Sample records for coelenterata

  1. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.

    PubMed

    Folmer, O; Black, M; Hoeh, W; Lutz, R; Vrijenhoek, R

    1994-10-01

    We describe "universal" DNA primers for polymerase chain reaction (PCR) amplification of a 710-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) from 11 invertebrate phyla: Echinodermata, Mollusca, Annelida, Pogonophora, Arthropoda, Nemertinea, Echiura, Sipuncula, Platyhelminthes, Tardigrada, and Coelenterata, as well as the putative phylum Vestimentifera. Preliminary comparisons revealed that these COI primers generate informative sequences for phylogenetic analyses at the species and higher taxonomic levels.

  2. Conservation, management, and restoration of coral reefs.

    PubMed

    Chavanich, Suchana; Soong, Keryea; Zvuloni, Assaf; Rinkevich, Baruch; Alino, Porfirio

    2015-04-01

    The 8th International Conference on Coelenterate Biology (ICCB 8) was held in Eilat, Israel from December 1st to 5th 2013. The conference included 15 sessions, one of which discussed the latest information on the conservation, management, and restoration of Coelenterata in different parts of the world. A total of 16 oral presentations and 5 posters were presented in this session. Of these 21 papers, 11 were related to conservation issues, 7 described management, and 3 discussed restoration. This session provided insights on the current conservation, management, and restoration of coelenterates in different parts of the world. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Polypodium sp. (Coelenterata) infection of paddlefish (Polyodon spathula) eggs

    USGS Publications Warehouse

    Suppes, V. Charles; Meyer, Fred P.

    1975-01-01

    Parasitism of fish by coelenterates is rare and the first North American infection was reported in sturgeon (Hoffman et al., 1974, J Parasitol 60: 548-550). In the USSR parasitism of sturgeon (Acipenser sp.) eggs by the coelenterate Polypodium hydriforme Ussov 1885 has long been reported and investigated [Raikova, 1959, in Parasites of Freshwater Fish and the Biological Basis for their Control. Bull State Sci Res Inst Lake and River Fish. XLIX. Eng. transl. No. TT61-31056, O. T. S., U. S. Dep. Commerce, Washington, D. C., 1962, 235 p.: Raikova, 1973, (Proc Second Internat Symp on Cnidaria), Seto Marine Biological Laboratory 20: 165-173]. This report represents the first known infection of Polypodium in the paddlefish (Polyodon spathula).

  4. Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia).

    PubMed

    Aceret, T L; Coll, J C; Uchio, Y; Sammarco, P W

    1998-07-01

    The soft coral Sinularia flexibilis is rarely overgrown by bacteria and algae. Various studies have shown that it contains diterpenes that protect it from competitors and predators. However, of the many diterpenoids isolated from S. flexibilis, only sinulariolide has been studied for antibiotic properties. Samples of soft corals were collected from Orpheus Island and freeze-dried for chemical extraction and isolation of pure diterpenes. Antimicrobial activity of the diterpenes was determined using the disc assay method with antibiotics as controls and the minimum inhibitory concentrations of the diterpenes were determined using the Tube Dilution Technique. Two out of the five diterpenes tested (sinulariolide and flexibilide), showed marked antimicrobial activity and inhibited growth of Gram-positive bacteria. Flexibilide was effective even at concentrations as low as 5 ppm, whereas sinulariolide was effective at concentrations of 10 ppm. These compounds show potential as antibiotics.

  5. Phylogenetic study of the arginine-vasotocin/arginine-vasopressin-like immunoreactive system in invertebrates.

    PubMed

    Mizuno, J; Takeda, N

    1988-01-01

    1. A phylogenetic study of arg-vasotocin (AVT)/arg-vasopressin (AVP)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Pomacea canaliculata, Aplysia kurodai, Oncidium verrucosum, Bradybaena similaris, Achatina fulica, Limax marginatus and Meretrix lamarckii of the Mollusca; Gnorimosphaeroma rayi, Hemigrapsus sanguineus, Gryllus bimaculatus and Baratha brassicae of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 3. No immunoreactivity was detected in Bipalium sp. of the Platyhelminthes, or in Procambarus clarkii and Helice tridens of the Arthropoda. 4. From these results, it appears that AVT/AVP is a phylogenetically ancient peptide which is present in a wide variety of invertebrates. 5. The actions of AVT/AVP and its presence in invertebrates are discussed.

  6. Phylogenetic study of the oxytocin-like immunoreactive system in invertebrates.

    PubMed

    Mizuno, J; Takeda, N

    1988-01-01

    1. A phylogenetic study of oxytocin (OXT)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Oncidium verrucosum, Limax marginatus and Meretrix lamarckii of the Mollusca; and Baratha brassica of the Arthropoda. 3. No immunoreactive cells were found in Bipalium sp. of the Platyhelminthes; Pomacea canaliculata, Aplysia kurodai, Bradybaena similaris and Achatina fulica of the Mollusca; and Gnorimosphaeroma rayi, Procambarus clarkii, Hemigrapsus sanguineus, Helice tridens and Gryllus bimaculatus of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 4. These results demonstrate that an OXT-immunoreactive substance is widely present not only in vertebrates but also in invertebrates. 5. OXT seems to have been introduced into these invertebrates at an early stage of their phylogenetic history.

  7. The inland water macro-invertebrate occurrences in Flanders, Belgium.

    PubMed

    Vannevel, Rudy; Brosens, Dimitri; Cooman, Ward De; Gabriels, Wim; Frank Lavens; Mertens, Joost; Vervaeke, Bart

    2018-01-01

    The Flanders Environment Agency (VMM) has been performing biological water quality assessments on inland waters in Flanders (Belgium) since 1989 and sediment quality assessments since 2000. The water quality monitoring network is a combined physico-chemical and biological network, the biological component focusing on macro-invertebrates. The sediment monitoring programme produces biological data to assess the sediment quality. Both monitoring programmes aim to provide index values, applying a similar conceptual methodology based on the presence of macro-invertebrates. The biological data obtained from both monitoring networks are consolidated in the VMM macro-invertebrates database and include identifications at family and genus level of the freshwater phyla Coelenterata, Platyhelminthes, Annelida, Mollusca, and Arthropoda. This paper discusses the content of this database, and the dataset published thereof: 282,309 records of 210 observed taxa from 4,140 monitoring sites located on 657 different water bodies, collected during 22,663 events. This paper provides some background information on the methodology, temporal and spatial coverage, and taxonomy, and describes the content of the dataset. The data are distributed as open data under the Creative Commons CC-BY license.

  8. Exploiting the Nephrotoxic Effects of Venom from the Sea Anemone, Phyllodiscus semoni, to Create a Hemolytic Uremic Syndrome Model in the Rat

    PubMed Central

    Mizuno, Masashi; Ito, Yasuhiko; Morgan, B. Paul

    2012-01-01

    In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS. PMID:22851928

  9. Jellyfish mesogloea collagen. Characterization of molecules as alpha 1 alpha 2 alpha 3 heterotrimers.

    PubMed

    Miura, S; Kimura, S

    1985-12-05

    The mesogloea collagen of a primitive animal, the jellyfish Stomolophus nomurai, belonging to the class Scyphozoa in the Coelenterata, was studied with respect to its chain structure. Most of the mesogloea collagen was solubilized by limited digestion with pepsin and isolated by selective precipitation at 0.9 m NaCl in 0.5 M acetic acid. Upon denaturation, the pepsin-solubilized collagen produced three distinct alpha chains, alpha 1, alpha 2, and alpha 3, in comparable amounts which were separable by CM-cellulose chromatography. The nonidentity of these alpha chains was confirmed by amino acid and carbohydrate analyses and peptide mapping. Furthermore, the introduction of intramolecular cross-links into native molecules by formaldehyde yielded a large proportion of gamma 123 chain with chain structure alpha 1 alpha 2 alpha 3, as judged by chromatographic behavior and peptide maps. We concluded that mesogloea collagen is comprised of alpha 1 alpha 2 alpha 3 heterotrimers and is chemically like vertebrate Type V collagen. On the other hand, sea anemone mesogloea collagen from the class Anthozoa was previously reported to comprise (alpha)3 homotrimers (Katzman, R. L., and Kang, A. H. (1972) J. Biol. Chem. 247, 5486-5489). On the basis of these findings, we assume that alpha 1 alpha 2 alpha 3 heterotrimers arose in evolution with the divergence of Scyphozoa and Anthozoa.

  10. The phylum Cnidaria and investigations of its toxins and venoms until 1990.

    PubMed

    Turk, Tom; Kem, William R

    2009-12-15

    Cnidarians are the largest phylum of generally toxic animals, yet their toxins and venoms have not received as much scientific attention as those of many terrestrial (snakes, scorpions, spiders, etc.) and even some marine animals (i.e. cone snails). Approximately 13,000 living cnidarian species have been described by systematists. A major rationale for their study in the past, besides scientific curiosity, was to better treat victims of their envenomation. While that goal remains a high priority, it is now appreciated that the toxins of these mostly marine animals can be very useful molecular probes for the analysis of ion channels involved in electrical signaling, immune responses and other signal transduction processes of biomedical interest. For instance, anaphylaxis was discovered by Richet (1905) during experiments with sea anemone and hydrozoan tentacular extracts. Similarly, it has recently been shown that a toxin from another sea anemone is able to potently inhibit T-lymphocyte proliferation in models of certain autoimmune diseases. Thus, these natural substances continue to be of relevance for understanding and treating human diseases. In addition to introducing phylum Cnidaria (Coelenterata), we provide a short history of early (until about 1990) research on cnidarian toxins and venoms, to provide a perspective for appreciating the scientific advances of the past two decades that are summarized in the ensuing 19 papers in this special Toxicon issue.

  11. [Generation continuity and integration].

    PubMed

    Zakhvatkin, Iu A

    2008-01-01

    Transformation of the cyclic morphoprocesses in Protista toward the terminal-cyclic morphoprocesses in Metazoa had lead to integration of the fomer's life circles into the latter's ontogenesis and began to supply the newly emerging ecosystems with the regular income of mortomasses. According to the palintomic hypothesis of A.A. Zakhvatkin, it was the egg that became a means of the metazoan generation continuity, and not the half set of organells acquired by descendants of a divided maternal cell in Protozoa. Origin of Metazoa and of their ontogenesis was accomplished by hypetrophic distomy and subsequent palintomic division of the protist parental cell, these processes being comparable to the ovogenesis and ovocyte division in the Metazoa. Division process in the most primitive metazoans, Leptolida and Calcarea, retained certains features of its palintomic nature that are clear in the Ctenophora, the latter though specific being most similar in this respect to the spongs and not to the Coelenterata whith whom they were united in the same phylum formerly. The ovogenesis perfection controlled by the maternal organism and leading to an increment of the nuclear-plasmic tension due to enrichment of egg with the yolk, promoted the embrionization of development and formation of the egg morphogenetic environment providing for the earlier formation processes without participation of the parental recombined genotypes. With all this, far earlier appearence of symmetry elements of definitive forms is embriogenesis along the ascending trend from the lower Metazoa to the most advanced insects. The unordered correspondence of the polarity axis of egg and the oral-aboral axis of blastula-like larva (1) is replaced by protaxony (2) in which these axes coincide, all formation processes reaching their perfection in the homoquadrant spiral division of annelids, which became a means of ovoplasma segregation. Afterward, a herequadrant division and plagioxony are developed in the course of emergence of bilateral symmetry and embrionization in Clitellata (3), in which principal morphological axes become intersected. With the transition to arthropodes, the spiral division degenerates in a variaty of forms (desintegrative variaiton) and losts its connection with the ovoplasma segregation, which occurs beforehand in the ovogenesis. Connection between parental organism and its progeny becomes more close. Transformation of the ovary into ovariol and villogenesis intensification appeared to be of prime importance in the evoluiton of insects. Their eggs elongated and more or less bilateral symmetrical. The nuclear-plasmic interrelation becomes even more tense, and the enormous yolk store makes the developing embryo to the orientational blasokyneses. An orthoplagioaxony (4) and lastly orhoaxony (5) emerge in the higher Diptera and Hymenoptera, in which morphological axes of the egg, the embryo, and the larva coincide. This is accomplished by the maximal integration of generations, as far as all germs of the organs of larvae and even emagoes appeared to be preformed in the ovogenesis.

  12. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Martínez Arbizu, Pedro

    2015-01-01

    We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ in occupancy of the top layer. Furthermore, sediment depth and abundance were strongly correlated, but the sediment texture itself and the grain sizes showed only slight correlations with abundance. In the trench slope no correlation between sediment texture and abundance was found. We suggest that sediment is not the only factor that affects meiofauna abundance in the study area. The results of our study were compared with other trench and nontrench studies, and in most cases, the abundance decreases with depth initially but increases again below a certain depth, especially in deep-sea trenches below productive waters. No generalization can be made, however, about the depth at which the reversal occurs; it depends on the area of investigation and on a mixture of many other factors (e.g., sediment heterogeneity, oxygen, redox potential, proximity to land masses, and season).

Top