltage margin low bus; serial data and bit clock parameters; and the wire check. Tests were conducted at ambient temperature.

  14. IRIA State-of-the-Art Report: Optical-Mechanical, Active/Passive Imaging Systems. Volume I.

    DTIC Science & Technology

    1982-05-01

    mostly nonimage -forming. With few exceptions, these devices used reflective optical systems, similar detectors (thermistor bolometers), and oscillating...diffraction-limited circular optics appears as a bright circular disk surrounded by concentric rings of diminishing flux density. The central disk...bar target is heavily concentrated in frequencies lower than the basic frequency of the bar target. The MTF of a reflective optical system varies as a

  15. Kinetic titration with differential thermometric determination of the end-point.

    PubMed

    Sajó, I

    1968-06-01

    A method has been described for the determination of concentrations below 10(-4)M by applying catalytic reactions and using thermometric end-point determination. A reference solution, identical with the sample solution except for catalyst, is titrated with catalyst solution until the rates of reaction become the same, as shown by a null deflection on a galvanometer connected via bridge circuits to two opposed thermistors placed in the solutions.

  16. USAFSAM Review and Analysis of Radiofrequency Radiation Bioeffects Literature. Fifth Report.

    DTIC Science & Technology

    1985-03-01

    exteriorized between the scapulae. The tip of the catheter was positioned at the juncture between the superior and inferior venae cavae . With this preparation...other than in connection with a definitely Government-related procure- ment, the United States Government incurs no responsibility or any obligation...Between experimental sessions, Frey and Seifert measured the power density with a quarter-wave dipole connected to a commercial thermistor and power meter

  17. Improved Measurement System for Atmospheric Studies

    DTIC Science & Technology

    2015-05-05

    wire placed in fluid flow depends on: 1- the properties of the ambient fluid (density, viscosity, thermal conductivity , specific heat) and, 2- the...bead thermistors in gas chromatog- raphy and thermal conductivity gas analysis equipment, as well as in ther- mistor catheters and hypodermic needles...ground. Special MCX plugs on the turbulence payload (outside of MCX plug not in contact with any metal part but connected to the outside conductor

  18. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  19. Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files

    NASA Technical Reports Server (NTRS)

    McBride, M. J.; Williams, David R.; Hills, H. Kent

    2012-01-01

    We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures.

  20. Design, implementation, and performance of the Astro-H SXS calorimeter array and anticoincidence detector

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelly, Daniel; Leutenegger, Maurice A.; McCammon, Dan; Scott Porter, F.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.

  1. Steps toward thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Jardine, A. P.

    2014-05-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by thermal evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 us, allowing temperature measurement within the duration of a plate impact experiment.

  2. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  3. Advancements, measurement uncertainties, and recent comparisons of the NOAA frost point hygrometer.

    PubMed

    Hall, Emrys G; Jordan, Allen F; Hurst, Dale F; Oltmans, Samuel J; Vömel, Holger; Kühnreich, Benjamin; Ebert, Volker

    2016-01-01

    The NOAA frost point hygrometer (FPH) is a balloon-borne instrument flown monthly at three sites to measure water vapor profiles up to 28 km. The FPH record from Boulder, Colorado, is the longest continuous stratospheric water vapor record. The instrument has an uncertainty in the stratosphere that is < 6 % and up to 12 % in the troposphere. A digital microcontroller version of the instrument improved upon the older versions in 2008 with sunlight filtering, better frost control, and resistance to radio frequency interference (RFI). A new thermistor calibration technique was implemented in 2014, decreasing the uncertainty in the thermistor calibration fit to less than 0.01 °C over the full range of frost - or dew point temperatures (-93 to +20 °C) measured during a profile. Results from multiple water vapor intercomparisons are presented, including the excellent agreement between the NOAA FPH and the direct tunable diode laser absorption spectrometer (dTDLAS) MC-PicT-1.4 during AquaVIT-2 chamber experiments over 6 days that provides confidence in the accuracy of the FPH measurements. Dual instrument flights with two FPHs or an FPH and a cryogenic frost point hygrometer (CFH) also show good agreement when launched on the same balloon. The results from these comparisons demonstrate the high level of accuracy of the NOAA FPH.

  4. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  5. A temperature and photographic time-series from a seafloor gas hydrate deposit on the Gulf of Mexico Slope

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Vararo, M.; Bender, L.

    2003-04-01

    Under laboratory conditions, gas hydrates are highly sensitive to changes in water temperature. MacDonald et al. (1994) and Roberts et al. (1999) have monitored in-situ deposits and recorded rapid changes in gas flux from vents partially plugged with gas hydrate; the changes appear to correlate with fluctuation in bottom temperature over ranges of <0.2 to 1.0 C. To study this process in a different way, a monitoring array consisting of a time lapse camera and two thermistor probes was deployed at a hydrocarbon seep known as Bush Hill. Every 6 hours for 96 days (until battery power was exhausted), the camera recorded a digital image of a prominent gas hydrate mound consisting of Structure II hydrate with gas vents, chemosynthetic tube worms, and a number of mobile species. The temperature probes comprised two autonomous Antares thermistors, one at each end of a 50-cm PVC wand, which recorded temperatures with precision of better than 0.1 C at 30-min intervals over 327 d. One probe was implanted with a tight seal into a drill hole about 7 cm deep in the top of the gas hydrate mound. The second was inserted about 50 cm deep into the adjacent sediments. For each probe, the top thermistor recorded the ambient water temperature while the bottom thermistor recorded the internal temperature of the hydrate or sediment. Photographic results show no dramatic changes in the size, shape, or gas venting from the mound during the 96 day time-series. There were subtle increases in the amount of hydrate exposed to the water between the end of the photographic time series and the recovery of the monitoring array. Mean temperatures (SDEV) and temperature range recorded by the probes were as follows: In-water: 7.87 ( 0.44) and 6.64-9.73 C In-hydrate: 7.81 ( 0.34) and 6.87-9.18 C In-sediment: 7.81 ( 0.16) and 7.79-9.18 C Spectra of the temperature records showed significant high-frequency peaks for in-water data corresponding to K1, M2 and M3 lunar tides. Of these peaks, only the K1 (23.9 h) was evident for in-hydrate records and none of the tidal peaks were evident for in-sediment records. All three records showed significant low-frequency periodicity at about 288 h. In-hydrate temperatures lagged the in-water temperatures by 6 h with high correlation. In-sediment temperatures lagged in-water temperatures by 288 h with weak correlation. These results constrain the response of shallow gas hydrate deposits to changing water temperature. MacDonald, I. R., N. L. Guinasso, Jr., et al. (1994). Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico. Geology 22: 699-702. Roberts, H., W. Wiseman Jr., et al. (1999). Surficial gas hydrates of the Louisiana continental slope--initial results of direct observations and in situ data collection. Offshore Technology Conference, Houston, TX, 10770: 259-272

  6. Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.

    1973-01-01

    A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.

  7. Cryogenic Design of the Setup for MARE-1 in Milan

    NASA Astrophysics Data System (ADS)

    Schaeffer, D.; Arnaboldi, C.; Ceruti, G.; Ferri, E.; Kilbourne, C.; Kraft-Bermuth, S.; Margesin, B.; McCammon, D.; Monfardini, A.; Nucciotti, A.; Pessina, G.; Previtali, E.; Sisti, M.

    2008-05-01

    A large worldwide collaboration is growing around the project of Micro-calorimeter Arrays for a Rhenium Experiment (MARE) for a direct calorimetric measurement of the neutrino mass. To validate the use of cryogenic detectors by checking the presence of unexpected systematic errors, two first experiments are planned using the available techniques composed of arrays of 300 detectors to measure 1010 events in a reasonable time of 3 years (step MARE-1) to reach a sensitivity on the neutrino mass of ˜2 eV/c2. Our experiment in Milan is based on compensated doped silicon implanted thermistor arrays made in NASA/GSFC and on AgReO4 crystals. We present here the design of the cryogenic system that integrates all the requirements for such experiment (electronics for high impedances, low parasitic capacitances, low micro-phonic noise).

  8. Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data

    USGS Publications Warehouse

    Henderson, R.D.; Day-Lewis, Frederick D.; Harvey, Charles F.

    2009-01-01

    Fiber-optic distributed temperature sensing (FODTS) provides sub-minute temporal and meter-scale spatial resolution over kilometer-long cables. Compared to conventional thermistor or thermocouple-based technologies, which measure temperature at discrete (and commonly sparse) locations, FODTS offers nearly continuous spatial coverage, thus providing hydrologic information at spatiotemporal scales previously impossible. Large and information-rich FODTS datasets, however, pose challenges for data exploration and analysis. To date, FODTS analyses have focused on time-series variance as the means to discriminate between hydrologic phenomena. Here, we demonstrate the continuous wavelet transform (CWT) and cross-wavelet transform (XWT) to analyze FODTS in the context of related hydrologic time series. We apply the CWT and XWT to data from Waquoit Bay, Massachusetts to identify the location and timing of tidal pumping of submarine groundwater.

  9. A laboratory model for solidification of Earth's core

    NASA Astrophysics Data System (ADS)

    Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan

    2005-11-01

    To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the complexity in the seismically inferred pattern of anisotropy in the Earth's inner core.

  10. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Mayer, H; Tosh, R

    2015-06-15

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPEmore » phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of diagnostic CT beams. The results obtained here are being used to refine both simulations and design of calorimeter core components.« less

  11. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the FMA. It reduces the risk of X-ray attenuation caused by the heater harness. Its adjustable set point capability eliminates the need for survival heater circuits. The operating mode heater circuits can also be used as survival heater circuits. In the non-operating mode, a lower set point is used.

  12. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection.

    PubMed

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-11-04

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 10⁶ copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics.

  13. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  14. Thermal well-test method

    DOEpatents

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  15. Thermal well-test method

    DOEpatents

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  16. Mountain and Glacier Terrain Study and Related Investigations in the Juneau Icefield Region, Alaska-Canada

    DTIC Science & Technology

    1975-09-01

    sling psychrometers, thermographs or hygrothermographs, rain gauges , and recording wind direction and velocity Indicators. Four stations Included MRI...precluded drilling a hole and the moulins have not been sufficiently exposed In the last two years, it has been essential to extend the survey control into...middle of May (Miller, 1972 b).The character of thermal penetration Is revealed by data from thermistors drilled Into the Ice from the glacier’s surface

  17. Thin Film Materials and Devices for Resistive Temperature Sensing Applications

    DTIC Science & Technology

    2015-05-21

    materials are metals, their alloys, semiconducting materials, and thermistor materials such as spinels of manganese, cobalt and nickel oxides. 16 10...improved by doping of the thin films to increase the available carriers for transport. In the case of SiGe:H thin films, Ajmera et al. and Saint John et al...Conference, Freiburg, Fed. Rep. of Germany, 1989. [55] M. Stutzmann, J. Stuke and H. Dersch, "Electron Spin Resonance of Doped Glow-discharge

  18. Evaluation of a novel noninvasive continuous core temperature measurement system with a zero heat flux sensor using a manikin of the human body.

    PubMed

    Brandes, Ivo F; Perl, Thorsten; Bauer, Martin; Bräuer, Anselm

    2015-02-01

    Reliable continuous perioperative core temperature measurement is of major importance. The pulmonary artery catheter is currently the gold standard for measuring core temperature but is invasive and expensive. Using a manikin, we evaluated the new, noninvasive SpotOn™ temperature monitoring system (SOT). With a sensor placed on the lateral forehead, SOT uses zero heat flux technology to noninvasively measure core temperature; and because the forehead is devoid of thermoregulatory arteriovenous shunts, a piece of bone cement served as a model of the frontal bone in this study. Bias, limits of agreements, long-term measurement stability, and the lowest measurable temperature of the device were investigated. Bias and limits of agreement of the temperature data of two SOTs and of the thermistor placed on the manikin's surface were calculated. Measurements obtained from SOTs were similar to thermistor values. The bias and limits of agreement lay within a predefined clinically acceptable range. Repeat measurements differed only slightly, and stayed stable for hours. Because of its temperature range, the SOT cannot be used to monitor temperatures below 28°C. In conclusion, the new SOT could provide a reliable, less invasive and cheaper alternative for measuring perioperative core temperature in routine clinical practice. Further clinical trials are needed to evaluate these results.

  19. Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.

    PubMed

    Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L

    2001-10-01

    We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope.

  20. Advancements, measurement uncertainties, and recent comparisons of the NOAA frost point hygrometer

    PubMed Central

    Hall, Emrys G.; Jordan, Allen F.; Hurst, Dale F.; Oltmans, Samuel J.; Vömel, Holger; Kühnreich, Benjamin; Ebert, Volker

    2017-01-01

    The NOAA frost point hygrometer (FPH) is a balloon-borne instrument flown monthly at three sites to measure water vapor profiles up to 28 km. The FPH record from Boulder, Colorado, is the longest continuous stratospheric water vapor record. The instrument has an uncertainty in the stratosphere that is < 6 % and up to 12 % in the troposphere. A digital microcontroller version of the instrument improved upon the older versions in 2008 with sunlight filtering, better frost control, and resistance to radio frequency interference (RFI). A new thermistor calibration technique was implemented in 2014, decreasing the uncertainty in the thermistor calibration fit to less than 0.01 °C over the full range of frost – or dew point temperatures (−93 to +20 °C) measured during a profile. Results from multiple water vapor intercomparisons are presented, including the excellent agreement between the NOAA FPH and the direct tunable diode laser absorption spectrometer (dTDLAS) MC-PicT-1.4 during AquaVIT-2 chamber experiments over 6 days that provides confidence in the accuracy of the FPH measurements. Dual instrument flights with two FPHs or an FPH and a cryogenic frost point hygrometer (CFH) also show good agreement when launched on the same balloon. The results from these comparisons demonstrate the high level of accuracy of the NOAA FPH. PMID:28845201

  1. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  2. Micro-fabricated DC comparison calorimeter for RF power measurement.

    PubMed

    Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel

    2014-10-27

    Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.

  3. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    NASA Technical Reports Server (NTRS)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  4. Microcalorimeters with Germanium Thermistors for High Resolution Soft and Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Silver, E.

    2003-01-01

    This is a progress report for the first year of a three year Space Research and Technology (SR&T) grant to continue the advancement of neutron transmutation doped (NTD-based) microcalorimeters. We have re-prioritized certain aspects of the statement of work and chose to emphasize issues of array development in the first year rather than wait until year two. Consequently, some of the projects scheduled for the first year were delayed to the second year. Here we report on our progress to: a) Build and test a 1 x 4 element array and to investigate electrical and thermal cross-talk; b) Build a multiplexed 4 channel analog pulse processor; c) Build a digital pulse processor that can accommodate 4 channels with independent triggers; d) Develop a proportional thermal baseline restoration system compatible with the constant voltage mode of microcalorimeter operation.

  5. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  6. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  7. Towed Thermistor Chain Observations in JASIN,

    DTIC Science & Technology

    1980-07-01

    Lij LiJ - S -Ky LJDC cYcc Ql I- 6? F-L T cy D- Hl-m L-L Lo i -,7W LOu CT KK _ _4 C7) 63 -) Ln CD Ln ;Lf FE - CS -JN V LO WLJCNK ua- -~ Lfl CO F (YD... DBD C _W2 + D2 Integrating (A5) yields: G8 bW -1 2cs + b z(s) = (- - 2c 3 / 2 [sinh (d - sinh- (-)] (a7) +- [(A + bs + cs) - /a]c where d = 4ac - b

  8. Infrared Standards to Improve Chamber 7V Beam Irradiance Calibrations

    DTIC Science & Technology

    1981-01-01

    In addition to high thermometric resolution, thermistors have another useful operational feature in that the natural log of the voltage drop is very...conjunction with a third provided by AEDC. These equations are known as: Eq. i. T R - ÷ AIT 1 where T 1 is the thermometric temperature indicated by...3.58078 x 10 -5 | Equation 3 is t h e thermometric calibration provided by AEDC relating to the natural logarithm of V I. It is repeated here for

  9. Psychophysiological Studies II. Performance and Physiological Response in Coronary Prone and Noncoronary Prone Individuals.

    DTIC Science & Technology

    1986-01-30

    Cyborg BL907 heart rate monitor. A pressure sensitive transducer was placed over the radial artery of the left arm to measure HR in beats per minute...measurement was obtained with a Cyborg Thermal P642. Temperature was recorded by a thermistor placed on the dorsal surface of the middle finger of...the left hand (second phalanx) and was displayed to .01 degrees Farenheit. Electromyogram activity was measured with a Cyborg P303. Measurements (to .1

  10. Design of a Stabilized, DC-Powered Analog Laser Diode Driver

    DTIC Science & Technology

    1990-09-01

    in vibrations in the materials crystal lattice , producing heat [Ref. 2:p. 249]. However, if the recombination is radiative, a photon is emitted; the...resistivity, lattice -matched n-type material (with a higher bandgap energy and lower index of refraction), the active region would be strictly confined on...line (with points indicated by circles). QCD c’o H 0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 RESISTANCE (KOHMs) Figure 3.3. Thermistor Temperature versus

  11. Altimeter and Oceanographic in Situ Measurements in the Area of the Greenland-Iceland-Norwegian Sea, 1987-1988

    DTIC Science & Technology

    1992-06-01

    of CTD data; J. Boyd for collecting AXBT data; Steve Piacsek from SACLANTCEN for GDEM data and help in arrangement of Planet Cruise; P. Minnett from...FCTE ft OCT -992 00 "Orgsnrdl oontot4ns color platgs: All DTIC reproduot- Ions Will be In blaok and white* Pavel Pistek Ocean Sensing and Prediction...temperature-depth and thermistor chain data collected by the West German ship WFS Planet , airborne expendable bathythermograph data deployed by P-3

  12. VOLTAGE-CONTROLLED TRANSISTOR OSCILLATOR

    DOEpatents

    Scheele, P.F.

    1958-09-16

    This patent relates to transistor oscillators and in particular to those transistor oscillators whose frequencies vary according to controlling voltages. A principal feature of the disclosed transistor oscillator circuit resides in the temperature compensation of the frequency modulating stage by the use of a resistorthermistor network. The resistor-thermistor network components are selected to have the network resistance, which is in series with the modulator transistor emitter circuit, vary with temperature to compensate for variation in the parameters of the transistor due to temperature change.

  13. The Role of Nuclei Size in Transient Cavitation Threshold Measurements

    DTIC Science & Technology

    1984-09-01

    resonance frequency of about 50 kHz. Also epoxied to the cell are a minature PZT-5 pill transducer (to monitor the sound field) and an omega Engineering model...44018 linear thermistor. The glass inlet and- outlet tubes have an o.d. of roughly 3.5mm and are held in place by a - 25 - 26 * two hole rubber...wrapped in black electrical tape, provide a tortuous path for outside light which helps to preserve the integrity of the light tight enclosure. The

  14. Analysis of Near-Surface Oceanic Measurements Obtained During the Low-Wind Component of the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment

    DTIC Science & Technology

    2006-09-30

    temperature and the upwelling IR radiative heat flux were obtained from a pyrometer . The heat fluxes are combined to compute the net heat flux into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the sea surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the

  15. Vacuum Ultraviolet Photoelectron Emission Spectroscopy of Water and Aqueous Solutions.

    DTIC Science & Technology

    1980-02-01

    Siegbahn, Nouv. J. Chim. 1, 191 (1977). 26T. Shibaguchi, H . Onuki and R. Onaka, J. Phys. Soc. Japan 42, 152 (1977). 27I. Abbati, L. Braicovich and B. De...application of the Brodsky- Tsarevsky theory of photoelectronemtssion by solutions: 8.7, 7.9. 7.2, 8.4 eV, respectively, for CIT. Brr. V. H ions. The...externally cooled nitrogen gas flowed. The temperature of the liquid was monitored with thermistor H and kept constant at 1.50C by controlling the cooled gas

  16. An infrared image based methodology for breast lesions screening

    NASA Astrophysics Data System (ADS)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective in breast lesions screening through infrared imaging in order to recommend a biopsy, even with the use of a low optical resolution camera (160 × 120 pixels) and a thermal resolution of 0.1 °C, whose results were compared to the results of a higher resolution camera (320 × 240 pixels). The main conclusion is that the results demonstrate that the method has potential for utilization as a noninvasive screening exam for individuals with breast complaints, indicating whether the patient should be submitted to a biopsy or not.

  17. A superconducting bolometer camera for APEX

    NASA Astrophysics Data System (ADS)

    Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.

    2006-06-01

    We present the experimental results of voltage-biased superconducting bolometers (VSB) on silicon nitride (Si 3N 4) membranes with niobium wiring developed in collaboration between the Institut fur Physikalische Hochtechnologie (IPHT), Jena, Germany and the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn, Germany. The bolometer current is measured with the superconducting quantum interference device (SQUID), and as expected, the current responsivity is proportional to the inverse of the bias voltage. The experiments were performed with bilayer gold-palladium molybdenum thermistor at 300 mK 3He cooled cryostat and the desired transition temperature of T c = 450 mK is achieved. The strong negative electro-thermal feedback of the VSB maintains the constant bolometer temperature and reduces the response time from 4 ms to 100 μs. We have tested thermistors of various size and shape on a continuous membrane and achieved a noise equivalent power (NEP) of 3.5 × 10 -16 W/√Hz. The measured NEP is relatively high due to the comparatively high background and high thermal conductance of the unstructured silicon nitride (Si 3N 4) membrane. We have fabricated 8-leg spider structured membranes in three different geometries and the relation between the geometry and the thermal conductance (G) is studied. Using the COSMOS finite element analysis tool, we have modeled the TES bolometers to determine the thermal conductance for different geometries and calculated the various parameters. Due to the demands of large number pixel bolometer camera we plan to implement multiplex readout with integrated SQUIDs in our design.

  18. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  19. VOCs monitoring system simulation and design

    NASA Astrophysics Data System (ADS)

    Caldararu, Florin; Vasile, Alexandru; Vatra, Cosmin

    2010-11-01

    The designed and simulated system will be used in the tanning industry, for Volatile Organic Compound (VOC) measurements. In this industry, about 90% of the solvent contained in the emulsions evaporates during its application, giving rise to VOC, which are at the same time hazardous atmospheric pollutants and one of the sources of ground level photochemical ozone formation. It results that a monitoring system is necessary in a leather finishing process, in order to detect hazardous VOC concentration and conducting process in order of VOC concentration diminishing. The paper presents the design of a VOC monitoring system, which includes sensors for VOCs and temperature, the conditioning circuitry for these sensors, the suction system of the gas in the hood, the data acquisition and the computing system and graphic interface. The used sensor in the detection system is a semiconductor sensor, produced by Figaro Engineering Inc., characterized by a short response time, high sensitivity at almost all VOC substances. The design of the conditioning circuitry and data acquisition is done in order to compensate the sensor response variation with temperature and to maintain the low response time of the sensor. The temperature compensation is obtained by using a thermistor circuitry, and the compensation is done within the software design. A Mitsubishi PLC is used to receive the output signals of the circuits including the sensor and of the thermistor, respectively. The acquisition and computing system is done using Mitsubishi ALPHA 2 controller and a graphical terminal, GOT 1000.

  20. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  1. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  2. OSSE Assessment of Ocean Observing System Enhancements to Improve Coupled Tropical Cyclone Intensity Prediction

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R., Jr.; Mehari, M. F.; Dong, J.; Kourafalou, V.; Atlas, R. M.; Kang, H.; Le Henaff, M.

    2016-02-01

    A new ocean OSSE system validated in the tropical/subtropical Atlantic Ocean is used to evaluate ocean observing strategies during the 2014 hurricane season with the goal of improving coupled tropical cyclone forecasts. Enhancements to the existing operational ocean observing system are evaluated prior to two storms, Edouard and Gonzalo, where ocean measurements were obtained during field experiments supported by the 2013 Disaster Relief Appropriation Act. For Gonzalo, a reference OSSE is performed to evaluate the impact of two ocean gliders deployed north and south of Puerto Rico and two Alamo profiling floats deployed in the same general region during most of the hurricane season. For Edouard, a reference OSSE is performed to evaluate impacts of the pre-storm ocean profile survey conducted by NOAA WP-3D aircraft. For both storms, additional OSSEs are then conducted to evaluate more extensive seasonal and pre-storm ocean observing strategies. These include (1) deploying a larger number of synthetic ocean gliders during the hurricane season, (2) deploying pre-storm synthetic thermistor chains or synthetic profiling floats along one or more "picket fence" lines that cross projected storm tracks, and (3) designing pre-storm airborne profiling surveys to have larger impacts than the actual pre-storm survey conducted for Edouard. Impacts are evaluated based on error reduction in ocean parameters important to SST cooling and hurricane intensity such as ocean heat content and the structure of the ocean eddy field. In all cases, ocean profiles that sample both temperature and salinity down to 1000m provide greater overall error reduction than shallower temperature profiles obtained from AXBTs and thermistor chains. Large spatial coverage with multiple instruments spanning a few degrees of longitude and latitude is necessary to sufficiently reduce ocean initialization errors over a region broad enough to significantly impact predicted surface enthalpy flux into the storm. Error reduction in hurricane intensity forecasts resulting from the additional ocean observations is then assessed by initializing the ocean component of the HYCOM-HWRF coupled prediction system with analyses produced by the OSSE system.

  3. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    PubMed

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Tsai, H.; Decision and Information Sciences

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it canmore » be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The Documentation Package for the RFID Temperature Monitoring System; Software Test Plan and Results for ARG-US OnSite; Configuration Management Plan (CMP) for the ARG-US System; Requirements Management Plan for the ARG-US System; and Design Management Plan for ARG-US.« less

  5. Variability of sap flow on forest hillslopes: patterns and controls

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Blume, Theresa

    2013-04-01

    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the goal to identify the most important controls of sap flow at our study site.

  6. OPERATION SUNBEAM, SHOT SMALL BOY. Project Officer’s Report - Project 2.2, Measurement of Fast-Neutron Dose Rate as a Function of Time

    DTIC Science & Technology

    1985-09-01

    Calibration 44 3.1.3 The SPIDER Calibration 45 3.1.*» Thermistor Temperature Detector Calibration. . 45 3.2 Amplifier Calibration 45 3.2.1...of a material with high conductivity and preferably high permeability. For the bunker construction, welded one-inch soft-steel plates were chosen for...Kovar flanges (metal- to-ceramic seal). The external plates are hel1arc- welded to the flanges. The external plate facing away from the incoming

  7. Automatic analysis with thermometric detection.

    PubMed

    McLean, W R; Penketh, G E

    1968-11-01

    The construction of a cell and associated Wheatstone bridge detector circuitry is described for a thermometric detector suitable for attachment to a Technicon Autoanalyzer. The detector produces a d.c. mV signal linearly proportional to the concentration (0.005-0.1M) of the thermally reactive component in the sample stream when it is mixed in the cell with the reagent stream. The influence of various pertinent parameters such as ambient temperature, thermistor voltage, heats of reaction and sensitivity are discussed together with interference effects arising through chemistry, ionic strength effects and heat of dilution.

  8. A low power, on demand electrothermal valve for wireless drug delivery applications

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Sheybani, Roya; Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    We present a low power, on demand Parylene MEMS electrothermal valve. A novel Ω-shaped thermal resistive element requires low power (~mW) and enables rapid valve opening (~ms). Using both finite element analysis and valve opening experiments, a robust resistive element design for improved valve opening performance in water was obtained. In addition, a thermistor, as an inrush current limiter, was added into the valve circuit to provide variable current ramping. Wireless activation of the valve using RF inductive power transfer was demonstrated. PMID:20024057

  9. A chamber design for closed ecological systems research

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, H.; Stofan, P. E.

    1981-01-01

    A single-plant growth chamber is described which is closed with respect to nutrient and gas flows, in order to serve as a tool in the investigation of control over biological systems. Such control procedures are essential for the use of biological components in the development of a closed ecological life support system (CELSS). The chamber's design consists of two concentric clear plastic cylinders equipped with aeroponic feed tubing, a supporting platform for the plant and a set of sensors that includes an anemometer, thermistors, pressure and strain gauges, and humidity sensors.

  10. First-Time Analysis of Completely Restored DTREM Instrument Data from Apollo 14 and 15

    NASA Technical Reports Server (NTRS)

    McBride, Marie J.; Williams, David R.; Hills, H. Kent; Turner, Niescja

    2013-01-01

    The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages (figure 1) mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The monitors returned data for up to almost 8 years from the lunar surface.

  11. Temporal and spatial dispersion of human body temperature during deep hypothermia.

    PubMed

    Opatz, O; Trippel, T; Lochner, A; Werner, A; Stahn, A; Steinach, M; Lenk, J; Kuppe, H; Gunga, H C

    2013-11-01

    Clinical temperature management remains challenging. Choosing the right sensor location to determine the core body temperature is a particular matter of academic and clinical debate. This study aimed to investigate the relationship of measured temperatures at different sites during surgery in deep hypothermic patients. In this prospective single-centre study, we studied 24 patients undergoing cardiothoracic surgery: 12 in normothermia, 3 in mild, and 9 in deep hypothermia. Temperature recordings of a non-invasive heat flux sensor at the forehead were compared with the arterial outlet temperature of a heart-lung machine, with the temperature on a conventional vesical bladder thermistor and, for patients undergoing deep hypothermia, with oesophageal temperature. Using a linear model for sensor comparison, the arterial outlet sensor showed a difference among the other sensor positions between -0.54 and -1.12°C. The 95% confidence interval ranged between 7.06 and 8.82°C for the upper limit and -8.14 and -10.62°C for the lower limit. Because of the hysteretic shape, the curves were divided into phases and fitted into a non-linear model according to time and placement of the sensors. During cooling and warming phases, a quadratic relationship could be observed among arterial, oesophageal, vesical, and cranial temperature recordings, with coefficients of determination ranging between 0.95 and 0.98 (standard errors of the estimate 0.69-1.12°C). We suggest that measured surrogate temperatures as indices of the cerebral temperature (e.g. vesical bladder temperature) should be interpreted with respect to the temporal and spatial dispersion during cooling and rewarming phases.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojocaru, Claudiu; Mui, Bryan; McEwen, Malcolm

    Purpose: To investigate the stability of a water calorimetry system as a primary standard for absorbed dose to water using measurements performed in cobalt-60 and high-energy linac photon beams over a span of more than a decade. Methods: Calorimetry measures adsorbed dose directly by recording the amount of heat created when ionizing radiation passes through matter. The radiation-induced temperature rise was measured using two thermistors calibrated against the NRC temperature primary standard, using an AC bridge with lock-in amplifier for precise measurement. The calorimeter system was operated under thermal equilibrium at 4 °C (to eliminate convection) with drifts in watermore » temperature less than 0.1 mK/min. Seven water vessels of various designs were used to make repeated measurements over the course of 17 years. Results: The standard uncertainty achieved for a set of ten calorimeter measurements (4 Gy delivered) was generally well below 0.15 % while the variation between multiple sets for a given vessel was consistent with this value. The long-term stability of the system combined with inter-vessel variations indicated that there was good control of the radiochemistry (chemical heat defect). Conclusions: The measurements performed over a period of several years showed that the combined water calorimeters showed stability at +/− 0.25 % level. Thus, rather than relying on a particular vessel as an artifact one can realize the Gray through the more generalized method of combining a glass vessel, high-purity water and thermistor probes. This provides increased robustness in the dissemination of absorbed dose to Canadian users.« less

  13. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Revercomb, Henry E.; Knuteson, Robert O.; Tobin, David C.; Ellington, Scott D.; Werner, Mark W.; Adler, Douglas P.; Garcia, Raymond K.; Taylor, Joseph K.; Ciganovich, Nick N.; Smith, William L., Sr.; Bingham, Gail E.; Elwell, John D.; Scott, Deron K.

    2005-01-01

    The NASA New Millennium Program's Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument provides enormous advances in water vapor, wind, temperature, and trace gas profiling from geostationary orbit. The top-level instrument calibration requirement is to measure brightness temperature to better than 1 K (3 sigma) over a broad range of atmospheric brightness temperatures, with a reproducibility of +/-0.2 K. For in-flight radiometric calibration, GIFTS uses views of two on-board blackbody sources (290 K and 255 K) along with cold space, sequenced at regular programmable intervals. The blackbody references are cavities that follow the UW Atmospheric Emitted Radiance Interferometer (AERI) design, scaled to the GIFTS beam size. The cavity spectral emissivity is better than 0.998 with an absolute uncertainty of less than 0.001. Absolute blackbody temperature uncertainties are estimated at 0.07 K. This paper describes the detailed design of the GIFTS on-board calibration system that recently underwent its Critical Design Review. The blackbody cavities use ultra-stable thermistors to measure temperature, and are coated with high emissivity black paint. Monte Carlo modeling has been performed to calculate the cavity emissivity. Both absolute temperature and emissivity measurements are traceable to NIST, and detailed uncertainty budgets have been developed and used to show the overall system meets accuracy requirements. The blackbody controller is housed on a single electronics board and provides precise selectable set point temperature control, thermistor resistance measurement, and the digital interface to the GIFTS instrument. Plans for the NIST traceable ground calibration of the on-board blackbody system have also been developed and are presented in this paper.

  14. Multimode bolometer development for the PIXIE instrument

    NASA Astrophysics Data System (ADS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-07-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  15. Resolve Instrument on X-ray Astronomy Recovery Mission (XARM)

    NASA Astrophysics Data System (ADS)

    Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Ichinohe, Y.; Fujimoto, R.; Takei, Y.; Yasuda, S.; Ishida, M.; Yamasaki, N. Y.; Maeda, Y.; Tsujimoto, M.; Iizuka, R.; Koyama, S.; Noda, H.; Tamagawa, T.; Sawada, M.; Sato, K.; Kitamoto, S.; Hoshino, A.; Brown, G. V.; Eckart, M. E.; Hayashi, T.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Mori, H.; Okajima, T.; Porter, F. S.; Soong, Y.; McCammon, D.; Szymkowiak, A. E.

    2018-04-01

    The X-ray Astronomy Recovery Mission (XARM) is a recovery mission of ASTRO-H/Hitomi, which is expected to be launched in Japanese Fiscal Year of 2020 at the earliest. The Resolve instrument on XARM consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput X-ray mirror assembly with the focal length of 5.6 m. Hitomi was launched into orbit in February 2016 and observed several celestial objects, although the operation of Hitomi was terminated in April 2016. The soft X-ray spectrometer (SXS) on Hitomi demonstrated high-resolution X-ray spectroscopy of 5 eV FWHM in orbit for most of the pixels. The Resolve instrument is planned to mostly be a copy of the Hitomi SXS and soft X-ray telescope designs, though several changes are planned based on the lessons learned from Hitomi. We report a brief summary of the SXS performance and the status of the Resolve instrument.

  16. Multimode Bolometer Development for the PIXIE Instrument

    NASA Technical Reports Server (NTRS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  17. Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument

    NASA Technical Reports Server (NTRS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  18. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.

    PubMed

    Lim, Hyun Soo

    2012-12-01

    General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.

  19. Characterization of water molecular state in in-vivo thick tissues using diffuse optical spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Chung, So Hyun

    Structural changes in water molecules are related to physiological, anatomical and pathological properties of tissues. Near infrared (NIR) optical absorption methods are sensitive to water; however, detailed characterization of water in thick tissues is difficult to achieve because subtle spectral shifts can be obscured by multiple light scattering. In the NIR, a water absorption peak is observed around 975 nm. The precise NIR peak's shape and position are highly sensitive to water molecular disposition. A bound water index (BWI) was developed that quantifies the spectral shift and shape changes observed in tissue water absorption spectra measured by broadband diffuse optical spectroscopic imaging (DOSI). DOSI quantitatively measures light absorption and scattering spectra in cm-deep tissues and therefore reveals bound water spectral shifts. BWI as a water state index was validated by comparing broadband DOSI to MRI and a conductivity cell using bound water phantoms. Non-invasive BWI measurements of malignant and normal tissues in 18 subjects showed a significantly higher fraction of free water in malignant tissues (p<0.0001) compared to normal tissues. BWI showed potential as a prognostic index based on high correlations with tumor grade and size. An algorithm for absolute temperature measurements in deep tissues was developed based on resolving opposing effects of water vibrational frequency shifts due to macromolecular binding. DOSI measures absolute temperature with a difference of 1.1+/-0.91°C from a thermistor. Deep tissue temperature measured in forearms during cold-stress was consistent with previously reported invasively-measured deep tissue temperature. Finally, the BWI was compared to Apparent Diffusion Coefficient (ADC) of diffusion weighted MRI in 9 breast cancer patients. The BWI and ADC correlated (R=0.8, p=<0.01) and both parameters decreased with increasing bulk water content in cancer tissues. Although BWI and ADC are positively correlated in vivo, BWI appears to be more sensitive to free water in the extracellular matrix while ADC reflects increased tumor cellularity. The relationship between ADC, BWI and bulk water concentration suggests that both parameters have potential for assessing tumor histopathological grade. My results confirm the importance of water as a critical tissue component that can potentially provide unique insight into the molecular pathophysiology of cancer.

  20. Research on miniature gas analysis systems

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1974-01-01

    Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.

  1. Theoretical and Experimental Research on a Millimeter-Wavelength Free-Electron Laser

    DTIC Science & Technology

    1989-09-01

    Plauma Sci. vol. PS-3, pp. 1-5, 1975. off (Fig. 7); this may be due to the TEo2 cutoff of the 5 cm [5] A. Grossman and T. C. Marshall, "Orbits of a test...from maycor (a machineable glass ), in the form of a N ihin-walled cone. Thermistors attached to the cone de-N 1- v/ " liver a signal which unbalances a...0.7; this is given by using a calorimeter cone fabricated of "Macor." a ma- eBI, nc chineable glass with high absorption at millimeter wave- vl = (eB

  2. Calibration of the Microcalorimeter Spectrometer On-Board the Hitomi (Astro-H) Observatory (invited)

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Boyce, K. R.; Brown, G. V.; Chiao, M. P.; Fujimoto, R.; Haas, D.; Den Herder, J.-W.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

  3. Microelectronic components and metallic oxide studies and applications

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1976-01-01

    The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.

  4. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at thermal equilibrium with the test flow of GN2. The temperature drop of each branch from its "no flow" stable temperature peak to its stable "with flow" temperature will allow the operator to determine whether a minimum level of flow exists. An alternative operation has the operator turning on the software only long enough to record the ambient temperature of the tubing before turning on the heaters and initiating GN2 flow. The stable temperature of the heated tubing with GN2 flow is then compared with the ambient tubing temperature to determine if flow is present in each branch. To help quantify the level of flow in the manifolds, each branch will be bench calibrated to establish its thermal properties using the flow detection system and different flow rates. These calibration values can then be incorporated into the software application to provide more detailed flow rate information.

  5. A Low-Power Thermal-Based Sensor System for Low Air Flow Detection

    PubMed Central

    Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.

    2016-01-01

    Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186

  6. Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation.

    PubMed

    Collop, Nancy A; Tracy, Sharon L; Kapur, Vishesh; Mehra, Reena; Kuhlmann, David; Fleishman, Sam A; Ojile, Joseph M

    2011-10-15

    Guidance is needed to help clinicians decide which out-of-center (OOC) testing devices are appropriate for diagnosing obstructive sleep apnea (OSA). A new classification system that details the type of signals measured by these devices is presented. This proposed system categorizes OOC devices based on measurements of Sleep, Cardiovascular, Oximetry, Position, Effort, and Respiratory (SCOPER) parameters.Criteria for evaluating the devices are also presented, which were generated from chosen pre-test and post-test probabilities. These criteria state that in patients with a high pretest probability of having OSA, the OOC testing device has a positive likelihood ratio (LR+) of 5 or greater coinciding with an in-lab-polysomnography (PSG)-generated apnea hypopnea index (AHI) ≥ 5, and an adequate sensitivity (at least 0.825).Since oximetry is a mandatory signal for scoring AHI using PSG, devices that do not incorporate oximetry were excluded. English peer-reviewed literature on FDA-approved devices utilizing more than 1 signal was reviewed according to the above criteria for 6 questions. These questions specifically addressed the adequacy of different respiratory and effort sensors and combinations thereof to diagnose OSA. In summary, the literature is currently inadequate to state with confidence that a thermistor alone without any effort sensor is adequate to diagnose OSA; if a thermal sensing device is used as the only measure of respiration, 2 effort belts are required as part of the montage and piezoelectric belts are acceptable in this context; nasal pressure can be an adequate measurement of respiration with no effort measure with the caveat that this may be device specific; nasal pressure may be used in combination with either 2 piezoelectric or respiratory inductance plethysmographic (RIP) belts (but not 1 piezoelectric belt); and there is insufficient evidence to state that both nasal pressure and thermistor are required to adequately diagnose OSA. With respect to alternative devices for diagnosing OSA, the data indicate that peripheral arterial tonometry (PAT) devices are adequate for the proposed use; the device based on cardiac signals shows promise, but more study is required as it has not been tested in the home setting; for the device based on end-tidal CO(2) (ETCO(2)), it appears to be adequate for a hospital population; and for devices utilizing acoustic signals, the data are insufficient to determine whether the use of acoustic signals with other signals as a substitute for airflow is adequate to diagnose OSA.Standardized research is needed on OOC devices that report LR+ at the appropriate AHI (≥ 5) and scored according to the recommended definitions, while using appropriate research reporting and methodology to minimize bias.

  7. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water.

    PubMed

    Chung, S H; Cerussi, A E; Merritt, S I; Ruth, J; Tromberg, B J

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R=0.96) with a difference of 1.1+/-0.91 degrees C over a range of 28-48 degrees C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  8. MARE-l in Milan: Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Gatti, C.; Giachero, A.; Gotti, C.; Kilbourne, C.; Kraft-Bermuth, S.; Nucciotti, A.; hide

    2012-01-01

    The international project MARE (Microcalorimeter Array for a Rhenium Experiment) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. The different option is Ho-163. The potential of using Re-187 for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of Ho-163 has been so far measured with the precision required to set a useful limit on the neutrino mass. The first phase of the project (MARE-1) is a collection of activities with the aim of sorting out both the best isotope and the most suited detector technology to be used for the final experiment. One of the MARE-1 activities is carried out in Milan by the group of Milano-Bicocca in collaboration with NASA/GSFC and Wisconsin groups. The Milan MARE-l arrays are based on semiconductor thermistors, provided by the NASA/GSFC group, with dielectric silver perrhenate absorbers, AgReO4. The experiment, which is presently being assembled, is designed to host up to 8 arrays.

  9. On-orbit solar calibrations using the Aqua Clouds and Earth's Radiant Energy System (CERES) in-flight calibration system

    NASA Astrophysics Data System (ADS)

    Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip

    2009-08-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.

  10. Observations of Nonlinear Internal Wave Runup into the Surfzone

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.; Pawlak, G. R.; Lucas, A.; Terrill, E. J.

    2016-12-01

    Nonlinear internal waves (NLIW) have been observed in the shallow inner­shelf environment, sometimes transporting cold nutrient rich water upslope. Inner-­shelf water properties have been linked to the internal wave field, but the eventual fate and potential impact of NLIWs in water shallower than 15 m has rarely been observed. Here, we detail some of the first shallow water observations of NLIW events made using an array of 75 thermistors and 5 ADCPs, spanning water from 18 m depth all the way to the coast. A total of 31 significant NLIW events (defined as a temperature decrease of at least 1 oC at a rate greater than 0.07 oC/min in 7 m depth) were observed between October 7th and November 19th, 2014. The dense thermistor array tracked the arrival of surges of cold water associated with NLIW events. These events propagated onshore through a variety of background conditions at a range of phase speeds (0.008 to ­ 0.1 m/s) and angles (­63O to 33O ), sometimes extending all the way to the surfzone. Occasionally, a NLIW event left a residual signature in the surfzone and shallow inner­shelf, changing the mean temperature by as much as 1 oC in 1 m water depth. Enhanced NLIW activity was observed over multi­day periods, consisting of temperature oscillations on semi­diurnal, 6-­hour and 10­-minute time scales. Here, we analyze the phase speed, propagation angle and runup extent under a variety of different background conditions. We report on the evolution and characteristics of these coupled inner­shelf / surfzone NLIW events as they propagate upslope into very shallow waters, and potential impacts to the sensitive nearshore region.

  11. AOI [3]: Smart Refractory Sensor Systems for Wireless Monitoring of Temperature, Health, and Degradation of Slagging Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.; Bhattacharyya, Debangsu; Graham, David

    The objective of the work was to develop refractory “smart bricks”, which would contain embedded temperature, strain/stress, and spallation sensors throughout the volume of high-chromia (-Cr2O3) refractory brick. The proposed work included work to interconnect the sensors to the reactor exterior, where the sensor signals may be processed by low-power electronics and transmitted wirelessly to a central processing hub. The data processing and wireless transmitter hardware was specifically designed to be isolated (with low power consumption) and to be adaptable to future implementation of energy-harvesting strategies for extended life. Finally, the collected data was incorporated into a model to estimatemore » refractory degradation, a technique that could help monitor the health of the refractory in real-time. The long-term goal of this program was to demonstrate high-temperature, wireless sensor arrays for in situ three-dimensional (3-D) refractory monitoring or mapping for slagging gasification systems. The research was in collaboration with HarbisonWalker International (HWI) Technology Center in West Mifflin, PA. HWI is a leading developer and manufacturer of ceramic refractory products for high-temperature applications. The work completed focused on the following areas: 1) Investigation of the chemical stability, microstructural evolution, grain growth kinetics, degree of homogeneity (quantitative image analysis), and electrical properties of refractory oxide-silicide composites at temperatures between 750-1450ºC; 2) Fabrication of silicide-alumina composite and oxide thermocouples and thermistor preforms and the development of techniques to embed them into high-chromia refractory bricks to form “smart bricks”; 3) Utilization of commercial off-the-shelf discrete components to prototype circuits for interfacing between smart brick sensors and the wireless sensor network. The prototypes were then used to design an integrated circuit for thermistor, thermocouple, and capacitive-based smart brick sensor interfacing; 4) Interfacing of the smart bricks with embedded sensors with wireless motes thus yielding a complete signal chain. This end-to-end data collection system was tested on a furnace heated to 1350 °C; 5) Development of a slag penetration model and a nonlinear unknown input filter for the data from the embedded sensors for estimating temperature and extent of slag penetration.« less

  12. Thermal Hardware for the Thermal Analyst

    NASA Technical Reports Server (NTRS)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  13. Thermometric enzyme linked immunosorbent assay in continuous flow system: optimization and evaluation using human serum albumin as a model system.

    PubMed

    Borrebaeck, C; Börjeson, J; Mattiasson, B

    1978-06-15

    Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.

  14. Cross-frontal cold jets near Iceland: In-water, satellite infrared, and Geosat altimeter data

    NASA Astrophysics Data System (ADS)

    Scott, John C.; McDowall, Anne L.

    1990-10-01

    This paper reports detailed in-water observations and satellite infrared images which are approximately coincident with a single Geosat altimeter track across the Iceland-Faeroes Frontal Zone. The ARE thermistor chain covered the upper 300 m of the ocean along the track, and the first two of a long sequence of NOAA satellite infrared images were obtained, all within 24 hours of the Geosat overpass. The data are interpreted as showing cold cross-frontal jets related to the formation of cold eddies south of the main frontal boundary. Implications for the use of altimetry for ocean monitoring are considered.

  15. Human body thermal images generated by conduction or radiation heat

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe; Sofron, Emil; Fumarel, Radu

    2009-01-01

    Humans and animals in general, are usually in a thermal steady state with respect to their surroundings. The tissues heat, generated at normal or diseases states, is lost to environment though several mechanisms: radiation, conduction, convection, evaporation, etc. Skin temperature is not the same on the entire body and a thermal body signature can be got. The temperature at skin level was measured by a thermistor, conduction component and by an IR camera, radiation component. A theoretical analysis using Weinhaum and JIJI model was done. The three images are investigated in order to get a cheap method for the early cancer diagnosis.

  16. The succinonitrile triple-point standard: a fixed point to improve the accuracy of temperature measurements in the clinical laboratory.

    PubMed

    Mangum, B W

    1983-07-01

    In an investigation of the melting and freezing behavior of succinonitrile, the triple-point temperature was determined to be 58.0805 degrees C, with an estimated uncertainty of +/- 0.0015 degrees C relative to the International Practical Temperature Scale of 1968 (IPTS-68). The triple-point temperature of this material is evaluated as a temperature-fixed point, and some clinical laboratory applications of this fixed point are proposed. In conjunction with the gallium and ice points, the availability of succinonitrile permits thermistor thermometers to be calibrated accurately and easily on the IPTS-68.

  17. Ultrasound Thermal Imaging and its application to Rayleigh-Bénard convection in mercury

    NASA Astrophysics Data System (ADS)

    Xu, Hongzhou; Andereck, C. David

    2003-11-01

    We have developed Ultrasound Thermal Imaging (UTI), a non-intrusive ultrasound technique for internal temperature measurement of opaque fluids, and have applied UTI to low Rayleigh number buoyancy driven convection in mercury. UTI relies upon the variation of sound speed with temperature of the fluid. An array of ultrasound transducers scanned electronically along the sidewall of a convection cell with aspect ratio of 6 yields a map of the thermal field over the chamber. The chamber has stainless steel sidewalls and molybdenum covered copper plates at the top and bottom. As the Rayleigh number increases slowly from zero, the data reveal the formation of a roll cell pattern and transitions between different cellular states. Based on standard deviation distributions of the temperature profile at the cell's mid-depth, the critical temperature difference agrees well with the theoretically predicted value. The heat flux through the horizontal mercury layer was determined by thermistors mounted at the exit and entrance of the internal channel in each copper plate through which flows warm/cool constant temperature water. Nusselt numbers and other experimental results will also be presented.

  18. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  19. Design and fabrication of a differential scanning nanocalorimeter

    NASA Astrophysics Data System (ADS)

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; Lu, Ming

    2017-02-01

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterized through the measurement of current-voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. The noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.

  20. A compact lightweight Earth horizon sensor using an uncooled infrared bolometer

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Thomas, Paul; Pope, Timothy D.; Asselin, Daniel; Jerominek, Hubert

    2007-06-01

    A compact, lightweight Earth horizon sensor has been designed based on uncooled infrared microbolometer array technology developed at INO. The design has been optimized for use on small satellites in Low Earth Orbits. The sensor may be used either as an attitude sensor or as an atmospheric limb detector. Various configurations may be implemented for both spinning and 3-axis stabilized satellites. The core of the sensor is the microbolometer focal plane array equipped with 256 x 1 VO x thermistor pixels with a pitch of 52 μm. The optics consists of a single Zinc Selenide lens with a focal length of 39.7 mm. The system's F-number is 3.8 and the detector limited Noise Equivalent Temperature Difference is estimated to be 0.75 K at 300 K for the 14 - 16 μm wavelength range. A single-sensor configuration will have a mass of less than 300g, a volume of 125 cm 3 and a power consumption of 600 mW, making it well-suited for small satellite missions.

  1. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  2. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  3. Wireless ZigBee home automation system

    NASA Astrophysics Data System (ADS)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  4. Obstructive Sleep Apnea Devices for Out-Of-Center (OOC) Testing: Technology Evaluation

    PubMed Central

    Collop, Nancy A.; Tracy, Sharon L.; Kapur, Vishesh; Mehra, Reena; Kuhlmann, David; Fleishman, Sam A.; Ojile, Joseph M.

    2011-01-01

    Guidance is needed to help clinicians decide which out-of-center (OOC) testing devices are appropriate for diagnosing obstructive sleep apnea (OSA). A new classification system that details the type of signals measured by these devices is presented. This proposed system categorizes OOC devices based on measurements of Sleep, Cardiovascular, Oximetry, Position, Effort, and Respiratory (SCOPER) parameters. Criteria for evaluating the devices are also presented, which were generated from chosen pre-test and post-test probabilities. These criteria state that in patients with a high pretest probability of having OSA, the OOC testing device has a positive likelihood ratio (LR+) of 5 or greater coinciding with an in-lab-polysomnography (PSG)-generated apnea hypopnea index (AHI) ≥ 5, and an adequate sensitivity (at least 0.825). Since oximetry is a mandatory signal for scoring AHI using PSG, devices that do not incorporate oximetry were excluded. English peer-reviewed literature on FDA-approved devices utilizing more than 1 signal was reviewed according to the above criteria for 6 questions. These questions specifically addressed the adequacy of different respiratory and effort sensors and combinations thereof to diagnose OSA. In summary, the literature is currently inadequate to state with confidence that a thermistor alone without any effort sensor is adequate to diagnose OSA; if a thermal sensing device is used as the only measure of respiration, 2 effort belts are required as part of the montage and piezoelectric belts are acceptable in this context; nasal pressure can be an adequate measurement of respiration with no effort measure with the caveat that this may be device specific; nasal pressure may be used in combination with either 2 piezoelectric or respiratory inductance plethysmographic (RIP) belts (but not 1 piezoelectric belt); and there is insufficient evidence to state that both nasal pressure and thermistor are required to adequately diagnose OSA. With respect to alternative devices for diagnosing OSA, the data indicate that peripheral arterial tonometry (PAT) devices are adequate for the proposed use; the device based on cardiac signals shows promise, but more study is required as it has not been tested in the home setting; for the device based on end-tidal CO2 (ETCO2), it appears to be adequate for a hospital population; and for devices utilizing acoustic signals, the data are insufficient to determine whether the use of acoustic signals with other signals as a substitute for airflow is adequate to diagnose OSA. Standardized research is needed on OOC devices that report LR+ at the appropriate AHI (≥ 5) and scored according to the recommended definitions, while using appropriate research reporting and methodology to minimize bias. Citation: Collop NA; Tracy SL; Kapur V; Mehra R; Kuhlmann D; Fleishman SA; Ojile JM. Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation. J Clin Sleep Med 2011;7(5):531-548. PMID:22003351

  5. A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk.

    PubMed

    Zhou, Shuang; Zhao, Yunfeng; Mecklenburg, Michael; Yang, Dajin; Xie, Bin

    2013-11-15

    Regulatory restrictions on antibiotic residues in dairy products have resulted in the illegal addition of β-lactamase to lower antibiotic levels in milk in China. Here we demonstrate a fast, sensitive and convenient method based on enzyme thermistor (ET) for the surveillance of β-lactamase in milk. A fixed amount of penicillin G, which is a specific substrate of β-lactamase, was incubated with the milk sample, and an aliquot of the mixture was directly injected into the ET system to give a temperature change corresponding to the remained penicillin G. The amount of β-lactamase present in sample was deduced by the penicillin G consumed during incubation. This method was successfully applied to quantify β-lactamase in milk with the linear range of 1.1-20 UmL(-1) and the detection limit of 1.1 UmL(-1). The recoveries ranged from 93% to 105%, with relative standard deviations (RSDs) below 8%. The stability of the column equipped in ET was also studied, and only 5% decrease of activity was observed after 60 days of use. Compared with the conventional culture-based assay, the advantages of high throughput, timesaving and accurate quantification have made this method an ideal alternative for routine use. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The development of IoT based BBT charting and monitoring using ThingSpeak

    NASA Astrophysics Data System (ADS)

    Yazed, Muhammad Syukri Mohd; Mahmud, Farhanahani

    2017-01-01

    Family planning is necessary for individual and couples to manage their desired number of children or spacing timing of their births. Fertility can be planned by using Fertility Awareness Method (FAM) or others like medicine. FAM is a natural family planning method that based on body signs changes during each menstrual cycle in response to the hormones that cause ovulation. This method allows a woman to know their ovulation time using the ovulation chart by plotting body temperature at the exact time every day in the early morning. This method requires a device to measure basal body temperature (BBT) and a chart to plot the temperature every morning, which is a tedious way of charting. Therefore, through this research, a BBT monitoring system has been developed using Arduino Yun Mini and ThingSpeak as the Internet of Things (IoT) platform in order to create a medium of sharing information for fertility monitoring and consultation purposes; where the data management and control can be done conveniently through the internet with secured environment. While the basal body temperature measurement has been done using a fast response time 503 ET-3H NTC thermistor-type temperature sensor from Semitec Corporation and the BBT data are successfully charted and monitored through the ThingSpeak.

  7. CrossVit: enhancing canopy monitoring management practices in viticulture.

    PubMed

    Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia

    2013-06-13

    A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption.

  8. CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture

    PubMed Central

    Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia

    2013-01-01

    A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption. PMID:23765273

  9. Synthesis/literature review for determining structural layer coefficients (SLC) of bases.

    DOT National Transportation Integrated Search

    2014-12-01

    FDOTs current method of determining a base material structural layer coefficient (SLC) is detailed in the : Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials. : Currently, any new base material not a...

  10. Fluid dynamics in suspension-feeding blackfish.

    PubMed

    Sanderson, S L; Cech, J J; Patterson, M R

    1991-03-15

    Measurements of flow patterns and water velocities inside the oral cavity of blackfish (Orthodon microlepidotus), made with a fiberoptic endoscope and thermistor flow probe, revealed that gill-arch structures act in blackfish as barriers that direct particle-laden water to the mucus-covered roof of the oral cavity, where particles are retained. Gill-arch structures have previously been assumed to be the site of particle retention in suspension-feeding fishes. Water does not pass between these structures in blackfish, and they do not serve as filters that separate particles from the water. These results emphasize the importance of directly assessing flow velocity and direction inside the oral cavity of vertebrate suspension feeders, particularly at the level of the filtering elements.

  11. A screen-printed flexible flow sensor

    NASA Astrophysics Data System (ADS)

    Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.

    2017-04-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.

  12. Bolometers for millimeter-wave Cosmology

    NASA Astrophysics Data System (ADS)

    Bock, James J.

    2002-05-01

    Bolometers offer high sensitivity for observations of the cosmic microwave background, Sunyaev-Zel'Dovich effect in clusters, and far-infrared galaxies. Near background-limited performance may be realized even under the low background conditions available from a space-borne platform. We discuss the achieved performance of silicon nitride micromesh (`spider web') bolometers readout by NTD Ge thermistors. We are developing arrays of such bolometers coupled to single-mode feedhorns. CMB polarization may be studies using a new absorber geometry allowing simultaneous detection of both linear polarizations in a single feedhorn with two individual detectors. Finally we discuss a new bolometer architecture consisting of an array of slot antennae coupled to filters and bolometers via superconducting microstrip. .

  13. The gallium melting-point standard: a determination of the liquid-solid equilibrium temperature of pure gallium on the International Practical Temperature Scale of 1968.

    PubMed

    Thornton, D D

    1977-01-01

    The sharpness and reproducibility of the gallium melting point were studied and the melting temperature of gallium in terms of IPTS-68 was determined. Small melting-point cells designed for use with thermistors are described. Nine gallium cells including three levels of purity were used in 68 separate determinations fo the melting point. The melting point of 99.99999% pure gallium in terms of IPTS-68 is found to be 29.771(4) +/- 0.001(4) degree C; the melting range is less than 0.0005 degree C and is reproducible to +/- 0.0004 degree C.

  14. Micro-differential scanning calorimeter for liquid biological samples

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael S.; ...

    2016-10-20

    Here, we developed an ultrasensitive micro-DSC (differential scanning calorimeter) for liquid protein sample characterization. Our design integrated vanadium oxide thermistors and flexible polymer substrates with microfluidics chambers to achieve a high sensitivity (6 V/W), low thermal conductivity (0.7 mW/K), high power resolutions (40 nW), and well-defined liquid volume (1 μl) calorimeter sensor in a compact and cost-effective way. Furthermore, we demonstrated the performance of the sensor with lysozyme unfolding. The measured transition temperature and enthalpy change were in accordance with the previous literature data. This micro-DSC could potentially raise the prospect of high-throughput biochemical measurement by parallel operation with miniaturizedmore » sample consumption.« less

  15. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  16. Design and construction of high-sensitivity, infrared bolometers for operation at 300 mK

    NASA Technical Reports Server (NTRS)

    Alsop, D. C.; Inman, C.; Lange, A. E.; Wibanks, T.

    1992-01-01

    The design and construction of 300-mK composite bolometers developed for millimeter-wave astronomical observations are described. Graphite fibers are used as the electrical leads for the thermistor to reduce the thermal conductance and heat capacity associated with the leads. A mechanical suspension made of Nylon fibers provides the required thermal conductance. Electrical noise equivalent powers below 1 x 10 exp -16 W/sq rt Hz have been achieved for detectors with thermal time constants of 11 ms. The detectors were installed in a millimeter-wave photometer and used to perform observations of the cosmic microwave background from a balloonborne platform. The flight performance was consistent with the measured laboratory properties.

  17. Large 0/12 GMT Differences of US Vaisala RS80 Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor)

    2002-01-01

    Large differences been observations taken at 0 and 12 GMT have been revealed during routine monitoring of observations at the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center (GSFC). As a result, an investigation has been conducted to confirm the large differences and isolate its source. The data clearly shows that 0/12 GMT differences are largely artificial especially over the central US and that the differences largely originate in the post processing software at the observing stations. In particular, the release time of the rawinsonde balloon may be misspecified to be the synoptic time which would lead to the miscalculation of the bias correction that accounts for solar radiation effects on the thermistor.

  18. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  19. LTCC based bioreactors for cell cultivation

    NASA Astrophysics Data System (ADS)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  20. Recovering DC coefficients in block-based DCT.

    PubMed

    Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip

    2006-11-01

    It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken.

  1. SU-E-I-45: Measurement of CT Dose to An HDPE Phantom Using Calorimetry: A Feasibility Study.

    PubMed

    Chen-Mayer, H; Tosh, R; Bateman, F; Zimmerman, B

    2012-06-01

    Radiation dose in CT is traditionally evaluated using an ionization chamber calibrated in terms of air kerma in a phantom of specific dimensions. The radiation absorbed dose, J/kg, can also be realized directly by measuring the temperature rise in the medium. We investigate using this primary method to determine the CT dose at a point (a few mm), using the recently proposed (APMM TG220) high density polyethylene (HDPE) phantom as a medium. The calorimeter detection scheme is adapted from the second generation NIST water calorimeter using sensitive thermistors in a Wheatstone bridge powered by a lock-in amplifier. The temperature sensitivity is about 3 microK. The expected temperature rise in PE is about 0.6 mK per Gy. The thermistor sensors were placed inside a 26 cm dia. × 10 cm HDPE phantom. Two preliminary tests were made: at a linear accelerator with a 6 MV photon beam, and at a 16-slice CT scanner with a 120 kV beam, each with the thermal sensor and with a calibrated ionization chamber. The 6 MV photon beam with 10 on/off cycles at 60 s each yielded the (uncorrected) run-to-run average dose of 3.06 Gy per cycle (sdm 0.3%), about 8% higher than the Result from the ionization chamber (calibrated in terms of absorbed to water). The CT measurements were also made in the middle section of the TG200 30 cm phantom. Twenty consecutive axial scans at 250 mA, which delivers a nominal accumulated dose (CTDIvol) of 705 mGy in 50 s at three axial and three radial locations were measured. The accumulated dose measured by the ionization chamber at the center of the smaller phantom was 347 mGy. The calorimeter data show qualitative tracking of the chamber measurements. Detailed thermal and electrical analysis of the system are planned to obtain quantitative results. © 2012 American Association of Physicists in Medicine.

  2. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t<30ms. We expect background-limited performance from bilayers TESs with T(sub c)=65mK and G=15fW/K. However, such TESs cannot be operated at 50mK unless stray power on the devices, or dark power PD, is less than 200aW. We describe criteria for measuring P? that requires accurate knowledge of TC. Ultimately, we fabricated superconducting thermistors from Ir (T(sub c) > or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  3. Description of a Computer Program Written for Approach and Landing Test Post Flight Data Extraction of Proximity Separation Aerodynamic Coefficients and Aerodynamic Data Base Verification

    NASA Technical Reports Server (NTRS)

    Homan, D. J.

    1977-01-01

    A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.

  4. Fast detection of atrazine in corn using thermometric biosensors.

    PubMed

    Qie, Zhiwei; Ning, Baoan; Liu, Ming; Bai, Jialei; Peng, Yuan; Song, Nan; Lv, Zhiqiang; Wang, Ying; Sun, Siming; Su, Xuan; Zhang, Yihong; Gao, Zhixian

    2013-09-07

    Fast detection is important in screening large-scale samples. This study establishes a direct competitive ELISA method (dcTELISA) based on an enzyme thermistor for fast atrazine (ATZ) detection. ATZ competes with β-lactamase-labeled ATZ (ATZ-E) for the binding sites on anti-ATZ monoclonal antibody (mAb). The mAb are covalently bound to Controlled Pore Glass (CPG) in an immunoreactor to form immunocomplexes with ATZ and ATZ-E. Several parameters of biosensor performance were optimized, such as the ATZ-E concentration, concentration and nature of the substrate, flow rate, and effect of temperature on the sensor response. After optimization, the assay time for a single sample was 12 min. The work process and result were compared with those of high-performance liquid chromatography (HPLC). The detection results exhibited a recovery rate of 88% to 107% in ATZ-spiked fresh cut corn stalks and silage samples. The results obtained via dcTELISA had good correlation with that of HPLC, and the biosensor response was reproducible and stable even when used continuously for over 4 months. All these properties suggested that the fast detection method, dcTELISA, may be used to detect pesticide residue in large-scale samples.

  5. Design and fabrication of a differential scanning nanocalorimeter

    DOE PAGES

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; ...

    2016-12-19

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterizedmore » through the measurement of current–voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. As a result, the noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.« less

  6. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli.

    PubMed

    Birnbaum, S; Bülow, L; Hardy, K; Danielsson, B; Mosbach, K

    1986-10-01

    We have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 micrograms/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 degrees C in the enzyme thermistor unit. Thus, immediate assay start up was possible.

  7. TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavic, I.; Szymakowski, J.; Stachorska, D.

    1961-03-01

    A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less

  8. Thermal detectors as single photon X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.

    1985-01-01

    In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.

  9. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  10. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  11. A Profile-Based Framework for Factorial Similarity and the Congruence Coefficient.

    PubMed

    Hartley, Anselma G; Furr, R Michael

    2017-01-01

    We present a novel profile-based framework for understanding factorial similarity in the context of exploratory factor analysis in general, and for understanding the congruence coefficient (a commonly used index of factor similarity) specifically. First, we introduce the profile-based framework articulating factorial similarity in terms of 3 intuitive components: general saturation similarity, differential saturation similarity, and configural similarity. We then articulate the congruence coefficient in terms of these components, along with 2 additional profile-based components, and we explain how these components resolve ambiguities that can be-and are-found when using the congruence coefficient. Finally, we present secondary analyses revealing that profile-based components of factorial are indeed linked to experts' actual evaluations of factorial similarity. Overall, the profile-based approach we present offers new insights into the ways in which researchers can examine factor similarity and holds the potential to enhance researchers' ability to understand the congruence coefficient.

  12. Integrated Laser Characterization, Data Acquisition, and Command and Control Test System

    NASA Technical Reports Server (NTRS)

    Stysley, Paul; Coyle, Barry; Lyness, Eric

    2012-01-01

    Satellite-based laser technology has been developed for topographical measurements of the Earth and of other planets. Lasers for such missions must be highly efficient and stable over long periods in the temperature variations of orbit. In this innovation, LabVIEW is used on an Apple Macintosh to acquire and analyze images of the laser beam as it exits the laser cavity to evaluate the laser s performance over time, and to monitor and control the environmental conditions under which the laser is tested. One computer attached to multiple cameras and instruments running LabVIEW-based software replaces a conglomeration of computers and software packages, saving hours in maintenance and data analysis, and making very longterm tests possible. This all-in-one system was written primarily using LabVIEW for Mac OS X, which allows the combining of data from multiple RS-232, USB, and Ethernet instruments for comprehensive laser analysis and control. The system acquires data from CCDs (charge coupled devices), power meters, thermistors, and oscilloscopes over a controllable period of time. This data is saved to an html file that can be accessed later from a variety of data analysis programs. Also, through the LabVIEW interface, engineers can easily control laser input parameters such as current, pulse width, chiller temperature, and repetition rates. All of these parameters can be adapted and cycled over a period of time.

  13. Evaluation of a chemical proxy for fire intensity: A potential tool for studying fire-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.

    2015-12-01

    The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.

  14. Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.

    2016-04-01

    This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.

  15. A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating

    NASA Astrophysics Data System (ADS)

    Zhan, Liwei; Li, Chengwei

    2017-02-01

    A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.

  16. Optimal Electricity Charge Strategy Based on Price Elasticity of Demand for Users

    NASA Astrophysics Data System (ADS)

    Li, Xin; Xu, Daidai; Zang, Chuanzhi

    The price elasticity is very important for the prediction of electricity demand. This paper mainly establishes the price elasticity coefficient for electricity in single period and inter-temporal. Then, a charging strategy is established based on these coefficients. To evaluate the strategy proposed, simulations of the two elastic coefficients are carried out based on the history data of a certain region.

  17. In-situ thermoelectric temperature monitoring and "Closed-loop integrated control" system for concentrator photovoltaic-thermoelectric hybrid receivers

    NASA Astrophysics Data System (ADS)

    Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao

    2017-09-01

    This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.

  18. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  19. The gallium melting-point standard: its application and evaluation for temperature measurements in the clinical laboratory.

    PubMed

    Bowers, G N; Inman, S R

    1977-01-01

    We are impressed with the ease and certainty of calibration electronic thermometers with thermistor probes to +/- 0.01 degree C at the gallium melting point, 29.771(4) degrees C. The IFCC reference method for measuring aspartate aminotransferase activity in serum was run at the reaction temperature of 29.771(4) degrees C. By constantly referencing to gallium as an integral part of the assay procedure, we determined the absolute reaction temperature to IPTS-68 (International Practical Temperature Scale of 1968) to +/- 0.02 degrees C. This unique temperature calibration standard near the center of the range of temperatures commonly used in the clinical laboratory is a valuable addition and can be expected to improve the accuracy of measurements, especially in clinical enzymology.

  20. Packaged die heater

    DOEpatents

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  1. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.

    PubMed

    Sesek, Aleksander; Zemva, Andrej; Trontelj, Janez

    2018-02-14

    The THz sensors using microbolometers as a sensing element are reported as one of the most sensitive room-temperature THz detectors suitable for THz imaging and spectroscopic applications. Microbolometer detectors are usually fabricated using different types of the MEMS technology. The patent for the detection system presented in this paper describes a method for microbolometer fabrication using a standard CMOS technology with advanced micromachining techniques. The measured sensitivity of the sensors fabricated by the patented method is 1000 V/W at an optimal frequency and is determined by the performance of a double-dipole antenna and quarter-wavelength resonant cavity. The paper presents a patented method for fabrication of a microbolometer system for radiation detection in the THz frequency range (16). The method is divided into several stages regarding the current silicon micromachining process. Main stages are fabrication of supporting structures for micro bridge, creation of micro cavities and fabrication of Aluminum antenna and Titanium microbolometer. Additional method for encapsulation in the vacuum is described which additionally improves the performance of bolometer. The CMOS technology is utilized for fabrication as it is cost effective and provides the possibility of larger sensor systems integration with included amplification. At other wavelengths (e.g. IR region) thermistors are usually also the receivers with the sensor resistance change provoked by self-heating. In the THz region the energy is received by an antenna coupled to a thermistor. Depending on the specific application requirement, two types of the antenna were designed and used; a narrow-band dipole antenna and a wideband log-periodic antenna. With method described in the paper, the microbolometer detector reaches sensitivities up to 500 V/W and noise equivalent power (NEP) down to 10 pW/√Hz. Additional encapsulation in the vacuum improves its performance at least by a factor of 2, therefore the sensitivity reaches approximately 1000 V/W and NEP down to 5 pW/√Hz. The thermal response time of bolometer is 0.5 µs. The thermistor biasing current drops with its resistance (defined by microbolometer active area), but the sensitivity rises. Typical value of biasing current is 300 µA at 680 Ω of resistance, where the sensitivity reaches highest level. Air pressure decrease highly influences the sensitivity due to lower thermal dissipation to surrounding air. The sensitivity is therefore doubled when packaged in the high vacuum (0.1Pa). The main advantage of the presented approach is that the detection devices can be fabricated by a standard silicon micromachining process. Their overall dimension is defined by the receiving antenna and they do not need any additional optic source for the operation. They are robust and appropriate for mass production and can be easily embedded or merged with other vision system in use. The developed microbolometer is highly sensitive, its noise is low and it operates at a room temperature with no additional cooling system at a normal atmospheric pressure. The output of the THz detector connected to a discrete low-noise amplifier increases the total sensitivity up to 106 V/W with no impact on the noise equivalent power of 5 pW/√HZ. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  3. A method for radiological characterization based on fluence conversion coefficients

    NASA Astrophysics Data System (ADS)

    Froeschl, Robert

    2018-06-01

    Radiological characterization of components in accelerator environments is often required to ensure adequate radiation protection during maintenance, transport and handling as well as for the selection of the proper disposal pathway. The relevant quantities are typical the weighted sums of specific activities with radionuclide-specific weighting coefficients. Traditional methods based on Monte Carlo simulations are radionuclide creation-event based or the particle fluences in the regions of interest are scored and then off-line weighted with radionuclide production cross sections. The presented method bases the radiological characterization on a set of fluence conversion coefficients. For a given irradiation profile and cool-down time, radionuclide production cross-sections, material composition and radionuclide-specific weighting coefficients, a set of particle type and energy dependent fluence conversion coefficients is computed. These fluence conversion coefficients can then be used in a Monte Carlo transport code to perform on-line weighting to directly obtain the desired radiological characterization, either by using built-in multiplier features such as in the PHITS code or by writing a dedicated user routine such as for the FLUKA code. The presented method has been validated against the standard event-based methods directly available in Monte Carlo transport codes.

  4. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.

  5. Empirical evidence for site coefficients in building code provisions

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-response coefficients, Fa and Fv, used in U.S. building code provisions are based on empirical data for motions up to 0.1 g. For larger motions they are based on theoretical and laboratory results. The Northridge earthquake of 17 January 1994 provided a significant new set of empirical data up to 0.5 g. These data together with recent site characterizations based on shear-wave velocity measurements provide empirical estimates of the site coefficients at base accelerations up to 0.5 g for Site Classes C and D. These empirical estimates of Fa and Fnu; as well as their decrease with increasing base acceleration level are consistent at the 95 percent confidence level with those in present building code provisions, with the exception of estimates for Fa at levels of 0.1 and 0.2 g, which are less than the lower confidence bound by amounts up to 13 percent. The site-coefficient estimates are consistent at the 95 percent confidence level with those of several other investigators for base accelerations greater than 0.3 g. These consistencies and present code procedures indicate that changes in the site coefficients are not warranted. Empirical results for base accelerations greater than 0.2 g confirm the need for both a short- and a mid- or long-period site coefficient to characterize site response for purposes of estimating site-specific design spectra.

  6. Cryosphere Sensor Webs With The Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Scharenbroich, L.; Doggett, T.; Kratz, T.; Castano, R.; Chien, S.; Davies, A. G.; Tran, D.; Mazzoni, D.

    2006-12-01

    Autonomous sensor-webs are being deployed as part of the Autonomous Sciencecraft Experiment [1], whereby observations using the Hyperion instrument [2] on-board Earth Observing-1 (EO-1 are triggered by either ground sensors or by near-real-time analysis of data from other space-based sensors. In the realm of cryosphere monitoring, one sensor-web has been set up pairing EO-1 with a sensor buoy [3] deployed in Sparkling Lake, one of several lakes in northern Wisconsin monitored by University of Wisconsin's Trout Lake Station. A Support Vector Machine (SVM) classifier was trained on historical thermistor chain data with manually recorded ice-in and ice-out times and used to trigger Hyperion observations of the Trout Lake area during spring thaw and winter freeze in 2005. A second sensor-web is being developed using near-real time sea ice data products, based on Department of Defense meteorological satellites, available from the National Snow and Ice Data Center (NSIDC) [4]. Once operational, this sensor web will trigger Hyperion observations of pre-defined targets in the Arctic and Antarctic where regional resolution data shows sea ice formation or break up. [1] Chien et al. (2005), An autonomous earth-observing sensor-web, IEEE Intelligent Systems, [2] Pearlman et al. (2003), Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Rem. Sens., 41(6), [3] Kratz, T. et al. (in press) Toward a Global Lake Ecological Observatory Network, Proceedings of the Karelian Institute, [4] Cavalieri et al. (1999) Near real-time DMSP SSM/I daily polar gridded sea ice concentrations, National Snow and Ice Data Center. Digital Media.

  7. Validity of Core Temperature Measurements at 3 Rectal Depths During Rest, Exercise, Cold-Water Immersion, and Recovery

    PubMed Central

    Miller, Kevin C.; Hughes, Lexie E.; Long, Blaine C.; Adams, William M.; Casa, Douglas J.

    2017-01-01

    Context: No evidence-based recommendation exists regarding how far clinicians should insert a rectal thermistor to obtain the most valid estimate of core temperature. Knowing the validity of temperatures at different rectal depths has implications for exertional heat-stroke (EHS) management. Objective: To determine whether rectal temperature (Trec) taken at 4 cm, 10 cm, or 15 cm from the anal sphincter provides the most valid estimate of core temperature (as determined by esophageal temperature [Teso]) during similar stressors an athlete with EHS may experience. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Seventeen individuals (14 men, 3 women: age = 23 ± 2 years, mass = 79.7 ± 12.4 kg, height = 177.8 ± 9.8 cm, body fat = 9.4% ± 4.1%, body surface area = 1.97 ± 0.19 m2). Intervention(s): Rectal temperatures taken at 4 cm, 10 cm, and 15 cm from the anal sphincter were compared with Teso during a 10-minute rest period; exercise until the participant's Teso reached 39.5°C; cold-water immersion (∼10°C) until all temperatures were ≤38°C; and a 30-minute postimmersion recovery period. The Teso and Trec were compared every minute during rest and recovery. Because exercise and cooling times varied, we compared temperatures at 10% intervals of total exercise and cooling durations for these periods. Main Outcome Measure(s): The Teso and Trec were used to calculate bias (ie, the difference in temperatures between sites). Results: Rectal depth affected bias (F2,24 = 6.8, P = .008). Bias at 4 cm (0.85°C ± 0.78°C) was higher than at 15 cm (0.65°C ± 0.68°C, P < .05) but not higher than at 10 cm (0.75°C ± 0.76°C, P > .05). Bias varied over time (F2,34 = 79.5, P < .001). Bias during rest (0.42°C ± 0.27°C), exercise (0.23°C ± 0.53°C), and recovery (0.65°C ± 0.35°C) was less than during cooling (1.72°C ± 0.65°C, P < .05). Bias during exercise was less than during postimmersion recovery (0.65°C ± 0.35°C, P < .05). Conclusions: When EHS is suspected, clinicians should insert the flexible rectal thermistor to 15 cm (6 in) because it is the most valid depth. The low level of bias during exercise suggests Trec is valid for diagnosing hyperthermia. Rectal temperature is a better indicator of pelvic organ temperature during cold-water immersion than is Teso. PMID:28207294

  8. Validity of Core Temperature Measurements at 3 Rectal Depths During Rest, Exercise, Cold-Water Immersion, and Recovery.

    PubMed

    Miller, Kevin C; Hughes, Lexie E; Long, Blaine C; Adams, William M; Casa, Douglas J

    2017-04-01

      No evidence-based recommendation exists regarding how far clinicians should insert a rectal thermistor to obtain the most valid estimate of core temperature. Knowing the validity of temperatures at different rectal depths has implications for exertional heat-stroke (EHS) management.   To determine whether rectal temperature (T rec ) taken at 4 cm, 10 cm, or 15 cm from the anal sphincter provides the most valid estimate of core temperature (as determined by esophageal temperature [T eso ]) during similar stressors an athlete with EHS may experience.   Cross-sectional study.   Laboratory.   Seventeen individuals (14 men, 3 women: age = 23 ± 2 years, mass = 79.7 ± 12.4 kg, height = 177.8 ± 9.8 cm, body fat = 9.4% ± 4.1%, body surface area = 1.97 ± 0.19 m 2 ).   Rectal temperatures taken at 4 cm, 10 cm, and 15 cm from the anal sphincter were compared with T eso during a 10-minute rest period; exercise until the participant's T eso reached 39.5°C; cold-water immersion (∼10°C) until all temperatures were ≤38°C; and a 30-minute postimmersion recovery period. The T eso and T rec were compared every minute during rest and recovery. Because exercise and cooling times varied, we compared temperatures at 10% intervals of total exercise and cooling durations for these periods.   The T eso and T rec were used to calculate bias (ie, the difference in temperatures between sites).   Rectal depth affected bias (F 2,24 = 6.8, P = .008). Bias at 4 cm (0.85°C ± 0.78°C) was higher than at 15 cm (0.65°C ± 0.68°C, P < .05) but not higher than at 10 cm (0.75°C ± 0.76°C, P > .05). Bias varied over time (F 2,34 = 79.5, P < .001). Bias during rest (0.42°C ± 0.27°C), exercise (0.23°C ± 0.53°C), and recovery (0.65°C ± 0.35°C) was less than during cooling (1.72°C ± 0.65°C, P < .05). Bias during exercise was less than during postimmersion recovery (0.65°C ± 0.35°C, P < .05).   When EHS is suspected, clinicians should insert the flexible rectal thermistor to 15 cm (6 in) because it is the most valid depth. The low level of bias during exercise suggests T rec is valid for diagnosing hyperthermia. Rectal temperature is a better indicator of pelvic organ temperature during cold-water immersion than is T eso .

  9. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau <30ms. We expect background-limited performance from bilayers TESs with T(sub c) = 65mK and G=15fW/K. However, such TESs cannot be operated at 50mK unless stray power on the devices, or dark power P(sub D), is less than 200aW. We describe criteria for measuring P(sub D) that requires accurate knowledge of TC. Ultimately, we fabricated superconducting thermistors from Ir (T(sub c) >= 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  10. Measured Two-Dimensional Ice-Wedge Polygon Thermal and Active Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Cable, W.; Romanovsky, V. E.; Busey, R.

    2016-12-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. To investigate the effect of microtopographic caused variation in surface conditions on the ground thermal regime, we established temperature transects, composed of five vertical array thermistor probes (VATP), across four different development stages of ice-wedge polygons near Barrow, Alaska. Each VATP had 16 thermistors from the surface to a depth of 1.5 m, for a total of 80 temperature measurements per polygon. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-centered polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT) and latest freezeback dates. While the centers of high-centered polygons, with thinner snow cover and a dryer active layer, had the lowest MAGT, earliest freezeback dates, and shallowest active layer. Refreezing of the active layer initiated at nearly the same time for all locations and polygons however, we found large differences in the proportion of downward versus upward freezing and the length of time required to complete the refreezing process between polygon types and locations. Using our four polygon stages as a space for time substitution, we conclude that ice-wedge degradation resulting in surface subsidence and trough deepening can lead to overall drying of the active layer and increased skewedness of snow distribution. Which in turn leads to shallower active layers, earlier freezeback dates, and lower MAGT. We also find that the large variation in active layer dynamics (active layer depth, downward vs upward freezing, and freezeback date) are important considerations to understanding and scaling biological processes occurring in these landscapes.

  11. The power grid AGC frequency bias coefficient online identification method based on wide area information

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  12. A robust method of computing finite difference coefficients based on Vandermonde matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin

    2018-05-01

    When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.

  13. Comparison of the temperature accuracy between smart phone based and high-end thermal cameras using a temperature gradient phantom

    NASA Astrophysics Data System (ADS)

    Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.

    2017-03-01

    Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.

  14. Comparison of RNFL thickness and RPE-normalized RNFL attenuation coefficient for glaucoma diagnosis

    NASA Astrophysics Data System (ADS)

    Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

    2013-03-01

    Recently, a method to determine the retinal nerve fiber layer (RNFL) attenuation coefficient, based on normalization on the retinal pigment epithelium, was introduced. In contrast to conventional RNFL thickness measures, this novel measure represents a scattering property of the RNFL tissue. In this paper, we compare the RNFL thickness and the RNFL attenuation coefficient on 10 normal and 8 glaucomatous eyes by analyzing the correlation coefficient and the receiver operator curves (ROCs). The thickness and attenuation coefficient showed moderate correlation (r=0.82). Smaller correlation coefficients were found within normal (r=0.55) and glaucomatous (r=0.48) eyes. The full separation between normal and glaucomatous eyes based on the RNFL attenuation coefficient yielded an area under the ROC (AROC) of 1.0. The AROC for the RNFL thickness was 0.9875. No statistically significant difference between the two measures was found by comparing the AROC. RNFL attenuation coefficients may thus replace current RNFL thickness measurements or be combined with it to improve glaucoma diagnosis.

  15. New control design principles based on measured performance and energy analysis of HVAC (Heating, Ventilating, and Air-Conditioning) systems

    NASA Astrophysics Data System (ADS)

    Hittle, D. C.; Johnson, D. L.

    1985-01-01

    This report is one of a series on the development of heating, ventilating, and air-conditioning (HVAC) control systems that are simple, efficient, reliable, maintainable, and well-documented. This report identifies major problems associated with three currently used HVAC control systems. It also describes the development of a retrofit control system applicable to military buildings that will allow easy identification of component failures, facilitate repair, and minimize system failures. Evaluation of currently used controls showed that pneumatic temperature control equipment requires a very clean source of supply air and is also not very accurate. Pneumatic, rather than electronic, actuators should be used because they are cheaper and require less maintenance. Thermistor temperature detectors should not be used for HVAC applications because they require frequent calibration. It was found that enthalpy economy cycles cannot be used for control because the humidity sensors required for their use are prone to rapid drift, inaccurate, and hard to calibrate in the field. Performance of control systems greatly affects HVAC operating costs. Significant savings can be achieved if proportional-plus-integral control schemes are used. Use of the retrofit prototype control panel developed in this study on variable-air-volume systems should provide significant energy cost savings, improve comfort and reliability, and reduce maintenance costs.

  16. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We applied the multi-method strategy of land-surface temperature (LST) and emissivity measurements in two field campaigns this year for validating the MODIS LST algorithm. The first field campaign was conducted in Death Valley, CA, on March 3rd and the second one in Railroad Valley, NV, on June 23-27. ER2 MODIS Airborne Simulator (MAS) data were acquired in morning and evening for these two field campaigns. TIR spectrometer, radiometer, and thermistor data were also collected in the field campaigns. The LST values retrieved from MAS data with the day/night LST algorithm agree with those obtained from ground-based measurements within 1 C and show close correlations with topographic maps. The band emissivities retrieved from MAS data show close correlations with geological maps in the Death Valley field campaign. The comparison of measurement data in the latest Railroad Valley field campaign indicates that we are approaching the goals of the LST validation: LST uncertainty less than 0.5 C, and emissivity uncertainty less than 0.005 in the 10-13 spectral range. Measurement data show that the spatial variation in LST is the major uncertainty in the LST validation. In order to reduce this uncertainty, a new component of the multi-method strategy has been identified.

  17. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    PubMed

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  18. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  19. Experiential Learning: High School Student Response to Learning Oceanography at Sea

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Tamsitt, V. M.; Crosby, S. C.; Ludka, B. C.

    2016-12-01

    The GOTO-SEE (Graduate students Onboard Teaching Oceanography - Scripps Educational Experience) cruises were conducted with two days of ship time off of Point Loma, CA, on the R/V Robert Gordon Sproul in July 2016. The cruises, funded through UC Ship Funds program, provided a unique training opportunity for graduate students to design, coordinate and conduct ship-based field experiments as well as teaching and mentoring students. The cruises allowed for instruction at sea for high school students in the UCSD Academic Connections program in two small classes: a two-week long Global Environmental Leadership and Sustainability Program and a 3-week long class entitled Wind, Waves and Currents: Physics of the Ocean World. Students in both classes assisted with the collection of data, including two repeat cross-shore vertical CTD sections with nutrient sampling, and the deployment and recovery of a 10-day moored vertical thermistor array. Additional activities included plankton net tows, sediment sampling, depth soundings, and simple experiments regarding light absorption in the ocean. The students later plotted the data collected as a class assignment and presented a scientific poster to their peers. Here, we present the lessons learned from the cruises as well as student responses to the unique in-the-field experience, and how those responses differed by curriculum.

  20. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  1. Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device

    NASA Astrophysics Data System (ADS)

    Duperron, Matthieu; Carroll, Lee; Rensing, Marc; Collins, Sean; Zhao, Yan; Li, Yanlu; Baets, Roel; O'Brien, Peter

    2017-02-01

    The cost-effective integration of laser sources on Silicon Photonic Integrated Circuits (Si-PICs) is a key challenge to realizing the full potential of on-chip photonic solutions for telecommunication and medical applications. Hybrid integration can offer a route to high-yield solutions, using only known-good laser-chips, and simple freespace micro-optics to transport light from a discrete laser-diode to a grating-coupler on the Si-PIC. In this work, we describe a passively assembled micro-optical bench (MOB) for the hybrid integration of a 1550nm 20MHz linewidth laser-diode on a Si-PIC, developed for an on-chip interferometer based medical device. A dual-lens MOB design minimizes aberrations in the laser spot transported to the standard grating-coupler (15 μm x 12 μm) on the Si-PIC, and facilitates the inclusion of a sub-millimeter latched-garnet optical-isolator. The 20dB suppression from the isolator helps ensure the high-frequency stability of the laser-diode, while the high thermal conductivity of the AlN submount (300/W=m.°C), and the close integration of a micro-bead thermistor, ensure the stable and efficient thermo-electric cooling of the laser-diode, which helps minimise low-frequency drift during the approximately 15s of operation needed for the point-of-care measurement. The dual-lens MOB is compatible with cost-effective passively-aligned mass-production, and can be optimised for alternative PIC-based applications.

  2. A spline-based parameter estimation technique for static models of elastic structures

    NASA Technical Reports Server (NTRS)

    Dutt, P.; Taasan, S.

    1986-01-01

    The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.

  3. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  4. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  5. Studies on a wearable, electronic, transdermal alcohol sensor.

    PubMed

    Swift, R M; Martin, C S; Swette, L; LaConti, A; Kackley, N

    1992-08-01

    The measurement of alcohol consumption over long time periods is important for monitoring treatment outcome and for research applications. Giner, Inc. has developed a wearable device that senses ethanol vapor at the surface of the skin, using an electrochemical cell that produces a continuous current signal proportional to ethanol concentration. A thermistor monitors continuous contact of the sensor with the skin, and a data-acquisition/logic circuit stores days of data recorded at 2- to 5-min intervals. Testing of this novel ethanol sensor/recorder was conducted on nonalcoholic human subjects consuming known quantities of ethanol and on intoxicated alcoholic subjects. The transdermal sensor signal closely follows the pattern of the blood alcohol concentration curve, although with a delay. This paper describes the concept of electrochemical ethanol measurement and presents some of the clinical data collected in support of the sensor/recorder development.

  6. Acoustic Pyrometry Applied to Gas Turbines and Jet Engines

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1999-01-01

    Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.

  7. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2010-03-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  8. Evaluation of thermal cooling mechanisms for laser application to teeth.

    PubMed

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  9. TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS

    PubMed Central

    Elliott, R. Paul

    1963-01-01

    Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889–894. 1963.—The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959

  10. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  11. Bio-medical flow sensor. [intrvenous procedures

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    A bio-medical flow sensor including a packageable unit of a bottle, tubing and hypodermic needle which can be pre-sterilized and is disposable. The tubing has spaced apart tubular metal segments. The temperature of the metal segments and fluid flow therein is sensed by thermistors and at a downstream location heat is input by a resistor to the metal segment by a control electronics. The fluids flow and the electrical power required for the resisto to maintain a constant temperature differential between the tubular metal segments is a measurable function of fluid flow through the tubing. The differential temperature measurement is made in a control electronics and also can be used to control a flow control valve or pump on the tubing to maintain a constant flow in the tubing and to shut off the tubing when air is present in the tubing.

  12. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2009-12-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  13. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  14. Tyre-road friction coefficient estimation based on tyre sensors and lateral tyre deflection: modelling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Hong, Sanghyun; Erdogan, Gurkan; Hedrick, Karl; Borrelli, Francesco

    2013-05-01

    The estimation of the tyre-road friction coefficient is fundamental for vehicle control systems. Tyre sensors enable the friction coefficient estimation based on signals extracted directly from tyres. This paper presents a tyre-road friction coefficient estimation algorithm based on tyre lateral deflection obtained from lateral acceleration. The lateral acceleration is measured by wireless three-dimensional accelerometers embedded inside the tyres. The proposed algorithm first determines the contact patch using a radial acceleration profile. Then, the portion of the lateral acceleration profile, only inside the tyre-road contact patch, is used to estimate the friction coefficient through a tyre brush model and a simple tyre model. The proposed strategy accounts for orientation-variation of accelerometer body frame during tyre rotation. The effectiveness and performance of the algorithm are demonstrated through finite element model simulations and experimental tests with small tyre slip angles on different road surface conditions.

  15. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm3 resolution clinical PET system

    PubMed Central

    Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S.

    2015-01-01

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm3 resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm3 LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image. PMID:25563270

  16. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm{sup 3} resolution clinical PET system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, D. L.; Vandenbroucke, A.; Innes, D.

    2015-01-15

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under constructionmore » consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image.« less

  17. Multi-Focus Image Fusion Based on NSCT and NSST

    NASA Astrophysics Data System (ADS)

    Moonon, Altan-Ulzii; Hu, Jianwen

    2015-12-01

    In this paper, a multi-focus image fusion algorithm based on the nonsubsampled contourlet transform (NSCT) and the nonsubsampled shearlet transform (NSST) is proposed. The source images are first decomposed by the NSCT and NSST into low frequency coefficients and high frequency coefficients. Then, the average method is used to fuse low frequency coefficient of the NSCT. To obtain more accurate salience measurement, the high frequency coefficients of the NSST and NSCT are combined to measure salience. The high frequency coefficients of the NSCT with larger salience are selected as fused high frequency coefficients. Finally, the fused image is reconstructed by the inverse NSCT. We adopt three metrics (Q AB/F , Q e and Q w ) to evaluate the quality of fused images. The experimental results demonstrate that the proposed method outperforms other methods. It retains highly detailed edges and contours.

  18. Electrostatic coupling between DNA and its counterions modulates the observed translational diffusion coefficients.

    PubMed

    Stellwagen, Earle; Stellwagen, Nancy C

    2015-09-01

    Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.

  19. Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars

    NASA Astrophysics Data System (ADS)

    Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai

    2018-05-01

    Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.

  20. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  1. Calculation of thermal expansion coefficient of glasses based on topological constraint theory

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi

    2016-10-01

    In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.

  2. Virial Coefficients for the Liquid Argon

    NASA Astrophysics Data System (ADS)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  3. Determination of rolling resistance coefficient based on normal tyre stiffness

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  4. Determination of Diffusion Coefficients in Cement-Based Materials: An Inverse Problem for the Nernst-Planck and Poisson Models

    NASA Astrophysics Data System (ADS)

    Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert

    2016-08-01

    Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.

  5. Impact of the new nuclear decay data of ICRP publication 107 on inhalation dose coefficients for workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manabe, K.; Endo, Akira; Eckerman, Keith F

    2010-03-01

    The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was foundmore » that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.« less

  6. Development of seismic fragility curves for low-rise masonry infilled reinforced concrete buildings by a coefficient-based method

    NASA Astrophysics Data System (ADS)

    Su, Ray Kai Leung; Lee, Chien-Liang

    2013-06-01

    This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration- and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or nearcollapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.

  7. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  8. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina

    2018-02-01

    The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

  9. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  10. The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Grella, Samuele; Claudi, Riccardo; Pace, Emanuele; Ficai Veltroni, Iacopo; Micela, Giuseppina

    2017-11-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates for the next ESA medium-class science mission (M4) to be launched in 2026. During its 3.5 years of scientific operations from L2 orbit, this mission will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.80 µm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. An all-aluminum structure has been considered for the telescope layout, and a detailed tolerance analysis has been conducted to assess the telescope feasibility. This analysis has been done including the different parts of the realization and life of the instrument, from integration on-ground to in-flight stability during the scientific acquisitions. The primary mirror (M1) temperature will be monitored and finely tuned via an active thermal control system based on thermistors and heaters. The heaters will be switched on and off to maintain the M1 temperature within ±1K thanks to a proportional-integral-derivative (PID) controller.

  11. The afocal telescope of the ESA ARIEL mission: analysis of the layout

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Corso, Alain Jody; Pace, Emanuele; Claudi, Riccardo; Micela, Giuseppina

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates as an M4 ESA mission to be launched in 2026. During its foreseen 3.5 years operation, it will observe spectroscopically in the infrared a large population of known transiting planets in the neighborhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.8 μm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. The temperature of the primary mirror (M1) will be monitored and finely tuned by means of an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ±1 K thanks to a proportional-integral-derivative (PID) controller implemented within the Telescope Control Unit (TCU), a Payload electronics subsystem mainly in charge of the active thermal control of the two detectors owning to the spectrometer. TCU will collect the housekeeping data of the controlled subsystems and will forward them to the spacecraft (S/C) by means of the Instrument Control Unit (ICU), the main Payload's electronic Unit linked to the S/C On Board Computer (OBC).

  12. The reliability of multidimensional neuropsychological measures: from alpha to omega.

    PubMed

    Watkins, Marley W

    To demonstrate that Coefficient omega, a model-based estimate, is more a more appropriate index of reliability than coefficient alpha for the multidimensional scales that are commonly employed by neuropsychologists. As an illustration, a structural model of an overarching general factor and four first-order factors for the WAIS-IV based on the standardization sample of 2200 participants was identified and omega coefficients were subsequently computed for WAIS-IV composite scores. Alpha coefficients were ≥ .90 and omega coefficients ranged from .75 to .88 for WAIS-IV factor index scores, indicating that the blend of general and group factor variance in each index score created a reliable multidimensional composite. However, the amalgam of variance from general and group factors did not allow the precision of Full Scale IQ (FSIQ) and factor index scores to be disentangled. In contrast, omega hierarchical coefficients were low for all four factor index scores (.10-.41), indicating that most of the reliable variance of each factor index score was due to the general intelligence factor. In contrast, the omega hierarchical coefficient for the FSIQ score was .84. Meaningful interpretation of WAIS-IV factor index scores as unambiguous indicators of group factors is imprecise, thereby fostering unreliable identification of neurocognitive strengths and weaknesses, whereas the WAIS-IV FSIQ score can be interpreted as a reliable measure of general intelligence. It was concluded that neuropsychologists should base their clinical decisions on reliable scores as indexed by coefficient omega.

  13. Predicting the Activity Coefficients of Free-Solvent for Concentrated Globular Protein Solutions Using Independently Determined Physical Parameters

    PubMed Central

    McBride, Devin W.; Rodgers, Victor G. J.

    2013-01-01

    The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733

  14. Confidence bounds and hypothesis tests for normal distribution coefficients of variation

    Treesearch

    Steve P. Verrill; Richard A. Johnson

    2007-01-01

    For normally distributed populations, we obtain confidence bounds on a ratio of two coefficients of variation, provide a test for the equality of k coefficients of variation, and provide confidence bounds on a coefficient of variation shared by k populations. To develop these confidence bounds and test, we first establish that estimators based on Newton steps from n-...

  15. Experimental study of overland flow resistance coefficient model of grassland based on BP neural network

    NASA Astrophysics Data System (ADS)

    Jiao, Peng; Yang, Er; Ni, Yong Xin

    2018-06-01

    The overland flow resistance on grassland slope of 20° was studied by using simulated rainfall experiments. Model of overland flow resistance coefficient was established based on BP neural network. The input variations of model were rainfall intensity, flow velocity, water depth, and roughness of slope surface, and the output variations was overland flow resistance coefficient. Model was optimized by Genetic Algorithm. The results show that the model can be used to calculate overland flow resistance coefficient, and has high simulation accuracy. The average prediction error of the optimized model of test set is 8.02%, and the maximum prediction error was 18.34%.

  16. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite

    NASA Technical Reports Server (NTRS)

    Klimovitskui, V. Ia; Alpatov, A. M.; Salzman, F. M.; Fuller, C. A.; Moore-Ede, M. S.

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  17. An implantable nerve cooler for the exercising dog.

    PubMed

    Borgdorff, P; Versteeg, P G

    1984-01-01

    An implantable nerve cooler has been constructed to block cervical vago-sympathetic activity in the exercising dog reversibly. An insulated gilt brass container implanted around the nerve is perfused with cooled alcohol via silicone tubes. The flow of alcohol is controlled by an electromagnetic valve to keep nerve temperature at the required value. Nerve temperature is measured by a thermistor attached to the housing and in contact with the nerve. It is shown that, during cooling, temperature at this location differs less than 2 degrees C from nerve core temperature. Measurement of changes in heart rate revealed that complete vagal block in the conscious animal is obtained at a nerve temperature of 2 degrees C and can be achieved within 50 s. During steady-state cooling in the exercising animal nerve temperature varied less than 0.5 degree C. When the coolers after 2 weeks of implantation were removed they showed no oxydation and could be used again.

  18. Thermal surveillance of volcanoes of the Cascade Range and Iceland utilizing ERTS DCP systems and imagery

    NASA Technical Reports Server (NTRS)

    Friedman, J. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Significant results of the thermal surveillance of volcanoes experiment during 1972 included the design, construction, emplacement, and successful operation at volcanic sites in the Cascade Range, North America and on Surtsey, Iceland, of automated thermistor arrays which transmit ground and fumarole temperatures via the ERTS-1 data communication system to Goddard Space Flight Center. Temperature, radiance, and anomalous heat flow variations are being plotted by a U.S. Geological Survey IBM 360/65 computer program to show daily fluctuations at each of the sites. Results are being compiled in conjunction with NASA and USGS aircraft infrared survey data to provide thermal energy yield estimates during the current repose period of several Cascade Range volcanic systems. ERTS-1 MSS images have provided new information on the extent of structural elements controlling thermal emission at Lassen Volcanic National Park.

  19. Solar Heating System installed at Belz Investment Company, Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A hot air solar system which utilizes flat plate air collectors is discussed. Collector areas for each of four buildings cover 780 sq ft, with storage capacity of 390 cu ft per building. The air system has a special air handling unit to move air through the collectors and into and out of the rock storage, with connection to the air duct distribution system. The heat of the motor is added to the heat delivered to the system. The solar system also includes four motorized special low leakage dampers and two gravity fabric dampers. The system is automatically controlled by a solid state controller with three thermistors: one located in the collectors, one in the rock box to plenum, one in the return air duct from the heated space. A three stage heating thermostat, located in the conditioned space, controls the operation.

  20. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    NASA Astrophysics Data System (ADS)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  1. Earth Radiation Budget Experiment scanner radiometric calibration results

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; Mahan, J. R.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers are producing measurements of the incoming solar, earth/atmosphere-reflected solar, and earth/atmosphere-emitted radiation fields with measurement precisions and absolute accuracies, approaching 1 percent. ERBE uses thermistor bolometers as the detection elements in the narrow-field-of-view scanning radiometers. The scanning radiometers can sense radiation in the shortwave, longwave, and total broadband spectral regions of 0.2 to 5.0, 5.0 to 50.0, and 0.2 to 50.0 micrometers, respectively. Detailed models of the radiometers' response functions were developed in order to design the most suitable calibration techniques. These models guided the design of in-flight calibration procedures as well as the development and characterization of a vacuum-calibration chamber and the blackbody source which provided the absolute basis upon which the total and longwave radiometers were characterized. The flight calibration instrumentation for the narror-field-of-view scanning radiometers is presented and evaluated.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael

    This study presented a power compensated MEMS differential scanning calorimeter (DSC) for protein stability characterization. In this microfabricated sensor, PDMS (Polydimethylsiloxane) and polyimide were used to construct the adiabatic chamber (1 μL) and temperature sensitive vanadium oxide was used as the thermistor material. A power compensation system was implemented to maintain the sample and reference at the same temperature. The resolution study and step response characterization indicated the high sensitivity (6 V/W) and low noise level (60 μk) of the device. The test with IgG1 antibody (mAb1) samples showed clear phase transitions and the data was confirmed to be reasonablemore » by comparing it with the results of commercial DSC’s test. Finally, this device used ~1uL sample amount and could complete the scanning process in 4 min, significantly increasing the throughput of the bimolecular thermodynamics study like drug formulation process.« less

  3. A portable borehole temperature logging system using the four-wire resistance method

    NASA Astrophysics Data System (ADS)

    Erkan, Kamil; Akkoyunlu, Bülent; Balkan, Elif; Tayanç, Mete

    2017-12-01

    High-quality temperature-depth information from boreholes with a depth of 100 m or more is used in geothermal studies and in studies of climate change. Electrical wireline tools with thermistor sensors are capable of measuring borehole temperatures with millikelvin resolution. The use of a surface readout mode allows analysis of the thermally conductive state of a borehole, which is especially important for climatic and regional heat flow studies. In this study we describe the design of a portable temperature logging tool that uses the four-wire resistance measurement method. The four-wire method enables the elimination of cable resistance effects, thus allowing millikelvin resolution of temperature data at depth. A preliminary two-wire model of the system is also described. The portability of the tool enables one to collect data from boreholes down to 300 m, even in locations with limited accessibility.

  4. Measuring gravity currents in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Oberg, K.A.; Czuba, J.A.; Johnson, K.K.

    2008-01-01

    Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.

  5. Animal Exposure During Burn Tests

    NASA Technical Reports Server (NTRS)

    Gaume, J. G.

    1978-01-01

    An animal exposure test system (AETS) was designed and fabricated for the purpose of collecting physiological and environmental (temperature) data from animal subjects exposed to combustion gases in large scale fire tests. The AETS consisted of an open wire mesh, two-compartment cage, one containing an exercise wheel for small rodents, and the other containing one rat instrumented externally for electrocardiogram (ECG) and respiration. Cage temperature is measured by a thermistor located in the upper portion of the rat compartment. Animal activity is monitored by the ECG and the records indicate an increase in EMG (electromyograph) noise super-imposed by the increased activity of the torso musculature. Examples of the recordings are presented and discussed as to their significance regarding toxicity of fire gases and specific events occurring during the test. The AETS was shown to be a useful tool in screening materials for the relative toxicity of their outgassing products during pyrolysis and combustion.

  6. Proposal of Screening Method of Sleep Disordered Breathing Using Fiber Grating Vision Sensor

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Nakamura, Hidetoshi; Nakajima, Masato

    Every conventional respiration monitoring technique requires at least one sensor to be attached to the body of the subject during measurement, thereby imposing a sense of restraint that results in aversion against measurements that would last over consecutive days. To solve this problem, we developed a respiration monitoring system for sleepers, and it uses a fiber-grating vision sensor, which is a type of active image sensor to achieve non-contact respiration monitoring. In this paper, we verified the effectiveness of the system, and proposed screening method of the sleep disordered breathing. It was shown that our system could equivalently measure the respiration with thermistor and accelerograph. And, the respiratory condition of sleepers can be grasped by our screening method in one look, and it seems to be useful for the support of the screening of sleep disordered breathing.

  7. High Spectral Resolution Observation of the Soft Diffuse X-ray Background in the Direction of the Galactic Anti-Center

    NASA Astrophysics Data System (ADS)

    Wulf, Dallas; Eckart, Mega E.; Galeazzi, Massimiliano; Jaeckel, Felix; Kelley, Richard L.; Kilbourne, Caroline A.; McCammon, Dan; Morgan, Kelsey M.; Porter, Frederick S.; Szymkowiak, Andrew E.

    2018-01-01

    High spectral resolution observations in the soft x-rays are necessary for understanding and modelling the hot component of the interstellar medium and its contribution to the Soft X-ray Background (SXRB). This extended source emission cannot be resolved with most wavelength dispersive spectrometers, making energy dispersive microcalorimeters the ideal choice for these observations. We present here the analysis of the most recent sounding rocket flight of the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC), a large area silicon thermistor microcalorimeter. This 111 second observation integrates a nearly 1 steradian field of view in the direction of the galactic anti-center (l, b = 165°, -5°) and features ~5 eV spectral resolution below 1 keV. Direct comparison will also be made to the previous, high-latitude observations.

  8. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  10. Thermoelectric technique to precisely control hyperthermic exposures of human whole blood.

    PubMed

    DuBose, D A; Langevin, R C; Morehouse, D H

    1996-12-01

    The need in military research to avoid exposing humans to harsh environments and reduce animal use requires the development of in vitro models for the study of hyperthermic injury. A thermoelectric module (TEM) system was employed to heat human whole blood (HWB) in a manner similar to that experienced by heat-stroked rats. This system precisely and accurately replicated mild, moderate, and extreme heat-stress exposures. Temperature changes could be monitored without the introduction of a test sample thermistor, which reduced contamination problems. HWB with hematocrits of 45 or 50% had similar heating curves, indicating that the system compensated for differences in sample character. The unit's size permitted its containment within a standard carbon dioxide incubator to further control sample environment. These results indicate that the TEM system can precisely control temperature change in this heat stress in vitro model employing HWB. Information obtained from such a model could contribute to military preparedness.

  11. Solar domestic water heating performance test program - Interim report

    NASA Astrophysics Data System (ADS)

    Auris, R. H.

    Performance results from utility-installed or monitored flat plate collector systems on 13 residences are reported. The systems comprised either drain-down, i.e., emptying the water-working fluid into a reservoir in response to thermistor sensing of sufficiently low temperatures, or water/glycol mixture as freeze protection measures. Installation errors committeed by commercial solar contractors employed by the utility customers are outlined, indicating the uncertainty involved in obtaining a quality installation. Most system failures occurred with the drain-down systems, which also featured the highest system efficiencies. Redundancy in the control systems is suggested to offer significant improvements in system efficiency. The systems provided an average of 40% of the annual hot water needs, and the development of low cost materials, better system designs, low cost financing, and increased tax credits are concluded to be methods of making the systems cost effective.

  12. A power compensated differential scanning calorimeter for protein stability characterization

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael; ...

    2017-10-07

    This study presented a power compensated MEMS differential scanning calorimeter (DSC) for protein stability characterization. In this microfabricated sensor, PDMS (Polydimethylsiloxane) and polyimide were used to construct the adiabatic chamber (1 μL) and temperature sensitive vanadium oxide was used as the thermistor material. A power compensation system was implemented to maintain the sample and reference at the same temperature. The resolution study and step response characterization indicated the high sensitivity (6 V/W) and low noise level (60 μk) of the device. The test with IgG1 antibody (mAb1) samples showed clear phase transitions and the data was confirmed to be reasonablemore » by comparing it with the results of commercial DSC’s test. Finally, this device used ~1uL sample amount and could complete the scanning process in 4 min, significantly increasing the throughput of the bimolecular thermodynamics study like drug formulation process.« less

  13. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite].

    PubMed

    Klimovitskuĭ, V Ia; Alpatov, A M; Salzman, F M; Fuller, C A; Moore-Ede, M S

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  14. Electrosurgical vessel sealing tissue temperature: experimental measurement and finite element modeling.

    PubMed

    Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J

    2013-02-01

    The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.

  15. Update of aircraft profile data for the Integrated Noise Model computer program, vol. 3 : appendix B aircraft performance coefficients

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, : aircraft aerodynamic performance coefficients and engine : performance coefficients for the aircraft data base : (Database 9) in the Integrated Noise Model (INM) computer : program. Flight...

  16. Black holes, information, and the universal coefficient theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrascu, Andrei T.

    2016-07-15

    General relativity is based on the diffeomorphism covariant formulation of the laws of physics while quantum mechanics is based on the principle of unitary evolution. In this article, I provide a possible answer to the black hole information paradox by means of homological algebra and pairings generated by the universal coefficient theorem. The unitarity of processes involving black holes is restored by the demanding invariance of the laws of physics to the change of coefficient structures in cohomology.

  17. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  18. Future Development Trajectories for Imaging X-rays Spectrometers Based on Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Bandler, Simon R.

    2013-01-01

    Future development trajectories for imaging x-ray spectrometers based on microcalorimeters. Since their invention 30 years ago, the capability of X-ray microcalorimeters has increased steadily, with continual improvements in energy resolution, speed, and array size. Arrays of up to 1024 pixels have been produced, and resolution better than 1 eV at 1.5 keV has been achieved. These detectors can be optimized for the highest priority science, such as designing for the highest resolving power at low energies at the expense of dynamic range, or the greatest focal-plane coverage at the expense of speed. Three types of X-ray microcalorimeters presently dominate the field, each characterized by the thermometer technology. The first two types use temperature-sensitive resistors: semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a magnetically coupled thermometer, and is at an earlier stage of development than the other two. The Soft X-ray Spectrometer (SXS) on Astro-H, expected to launch in 2015, will use an array of silicon thermistors with HgTe X-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays. Kilopixel arrays of the superconducting calorimeters are being produced, and much larger arrays may require the non-dissipative advantage of magnetically coupled thermometers. I will project the development trajectories of these detectors and their read-out technologies and assess what their capabilities and limitations will be 10 - 20 years from now.

  19. Recognition of Daily Activity in Living Space based on Indoor Ambient Atmosphere and Acquiring Localized Information for Improvement of Recognition Accuracy

    NASA Astrophysics Data System (ADS)

    Hirasawa, Kazuki; Sawada, Shinya; Saitoh, Atsushi

    The system watching over elder's life is very important in a super-aged society Japan. In this paper, we describe a method to recognize resident's daily activities by means of using the information of indoor ambient atmosphere changes. The measuring targets of environmental changes are of gas and smell, temperature, humidity, and brightness. Those changes have much relation with resident's daily activities. The measurement system with 7 sensors (4 gas sensors, a thermistor, humidity sensor, and CdS light sensor) was developed for getting indoor ambient atmosphere changes. Some measurements were done in a one-room type residential space. 21 dimensional activity vectors were composed for each daily activity from acquired data. Those vectors were classified into 9 categories that were main activities by using Self-Organizing Map (SOM) method. From the result, it was found that the recognition of main daily activities based on information on indoor ambient atmosphere changes is possible. Moreover, we also describe the method for getting information of local gas and smell environmental changes. Gas and smell environmental changes are related with daily activities, especially very important action, eating and drinking. And, local information enables the relation of the place and the activity. For such a purpose, a gas sensing module with the operation function that synchronizes with human detection signal was developed and evaluated. From the result, the sensor module had the ability to acquire and to emphasize local gas environment changes caused by the person's activity.

  20. PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang

    2016-11-01

    In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

  1. Electrochemical measurements of diffusion coefficients and activity coefficients for MnCl2 in molten eutectic LiCl-KCl

    NASA Astrophysics Data System (ADS)

    Horvath, D.; Rappleye, D.; Bagri, P.; Simpson, M. F.

    2017-09-01

    An electrochemical study of manganese chloride in molten salt mixtures of eutectic LiCl-KCl was carried out using a variety of electrochemical methods in a high temperature cell including cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA), and open circuit potentiometry. Single step reduction from Mn2+ to Mn(0) was observed on both W and Mo working electrodes. Using a combination of these methods, measurements were made of activity coefficient and diffusion coefficient for MnCl2 in LiCl-KCl as a function of concentration (3.54 × 10-4 to 3.60 × 10-3 mol fraction of MnCl2) at 773K. From OCP measurements, values for activity coefficient varied from 0.014 to 0.0071. Diffusion coefficients varied with concentration and differed based on measurement method (CV, CA, or CP). Based on cyclic Mn(II) ranged from 1.1 to 2.8 × 10-5 cm2/s depending on concentration.

  2. Determination of diffusion coefficients of biocides on their passage through organic resin-based renders.

    PubMed

    Styszko, Katarzyna; Kupiec, Krzysztof

    2016-10-01

    In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Simultaneous Rapid Determination of the Solubility and Diffusion Coefficients of a Poorly Water-Soluble Drug Based on a Novel UV Imaging System.

    PubMed

    Lu, Yan; Li, Mingzhong

    2016-01-01

    The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Lateral mixing in the Mississippi River below the confluence with the Ohio River

    USGS Publications Warehouse

    Rathbun, R.E.; Rostad, C.E.

    2004-01-01

    Lateral dispersion coefficients for two dispersants were determined for three sections of the Mississippi River below the confluence with the Ohio River. The dispersants were the specific conductance and an industrial organic compound (trimethyltriazinetrione). Three models based on the stream tube concept were used, and lateral dispersion coefficients computed from these models were comparable. Coefficients for the two dispersants also were comparable. Lateral dispersion coefficients were consistent with expectations based on the characteristics of the river sections. Overall average values were 0.444 m2/s for a relatively straight section of river, 1.69 m2/s for a section containing two sharp bends, and 2.22 m2/s for a long section containing four sharp bends and several small islands. The lateral dispersion coefficients measured for the Mississippi River are consistent with literature data and a water discharge relation. Results of this study provide lateral dispersion coefficients for a water discharge not previously reported in the literature as well as new values for the Mississippi River.

  5. An Improved Method of Predicting Extinction Coefficients for the Determination of Protein Concentration.

    PubMed

    Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W

    2017-01-01

    Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a predicted extinction coefficient for determining the protein concentration of therapeutic proteins starting from early development through the lifecycle of the product. LAY ABSTRACT: Knowing the concentration of a protein in a pharmaceutical solution is important to the drug's development and posology. There are many ways to determine the concentration, but the easiest one to use in a testing lab employs absorption spectroscopy. Absorbance of ultraviolet light by a protein solution is proportional to its concentration and path length; the proportionality constant is the extinction coefficient. The extinction coefficient of a protein therapeutic is usually determined experimentally during early product development and has some inherent method variability. In this study, extinction coefficients of several proteins were calculated based on the measured absorbance of model compounds. These calculated values for an unfolded protein were then compared with experimental concentration determinations based on enzymatic digestion of the proteins. The experimentally determined extinction coefficient for the native protein was 1.05 times the calculated value for the unfolded protein with good accuracy and precision under controlled experimental conditions, so the value of 1.05 times the calculated coefficient was called the predicted extinction coefficient. Comparison of predicted and measured extinction coefficients indicated that the predicted value was very close to the experimentally determined values for the proteins. The predicted extinction coefficient was accurate and removed the variability inherent in experimental methods. © PDA, Inc. 2017.

  6. Establishing layer coefficients for CTB, PMBB, and RAP.

    DOT National Transportation Integrated Search

    1991-09-01

    In 1988, the Oregon State Highway Division adopted the 1986 AASHTO guide for pavement thickness design. Currently the OSHD uses a layer coefficient of .22 to .24 for cement treated base (CTB), and .32 for plant mix bituminous base (PMBB). Recycled as...

  7. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  8. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment.

    PubMed

    Sargent, Charli; Zhou, Xuan; Matthews, Raymond W; Darwent, David; Roach, Gregory D

    2016-01-29

    The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14) or severely restricted (equivalent to 4 h in bed/24 h; n = 14). Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00-21:00 h) whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00-05:00 h). The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe--as compared to moderate--sleep restriction.

  9. Experimental studies in natural groundwater recharge dynamics: Assessment of recent advances in instrumentation

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1984-01-01

    To quantify and model the natural groundwater-recharge process, two sites in south-central Kansas, U.S.A., were instrumented with various modern sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a unified regime. Data from the various sensors were collected using microloggers in combination with magnetic-cassette tape, graphical and digital recorders, analog paper-tape recorders, and direct observations to evaluate and automate data collection and processing. Atmospheric sensors included an anemometer, a tipping-bucket raingage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron moisture probe operated by an observer. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicated that certain types of equipment such as pressure transducers are very sensitive to environmental conditions. Extraordinary steps had to be taken to protect some of the equipment, whereas other equipment seemed to be reliable under all conditions. Based on such experiences, a number of suggestions aimed at improving such investigations are outlined. ?? 1984.

  10. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  11. Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie

    2014-05-01

    A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur

  12. Enhancement of Seebeck coefficient in graphene superlattices by electron filtering technique

    NASA Astrophysics Data System (ADS)

    Mishra, Shakti Kumar; Kumar, Amar; Kaushik, Chetan Prakash; Dikshit, Biswaranjan

    2018-01-01

    We show theoretically that the Seebeck coefficient and the thermoelectric figure of merit can be increased by using electron filtering technique in graphene superlattice based thermoelectric devices. The average Seebeck coefficient for graphene-based thermoelectric devices is proportional to the integral of the distribution of Seebeck coefficient versus energy of electrons. The low energy electrons in the distribution curve are found to reduce the average Seebeck coefficient as their contribution is negative. We show that, with electron energy filtering technique using multiple graphene superlattice heterostructures, the low energy electrons can be filtered out and the Seebeck coefficient can be increased. The multiple graphene superlattice heterostructures can be formed by graphene superlattices with different periodic electric potentials applied above the superlattice. The overall electronic band gap of the multiple heterostructures is dependent upon the individual band gap of the graphene superlattices and can be tuned by varying the periodic electric potentials. The overall electronic band gap of the multiple heterostructures has to be properly chosen such that, the low energy electrons which cause negative Seebeck distribution in single graphene superlattice thermoelectric devices fall within the overall band gap formed by the multiple heterostructures. Although the electrical conductance is decreased in this technique reducing the thermoelectric figure of merit, the overall figure of merit is increased due to huge increase in Seebeck coefficient and its square dependency upon the Seebeck coefficient. This is an easy technique to make graphene superlattice based thermoelectric devices more efficient and has the potential to significantly improve the technology of energy harvesting and sensors.

  13. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.

  14. An Efficient Non-iterative Bulk Parametrization of Surface Fluxes for Stable Atmospheric Conditions Over Polar Sea-Ice

    NASA Astrophysics Data System (ADS)

    Gryanik, Vladimir M.; Lüpkes, Christof

    2018-02-01

    In climate and weather prediction models the near-surface turbulent fluxes of heat and momentum and related transfer coefficients are usually parametrized on the basis of Monin-Obukhov similarity theory (MOST). To avoid iteration, required for the numerical solution of the MOST equations, many models apply parametrizations of the transfer coefficients based on an approach relating these coefficients to the bulk Richardson number Rib. However, the parametrizations that are presently used in most climate models are valid only for weaker stability and larger surface roughnesses than those documented during the Surface Heat Budget of the Arctic Ocean campaign (SHEBA). The latter delivered a well-accepted set of turbulence data in the stable surface layer over polar sea-ice. Using stability functions based on the SHEBA data, we solve the MOST equations applying a new semi-analytic approach that results in transfer coefficients as a function of Rib and roughness lengths for momentum and heat. It is shown that the new coefficients reproduce the coefficients obtained by the numerical iterative method with a good accuracy in the most relevant range of stability and roughness lengths. For small Rib, the new bulk transfer coefficients are similar to the traditional coefficients, but for large Rib they are much smaller than currently used coefficients. Finally, a possible adjustment of the latter and the implementation of the new proposed parametrizations in models are discussed.

  15. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    PubMed

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  16. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  17. Two-Way Gene Interaction From Microarray Data Based on Correlation Methods.

    PubMed

    Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh

    2016-06-01

    Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman's rank correlation coefficient and Blomqvist's measure, and compared them with Pearson's correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson's correlation, Spearman's rank correlation, and Blomqvist's coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist's coefficient was not confirmed by visual methods. Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data.

  18. Using passive fiber-optic distributed temperature sensing to estimate soil water content at a discontinuous permafrost site

    NASA Astrophysics Data System (ADS)

    Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.

    2016-12-01

    We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.

  19. [A quality controllable algorithm for ECG compression based on wavelet transform and ROI coding].

    PubMed

    Zhao, An; Wu, Baoming

    2006-12-01

    This paper presents an ECG compression algorithm based on wavelet transform and region of interest (ROI) coding. The algorithm has realized near-lossless coding in ROI and quality controllable lossy coding outside of ROI. After mean removal of the original signal, multi-layer orthogonal discrete wavelet transform is performed. Simultaneously,feature extraction is performed on the original signal to find the position of ROI. The coefficients related to the ROI are important coefficients and kept. Otherwise, the energy loss of the transform domain is calculated according to the goal PRDBE (Percentage Root-mean-square Difference with Baseline Eliminated), and then the threshold of the coefficients outside of ROI is determined according to the loss of energy. The important coefficients, which include the coefficients of ROI and the coefficients that are larger than the threshold outside of ROI, are put into a linear quantifier. The map, which records the positions of the important coefficients in the original wavelet coefficients vector, is compressed with a run-length encoder. Huffman coding has been applied to improve the compression ratio. ECG signals taken from the MIT/BIH arrhythmia database are tested, and satisfactory results in terms of clinical information preserving, quality and compress ratio are obtained.

  20. Calculation method for steady-state pollutant concentration in mixing zones considering variable lateral diffusion coefficient.

    PubMed

    Wu, Wen; Wu, Zhouhu; Song, Zhiwen

    2017-07-01

    Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchstaber, V M; Ustinov, A V

    We describe the coefficient rings of universal formal group laws which arise in algebraic geometry, algebraic topology and their application to mathematical physics. We also describe the homomorphisms of these coefficient rings coming from reductions of one formal group law to another. The proofs are based on the number-theoretic properties of binomial coefficients. Bibliography: 37 titles.

  2. Design optimization of a brush turbine with a cleaner/water based solution

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1995-01-01

    Recently, a turbine-brush was analyzed based on the energy conservation and the force momentum equation with an empirical relationship of the drag coefficient. An equation was derived to predict the rotational speed of the turbine-brush in terms of the blade angle, number of blades, rest of geometries of the turbine-brush and the incoming velocity. Using the observed flow conditions, drag coefficients were determined. Based on the experimental values as boundary conditions, the turbine-brush flows were numerically simulated to understand first the nature of the flows, and to extend the observed drag coefficient to a flow without holding the turbine-brush.

  3. Lattice-structures and constructs with designed thermal expansion coefficients

    DOEpatents

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  4. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  5. Mass attenuation coefficients of several bio-adhesive based oil palm particleboards at 16.59-25.26 keV photon energies

    NASA Astrophysics Data System (ADS)

    Abdu Mustapa, U. A.; Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Hashim, R.; Ahmad, M. Z.; Aziz, M. Z. Abd

    2018-01-01

    Particleboards made of oil palm with addition of polylactic acid (PLA), starch, and fish oil were fabricated with target density of 1.0 g/cm3. The mass attenuation coefficients of the particleboards were measured using x-ray fluorescence (XRF) configuration in conjunction with niobium, molybdenum, palladium and tin metal plates that provided Kα1 photon energies between 16.59 and 25.26 keV. The results were compared to the calculated value of water using XCOM. The results showed that all particleboards having mass attenuation coefficients near to the value of water with the mass attenuation coefficient different less than 0.25. The method of fabrication did not give significant different to the mass attenuation coefficients of the particleboards. The results had indicated the potential of bio-adhesive based palm oil particleboards to be developed as phantoms for low energy photons.

  6. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors

    USGS Publications Warehouse

    Chiou, C.T.

    1985-01-01

    Triolein-water partition coefficients (KtW) have been determined for 38 slightly water-soluble organic compounds, and their magnitudes have been compared with the corresponding octanol-water partition coefficients (KOW). In the absence of major solvent-solute interaction effects in the organic solvent phase, the conventional treatment (based on Raoult's law) predicts sharply lower partition coefficients for most of the solutes in triolein because of its considerably higher molecular weight, whereas the Flory-Huggins treatment predicts higher partition coefficients with triolein. The data are in much better agreement with the Flory-Huggins model. As expected from the similarity in the partition coefficients, the water solubility (which was previously found to be the major determinant of the KOW) is also the major determinant for the Ktw. When the published BCF values (bioconcentration factors) of organic compounds in fish are based on the lipid content rather than on total mass, they are approximately equal to the Ktw, which suggests at least near equilibrium for solute partitioning between water and fish lipid. The close correlation between Ktw and Kow suggests that Kow is also a good predictor for lipid-water partition coefficients and bioconcentration factors.

  7. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis.

    PubMed

    Jones, Reese E; Mandadapu, Kranthi K

    2012-04-21

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  8. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  9. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    NASA Astrophysics Data System (ADS)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.

  10. Content Based Image Retrieval based on Wavelet Transform coefficients distribution

    PubMed Central

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013

  11. Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires

    2008-01-01

    The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.

  12. A comparison of confidence interval methods for the intraclass correlation coefficient in community-based cluster randomization trials with a binary outcome.

    PubMed

    Braschel, Melissa C; Svec, Ivana; Darlington, Gerarda A; Donner, Allan

    2016-04-01

    Many investigators rely on previously published point estimates of the intraclass correlation coefficient rather than on their associated confidence intervals to determine the required size of a newly planned cluster randomized trial. Although confidence interval methods for the intraclass correlation coefficient that can be applied to community-based trials have been developed for a continuous outcome variable, fewer methods exist for a binary outcome variable. The aim of this study is to evaluate confidence interval methods for the intraclass correlation coefficient applied to binary outcomes in community intervention trials enrolling a small number of large clusters. Existing methods for confidence interval construction are examined and compared to a new ad hoc approach based on dividing clusters into a large number of smaller sub-clusters and subsequently applying existing methods to the resulting data. Monte Carlo simulation is used to assess the width and coverage of confidence intervals for the intraclass correlation coefficient based on Smith's large sample approximation of the standard error of the one-way analysis of variance estimator, an inverted modified Wald test for the Fleiss-Cuzick estimator, and intervals constructed using a bootstrap-t applied to a variance-stabilizing transformation of the intraclass correlation coefficient estimate. In addition, a new approach is applied in which clusters are randomly divided into a large number of smaller sub-clusters with the same methods applied to these data (with the exception of the bootstrap-t interval, which assumes large cluster sizes). These methods are also applied to a cluster randomized trial on adolescent tobacco use for illustration. When applied to a binary outcome variable in a small number of large clusters, existing confidence interval methods for the intraclass correlation coefficient provide poor coverage. However, confidence intervals constructed using the new approach combined with Smith's method provide nominal or close to nominal coverage when the intraclass correlation coefficient is small (<0.05), as is the case in most community intervention trials. This study concludes that when a binary outcome variable is measured in a small number of large clusters, confidence intervals for the intraclass correlation coefficient may be constructed by dividing existing clusters into sub-clusters (e.g. groups of 5) and using Smith's method. The resulting confidence intervals provide nominal or close to nominal coverage across a wide range of parameters when the intraclass correlation coefficient is small (<0.05). Application of this method should provide investigators with a better understanding of the uncertainty associated with a point estimator of the intraclass correlation coefficient used for determining the sample size needed for a newly designed community-based trial. © The Author(s) 2015.

  13. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  14. Self-employment, specialty choice, and geographical distribution of physicians in Japan: A comparison with the United States.

    PubMed

    Matsumoto, Masatoshi; Inoue, Kazuo; Bowman, Robert; Kajii, Eiji

    2010-08-01

    Geographic and specialty maldistributions of physicians are political concerns in Japan. This study examined the associations of physician employment status with the number and geographic distribution of the physicians in each specialty in Japan, in comparison with the US. The number of physicians per unit population, proportion of clinic (Japan) or office (US) based physicians, and Gini coefficient of physicians against population were calculated in each of 20 specialties in Japan, and 21 specialties in the US. The geographic unit of Gini coefficient was municipality in Japan, and county in the US. Correlations among these three variables were also examined. The lower the proportion of clinic-based physicians was, the lower the number of physicians and the higher the Gini coefficient were in Japanese specialties, while there was no association between office-based rate and Gini coefficient in the US specialties. In radiology, anaesthesiology, emergency medicine, and pathology, Japanese clinic-based rates were less than one-tenth, and the numbers of physicians per unit population were less than half of the US values, and the Gini coefficients were substantially higher than the US values. Difficulty in being self-employed created low numbers in some specialties, and highly urban-biased distributions of these specialists in Japan. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance

    NASA Astrophysics Data System (ADS)

    Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra

    2017-06-01

    In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.

  16. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  17. Pharmaceuticals' sorptions relative to properties of thirteen different soils.

    PubMed

    Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej

    2015-04-01

    Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for assessing potential ground-water contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles

    NASA Astrophysics Data System (ADS)

    Ni, Zao; Su, Tsung-chow; Dhanak, Manhar

    2018-04-01

    Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.

  19. Confidence bounds for normal and lognormal distribution coefficients of variation

    Treesearch

    Steve Verrill

    2003-01-01

    This paper compares the so-called exact approach for obtaining confidence intervals on normal distribution coefficients of variation to approximate methods. Approximate approaches were found to perform less well than the exact approach for large coefficients of variation and small sample sizes. Web-based computer programs are described for calculating confidence...

  20. Confidence Intervals and "F" Tests for Intraclass Correlation Coefficients Based on Three-Way Mixed Effects Models

    ERIC Educational Resources Information Center

    Zhou, Hong; Muellerleile, Paige; Ingram, Debra; Wong, Seok P.

    2011-01-01

    Intraclass correlation coefficients (ICCs) are commonly used in behavioral measurement and psychometrics when a researcher is interested in the relationship among variables of a common class. The formulas for deriving ICCs, or generalizability coefficients, vary depending on which models are specified. This article gives the equations for…

  1. Material balance and diet in bioregenerative life support systems: connection with coefficient of closure.

    PubMed

    Manukovsky, N S; Kovalev, V S; Somova, L A; Gurevich, Yu L; Sadovsky, M G

    2005-01-01

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae

    2018-07-01

    It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.

  3. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    PubMed

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  4. Two-Way Gene Interaction From Microarray Data Based on Correlation Methods

    PubMed Central

    Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh

    2016-01-01

    Background Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. Objectives The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. Materials and Methods In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman’s rank correlation coefficient and Blomqvist’s measure, and compared them with Pearson’s correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson’s correlation, Spearman’s rank correlation, and Blomqvist’s coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Results Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist’s coefficient was not confirmed by visual methods. Conclusions Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data. PMID:27621916

  5. Association of sex hormones with physical, laboratory, and imaging markers of anthropometry in men and women from the general population.

    PubMed

    Seyfart, Tom; Friedrich, Nele; Kische, Hanna; Bülow, Robin; Wallaschofski, Henri; Völzke, Henry; Nauck, Matthias; Keevil, Brian G; Haring, Robin

    2018-01-01

    The aim of this study was to evaluate the association of sex hormones with anthropometry in a large population-based cohort, with liquid chromatography-mass spectrometry (LCMS)-based sex hormone measurements and imaging markers. Cross-sectional data from 957 men and women from the population-based Study of Health in Pomerania (SHIP) were used. Associations of a comprehensive panel of LCMS-measured sex hormones with anthropometric parameters, laboratory, and imaging markers were analyzed in multivariable regression models for the full sample and stratified by sex. Sex hormone measures included total testosterone (TT), free testosterone (fT), estrone and estradiol, androstenedione (ASD), dehydroepiandrosterone sulfate (DHEAS), and sex hormone-binding globulin (SHBG). Domains of anthropometry included physical measures (body-mass-index (BMI), waist circumference, waist-to-height-ratio, waist-to-hip-ratio, and hip circumference), laboratory measures of adipokines (leptin and vaspin), and magnet resonance imaging-based measures (visceral and subcutaneous adipose tissue). In men, inverse associations between all considered anthropometric parameters with TT were found: BMI (β-coefficient, standard error (SE): -0.159, 0.037), waist-circumference (β-coefficient, SE: -0.892, 0.292), subcutaneous adipose tissue (β-coefficient, SE: -0.156, 0.023), and leptin (β-coefficient, SE: -0.046, 0.009). In women TT (β-coefficient, SE: 1.356, 0.615) and estrone (β-coefficient, SE: 0.014, 0.005) were positively associated with BMI. In analyses of variance, BMI and leptin were inversely associated with TT, ASD, and DHEAS in men, but positively associated with estrone. In women, BMI and leptin were positively associated with all sex hormones. The present population-based study confirmed and extended previously reported sex-specific associations between sex hormones and various anthropometric markers of overweight and obesity.

  6. Precancerous esophageal epithelia are associated with significantly increased scattering coefficients

    PubMed Central

    Su, Jing-Wei; Lin, Yang-Hsien; Chiang, Chun-Ping; Lee, Jang-Ming; Hsieh, Chao-Mao; Hsieh, Min-Shu; Yang, Pei-Wen; Wang, Chen-Ping; Tseng, Ping-Huei; Lee, Yi-Chia; Sung, Kung-Bin

    2015-01-01

    The progression of epithelial precancers into cancer is accompanied by changes of tissue and cellular structures in the epithelium. Correlations between the structural changes and scattering coefficients of esophageal epithelia were investigated using quantitative phase images and the scattering-phase theorem. An ex vivo study of 14 patients demonstrated that the average scattering coefficient of precancerous epithelia was 37.8% higher than that of normal epithelia from the same patient. The scattering coefficients were highly correlated with morphological features including the cell density and the nuclear-to-cytoplasmic ratio. A high interpatient variability in scattering coefficients was observed and suggests identifying precancerous lesions based on the relative change in scattering coefficients. PMID:26504630

  7. Passive athermalization: required accuracy of the thermo-optical coefficients

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2014-12-01

    Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.

  8. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Weining; Yu, Qian; Tian, Yong Q.; Chen, Robert F.; Gardner, G. Bernard

    2011-02-01

    A method for the inversion of hyperspectral remote sensing was developed to determine the absorption coefficient for chromophoric dissolved organic matter (CDOM) in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico, where water types vary from Case 1 to turbid Case 2. Above-surface hyperspectral remote sensing data were measured by a ship-mounted spectroradiometer and then used to estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM and chlorophyll fluorescence, turbidities, and other related water properties were also measured at very high resolution (0.5-2 m) using in situ, underwater, and flow-through (shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption-backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total particulate backscattering coefficient), and the second is between ap (a of total particles) and bbp. These two relationships are referred as ad-based and ap-based methods, respectively. Consequently, based on Lee's quasi-analytical algorithm (QAA), we developed the so-called Extended Quasi-Analytical Algorithm (QAA-E) to decompose adg, using both ad-based and ap-based methods. The absorption-backscattering relationships and the QAA-E were tested using synthetic and in situ data from the International Ocean-Colour Coordinating Group (IOCCG) as well as our own field data. The results indicate the ad-based method is relatively better than the ap-based method. The accuracy of CDOM estimation is significantly improved by separating ag from adg (R2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of the newly introduced coefficients were also analyzed to ensure QAA-E is robust.

  9. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  10. On determination of sign of the piezo-optic coefficients using torsion method.

    PubMed

    Vasylkiv, Yurij; Savaryn, Viktoriya; Smaga, Ihor; Skab, Ihor; Vlokh, Rostyslav

    2011-06-10

    We have shown that a high-accuracy torsion method recently developed by the authors for measuring piezo-optic coefficients allows determining not only the absolute value of the coefficients but also their sign. The techniques and experimental procedures used for determination of the sign are described in detail and proven based on studies of α-BaB2O4 and LiNbO3 crystals. The piezo-optic coefficients are determined for both crystals, and a combination of the corresponding photoelastic coefficients is determined for the case of α-BaB2O4 crystals.

  11. Analytical transmission cross-coefficients for pink beam X-ray microscopy based on compound refractive lenses.

    PubMed

    Falch, Ken Vidar; Detlefs, Carsten; Snigirev, Anatoly; Mathiesen, Ragnvald H

    2018-01-01

    Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development and assessment of atomistic models for predicting static friction coefficients

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  13. A hierarchical estimator development for estimation of tire-road friction coefficient

    PubMed Central

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332

  14. A hierarchical estimator development for estimation of tire-road friction coefficient.

    PubMed

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  15. Switching theory-based steganographic system for JPEG images

    NASA Astrophysics Data System (ADS)

    Cherukuri, Ravindranath C.; Agaian, Sos S.

    2007-04-01

    Cellular communications constitute a significant portion of the global telecommunications market. Therefore, the need for secured communication over a mobile platform has increased exponentially. Steganography is an art of hiding critical data into an innocuous signal, which provide answers to the above needs. The JPEG is one of commonly used format for storing and transmitting images on the web. In addition, the pictures captured using mobile cameras are in mostly in JPEG format. In this article, we introduce a switching theory based steganographic system for JPEG images which is applicable for mobile and computer platforms. The proposed algorithm uses the fact that energy distribution among the quantized AC coefficients varies from block to block and coefficient to coefficient. Existing approaches are effective with a part of these coefficients but when employed over all the coefficients they show there ineffectiveness. Therefore, we propose an approach that works each set of AC coefficients with different frame work thus enhancing the performance of the approach. The proposed system offers a high capacity and embedding efficiency simultaneously withstanding to simple statistical attacks. In addition, the embedded information could be retrieved without prior knowledge of the cover image. Based on simulation results, the proposed method demonstrates an improved embedding capacity over existing algorithms while maintaining a high embedding efficiency and preserving the statistics of the JPEG image after hiding information.

  16. Fission Product Appearance Rate Coefficients in Design Basis Source Term Determinations - Past and Present

    NASA Astrophysics Data System (ADS)

    Perez, Pedro B.; Hamawi, John N.

    2017-09-01

    Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory requirements, but have been referenced to experimental data that is over 50 years old. No doubt the source terms are conservative as demonstrated by operating experience that has included failed fuel, but it may be too conservative leading to over-designed shielding for normal operations as an example. Design basis source term methodologies for normal operations had not advanced until EPRI published in 2015 an updated ANSI/ANS 18.1 source term basis document. Our paper revisits the fission product appearance rate coefficients as applied in the derivation source terms following the original U.S. NRC NUREG-0017 methodology. New coefficients have been calculated based on recent EPRI results which demonstrate the conservatism in nuclear power plant shielding design.

  17. Automatic weight determination in nonlinear model predictive control of wind turbines using swarm optimization technique

    NASA Astrophysics Data System (ADS)

    Tofighi, Elham; Mahdizadeh, Amin

    2016-09-01

    This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.

  18. Analysis of charge transport in gels containing polyoxometallates using methods of different sensitivity to migration.

    PubMed

    Caban, Karolina; Lewera, Adam; Zukowska, Grazyna Z; Kulesza, Pawel J; Stojek, Zbigniew; Jeffrey, Kenneth R

    2006-08-04

    Two methods have been used for examination of transport of charge in gels soaked with DMF and containing dissolved polyoxometallates. The first method is based on the analysis of both Cottrellian and steady-state currents and therefore is capable of giving the concentration of the electroactive redox centres and their transport (diffusion-type) coefficient. The second method provides the real diffusion coefficients, i.e. transport coefficients free of migrational influence, for both the substrate and the product of the electrode reaction. Several gels based on poly(methyl methacrylate), with charged (addition of 1-acrylamido-2-methyl-2-propanesulphonic acid to the polymerization mixture) and uncharged chains, have been used in the investigation. The ratio obtained for the diffusion coefficient (second method) and transport coefficient (first method) was smaller for the gels containing charged polymer chains than for the gels with uncharged chains. In part these changes could be explained by the contribution of migration to the transport of polyoxomatallates in the gels. However, the impact of the changes in the polymer-channel capacity at the electrode surface while the electrode process proceeds was also considered. These structural changes should affect differently the methods based on different time domains.

  19. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  20. ScoreRel CI: An Excel Program for Computing Confidence Intervals for Commonly Used Score Reliability Coefficients

    ERIC Educational Resources Information Center

    Barnette, J. Jackson

    2005-01-01

    An Excel program developed to assist researchers in the determination and presentation of confidence intervals around commonly used score reliability coefficients is described. The software includes programs to determine confidence intervals for Cronbachs alpha, Pearson r-based coefficients such as those used in test-retest and alternate forms…

  1. Derivation of energy-based base shear force coefficient considering hysteretic behavior and P-delta effects

    NASA Astrophysics Data System (ADS)

    Ucar, Taner; Merter, Onur

    2018-01-01

    A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.

  2. Calculation of equivalent friction coefficient for castor seed by single screw press

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.

    2017-08-01

    Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.

  3. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGES

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; ...

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m 2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  4. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    PubMed

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  5. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  6. Thermal Rate Coefficients for the Astrochemical Process C + CH+ → C2+ + H by Ring Polymer Molecular Dynamics.

    PubMed

    Rampino, Sergio; Suleimanov, Yury V

    2016-12-22

    Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.

  7. Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Bürkle, Sebastian; Walter, Nicole; Wagner, Steven

    2018-06-01

    A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7-1.5% for broadening coefficients and 0.6-1.6% for pressure shift coefficients.

  8. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  9. Multifocus image fusion scheme based on the multiscale curvature in nonsubsampled contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Li, Huafeng; Yu, Zhengtao; Kong, Yingchun

    2015-07-01

    An efficient multifocus image fusion scheme in nonsubsampled contourlet transform (NSCT) domain is proposed. Based on the property of optical imaging and the theory of defocused image, we present a selection principle for lowpass frequency coefficients and also investigate the connection between a low-frequency image and the defocused image. Generally, the NSCT algorithm decomposes detail image information indwells in different scales and different directions in the bandpass subband coefficient. In order to correctly pick out the prefused bandpass directional coefficients, we introduce multiscale curvature, which not only inherits the advantages of windows with different sizes, but also correctly recognizes the focused pixels from source images, and then develop a new fusion scheme of the bandpass subband coefficients. The fused image can be obtained by inverse NSCT with the different fused coefficients. Several multifocus image fusion methods are compared with the proposed scheme. The experimental results clearly indicate the validity and superiority of the proposed scheme in terms of both the visual qualities and the quantitative evaluation.

  10. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.

    PubMed Central

    Delgado, J; Liao, J C

    1992-01-01

    The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632

  11. Block-based scalable wavelet image codec

    NASA Astrophysics Data System (ADS)

    Bao, Yiliang; Kuo, C.-C. Jay

    1999-10-01

    This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).

  12. Ultrasound coefficient of nonlinearity imaging.

    PubMed

    van Sloun, Ruud; Demi, Libertario; Shan, Caifeng; Mischi, Massimo

    2015-07-01

    Imaging the acoustical coefficient of nonlinearity, β, is of interest in several healthcare interventional applications. It is an important feature that can be used for discriminating tissues. In this paper, we propose a nonlinearity characterization method with the goal of locally estimating the coefficient of nonlinearity. The proposed method is based on a 1-D solution of the nonlinear lossy Westerfelt equation, thereby deriving a local relation between β and the pressure wave field. Based on several assumptions, a β imaging method is then presented that is based on the ratio between the harmonic and fundamental fields, thereby reducing the effect of spatial amplitude variations of the speckle pattern. By testing the method on simulated ultrasound pressure fields and an in vitro B-mode ultrasound acquisition, we show that the designed algorithm is able to estimate the coefficient of nonlinearity, and that the tissue types of interest are well discriminable. The proposed imaging method provides a new approach to β estimation, not requiring a special measurement setup or transducer, that seems particularly promising for in vivo imaging.

  13. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  14. Rumor Diffusion in an Interests-Based Dynamic Social Network

    PubMed Central

    Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911

  15. Rumor diffusion in an interests-based dynamic social network.

    PubMed

    Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency.

  16. Principal Component Analysis Based Measure of Structural Holes

    NASA Astrophysics Data System (ADS)

    Deng, Shiguo; Zhang, Wenqing; Yang, Huijie

    2013-02-01

    Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.

  17. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  18. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  19. X-Band, 17-Watt Solid-State Power Amplifier

    NASA Technical Reports Server (NTRS)

    Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl

    2005-01-01

    An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.

  20. NASA Tech Briefs, January 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.

  1. An afocal telescope configuration for the ESA ARIEL mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Focardi, Mauro; Middleton, Kevin; Morgante, Gianluca; Pascale, Enzo; Grella, Samuele; Pace, Emanuele; Claudi, Riccardo; Amiaux, Jérôme; Colomé Ferrer, Josep; Hunt, Thomas; Rataj, Miroslaw; Sierra-Roig, Carles; Ficai Veltroni, Iacopo; Eccleston, Paul; Micela, Giuseppina; Tinetti, Giovanna

    2017-12-01

    Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (ARIEL) is a candidate as an M4 ESA mission to launch in 2026. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the solar system. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds. ARIEL is based on a 1 m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 and 7.8 μm and a combined fine guidance system/visible photometer/NIR spectrometer. The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror. To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ± 1 K by the telescope control unit (TCU). The TCU is a payload electronics subsystem also responsible for the thermal control of the spectrometer module detectors as well as the secondary mirror mechanism and IR calibration source management. The TCU, being a slave subsystem of the instrument control unit, will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.

  2. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  3. Ill-defined causes of death in Brazil: a redistribution method based on the investigation of such causes

    PubMed Central

    França, Elisabeth; Teixeira, Renato; Ishitani, Lenice; Duncan, Bruce Bartholow; Cortez-Escalante, Juan José; de Morais, Otaliba Libânio; Szwarcwald, Célia Landman

    2014-01-01

    OBJECTIVE To propose a method of redistributing ill-defined causes of death (IDCD) based on the investigation of such causes. METHODS In 2010, an evaluation of the results of investigating the causes of death classified as IDCD in accordance with chapter 18 of the International Classification of Diseases (ICD-10) by the Mortality Information System was performed. The redistribution coefficients were calculated according to the proportional distribution of ill-defined causes reclassified after investigation in any chapter of the ICD-10, except for chapter 18, and used to redistribute the ill-defined causes not investigated and remaining by sex and age. The IDCD redistribution coefficient was compared with two usual methods of redistribution: a) Total redistribution coefficient, based on the proportional distribution of all the defined causes originally notified and b) Non-external redistribution coefficient, similar to the previous, but excluding external causes. RESULTS Of the 97,314 deaths by ill-defined causes reported in 2010, 30.3% were investigated, and 65.5% of those were reclassified as defined causes after the investigation. Endocrine diseases, mental disorders, and maternal causes had a higher representation among the reclassified ill-defined causes, contrary to infectious diseases, neoplasms, and genitourinary diseases, with higher proportions among the defined causes reported. External causes represented 9.3% of the ill-defined causes reclassified. The correction of mortality rates by the total redistribution coefficient and non-external redistribution coefficient increased the magnitude of the rates by a relatively similar factor for most causes, contrary to the IDCD redistribution coefficient that corrected the different causes of death with differentiated weights. CONCLUSIONS The proportional distribution of causes among the ill-defined causes reclassified after investigation was not similar to the original distribution of defined causes. Therefore, the redistribution of the remaining ill-defined causes based on the investigation allows for more appropriate estimates of the mortality risk due to specific causes. PMID:25210826

  4. Ill-defined causes of death in Brazil: a redistribution method based on the investigation of such causes.

    PubMed

    França, Elisabeth; Teixeira, Renato; Ishitani, Lenice; Duncan, Bruce Bartholow; Cortez-Escalante, Juan José; Morais Neto, Otaliba Libânio de; Szwarcwald, Célia Landman

    2014-08-01

    OBJECTIVE To propose a method of redistributing ill-defined causes of death (IDCD) based on the investigation of such causes. METHODS In 2010, an evaluation of the results of investigating the causes of death classified as IDCD in accordance with chapter 18 of the International Classification of Diseases (ICD-10) by the Mortality Information System was performed. The redistribution coefficients were calculated according to the proportional distribution of ill-defined causes reclassified after investigation in any chapter of the ICD-10, except for chapter 18, and used to redistribute the ill-defined causes not investigated and remaining by sex and age. The IDCD redistribution coefficient was compared with two usual methods of redistribution: a) Total redistribution coefficient, based on the proportional distribution of all the defined causes originally notified and b) Non-external redistribution coefficient, similar to the previous, but excluding external causes. RESULTS Of the 97,314 deaths by ill-defined causes reported in 2010, 30.3% were investigated, and 65.5% of those were reclassified as defined causes after the investigation. Endocrine diseases, mental disorders, and maternal causes had a higher representation among the reclassified ill-defined causes, contrary to infectious diseases, neoplasms, and genitourinary diseases, with higher proportions among the defined causes reported. External causes represented 9.3% of the ill-defined causes reclassified. The correction of mortality rates by the total redistribution coefficient and non-external redistribution coefficient increased the magnitude of the rates by a relatively similar factor for most causes, contrary to the IDCD redistribution coefficient that corrected the different causes of death with differentiated weights. CONCLUSIONS The proportional distribution of causes among the ill-defined causes reclassified after investigation was not similar to the original distribution of defined causes. Therefore, the redistribution of the remaining ill-defined causes based on the investigation allows for more appropriate estimates of the mortality risk due to specific causes.

  5. Hall coefficient measurement for residual stress assessment in precipitation hardened IN718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2017-02-01

    We investigated the feasibility of residual stress assessment based on Hall coefficient measurements in precipitation hardened IN718 nickel-base superalloy. As a first step, we studied the influence of microstructural variations on the galvanomagnetic properties of IN718 nickel-base superalloy. We found that the Hall coefficient of IN718 increases from ≈ 8.0×10-11 m3/C in its fully annealed state of 15 HRC Rockwell hardness to ≈ 9.4×10-11 m3/C in its fully hardened state of 45 HRC. We also studied the influence of cold work, i.e., plastic deformation, at room temperature and found that cold work had negligible effect on the Hall coefficient of fully annealed IN718, but significantly reduced it in hardened states of the material. For example, measurements conducted on fully hardened IN718 specimens showed that the Hall coefficient decreased more or less linearly with cold work from its peak value of ≈ 9.4×10-11 m3/C in its intact state to ≈ 9.0×10-11 m3/C in its most deformed state of 22% plastic strain. We also studied the influence of applied stress and found that elastic strain significantly increases the Hall coefficient of IN718 regardless of the state of hardening. The relative sensitivity of the Hall coefficient to elastic strain was measured as a unitless gauge factor K that is defined as the ratio of the relative change of the Hall coefficient ΔRH/RH divided by the axial strain ɛ = σ/E, where σ is the applied uniaxial stress and E is the Young's modulus of the material. We determined that the galvanomagnetic gauge factor of IN718 is κ ≈ 2.6 - 2.9 depending on the hardness level. Besides the fairly high value of the gauge factor, it is important that it is positive, which means that compressive stress in surface-treated components decreases the Hall coefficient in a similar way as plastic deformation does, therefore the unfortunate cancellation that occurs in fully hardened IN718 in the case of electric conductivity measurements will not happen in this case. Additionally, the temperature dependence of the Hall coefficient was measured at three different hardness levels and the influence of thermal exposure was studied in fully hardened IN718 up to 700 °C.

  6. An energy-dependent electron backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.

    1987-05-01

    An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.

  7. The Robustness of Designs for Trials with Nested Data against Incorrect Initial Intracluster Correlation Coefficient Estimates

    ERIC Educational Resources Information Center

    Korendijk, Elly J. H.; Moerbeek, Mirjam; Maas, Cora J. M.

    2010-01-01

    In the case of trials with nested data, the optimal allocation of units depends on the budget, the costs, and the intracluster correlation coefficient. In general, the intracluster correlation coefficient is unknown in advance and an initial guess has to be made based on published values or subject matter knowledge. This initial estimate is likely…

  8. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region--based on the improved export coefficient model.

    PubMed

    Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti

    2015-11-01

    Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.

  9. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.

    2016-07-01

    The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.

  10. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  11. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  12. Layer coefficients for NHDOT pavement materials

    NASA Astrophysics Data System (ADS)

    Janoo, Vincent C.

    1994-09-01

    In 1992, the New Hampshire Department of Transportation (NHDOT) experimented with the use of reclaimed asphalt concrete as a base course material, identified by NHDOT as reclaimed stabilized base (RSB). The RSB and a control test section were placed on Interstate 93 between exits 18 and 19. The RSB test section was designed to the same structural number (SN) as the control. To evaluate the structural capacity of these test sections, the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted deflection tests using a Dynatest 8000 falling weight deflectometer (FWD). Preliminary analysis of the results by NHDOT personnel showed higher deflection in the reclaimed asphalt concrete test sections. The explanation was that the layer coefficient used for the RSB layer in the design was probably incorrect. A total of 10 test sections constituting the base course materials used by NHDOT were built near Bow, New Hampshire. CRREL evaluated and estimated the layer coefficients of the base course materials. The test program was developed to characterize the material in more than one way. Tests were conducted with the heavy weight deflectometer (HWD), dynamic cone penetrometer (DCP) and the Clegg hammer. In situ California bearing ratio (CBR) tests were also conducted. The deflection from the HWD were used with the WESDEF back calculation program to determine the layer moduli. The moduli were than used with the AASHTO Design Guide to calculate the layer coefficients. The layer coefficients were also determined with the method proposed by Rohde. The CBR values from the Clegg hammer, in situ CBR and DCP tests were also used in the relationships in the HDM model to determine the layer coefficients.

  13. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.

    PubMed

    Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li

    2009-02-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.

  14. Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China

    NASA Astrophysics Data System (ADS)

    Zhang, E.; Yin, X.

    2017-12-01

    One of the most challenging steps in implementing analysis of virtual water content (VWC) of agricultural crops is how to properly assess the volume of consumptive water use (CWU) for crop production. In practice, CWU is considered equivalent to the crop evapotranspiration (ETc). Following the crop coefficient method, ETc can be calculated under standard or non-standard conditions by multiplying the reference evapotranspiration (ET0) by one or a few coefficients. However, when current crop growing conditions deviate from standard conditions, accurately determining the coefficients under non-standard conditions remains to be a complicated process and requires lots of field experimental data. Based on regional surface water-energy balance, this research integrates the Budyko framework into the traditional crop coefficient approach to simplify the coefficients determination. This new method enables us to assess the volume of agricultural VWC only based on some hydrometeorological data and agricultural statistic data in regional scale. To demonstrate the new method, we apply it to the Shijiazhuang Plain, which is an agricultural irrigation area in the North China Plain. The VWC of winter wheat and summer maize is calculated and we further subdivide VWC into blue and green water components. Compared with previous studies in this study area, VWC calculated by the Budyko-based crop coefficient approach uses less data and agrees well with some of the previous research. It shows that this new method may serve as a more convenient tool for assessing VWC.

  15. Modified Regression Correlation Coefficient for Poisson Regression Model

    NASA Astrophysics Data System (ADS)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  16. PADDLEFISH BUCCAL FLOW VELOCITY DURING RAM SUSPENSION FEEDING AND RAM VENTILATION

    PubMed

    Cech; Cheer

    1994-01-01

    A micro-thermistor probe was inserted into the buccal cavity of freely swimming paddlefish to measure flow velocity during ram ventilation, ram suspension feeding and prey processing. Swimming speed was measured from videotapes recorded simultaneously with the buccal flow velocity measurements. Both swimming velocity and buccal flow velocity were significantly higher during suspension feeding than during ram ventilation. As the paddlefish shifted from ventilation to feeding, buccal flow velocity increased to approximately 60 % of the swimming velocity. During prey processing, buccal flow velocity was significantly higher than the swimming velocity, indicating that prey processing involves the generation of suction. The Reynolds number (Re) for flow at the level of the paddlefish gill rakers during feeding is about 30, an order of magnitude lower than the Re calculated previously for pump suspension-feeding blackfish. These data, combined with data available from the literature, indicate that the gill rakers of ram suspension-feeding teleost fishes may operate at a substantially lower Re than the rakers of pump suspension feeders.

  17. Temperature and behavioral responses of squirrel monkeys to 2Gz acceleration

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Tremor, J.; Connolly, J. P.; Williams, B. A.

    1982-01-01

    This study examines the responses of squirrel monkeys to acute +2Gz exposure. Body temperature responses of loosely restrained animals were recorded via a thermistor in the colon. Behavioral responses were recorded by video monitoring. After baseline recording at 1G, monkeys were exposed to 2G for 60 min. The body temperature started to fall within 10 min of the onset of centrifugation and declined an average of 1.4 C in 60 min. This is in contrast to a stable body temperature during the control period. Further, after a few minutes at 2G, the animals became drowsy and appeared to fall asleep. During the control period, however, they were alert and continually shifting their gaze about the cage. Thus, primates are susceptible to hypergravic fields in the +Gz orientation. The depression in primate body temperature was consistent and significant. Further, the observed drowsiness in this study has significant ramifications regarding alertness and performance in man.

  18. OSS-1/contamination monitor

    NASA Technical Reports Server (NTRS)

    Kruger, R.; Triolo, J.; Mcintosh, R.

    1983-01-01

    A 20-cm high, 18-cm wide, and 30-cm long (8x7x12 inch) box weighing about 7 kg (15 lbs) and consuming about 7 watts of power was carried on the OSS-1 pallet to monitor the mass build-up or accretion of condensible, volatile materials on surfaces in the shuttle bay during all phases of ascent, on-orbit, and descent. Passively thermally controlled, the box holds two witness samples and four actively temperature controlled quartz crystal microbalances (TQCM) whose temperature can vary from -60 C to +80 C. Graphs show the accretion indicated by the TQCM during the launch and early orbital phase. Conditions during tail to the Sun, nose to the Sun, and bay to the Sun attitudes of the shuttle during STS-3 are reflected in temperatures indicated by the OSS-1 thermistor. These temperatures influence outgassing rates of various materials as well as measurements made by the contamination monitor package. The parameters that bear on TQCM measurements data are shown in graphs and discussed.

  19. Investigation of Hyporheic Thermal Flux and Downstream Attenuation Driven by Hydropeaking in the Colorado River, Austin, Texas

    NASA Astrophysics Data System (ADS)

    Watson, J. A.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2015-12-01

    Thermal flux related to regulated river hydropeaking has been extensively researched at the single-study site scale, but little work has been done quantifying the downstream attenuation of a single regulated flood pulse at multiple sites. In order to better understand this flood pulse attenuation we instrumented four sites with temperature probes along a 91 km stretch of the Colorado River downstream of longhorn dam, Austin, TX. Piezometer transects perpendicular to the river at each site were instrumented with HOBO thermistors over a 1.4m screened interval within the saturated zone at 20cm spacing. As flood pulses are attenuated downstream, temperature gradients and distance of lateral temperature pulse penetration into the bank are hypothesized to decrease. The data collected in this investigation will test this hypothesis by providing 2D temperature cross-sections along an attenuating flood pulse, providing detailed spatial data on temperature gradients adjacent to the river.

  20. Precise Lamb Shift Measurements in Hydrogen-Like Heavy Ions—Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Andrianov, V.; Beckert, K.; Bleile, A.; Chatterjee, Ch.; Echler, A.; Egelhof, P.; Gumberidze, A.; Ilieva, S.; Kiselev, O.; Kilbourne, C.; Kluge, H.-J.; Kraft-Bermuth, S.; McCammon, D.; Meier, J. P.; Reuschl, R.; Stöhlker, T.; Trassinelli, M.

    2009-12-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. For the first time, a calorimetric low-temperature detector was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions 207Pb81+ at the Experimental Storage Ring (ESR) at GSI. The detectors consist of silicon thermistors, provided by the NASA/Goddard Space Flight Center, and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40-80 keV, where the Doppler-shifted Lyman lines are located. The measured energy of the Lyman α1 line, E(Ly-α1, 207Pb81+) = (77937±12stat±23syst) eV, agrees within errors with theoretical predictions. The systematic error is mainly due to uncertainties in the non-linear energy calibration of the detectors as well as the relative position of detector and gas-jet target.

  1. Slow Control System for the NIFFTE Collaboration TPC

    NASA Astrophysics Data System (ADS)

    Ringle, Erik; Niffte Collaboration Collaboration

    2011-10-01

    As world energy concerns continue to dominate public policy in the 21st century, the need for cleaner and more efficient nuclear power is necessary. In order to effectively design and implement plans for generation IV nuclear reactors, more accurate fission cross-section measurements are necessary. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration, in an effort to meet this need, has constructed a Time Projection Chamber (TPC) which aims to reduce the uncertainty of the fission cross-section to less than 1%. Using the Maximum Integration Data Acquisition System (MIDAS) framework, slow control measurements are integrated into a single interface to facilitate off-site monitoring. The Hart Scientific 1560 Black Stack will be used with two 2564 Thermistor Scanner Modules to monitor internal temperature of the TPC. A Prologix GPIB to Ethernet controller will be used to interface the hardware with MIDAS. This presentation will detail the design and implementation of the slow control system for the TPC. This work was supported by the U.S. Department of Energy Division of Energy Research.

  2. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, S.; Kamotani, Y.

    1996-01-01

    This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.

  3. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Y.; Pline, A.

    1994-01-01

    Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.

  4. Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Myers, Michael James

    We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.

  5. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    DOEpatents

    Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.

    1999-01-01

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  6. Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Williams, B. A.

    1976-01-01

    Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.

  7. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.

    PubMed

    Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti

    2016-10-18

    Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.

  8. Development of unconstrained heartbeat and respiration measurement system with pneumatic flow.

    PubMed

    Kurihara, Yosuke; Watanabe, Kajiro

    2012-12-01

    The management of health through daily monitoring of heartbeat and respiration signals is of major importance for early diagnosis to prevent diseases of the respiratory and circulatory system. However, such daily health monitoring is possible only if the monitoring system is physically and psychologically noninvasive. In this paper, an unconstrained method of measuring heartbeat and respiration signals, by using a thermistor to measure the air flows from the air mattress to an air tube accompanying the subject's heartbeat and respiration, is proposed. The SN ratio with interference by opening and closing of a door as environmental noise was compared with that obtained by the conventional condenser microphone method. As a result, the SN ratios with the condenser microphone method were 26.6 ± 4.2 dB for heartbeat and 27.8 ± 3.0 dB for respiration, whereas with the proposed method they were 34.9 ± 3.1 dB and 42.1 ± 2.5 dB, respectively.

  9. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  10. Long-term purity assessment in succinonitrile

    NASA Astrophysics Data System (ADS)

    Rubinstein, E. R.; Tirmizi, S. H.; Glicksman, M. E.

    1990-11-01

    Container materials for crystal growth chambers must be carefully selected in order to prevent sample contamination. To address the issue of contamination, high purity SCN was exposed to a variety of potential chamber construction materials, e.g., metal alloys, soldering materials, and sealants, at a temperature approximately 25 K above the melting point of SCN (58°C), over periods of up to one year. Acceptability, or lack thereof, of candidate chamber materials was determined by performing periodic melting point checks of the exposed samples. Those materials which did not measurably affect the melting point of SCN over a one-year period were considered to be chemically compatible and therefore eligible for use in constructing the flight chamber. A growth chamber constructed from compatible materials (304 SS and borosilicate glass) was filled with pure SCN. A thermistor probe placed within the chamber permitted in situ measurement of the melting point and, indirectly, of the purity of the SCN. Melting point plateaus were then determined, to assess the actual chamber performance.

  11. Monitoring solar irradiance from L2 with Gaia

    NASA Astrophysics Data System (ADS)

    Serpell, E.

    2017-09-01

    Gaia is the European Space Agency's cornerstone astrometry mission to measure the positions of a billion stars in the Milky Way with unprecedented accuracy. Since early 2014 Gaia has been operating in a halo orbit around the second Sun-Earth Lagrange point that provides the stable thermal environment, without Earth eclipses, needed for the payload to function accurately. The spacecraft is equipped with a number of thermally isolated, sun-facing thermistors that provide a continuous measurement of the local equilibrium temperature. As a consequence of the spacecraft design and operational conditions these temperature measurements have been used to infer the solar output over a broad wavelength range. In this paper we present an analysis of temperature measurements made of the Gaia solar panels at frequencies of up to 1 Hz for the first 35 months of routine operations. We show that the Gaia solar panel temperature measurements are capable of precisely determining short term changes to the solar output at a level of better than 0.04% with time constants of a few minutes.

  12. The pressure coefficient of the Curie temperature of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.

    2012-12-01

    The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.

  13. Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data.

    PubMed

    Puente, Gabriela F; Bonetto, Fabián J

    2005-05-01

    We used the temporal evolution of the bubble radius in single-bubble sonoluminescence to estimate the water liquid-vapor accommodation coefficient. The rapid changes in the bubble radius that occur during the bubble collapse and rebounds are a function of the actual value of the accommodation coefficient. We selected bubble radius measurements obtained from two different experimental techniques in conjunction with a robust parameter estimation strategy and we obtained that for water at room temperature the mass accommodation coefficient is in the confidence interval [0.217,0.329].

  14. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    USGS Publications Warehouse

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  15. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  16. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  17. Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Wynveen, R. A.

    1983-01-01

    Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.

  18. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750- to 1000-nm range

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Wiedenmann, Dieter; Jaeger, Roland; King, Roger

    2005-03-01

    The growing demand on low cost high spectral purity laser sources at specific wavelengths for applications like tuneable diode laser absorption spectroscopy (TDLAS) and optical pumping of atomic clocks can be met by sophisticated single-mode VCSELs in the 760 to 980 nm wavelength range. Equipped with micro thermo electrical cooler (TEC) and thermistor inside a small standard TO46 package, the resulting wavelength tuning range is larger than +/- 2.5 nm. U-L-M photonics presents manufacturing aspects, device performance and reliability data on tuneable single-mode VCSELs at 760, 780, 794, 852, and 948 nm lately introduced to the market. According applications are O2 sensing, Rb pumping, Cs pumping, and moisture sensing, respectively. The first part of the paper dealing with manufacturing aspects focuses on control of resonance wavelength during epitaxial growth and process control during selective oxidation for current confinement. Acceptable resonance wavelength tolerance is as small as +/- 1nm and typical aperture size of oxide confined single-mode VCSELs is 3 &mum with only few hundred nm tolerance. Both of these major production steps significantly contribute to yield on wafer values. Key performance data for the presented single-mode VCSELs are: >0.5 mW of optical output power, >30 dB side mode suppression ratio, and extrapolated 10E7 h MTTF at room temperature based on several millions of real test hours. Finally, appropriate fiber coupling solutions will be presented and discussed.

  19. Polymers as Reference Partitioning Phase: Polymer Calibration for an Analytically Operational Approach To Quantify Multimedia Phase Partitioning.

    PubMed

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp

    2016-06-07

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.

  20. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    PubMed

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

Top